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ABSTRACT. This paper investigates the relation between the almost Gorenstein properties for
graded rings and for local rings. Once R is an almost Gorenstein graded ring, the localization
RM of R at the graded maximal ideal M is almost Gorenstein as a local ring. The converse does
not hold true in general ([7, Theorems 2.7, 2.8], [8, Example 8.8]). However, it does for one-
dimensional graded domains with mild conditions, which we clarify in the present paper. We
explore the defining ideals of almost Gorenstein numerical semigroup rings as well.

1. INTRODUCTION

An almost Gorenstein ring, which we focus on in the present paper, is one of the attempts
to generalize Gorenstein rings. The motivation for this generalization comes from the strong
desire to stratify Cohen-Macaulay rings, finding new and interesting classes which naturally
include that of Gorenstein rings. The theory of almost Gorenstein rings was introduced by
Barucci and Fröberg [1] in the case where the local rings are analytically unramified and of
dimension one, e.g., numerical semigroup rings over a field. In 2013, their work inspired Goto,
the second author of this paper, and Phuong [6] to extend the notion of almost Gorenstein rings
for arbitrary one-dimensional Cohen-Macaulay local rings. More precisely, a one-dimensional
Cohen-Macaulay local ring R is called almost Gorenstein if R admits a canonical ideal I of
R such that e1(I) ≤ r(R), where e1(I) denotes the first Hilbert coefficients of R with respect
to I and r(R) is the Cohen-Macaulay type of R ([6, Definition 3.1]). Two years later, Goto,
Takahashi, and the first author of this paper [8] defined the almost Gorenstein graded/local
rings of arbitrary dimension. Let (R,m) be a Cohen-Macaulay local ring. Then R is said to be
an almost Gorenstein local ring if R admits a canonical module KR and there exists an exact
sequence

0 → R → KR →C → 0

of R-modules such that µR(C)= e0
m(C) ([8, Definition 3.3]). Here, µR(−) (resp. e0

m(−)) denotes
the number of elements in a minimal system of generators (resp. the multiplicity with respect to
m). When dimR = 1, if R is an almost Gorenstein local ring in the sense of [8], then R is almost
Gorenstein in the sense of [6], and vice versa provided the field R/m is infinite ([8, Proposition
3.4]). However, the converse does not hold in general ([8, Remark 3.5], see also [6, Remark
2.10]). Similarly as in local rings, a Cohen-Macaulay graded ring R = ⊕n≥0Rn with k = R0 a
local ring is called an almost Gorenstein graded ring if R admits a graded canonical module KR
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and there exists an exact sequence

0 → R → KR(−a)→C → 0

of graded R-modules with µR(C) = e0
M(C) ([8, Definition 8.1]). Here, M is the graded maximal

ideal of R, a = a(R) is the a-invariant of R, and KR(−a) denotes the graded R-module whose
underlying R-module is the same as that of KR and whose grading is given by [KR(−a)]n =

[KR]n−a for all n ∈ Z.
Every Gorenstein local/graded ring is almost Gorenstein. The definitions assert that once R

is an almost Gorenstein local (resp. graded) ring, either R is a Gorenstein ring, or even though
R is not a Gorenstein ring, the local (resp. graded) ring R is embedded into the module KR
(resp. the graded module KR(−a)) and the difference C behaves well. Moreover, if R is an
almost Gorenstein graded ring, then the localization RM of R at M is an almost Gorenstein local
ring, which readily follows from the definition. However, the converse does not hold true in
general ([7, Theorems 2.7, 2.8], [8, Example 8.8]), even though it does for determinantal rings
of generic, as well as symmetric, matrices over a field ([2, Theorem 1.1], [12, Theorem 1.1]).

In this paper we investigate the question of when the converse holds in one-dimensional
rings. Throughout this paper, unless otherwise specified, let R =

⊕
n≥0 Rn be a one-dimensional

Noetherian Z-graded integral domain admitting a graded canonical module KR. We assume
k = R0 is a field, and Rn ̸= (0) and Rn+1 ̸= (0) for some n ≥ 0. Let M denote the graded
maximal ideal of R.

With this notation this paper aims at proving the following result.

Theorem 1.1. There exists a graded canonical ideal J of R containing a parameter ideal as a
reduction, and the following conditions are equivalent.

