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ABSTRACT. The question of when the Rees algebra R(I) = €p,,~, "™ of I is an almost
Gorenstein graded ring is explored, where R is a two-dimensional regular local ring and
I a contracted ideal of R. By [6] it is known that R(I) is an almost Gorenstein graded
ring for every integrally closed ideal I of R. The main results of the present paper show
that if I is a contracted ideal with o(I) < 2, then R(I) is an almost Gorenstein graded
ring, while if o(I) > 3, then R([I) is not necessarily an almost Gorenstein graded ring,
even though I is a contracted stable ideal. Thus both affirmative answers and negative
answers are given.

1. INTRODUCTION

Let (R, m) be a two-dimensional regular local ring. The purpose of this paper is to study
the problem of when the Rees algebras of contracted ideals in R are almost Gorenstein
graded rings. In [6] the authors showed that for every integrally closed ideal I of R the
Rees algebra R(I) = €,~, " of I is an almost Gorenstein graded ring. Since every
integrally closed m—primar;f ideal is contracted and stable ([22]), it seems quite natural
to expect a similar affirmative answer for contracted stable ideals also. Curiously, this
is not the case and the answer depends on the order o([) of the contracted ideals I. If
o(I) < 2, then R([) is an almost Gorenstein graded ring, while if o(/) > 3, then R(I)
is not necessarily an almost Gorenstein graded ring, which we shall show in this paper.
But before entering details, let us recall the definitions of almost Gorenstein local /graded
rings and some historical notes as well.

For the last sixty years commutative algebra has been concentrated mostly in the
study of Cohen-Macaulay rings/modules. Several experiences in our researches give the
impression that Gorenstein rings are rather isolated in the class of Cohen-Macaulay rings.
Gorenstein local rings are defined by the finiteness of self-injective dimension. There
is, however, a substantial gap between the conditions of the finiteness of self-injective
dimension and the infiniteness of it. The notion of almost Gorenstein ring is an attempt
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to go beyond this gap or a desire to find a new class of Cohen-Macaulay rings which might
be non-Gorenstein but still good, say the next to Gorenstein rings.

The notion of almost Gorenstein local ring in our sense dates back to the paper [1] of
V. Barucci and R. Froberg in 1997, where they introduced the notion to one-dimensional
analytically unramified local rings and developed a very beautiful theory of almost sym-
metric numerical semigroups. As their definition is not flexible enough for the analysis of
analytically ramified local rings, in 2013 S. Goto, N. Matsuoka, and T. T. Phuong [5] re-
laxed the restriction and gave the definition of almost Gorenstein local rings for arbitrary
but still one-dimensional Cohen-Macaulay local rings, using the first Hilbert coefficients
of canonical ideals. They constructed in [5] numerous examples of almost Gorenstein local
rings which are analytically ramified, extending several important results of [1]. However
it might be the biggest achievement of [5] that the paper prepared for higher dimensional
definitions and opened the door led to a frontier. In fact in 2015 S. Goto, R. Takahashi,
and N. Taniguchi [9] gave the following definitions of almost Gorenstein local /graded rings
of higher dimension and started the theory.

Definition 1.1 (The local case). Let (A, m) be a Cohen-Macaulay local ring of dimension
d, possessing the canonical module K 4. Then we say that A is an almost Gorenstein local
ring, if there exists an exact sequence

0—A—-Ky—C—=0

of A-modules such that either C' = (0) or C' # (0) and u4(C) = €2(C), where pu4(C)
denotes the number of elements in a minimal system of generators of C' and

. KA(C’/m”“C’)

denotes the multiplicity of C' with respect to the maximal ideal m (here ¢4 (%) stands for
the length).

Let us explain a little more about Definition 1.1. Let (A, m) be a Cohen-Macaulay
local ring of dimension d and assume that A possesses the canonical module K4. The
condition of Definition 1.1 requires that A is embedded into K 4 and even though A # Ky,
the difference C' = K4/A between K4 and A is an Ulrich A-module (cf. [2]) and behaves

well. Here we notice that for every exact sequence

0—-A—-Ky—C—=0
of A-modules, C is a Cohen-Macaulay A-module of dimension d — 1, provided C' # (0)
([9, Lemma 3.1 (2)]).

