Naoki Endo's web page

School of Political Science and Economics
Meiji University
1-9-1 Eifuku, Suginami-ku, Tokyo 168-8555, Japan
e-mail : endo [at] meiji.ac.jp

Papers

[1] 谷口直樹, 小浦あす貴, 後藤四郎, 1次元局所環のm-準素イデアルのHilbert係数, 明治大学理工学部研究報告, 47 (2012) 1-7

[2] 後藤四郎, 高橋亮,谷口直樹, H. L. Truong, 塚本三一郎,環の取り替えを手法とするHuneke-Wiegand予想, 明治大学理工学部研究報告, 49 (2013) 17-28

[3] A. Koura, N. Taniguchi, Bounds for the first Hilbert coefficients of m-primary ideals, Tokyo J. Math., 38 (2015), no.1, 125-133

[4] S. Goto, R. Takahashi, N. Taniguchi, and H. L. Truong, Huneke-Wiegand conjecture and change of rings, J. Algebra, 422 (2015), 33-52

[5] S. Goto, R. Takahashi, and N. Taniguchi, Almost Gorenstein rings -towards a theory of higher dimension, J. Pure Appl. Algebra, 219 (2015), no.7, 2666-2712

[6] N. Taniguchi, T. T. Phuong, N. T. Dung, and T. N. An, Sequentially Cohen-Macaulay Rees algebras, J. Math. Soc. Japan, 69 (2017), no.1, 293-309

[7] S. Goto, R. Takahashi, and N. Taniguchi, Ulrich ideals and almost Gorenstein rings, Proc. Amer. Math. Soc., 144 (2016), no.7, 2811-2823

[8] N. Taniguchi, T. T. Phuong, N. T. Dung, and T. N. An, Topics on sequentially Cohen-Macaulay modules, J. Commut. Algebra, 10 (2018), no.2, 295-304

[9] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, The almost Gorenstein Rees algebras of parameters, J. Algebra, 452 (2016), 263-278

[10] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, The almost Gorenstein Rees algebras over two-dimensional regular local rings, J. Pure Appl. Algebra, 220 (2016), no.10, 3425-3436

[11] S. Goto, M. Rahimi, N. Taniguchi, and H. L. Truong, When are the Rees algebras of parameter ideals almost Gorenstein graded rings?, Kyoto J. Math., 57 (2017), no.3, 655-666  

[12] N. Taniguchi, On the almost Gorenstein property of determinantal rings, Comm. Algebra, 46 (2018), no.3, 1165-1178

[13] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, Almost Gorenstein Rees algebras of pg-ideals, good ideals, and powers of the maximal ideals, Michigan Math. J., 67 (2018), no.1,
159-174  

[14] S. Goto, N. Matsuoka, N. Taniguchi, and K.-i. Yoshida, On the almost Gorenstein property in Rees algebras of contracted ideals, Kyoto J. Math., 59 (2019), no.4, 769-785

[15] O. Celikbas, S. Goto, R. Takahashi, and N. Taniguchi, On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc., 62 (2019), no.3, 847-859

[16] E. Celikbas, O. Celikbas, S. Goto, and N. Taniguchi, Generalized Gorenstein Arf rings, Ark. Mat., 57 (2019), no.1, 35-53

[17] O. Celikbas, A. Sadeghi, and N. Taniguchi, On modules with reducible complexity, Algebr. Represent. Theory, 23 (2020), 1467-1476

[18] N. Endo, On Ratliff-Rush closure of modules, Math. Scand., 126 (2020), no.2, 170-188

[19] N. Endo, S. Goto, N. Matsuoka, and Y. Yamamoto, Efficient generation of ideals in core subalgebras of the polynomial ring k[t] over a field k, Proc. Amer. Math. Soc., 148 (2020), no.8, 3283-3292     

[20] S. Goto, R. Isobe, and N. Taniguchi, Ulrich ideals and 2-AGL rings, J. Algebra, 555 (2020), 96-130

[21] K. Shimomoto, N. Taniguchi, and E. Tavanfar, A study of quasi-Gorenstein rings II: Deformation of quasi-Gorenstein property, J. Algebra, 562 (2020), 368-389

[22] N. Endo, S. Goto, and R. Isobe, Almost Gorenstein rings arising from fiber products, Canad. Math. Bull., 64 (2021), no.2, 383-400

[23] N. Endo and S. Goto, Construction of strictly closed rings, Proc. Amer. Math. Soc., 150 (2022), no.1, 119-129

[24] N. Endo, S. Goto, and R. Isobe, Topics on strict closure of rings, Res. Math. Sci., Developments in Commutative Algebra: In honor of Jürgen Herzog on the occasion of his 80th Birthday, 8 (2021), no. 4, Paper No. 55, 16 pp.

[25] E. Celikbas, O. Celikbas, C. Ciuperca, N. Endo, S. Goto, R. Isobe, and N. Matsuoka, On the ubiquity of Arf rings, J. Commut. Algebra, 15 (2023), no.2, 177-231

[26] E. Celikbas, N. Endo, J. Laxmi, and J. Weyman, Almost Gorenstein determinantal rings of symmetric matrices, Comm. Algebra, 50 (2022), no.12, 5449-5458

[27] N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small multiplicity, J. Algebra, 611 (2022), 435-479

[28] N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, On the weakly Arf (S_2)-ifications of Noetherian rings, J. Commut. Algebra, 15 (2023), no.3, 303-319

[29] N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, When are the rings I:I Gorenstein?, Comm. Algebra, 51 (2023), no.4, 1721-1734

[30] N. Endo, L. Ghezzi, S. Goto, J. Hong, S.-i. Iai, T. Kobayashi, N. Matsuoka, and R. Takahashi, Rings with q-torsionfree canonical modules, The Mathematical Legacy of Wolmer V. Vasconcelos, De Gruyter Proc. Math., De Gruyter, Berlin (to appear)

[31] N. Endo and N. Matsuoka, Remarks on almost Gorenstein rings, Comm. Algebra, 52 (2024), no.7, 2884-2891

[32] N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, Ulrich ideals in the ring k[[t^5, t^{11}]], Internat. J. Algebra Comput., 34 (2024), no.3, 351-369

[33] N. Endo and S. Goto, Reflexive modules over the endomorphism algebras of reflexive trace ideals, J. Pure Appl. Algebra (to appear)

[34] N. Endo and S. Goto, A criterion for reflexivity of modules, Proc. Amer. Math. Soc. (to appear)

[35] N. Endo, How many ideals whose quotient rings are Gorenstein exist?, Proc. Amer. Math. Soc. (to appear)

Submitted papers

[36] S. Goto, R. Isobe, S. Kumashiro, and N. Taniguchi, Characterization of generalized Gorenstein rings, preprint 2017, 11 pages (arXiv:1704.08901)

[37] N. Endo, Goto rings, preprint 2023, 54 pages (arXiv:2312.14379)