(1) R is an almost Gorenstein graded ring.
(2) RM is an almost Gorenstein local ring in the sense of [6, Definition 3.1].
(3) RM is an almost Gorenstein local ring in the sense of [8, Definition 3.3].

Theorem 1.1 guarantees the existence of a (graded) canonical ideal admitting a parameter
ideal as a reduction; hence the proof of [8, Proposition 3.4] shows that the conditions (2) and
(3) are equivalent even though the field R/M is finite. As we mentioned, by the definition of
almost Gorenstein local/graded rings we only need to verify the implication (2)⇒ (1). What
makes (2)⇒ (1) interesting and difficult is that the implication is not true in general.

Let us now explain how this paper is organized. We prove Theorem 1.1 in Section 2 after
preparing some auxiliaries. We also explore the explicit generators of defining ideals of almost
Gorenstein numerical semigroup rings. Section 3 is devoted to providing examples illustrating
Theorem 1.1.

2. PROOF OF THEOREM 1.1

Let S be the set of non-zero homogeneous elements in R. The localization S−1R = K[t, t−1]
of R with respect to S is a simple graded ring, i.e., every non-zero homogeneous element is
invertible, where t is a homogeneous element of degree 1 (remember that Rn ̸= (0) and Rn+1 ̸=
(0)) which is transcendental over k, and K = [S−1R ]0 is a field. Let R be the integral closure of
R in its quotient field Q(R).
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We begin with the following, which has already appeared in [3, Lemma 2.1]. Because it plays
an important role in our argument, we include a brief proof for the sake of completeness.

Lemma 2.1. The equality R = K[t] holds in Q(R).

Proof. As R is an integral domain, we obtain that R is a graded ring and R ⊆ S−1R = K[t, t−1]

([13, page 157]). Since the field k is Nagata, so is the finitely generated k-algebra R. Hence R
is a module-finite extension of R. One can verify that Rn = (0) for all n < 0 and R0 = k; hence
[R ]n = (0) for all n < 0, L = [R ]0 is a field, and k ⊆ L ⊆ K. We set N =

⊕
n>0[R ]n. Since

the local ring RN of R at the maximal ideal N is a DVR, the ideal N is principal. Choose a
homogeneous element f ∈ R of degree q > 0 with N = f R. Then

R = L[N] = L[ f ]⊆ S−1R = K[t, t−1].

Besides, because R[ f−1] = L[ f , f−1] is a simple graded ring and R ⊆ R[ f−1], we have S−1R ⊆
R[ f−1] = L[ f , f−1]. Thus K[t, t−1] = L[ f , f−1], so that K = L and q = 1. Consequently, R =
L[ f ] = K[ f ] = K[t], as desired. □

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since S−1KR ∼= S−1R as a graded S−1R-modules, we have an injective
homomorphism 0 → KR

φ→ S−1R of graded R-modules. Choose s ∈ S such that s ·φ(KR) ⊊ R.
Set J = s ·φ(KR) and q =−degs. Then KR(q)∼= J as a graded R-module. By setting a = a(R)
and ℓ=−(q+a), we then have Jℓ ̸= (0) and Jn = (0) for all n < ℓ. We now choose a non-zero
homogeneous element f ∈ Jℓ. Note that ℓ > 0 and f ∈

[
R
]
ℓ
. Therefore

JR = tℓR = f R.

This shows the equality Jr+1 = f Jr holds where r = µR(R)−1. Here, we recall that µR(−) de-
notes the number of elements in a minimal system of generators. Hence, J is a graded canonical
ideal of R which contains a parameter ideal ( f ) of R as a minimal reduction.

As for the equivalent conditions, we only need to show the implication (2)⇒ (1).
(2)⇒ (1) We consider the exact sequence

0 → R
ψ→ J(ℓ)→C → 0

of graded R-modules with ψ(1) = f . Since mI = m f , we get MJ = M f and hence MC = (0),
i.e. C is an Ulrich R-module. Therefore R is an almost Gorenstein graded ring because J(ℓ) ∼=
KR(−a). This completes the proof. □

Let N be the set of non-negative integers. A numerical semigroup is a non-empty sub-
set H of N which is closed under addition, contains the zero element, and whose comple-
ment in N is finite. Every numerical semigroup H admits a finite minimal system of gener-
ators, i.e., there exist positive integers a1,a2, . . . ,aℓ ∈ H (ℓ ≥ 1) with gcd(a1,a2, . . . ,aℓ) = 1
such that H = ⟨a1,a2, . . . ,aℓ⟩ =