Definition 1.2 (The graded case). Let R =} ., R, be a Cohen-Macaulay graded ring
such that A = Ry is a local ring. Assume that A is a homomorphic image of a Gorenstein
local ring and let Kz denote the graded canonical module of R. We set d = dim R and
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a = a(R) the a-invariant of R. Then we say that R is an almost Gorenstein graded ring,

if there exists an exact sequence
0= R—Kgr(—a) = C—0
of graded R-modules such that either C'= (0) or C' # (0) and pur(C) = 4,(C), where M

denotes the graded maximal ideal of R.

In Definition 1.2 suppose C' # (0). Then C' is a Cohen-Macaulay graded R-module and
dimp C = d — 1. As €9,(C) = limy, ,o0(d — 1)1 EEAITD "y got o (Car) = €,(C),
so that Cyy is an Ulrich Rjy-module. Therefore since Kg,, = [Kg|,;, Rum is an almost
Gorenstein local ring if R is an almost Gorenstein graded ring. The converse is not true
in general ([7, Theorems 2.7, 2.8], [9, Example 8.8]).

Let us now consider a more specific setting where (R, m) is a two-dimensional regular
local ring and [ is an m-primary ideal of R. For simplicity we always assume that the
field R/m is infinite. Then we say that I is a contracted ideal of R if
IR[Z nR=1
x
for some (actually, for every general) element 2 € m\ m?, where ® = {2 | @ € m} which
is considered inside of the quotient field Q(R) of R. Let

R(I) =PI
n>0
be the Rees algebra of I and set MM = m-R(I) + [R(I)], the graded maximal ideal of
R(I). Let us fix a minimal reduction @ = (a,b) of I. Then I is said to be stable, if
I? = QI. This condition is equivalent to saying that R(I) is a Cohen-Macaulay ring ([8]).

With this notation we have the following striking characterization of contracted stable

ideals.

Theorem 1.3 ([21]). The following conditions are equivalent.

(1) R(I) is a Cohen-Macaulay ring and R(I)m possesses mazimal embedding dimension
in the sense of [17].
(2) I is a contracted stable ideal of R.

The motivation of the present research has come from the question of when R(/) =
D, 1" is an almost Gorenstein graded ring. In [6] the authors showed that if I is
an iIltegrally closed ideal, then R(I) is an almost Gorenstein graded ring. Since every
integrally closed m-primary ideal I is contracted and stable ([22]; see also [4, 12]) and
since R(I) is a good Cohen-Macaulay ring as Theorem 1.3 guarantees, it seems quite
natural to expect that R(/) is an almost Gorenstein graded ring also for every contracted
stable ideal I. This is, however, not true in general, as we shall report in Theorem 4.2 of
the present paper and the following two theorems 1.4 and 1.5. For each ideal a of R let

o(a) =max{n €Z|alm"}
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and call it the order of a.

Theorem 1.4. Let (R,m) be a two-dimensional reqular local ring with infinite residue
class field. Let I be a contracted m-primary ideal of R with o(I) < 2. Then I is a stable
ideal of R, whose Rees algebra R(I) = €D, 5o 1" is an almost Gorenstein graded ring.

If o(I) =1, then I = Q (= (a, b)) is a parameter ideal of R, so that R(/) = R[X,Y]/(aY —
bX) is a Gorenstein ring, where R[X,Y] denotes the polynomial ring. Therefore our
interest in Theorem 1.4 is the case o(I) = 2. The simplest example of contracted ideals of
order 2 which are not integrally closed is the ideal I = (2%, xy?,4°), where x,y is a regular
system of parameters of R.

Theorem 1.5. Let (R,m) be a two-dimensional reqular local ring with infinite residue
class field and write m = (z,y) with z,y € m. Choose integers n, o, and 3 so that

O<a<pf<n n<a+p, n+a<2p, and p < 2a.
Set I = (23, 2%y*, 29%,y") and Q = (2®,9y"). Then I is a contracted ideal of R with
I? = QI and o(I) = 3, but R(I) is not an almost Gorenstein graded ring.