{
∑ℓ

i=1 ciai
∣∣ ci ∈ N for all 1 ≤ i ≤ ℓ

}
. For a field k, the ring

k[H] = k[ta1 , ta2 , . . . , taℓ ] (or k[[H]] = k[[ta1 , ta2 , . . . , taℓ ]]) is called the numerical semigroup ring
of H over k, where t denotes an indeterminate over k. Note that the ring k[H] satisfies the
assumption of Theorem 1.1. Let M be the graded maximal ideal of R. Since every non-zero
ideal in numerical semigroup rings admits its minimal reduction, the two definitions for almost
Gorenstein local rings [6, Definition 3.1] and [8, Definition 3.3] are equivalent. In addition, the
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local ring k[H]M is almost Gorenstein if and only if k[[H]] is an almost Gorenstein local ring;
equivalently, the semigroup H is almost symmetric ([1, Proposition 29], [10, Theorem 2.4]).

Hence we have the following, which recovers a result of Goto, Kien, Matsuoka, and Truong.

Corollary 2.2 ([5, Proposition 2.3]). A numerical semigroup ring k[[H]] is an almost Gorenstein
local ring if and only if k[H] is an almost Gorenstein graded ring, or equivalently, H is almost
symmetric.

In the rest of this section, let R = k[H] be the numerical semigroup ring over k and

c(H) = min{n ∈ Z | m ∈ H for all m ∈ Z with m ≥ n}

the conductor of H. We set f(H) = c(H)− 1. Then f(H) = max (Z \H), which is called the
Frobenius number of H. Let

PF(H) = {n ∈ Z\H | n+ai ∈ H for all 1 ≤ i ≤ ℓ}

be the set of pseudo-Frobenius numbers of H. The graded canonical module KR has the form

KR = ∑
c∈PF(H)

Rt−c

whence f(H) = a(R) and #PF(H) = r(R) ([9, Example (2.1.9), Definition (3.1.4)]). Here, r(R)
denotes the Cohen-Macaulay type of R. We write PF(H) = {c1 < c2 < · · ·< cr}; hence r = r(R)
and cr = a(R). For each 1 ≤ i ≤ r, we set bi =−cr+1−i. Thus KR = ∑r

i=1 Rtbi .
Let S = k[x1,x2, ...,xℓ] be the weighted polynomial ring over the field k with xi ∈ Sai for all

1 ≤ i ≤ ℓ. Consider the homomorphism φ : S → R of graded k-algebras defined by φ(xi) = tai

for all 1 ≤ i ≤ ℓ.
Suppose R is almost Gorenstein, but not a Gorenstein ring. Then r ≥ 2. Since R ⊆ t−b1KR =

∑r
i=1 Rtbi−b1 ⊆ R, we have MKR ⊆ Rtb1 , where M = (th | 0 < h ∈ H) is the graded maximal

ideal of R. Hence, cr −ci = cr−i for all 1 ≤ i ≤ r−1 (see e.g., [5, Proposition 2.3], [6, Theorem
3.11], [8, Definition 8.1], and [10, Theorem 2.4]). We consider the graded S-linear map

F =

S (−b1)
⊕

S (−b2)
⊕
...
⊕

S (−br)

ε−→ KR −→ 0

defined by ε(ei) = tbi for each 2≤ i≤ ℓ and ε(e1) =−tb1 , where {ei}1≤i≤r denotes the standard
basis of F . Set L = Kerε . For each 2 ≤ i ≤ r and 1 ≤ j ≤ ℓ, we have x jtbi ∈ Rtb1 . Choose a
homogeneous element yi j ∈ S of degree a j + bi − b1 such that x jtbi − yi jtb1 = 0; hence x jei +
yi je1 ∈ L. Since {x jei + yi je1}2≤i≤r, 1≤ j≤ℓ forms a part of minimal basis of L, we have q ≥
(r− 1)ℓ, where q = µS(L). Let m = q− (r− 1)ℓ. If m > 0, then we can choose homogeneous
elements z1,z2, . . . ,zm ∈ S such that {x jei+yi je1,z1e1,z2e1, . . . ,zme1}2≤i≤r, 1≤ j≤ℓ is a minimal
basis of L. Hence

G M−→ F ε−→ KR −→ 0
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gives a minimal presentation of KR, where G denotes a graded free S-module of rank q and the
r×q matrix M has the following form

M=


y21 y22 · · · y2ℓ y31 y32 · · · y3ℓ · · · yr1 yr2 · · · yrℓ z1 z2 · · · zm
x1 x2 · · · xℓ 0 0 0 0

0 x1 x2 · · · xℓ 0 0 0
...