The simplest example is the ideal I = (23, 2%y3, zy°, 3/°).

We shall prove Theorem 1.4 (resp. Theorem 1.5) in Section 3 (resp. Section 4). For the
proofs we need some preliminaries on contracted ideals and Rees algebras as well, which
we will summarize in Section 2. The proof given in [6] for the case where the ideals I are
integrally closed heavily depends on the existence of joint reductions with joint reduction
number 0 ([20]). To prove Theorem 1.4 one cannot use this result, since it is no longer
true for contacted ideals. Instead, we have to evolve rather fine arguments in Section 3,
applying the affirmative result for integrally closed ideals also. Section 5 is devoted to the
analysis of non-contracted ideals of order 3.

In what follows, unless otherwise specified, let (R, m) be a two-dimensional regular local
ring with infinite residue class field. For each finitely generated R-module M let pug(M)
(resp. {g(M)) denote the number of elements in a minimal system of generators (resp.
the length) of M.

2. PRELIMINARIES

Let I be an m-primary ideal of R and choose a parameter ideal ) of R so that () is a
reduction of I. Hence Q C I and I"™! = QI" for some r > 0.

To begin with, let us recall the following characterization of contracted ideals. This
follows from the results of [23, Appendix 5] and [13, 14, 16]. Consult [12], [13], and [18,
Section 14] for detailed proofs. Here we notice that mI : z = I for every general element
x € m\ m?, once [ is a contracted ideal of R.

Proposition 2.1. The following conditions are equivalent.
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1
2
3) [:x=1:m for some z € m\ m?.
4) ur(I) =o(I) + 1.

When this is the case, one has x & m? for the element x in condition (2).

(1) I is a contracted ideal of R.

(2) I is m-full, that is mI : x = I for some x € m.
(3)
(4) p

The following result might be known. We include a brief proof for the sake of com-
pleteness.

Lemma 2.2. The following conditions are equivalent.
(1) I is a contracted ideal of R.
(2) mI =ma+ z! for somex € m and a € 1.

When this is the case, one can choose the element a € I so that a € Q \ mQ.

Proof. (1) = (2) By Proposition 2.1 mI : z = I for some z € m\ m?. We set D = R/(z).
Then since D is a discrete valuation ring and () is a reduction of I, ID = QD. Let us
write @D = aD with a € @ \ mQ. Then I C (a,x), so that

m/ C [ma+ (x)]Nml =ma+ z(m/ : ) =ma+ zl.

Hence mI = ma + z1.

(2) = (1) Notice that a,z is a system of parameters of R, since m/ C (a,z). Let
h € ml : x and write xh = af + xg with f € m and g € I. Then since the sequence a, x
is R-regular, we get h — g € (a) C I, whence m/ :  C . Thus [ is a contracted ideal by
Proposition 2.1. O

We apply Lemma 2.2 to get the following, where assertion (1) is known by [22]. Let us

include a brief proof in our context.

Proposition 2.3. Suppose that I is a contracted ideal of R.
(1) Let J be an m-primary ideal of R and suppose that J is contracted. Then I1J is also

contracted.

(2) Suppose that QQ # 1. Then Q : I is a contracted ideal of R.

Proof. (1) We write mI = ma + f and mJ = mb+ zJ withz € mand a € I and b € J.
Then
m(lJ) = (ma+zl)J =wm(al)+z(IJ) =a(mb+zJ) + x(IJ) = m(ab) + z(1J).

Hence I.J is a contracted ideal of R by Lemma 2.2.

(2) Choose x € m and a € Q \ mQ so that mI = ma + zI. Then = ¢ m?; otherwise
m/ = ma C (a) by Nakayama’s lemma, which is impossible because m/ is an m-primary
ideal. We set J =@ : I. Then

=Q: ) m=Q:mI=Q:z[=(Q:]):z=J:x
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whence J is a contracted ideal by Proposition 2.1. 0
Let us consider the Rees algebra of I. We set
R =R(I) = R[It] C R]t]

where ¢ denotes an indeterminate over R. Let 91 = mR + R, be the unique graded
maximal ideal of R. We assume that /? = QI and set J = Q : I. Hence R is a Cohen-
Macaulay ring ([8]) with dimR = 3 and a(R) = —1, whose graded canonical module K
is given by the following.

Proposition 2.4 ([6, 19]). Kg(1) = JR.

One of the methods to see whether R is an almost Gorenstein graded ring is the

following.
Theorem 2.5. ([6, Theorem 2.3]) The following conditions are equivalent.
(1) There exists an exact sequence
0—>R—->Kg(l) »C—=0
of graded R-modules such that
M = (&n)C

for some homogeneous elements &,m of M.
(2) There exist elements f € m, g € I, and h € J such that

1J=gJ+1h and wmJ=fJ+ mh.

When this is the case, R is an almost Gorenstein graded ring.

For each Cohen-Macaulay local ring (A, n) of dimension d we denote by
r(A) = (4 (Ext%(A/n, A))
the Cohen-Macaulay type of A ([11, Definition 1.20]).

Proposition 2.6. Suppose that I is a contracted ideal of R. Then o(I) = o(J) + 1.

Proof. We may assume that o(/) > 1. We set A = Roy and n = MRoy. Let n = o(]).
Then since I is a contracted ideal and I? = QI, by Theorem 1.3 the Cohen-Macaulay local
ring A has maximal embedding dimesnion, that is n? = qn for some parameter ideal q of
A. Hence pa(n) —3 =r(A) as dim A = 3, while pa(n) = pr(l) + 2 and r(A) = pr(J) by
Proposition 2.4 (see [11, Korollar 6.11]). Thus o(/) = o(J) + 1, because pgr(l) = o(l)+1
and pgr(J) = o(J) + 1 by Propositions 2.1 and 2.3 (2). O

Closing this section, we note the following result, which shows the Rees algebras of

certain contracted ideals of high order are always almost Gorenstein graded rings.
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Theorem 2.7. Let (R,m) be a two-dimensional regular local ring with infinite residue
class field and let x,y be a reqular system of parameters of R. Let 2 < m < n be integers
and set I = (™) + y"~™Hm™~1. Then I is a stable contracted ideal with o(I) = m and
R(I) is an almost Gorenstein graded ring. If n > 2m, then xy™ 2 is integral over I but

2y 2 & I, so that I is not integrally closed.

Proof. Since pg(I) = m+ 1 and o(I) = m, I is a contracted ideal. We set Q@ = (=™, y")
and J =@ : 1. Then Q C I and I? = QI. We have

m—1 m—1

J = ﬂ [Q : xiynﬂ'] _ ﬂ (xmfayi) E—

i=1 i=1
whence mJ = my™ ! + xJ. Notice that
IJ =y " m™ 4 2™ C[(2™) +y" " m™ Yyt 2™ = [y™ 2™

and we get IJ = Iy™ ! + 2™J. Thus by Theorem 2.5 R(I) is an almost Gorenstein
graded ring. 0

3. PROOF OF THEOREM 1.4

Let (R, m) be a regular local ring with dim R = 2 and infinite residue class field. Let
I C R be an m-primary ideal of R. We choose a parameter ideal ) = (a,b) of R so that
Q Cland I?=QI and set J = Q : I. Suppose that I is a contracted ideal with o(I) = 2.
Our purpose is to prove Theorem 1.4.

By Propositions 2.3 (2) and 2.6, J is a contracted ideal with o(J) = 1. Let us write

J=(f.9)
with f,g € R and f ¢ m?. Since Q = (a,b) C J = (f, g), we have the presentation

()= (5 0) o

(a8
c = det (”Y 5) (k)
and we get @ : ¢ = J by [10, Theorem 3.1], whence [ = Q + (¢) = (a,b,c) as [ = Q : J.

Let
_tl 9 a7
A (_f p 5).