... . . . ...
...

0 0 0 x1 x2 · · · xℓ 0

 .

Note that bi − b1 = ci−1 and a j +(bi − b1) ∈ H (remember that cr − ci = cr−i). We write a j +
(bi−b1) = d1a1+d2a2+ · · ·+dℓaℓ for some di ∈N. Then, because bi−b1 ̸∈H, we have d j = 0.
As yi j has degree a j +bi −b1, we may choose

yi j = ∏
1≤k≤ℓ, k ̸= j

xdk
k for all 2 ≤ i ≤ r, 1 ≤ j ≤ ℓ.

With this notation we reach the following, where, for each t ≥ 1, It(X) denotes the ideal of S
generated by the t × t minors of a matrix X.

Theorem 2.3. Suppose that R = k[H] is almost Gorenstein, but not a Gorenstein ring. Then,
for each 2 ≤ i ≤ r, the difference degyi j −degx j (= ci−1) is constant for every 1 ≤ j ≤ ℓ, and
the defining ideal of R has the following form

Kerφ =
r

∑
i=2

I2

(
yi1 yi2 · · · yiℓ
x1 x2 · · · xℓ

)
+(z1,z2, · · · ,zm).

Remark 2.4. For a higher dimensional semi-Gorenstein ring A, i.e., a special class of almost
Gorenstein ring, the form of the defining ideals can be determined by the minimal free resolution
of A ([8, Theorem 7.8]). Our contribution in Theorem 2.3 is that we succeeded in writing yi j
concretely in case of numerical semigroup rings.

Remark 2.5. When the almost symmetric semigroup H is minimally generated by four elements,
Eto provided an explicit minimal system of generators of defining ideals of the semigroup rings
k[H] by using the notion of RF-matrices ([4, Section 5]).

Example 2.6. The semigroup ring R = k[H] for a numerical semigroup H described below is
an almost Gorenstein graded ring, and its defining ideal Kerφ is given by the following form.

(1) Let H = ⟨7,8,13,17,19⟩. Then PF(H) = {6,9,12,18} and

Kerφ = I2

(
x3 x2

1 x5 x1x2
2 x2x4

x1 x2 x3 x4 x5

)
+ I2

(
x2

2 x4 x2
1x2 x2

3 x1x2x3
x1 x2 x3 x4 x5

)
+ I2

(
x5 x1x3 x2x4 x3

1x2 x2
1x4

x1 x2 x3 x4 x5

)
.

(2) Let H = ⟨11,13,14,16,31⟩. Then PF(H) = {15,17,19,34} and

Kerφ = I2

(
x2

2 x2
3 x2x4 x5 x3

1x2
x1 x2 x3 x4 x5

)
+ I2

(
x2

3 x3x4 x5 x3
1 x3

4
x1 x2 x3 x4 x5

)
+ I2

(
x3x4 x2

4 x3
1 x2

1x2 x1x3
2

x1 x2 x3 x4 x5

)
+ (x1x4 − x2x3).
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(3) Let H = ⟨13,15,16,18,19⟩. Then PF(H) = {17,20,23,40} and

Kerφ = I2

(
x2

2 x2
3 x2x4 x3x5 x2

4
x1 x2 x3 x4 x5

)
+ I2

(
x2x4 x3x5 x2

4 x2
5 x3

1
x1 x2 x3 x4 x5

)
+ I2

(
x2

4 x2
5 x3

1 x2
1x2 x2

1x3
x1 x2 x3 x4 x5

)
+ (x1x4 − x2x3,x1x5 − x2

3,x2x5 − x3x4).

The next provides an explicit minimal system of generators for defining ideals of R = k[H]
when R has minimal multiplicity, i.e., the embedding dimension is equal to the multiplicity.

Corollary 2.7 (cf. [8, Corollary 7.10]). Suppose that R = k[H] is almost Gorenstein, but not a
Gorenstein ring. If R has minimal multiplicity, the defining ideal of R has the following form

Kerφ =
r

∑
i=2

I2

(
yi1 yi2 · · · yiℓ
x1 x2 · · · xℓ

)
.