Then since [ is generated by the 2 x 2 minors of the matrix A, we get a minimal free
resolution of R/I of the form ([3, Theorem 1.4.16])

with «, 8,7, € R. Let

0= R A Rl R S RIS 0.
Let S = R[T1,T5, T3] be the polynomial ring and let
¢ :S — R = RI[It]
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be the homomorphism of R-algebras defined by ¢(77) = ct, p(T») = —bt, and ¢(T3) = at,
where R = R(I) denotes the Rees algebra of I. We set

F1 = ng + OéTQ + ’}/T3 and F2 = —fT1 + 5T2 + (5T3
Then since I? = QI, by [15, Theorem 4.1] we get
Keryp = ([, Fy, F)
for some F' € S, accounting the fact ¢> € QI. On the other hand, since Ker ¢ is a perfect
ideal of S with grade 2 and r(R) = 2 by Proposition 2.4, R has a graded minimal S-free
resolution of the following form
0= S(—2)a5(-2) L s @ s(-1as—1) "2 s s r o
Since Kg = S(—3), taking the Kg-dual we get the following presentation of the graded
canonical module Kz = [JR](—1) of R (see Proposition 2.4).

Proposition 3.1.

HF [ Fy)
—

0— S(~3) S(—1) @ S(—2) @ S(—2) & S(~1) ® S(—1) -Z5 [JR](~1) — 0.

Let us write

tM _ f OélTl + OZQTQ + OZ3T3 ’71T1 + ’YQTQ + ’)/3T3
n BT+ BTy + BsTs 01T + 0915 + 0313

with £, 1, a;, Bi, 7, 0; € R. We maintain this notation throughout this section.
Lemma 3.2. J = (7).

Proof. The theorem of Hilbert-Burch ([3, Theorem 1.4.16]) applied to the ideal Ker ¢ =
(Fy, Fy, F) of S shows

Fyo= (—u)[§(0:Th + 62To + 63T5) — n(nTh + 7212 +373)]  and
Fy = w[l(BiTy + BoTo + B3T3) — n(an Ty + axTy + asTy)]

for some unit v of R. Therefore

g 1 Al —f I3 oy
al = (—u) o] -] ; B l=ul&|B] —n|a ( * %)
v 03 73 0 B3 a3

whence J = (f,g9) € (£,7n). Let {e;}i—12 denote the standard basis of S & S and set
f'=o(e1) and ¢ = o(ey), where

S(—=1) @ S(-1) = [JR](-1)

denotes the homomorphism given in Proposition 3.1. Then we get J = (f’, ¢') and hence
f',¢" forms an R-regular sequence. Because o-'M = 0 in Proposition 3.1, we have

Eff +ng' =0
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whence
§=g'z,n=—f"2
for some z € R. Thus (§,7n) C (f',¢') = J, so that J = (§,n). O

We now make a more specific choice of the elements a,b, g, a, 5,7, and J. Since f € J
and f ¢ m?, writing m = (f, h) we have

J = (f,h)

for some ¢ > 0. Let g = h?. If J = m, then I = @ : m and by [6, Theorem 4.1] R is an
almost Gorenstein graded ring. In what follows, let us suppose that J # m; hence ¢ > 1.
We may assume that a € m? \ m?; since 0o(Q) = o(I) = 2 (because I? = QI). Notice that
a, B,7,0 € J (see equations (x * *) in the proof of Lemma 3.2). We then have a,b, ¢ € J?
by equations (*) and (xx), so that I C J?. Therefore since a € J* \ m3, we may assume
that the elements a and b have the form

a=f*+ofg+vg® and b= fg+1'¢?

with ¢, 1, ¢' 9" € R. Thus re-choosing o = f, = ¢of + g, v=10,and § = ¢'f + ¢'g,
we get assertion (1) in the following.

Lemma 3.3. (1) a = f2+ g, b=204g, and c=6f. Hence §J C I.
(2) mJ=m(f—g)+(f—h)J
Proof. (2) Let a =m(f —g) + (f — h)J. Since
R = h7Y) = (fh— ho*Y) = (fht — bt € o,
we have fh € a. Therefore a = mJ because a + (fh) = mJ. O

Proposition 3.4. Suppose that 5 € mJ. Then R is an almost Gorenstein graded ring.

Proof. We set a = I(f — g) + aJ. It suffices by Theorem 2.5 to show that /.J = a. Since
IJ=a+ (bf,cg), we have only to check that bf,cg € a. Because § € mJ and 6J C I by
Lemma 3.3 (1), we may write §5 = ax + by + cz with z,y, 2 € m. Hence

889 =bgy + cgz =0fg(y + z) mod a
because bf = bg mod a, b = dg, and ¢ = §f by Lemma 3.3 (1). On the other hand, since
a = f?+ Bg, we have
0Bg=—0f*=—6fg mod a
because §f? = cf and cg = 6 fg. Therefore
Sfg(l+y+2)€a,
whence fg =cg =0bf € a. Thus IJ = a. 0J
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Let I denote the integral closure of I. Then I is a contracted ideal and T = QI. Let
K =@ : 1. Then o(K) = 1 by Proposition 2.6. Let us choose an element ( € K \ m2.
Then since K =Q: 1 C Q: I =J, we have

C=af +yh?
with z,y € R, where x ¢ m because ¢ € m?. Therefore we have
m=(C,h), J=((,h9), and K = ((,h") with £>q.

Hence without loss of generality we may assume that f = ( € K. Let n = ¢ — q. Then
taking ¢’ = h?, by Lemma 3.3 (1) we may furthermore assume that the elements a and b
have the form

a=f*+p54¢ and b=4y¢g
where 3',6' € R such that f'h" = 5,8'h™ = 6. We set ¢ = §'f. Hence I = Q + (¢) =
(a,b, ") and we have the following.

Proposition 3.5. (g(I/I) =n.

Proof. We have (f,h")I C I, since h"¢ = 6f = c¢. Hence I/I is a cyclic module over
R/(f,h™) generated by the image of ¢. Let 0 < i < m be an integer and suppose that
hid € T = Q+ (h"¢). Then h'd € @, since h'd(1 — zh"™") € Q for some = € R.
Therefore h' € Q : ¢ = K = (f, h*), which is impossible because f, h is a regular system
of parameters of R and 0 < i < n = ¢ —q < (. Thus I/I = R/(f, h") and hence
(r(I/1) =n. O

To prove Theorem 1.4 we need the following general result.

Lemma 3.6. Let a be an arbitray m-primary ideal of R. Assume that a contains a
parameter ideal ¢ = (a,b) of R as a reduction. If o(a) < 2, then a® = qa.

Proof. Notice that o(q) = o(a). If o(a) = 1, a is generated by two elements, whence
q = a. Suppose that o(a) = 2 and consider the integral closure @ of a. Then a? = qa. Let
K =q:aand J=gq:a Then o(K) =1 by Proposition 2.6 because @ is contracted, so
that K = (f,h*) and J = (f, h?) for some regular system f,h of parameters of R, where
¢>q,¢>0,and ¢ > 0. We may assume ¢ > 0, because q = a if ¢ = 0. Remember that
after re-choosing a, b, we may assume that

a = f*4ah,
b = pht
for some «, 8 € R (Lemma 3.3). Therefore since (§) = (g g) (}{Z) , setting ¢; = Bf, we

get @ = (a,b,¢;). On the other hand, because (§) = (5 gzn) (/) where n=1¢—¢q (>0),

setting ¢ = ¢1h", we have a = (a,b,c). Hence h™a C a. Let us now write

1’ =ap + by
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with p,9 € a@. Then ¢ = (¢;h")? = a(h®*¢) + b(h*"¢)) € (a,b)a, whence a* = qa as
claimed. ]

We are now ready to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. We may assume that o(I) = 2. Hence I* = QI by Lemma 3.6. We
maintain the same notation as above. By [6, Theorem 4.1] and Proposition 3.4 we may
assume that J # m and 8 € mJ. Let us write § = ¢f 4+ pg with ¢, p € R. Suppose that
e g m. If n > 0, then since § = f'h" € (h) and pg = p(¢'h™) € (h), we get f € (h). This
is impossible since m = (f, k). Thus n = 0 and I = I by Proposition 3.5, so that R is an
almost Gorenstein graded ring by [6, Theorem 1.3].