Proof. We maintain the notation as in this section. Since R has minimal multiplicity, by [11,
Theorem 1] q = (ℓ−2)

( ℓ
ℓ−1

)
= (ℓ−2)ℓ= (r−1)ℓ, so that m = 0. □

3. EXAMPLES OF THEOREM 1.1

We close this paper by providing some examples. In this section, the almost Gorenstein
property for local rings refers to the definition in the sense of [8, Definition 3.3]. The first
example indicates that Theorem 1.1 does not hold unless R is an integral domain.

Example 3.1 ([8, Example 8.8]). Let U = k[s, t] be the polynomial ring over a field k and set
R = k[s,s3t,s3t2,s3t3]. We regard U as a Z-graded ring under the grading k =U0 and s, t ∈U1.
Let M be the graded maximal ideal of R. Then the following assertions hold true.
(1) R, R/sR are not almost Gorenstein graded rings.
(2) RM, RM/sRM are almost Gorenstein local rings.

Proof. Let S = k[X ,Y,Z,W ] be the polynomial ring over k. We consider S as a Z-graded ring
with k = S0, X ∈ S1, Y ∈ S4, Z ∈ S5, and W ∈ S6. Let φ : S → R be the graded k-algebra map
such that φ(X) = s, φ(Y ) = s3t, φ(Z) = s3t2, and φ(W ) = s3t3. By [8, Example 8.8], R is not
almost Gorenstein graded ring with a(R) =−2, but the local ring RM is almost Gorenstein.

The exact sequence 0 → R(−1) s→ R → R/sR → 0 of graded R-modules induces the iso-
morphism K(R/sR)

∼= (KR/sKR)(1). Note that a(R/sR) = −1. If R/sR is an almost Gorenstein
graded ring, we can choose an exact sequence

0 → R/sR Ψ→ (KR/sKR)(2)→ D → 0

of graded R-modules such that MD = (0). Write Ψ(1) = ξ with ξ ∈ [KR]2. We consider

R Φ→ KR(2)→C → 0

where Φ(1) = ξ . Then C/sC ∼= D. As MD = (0), we get dimRC ≤ 1, Hence the map Φ is
injective ([8, Lemma 3.1]), and s is a non-zerodivisor on C because R/sR⊗R Φ = Ψ. Thus
µR(C) = e0

M(C). This makes a contradiction. As X is superficial for S/(Y,Z,W ) with respect to
the maximal ideal of S, by [8, Theorem 3.7 (2)], we conclude that RM/sRM is almost Gorenstein
as a local ring. □
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Remark 3.2. We maintain the same notation as in Example 3.1. Let T = k[Y,Z,W ] be the
polynomial ring over k. Note that R/sR ∼= T/(YW −Z2,Y Z,Y 2) = T/I2

(
0 Y Z
Y Z W

)
= V . If we

consider T as a Z-graded ring under the grading k = T0, Y ∈ T4, Z ∈ T5, and W ∈ T6, as we
have shown in Example 3.1 the ring V is not almost Gorenstein as a graded ring. Whereas, if
we consider T as a Z-graded ring with k = T0 and Y,Z,W ∈ T1, the T -module V has a graded
minimal free resolution of the form

0 −→
T (−3)

⊕
T (−3)

[
0 Y
Y Z
Z W

]
−→

T (−2)
⊕

T (−2)
⊕

T (−2)

[∆1 −∆2 ∆3]−→ T ε−→V −→ 0

where ∆1 = YW −Z2, ∆2 =−Y Z, and ∆3 =−Y 2. Taking KT -dual, we get the resolution

0 −→ T (−3)

[
∆1

−∆2
∆3

]
−→

T (−1)
⊕

T (−1)
⊕

T (−1)

[
0 Y Z
Y Z W

]
−→

T
⊕
T

ε−→ KV −→ 0

of KV as a graded T -module. We then consider the homomorphism

V Φ→ KV →C → 0

of graded T -modules defined by Φ(1) = ξ , where ξ = ε
((

1
0
))

. The isomorphisms C ∼=
KV/V ξ ∼= T/(Y,Z,W ) guarantee that Φ is injective and NC = (0) where N = (Y,Z,W )T . Thus
V is an almost Gorenstein graded ring. Hence the almost Gorenstein property for graded rings
depends on the choice of its gradings.