Suppose that e € m. Then p € m as § ¢ mJ. Therefore

J=(f9) c(f.B)cJ

since g € (f, ). Hence J = (f,3) = (§,n). Consequently, det (0‘1 ’31) =18y — af3y is a

()= 2) (&)

for some unit u of R (see equations (x % x)). On the other hand, by Lemma 3.2
det ( & _71) = 107 — (171 is a unit of R, because

—A1 a1
() =0 (% 0) G

by equations (xx*x%). We are interested in the form of matrices equivalent to ‘M. We write
AT g Gi G
—u M =
(=) (—51 o —f uHy uH,

Hy = (aof —aafa)T + (o3P — o f3)T3 and
Hy = (B —a100)Th + (Biy2 — a102)Ts + (Bryz — a103)Ts.

unit of R, because

where

Since apf; — a1fs ¢ m and 171 — aqd; € m, after elementary column operations with
coefficients in R on the matrix ( 2 uGI}I UGHQQ ), we may assume that uH; = T, mod (T3)
and that uH, = T; mod (7%, T5). Hence the matrix (_gf UGf}l 5}2) is equivalent to a matrix
of the form (}g e ) where my, ma, €1, £y are linear forms in S such that (f, 01, by, T3) =

(f,T1,Ts,T3). Therefore by Proposition 3.1
Kr/R-0 = [S/(f, l1,6)] (—1)

for some 6 € [Kg],, whence by Definition 1.2 R is an almost Gorenstein graded ring. This
completes the proof of Theorem 1.4. O
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4. PROOF OF THEOREM 1.5

The purpose of this section is to prove Theorem 1.5.
Let (R, m) be a two-dimensional regular local ring with infinite residue class field. Let
z,%y be a regular system of parameters of R. Let n > 3 be an integer and put Q = (23, y").

We choose integers «, § so that 0 < a < f < n and set
I= (2% 2%y, ay’y") and J = (2%, 2y" "y

nfa).

Then [ and J are contracted ideals of R and
J=Q: I, I - m=1:y, and J:m=J:y.

We have pug(IJ) = o(lJ)+1 =6 and pur(mJ) = o(mJ)+ 1 =4. If 8+ 2 < 2q, then
x%y*~1 is integral over I but z?y®~! & I, so that I is not integrally closed.

A direct computation shows the following.
Proposition 4.1. I? = QI if and only if B < 2a, n < a+ B, and n + o < 28.

We then have the following. The simplest example satisfying the conditions in Theorem
4.2 which are not integrally closed is the ideal I = (23, 2%y®, zy*, 1/°).

Theorem 4.2. Suppose that I? = QI andn+a = 28. Then R(I) is an almost Gorenstein
graded ring.

Proof. We have o >n — 3, 3 >n—a, and 2n — 8 = n — o + 3, because I? = QI and
n 4+ a = 2. Therefore

n—a-+3 2n—a)
)

1) = (a8 a'y" 7 ay" e ey ay
= I(2* —y" ) +2°J.

Y

On the other hand, because n —a >n — [+ 1 we get

n—B+1 , n—a+1 )

mJ = (2%, 2%y, 2y" "y
= m(z® —y" %) +yJ.
Hence R([I) is an almost Gorenstein graded ring by Theorem 2.5. U

We are now in a position to prove Theorem 1.5, which shows that contrary to Theorem
4.2, the Rees algebra R(I) is not an almost Gorenstein graded ring, if n < a4+, n+a <
26, and B < 2a.

Proof of Theorem 1.5. Suppose that R = R([) is an almost Gorenstein graded ring and

ChOOSG an exact sequence
0-R-SKe(l)»C—0 (E)

of graded R-modules such that either C' = (0) or C' # (0) and Cyy is an Ulrich Rox-
module, where 9t = mR + R. Because Kz (1) = JR (Proposition 2.4) and ug(J) = 3,
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R is not a Gorenstein ring, whence C' # (0). We set h = (1) € J. Then h ¢ MKz (]9,
Corollary 3.10]) so that ugr(C) = 2. Therefore ug(MC) < 4, because MCor = (£, 7)Con
for some &, € M (]9, Proposition 2.2 (2)]). Let X = MJ/[DNh + M2J] (= MC) and
notice that X is generated by elements of degrees 0 and 1. Then because

Xo &2 mJ/[mh+m?J] and X = IJ/[Ih+mlJ]
(here X; denotes the homogeneous component of degree i), we have
pr(mJ/mh) + pr(lJ/1h) = pr(X) = pr(MC) < 4,

while we get ugr(mJ/mh) > 2 and pug(lJ/Ih) > 2, because pur(mJ) =4 and ug(IJ) = 6.
Hence pp(IJ/Ih) = 2. Let us write h = az? + bry" " + cy"™* with a,b, ¢ € R (remember
that h € J = (22, 2y" P y"=*)). We set V = [Ih +mIJ]/mIJ. Then it is direct to check
that the R/m-space V' is spanned by the images of the following four elements in /A

az® + by P + ety ex®y”, b2y, and  ax’y" + bay? P + eyt

However because ugr(IJ/Ih) = 2 and ugr(IJ) = 6, we must have ¢x(V) = 4, which is
clearly impossible. Thus R is not an almost Gorenstein graded ring. OJ

Remark 4.3. There are contracted ideals I with order greater than 3, whose Rees algebras
R(I) are not almost Gorenstein graded rings. For example, let m > 4 be an integer and
set

Q= (2™ y*") and I=Q+ (2" y* T [1<i<m—1)
Then I? = QI and [ is a contracted ideal with o(/) = m. One can show similarly as
Theorem 1.5 that R(I) is not an almost Gorenstein graded ring.

5. ANALYSIS OF CERTAIN NON-CONTRACTED IDEALS

Let (R, m) be a two-dimensional regular local ring with infinite residue class field. Let
x,y be a regular system of parameters of . We close this paper with the analysis of the
following ideal /. Notice that o(I) = 3 but [ is not a contracted ideal, if n > 3.

Theorem 5.1. Choose integers a,n so that 0 < a < n, 2a > n and set [ = (23, 2%y, y"),
Q= (23y"), and J=Q :I. Then I* = QI and J = (z,y"~*). We furthermore have the
following.

(1) If 2ac = n, then R(I) is an almost Gorenstein graded ring.

(2) If 2a > n, then R(I) is not an almost Gorenstein graded ring.

Proof. (1) We have mJ = mz + yJ and IJ = [z + y™J. Hence by Theorem 2.5 R(I) is
an almost Gorenstein graded ring.
(2) Suppose that R = R(I) is an almost Gorenstein graded ring and choose the exact
sequence
0= R -5 Kr(l) = C—0
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of graded R-modules such that either C' = (0) or C' # (0) and Cyy is an Ulrich Rgp-module,
where M = mR + R,. We actually have ug(C) = 1, since Kzx(1) = JR = (z,y" )R
and (1) € MKx by [9, Corollary 3.10]. Therefore ug(9MC) < 2 by [9, Proposition 2.2
(2)]. On the other hand, pg(lJ) =4 and pr(mJ) = 3, since

IJ = (2", 2%y" " zy™, v ) and mJ = (2% zy,y" ).

Consequently for the same reason as in the proof of Theorem 1.5 we get pgr(lJ/Ih) =
pur(mJ/mh) = 1. Hence (r([Ih +wmIJ|/mIJ) = 3. Nevertheless, writing h = ax + by" ™
with a,b € R, we see that the R/m-space V = [Ih+mI.J]/mlJ is spanned by the images
of the following elements in Ih

2n—a

azt + br3y"™, axdy® + ba*y", and axy" + by ,

so that the dimension of V is at most two, because x3y®, 2?y™ € mIJ (remember that
2a > n). This is a contradiction. O

To end this paper let us note a question. Let (R, m) be a two-dimensional regular local
ring with infinite residue class field. Let {I;}1<;<, be a finite family of m-primary ideals
of R. With this notation we pose the following question, which is wildly open at this

moment.

Question 5.2. When is R([115...I;) an almost Gorenstein graded ring?
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