Example 3.3. Let S = k[X ,Y,Z] be the polynomial ring over a field k. We consider S as a Z-
graded ring under the grading k = S0, X ∈ S3, Y ∈ S1, and Z ∈ S2. Set R = S/(Z3−X2,XY,Y Z).
Then R is not an almost Gorenstein graded ring, but the local ring RM is almost Gorenstein,
where M denotes the graded maximal ideal of R.

Proof. Let I = (Z3 −X2,XY,Y Z). Note that I = (X ,Z)∩ (Z3 −X2,Y ) = I2
(

Z2 X Y
X Z 0

)
. Thus R is

a Cohen-Macaulay reduced ring with dimR = 1. Note that

0 −→
S (−7)
⊕

S (−6)

[
Z2 X
X Z
Y 0

]
−→

S (−3)
⊕

S (−4)
⊕

S (−6)

[∆1 −∆2 ∆3]−→ S ε−→ R −→ 0

gives a graded minimal free resolution of R, where ∆1 = −Y Z, ∆2 = XY , and ∆3 = Z3 −X2.
Hence we get the resolution of KR below

0 −→ S (−6)

[
∆1

−∆2
∆3

]
−→

S (−3)
⊕

S (−2)
⊕
S

[
Z2 X Y
X Z 0

]
−→

S (−1)
⊕
S

ε−→ KR −→ 0.
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This shows a(R) = 1 and [KR]−1 = kξ , where ξ = ε
((

1
0
))

. Hence, for each homomorphism
φ : R → KR(−1) of graded S-modules with φ ̸= 0, we see that Imφ = Rξ . Therefore

(KR/Rξ )(−1)∼= S/(X ,Z)

which implies the map φ is not injective; see [8, Lemma 3.1 (2)]. So R is not almost Gorenstein
as a graded ring. On the flip side, the elementary row operation(

Z2 X Y
X Z 0

)
−→

(
Z2 +X X +Z Y

X Z 0

)
and the equality (Z2 +X ,X +Z,Y ) = (X ,Y,Z) in the local ring SN where N = (X ,Y,Z)S guar-
antee that RM is an almost Gorenstein local ring by [8, Theorem 7.8]. □

Example 3.3 shows Theorem 1.1 is no longer true even when R is reduced. As we show next,
there is a counterexample of Theorem 1.1 in case of homogenous reduced rings as well.

Example 3.4. Let S = k[X ,Y,Z] be the polynomial ring over a field k. We consider S as a Z-
graded ring under the grading k = S0 and X ,Y,Z ∈ S1. Set R = S/I, where I = (X ,Y )∩ (Y,Z)∩
(Z,X)∩ (X ,Y +Z). Then R is not an almost Gorenstein graded ring, but the local ring RM is
almost Gorenstein, where M denotes the graded maximal ideal of R.

Proof. Note that I is an radical ideal of R and I = (XY,XZ,Y Z(Y +Z)) = I2
(

Y+Z 0 Y
0 X Y Z

)
. Then

the homogeneous ring R is Cohen-Macaulay, reduced, and of dimension one. Set ∆1 = XY ,
∆2 = Y Z(Y +Z), and ∆3 = X(Y +Z). Since

0 −→
S (−3)
⊕

S (−4)

[
Y+Z 0

0 X
Y Y Z

]
−→

S (−2)
⊕

S (−3)
⊕

S (−2)

[∆1 −∆2 ∆3]−→ S ε−→ R −→ 0

forms a graded minimal free resolution of R, we get the resolution

0 −→ S (−3)

[
∆1

−∆2
∆3

]
−→

S (−1)
⊕
S
⊕

S (−1)

[
Y+Z 0 Y

0 X Y Z

]
−→

S
⊕

S (−1)

ε−→ KR −→ 0.

of KR as a graded S-module. Thus a(R) = 1 and [KR]−1 = kξ , where ξ = ε
((

0
1

))
. We have the

elementary row operation(
Y +Z 0 Y

0 X Y Z

)
−→

(
Y +Z X Y +Y Z

0 X Y Z

)
and the equality (Y +Z,X ,Y +Y Z) = (X ,Y,Z) in SN where N = (X ,Y,Z)S. Similarly as in the
proof of Example 3.3, we conclude that R is not almost Gorenstein as a graded ring; while the
local ring RM is almost Gorenstein. □
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