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Abstract

In this paper, we introduce the notion of Ratliff–Rush closure of modules and explore whether the condition

of the Ratliff–Rush closure coincides with the integral closure. The main result characterizes the condition in

terms of the normality of the projective scheme of the Rees algebra. In conclusion, we shall give a criterion
for the Buchsbaum Rees algebras.

1. Introduction

This paper investigates the Ratliff–Rush closure and the Buchsbaum property for the Rees

algebras of modules. For an arbitrary ideal I in a commutative Noetherian ring A, we set

Ĩ =
∪
ℓ≥0

[
Iℓ+1 :A I

ℓ
]

and name it the Ratliff–Rush closure of I, which forms an ideal of A, containing I. In 1978,

L. J. Ratliff and D. E. Rush investigated the ideal Ĩ, and they proved that (Ĩ)n = In for

every n ≫ 0. In addition, if J is an ideal of A such that Jn = In for every n ≫ 0, then

J ⊆ Ĩ. Therefore, Ĩ is the largest ideal of A satisfying (Ĩ)n = In for a sufficiently large

integer n≫ 0, and hence
˜̃
I = Ĩ. The products of the Ratliff–Rush closures are contained in

the Ratliff–Rush closure of the products of ideals. Moreover, if I possesses a positive grade,

then I is a reduction of its Ratliff–Rush closure Ĩ; in other words, the integral closure I of

I contains Ĩ. One can consult [16, 17] for basic properties of Ratliff–Rush closure of ideals.

In 2005, S. Goto and N. Matsuoka focused on the difference between Ĩ and I, and explored

the question of when does the Ratliff–Rush closure coincide with the integral closure. Over a

two-dimensional regular local ring A, they provided a characterization of the equality Ĩ = I

in terms of the condition that the Rees algebra

R(I) = A[It] =
∑
i≥0

Iiti ⊆ A[t]

of the ideal I is locally normal on SpecR(I) \ {M}, where t denotes an indeterminate over

A and M stands for the graded maximal ideal in R(I). Additionally, they showed that

the latter condition is equivalent to its projective scheme ProjR(I) = {P ∈ SpecR(I) |
P is a graded ideal, P ⊉ R(I)+} being normal, i.e., the local ring R(I)P is normal for

every point P ∈ ProjR(I), where R(I)+ =
∑
i>0 I

iti. See [7, 15] for the details.

The notion of Rees algebra R(I) can be generalized to a finitely generated R-module M ;

developing the theory of Rees algebras of modules is significant to further study of the Rees

algebras of ideals, which is one of the motivations for this generalization. Besides, the Rees

algebra ofM includes the notion of multi-Rees algebra, which corresponds to the case where

M forms a direct sum of ideals. Moreover, T. Gaffney requires this generalization of Rees

algebras for applications to equisingularity theory (e.g., [4, 5]). Geometrically, the projective
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scheme of R(M) defines the blow-up of A at the module M as well as the case of ideals (see

[18, 22]). Hence, it is still worth considering the notion of Rees algebras of modules for not

only commutative algebra but also algebraic geometry and theory of singularities.

In this paper, to further study of the Rees algebras of modules, we investigate the question

of when the Ratliff–Rush closure coincides with the integral closure for the case of modules.

We now explain our results more precisely. Let A be a Noetherian ring, M a finitely

generated A-module which is contained in a free module F of finite rank r > 0. We denote

the symmetric algebras of M and F by SymA(M), SymA(F ), respectively. Let Sym(i) :

SymA(M) → SymA(F ) be the homomorphism induced by the embedding i : M ↪→ F . The

Rees algebra R(M) of M is defined by

R(M) = Im

[
SymA(M)

Sym(i)−→ SymA(F )

]
(see [20]). Hence, R(M) = SymA(M)/T , where T = t(SymA(M)) denotes the torsion part

of SymA(M) as an A-module. Let Mn = [R(M)]n stand for the homogeneous component

of R(M) of degree n. In particular, M = [R(M)]1 is an A-submodule of R(M). We set

R̃(M) = ε−1(H0
a(S/R(M)))

which forms a graded subring of the polynomial ring S = SymA(F ), containing the Rees

algebra R(M), where ε : S → S/R(M) stands for the canonical surjection and H0
a(−)

denotes the 0-th local cohomology functor with respect to a = R(M)+.

Definition 1.1. For each integer n ≥ 0, we define M̃n to be the homogeneous component

of R̃(M) of degree n and call it the Ratliff-Rush closure of Mn, i.e.,

M̃n =
∪
ℓ>0

[
(Mn)ℓ+1 :Fn (Mn)ℓ

]
.

In particular, M̃ =
∪
ℓ>0

[
M ℓ+1 :F M

ℓ
]
.

In the case where A is a Noetherian domain, the notion of Ratliff–Rush closure M̃ ofM has

already defined by J.-C. Liu ([14]) to be the largest A-submodule N of F , which satisfies

M ⊆ N ⊆ F and Mn = Nn for every n≫ 0. We shall prove in Proposition 3.13 that these

definitions coincide, and hence Definition 1.1 generalizes the notion given by J.-C. Liu.

If R is a Noetherian local ring with maximal idealm, thenR(M) possesses a unique graded

maximal idealM = mR(M)+a. Then, we say thatR(M) has finite local cohomology if the i-

th graded local cohomology module HiM(R(M)) is finitely generated for every i ̸= dimR(M).

With this notation, the main result of this paper is stated as follows, which is a complete

generalization of the results in [7, 15].

Theorem 1.2. Let (A,m) be a two-dimensional regular local ring with infinite residue

class field, M ̸= (0) a finitely generated torsion-free A-module. Then the following conditions

are equivalent.

(1) M̃ =M .

(2) M̃n =Mn for every n > 0.

(3) M ℓ =M ℓ for some ℓ > 0.

(4) There exists an integer ℓ > 0 such that Mn =Mn for every n ≥ ℓ.
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(5) ProjR(M) is a normal scheme.

(6) R(M)P is normal for every P ∈ SpecR(M) \ {M}.

When this is the case, we have the following.

(a) R(M) has finite local cohomology and HpM(R(M)) = (0) for every p ̸= 1, r + 2.

(b)
[
H1

M(R(M))
]
n
∼=Mn/Mn as an A-module for every n ∈ Z.

(c) R(M) is a Cohen–Macaulay ring if and only if M is integrally closed.

As a consequence, Theorem 1.2 leads us to obtain a criterion for the Buchsbaum Rees

algebras R(M) with M̃ =M (see Theorem 5.1). Besides, we construct numerous examples

of Buchsbaum Rees algebras. Furthermore, we shall give an example of the Buchsbaum Rees

algebra of indecomposable module M , that is, R(M) cannot be appeared as the multi-Rees

algebra. Finally let us show the sufficient condition for the fiber cone F(M) = A/m⊗AR(M)

of M to be a Buchsbaum ring.

Let us now explain how this paper is organized. In Section 2, we provide an overview

of the Rees algebras of modules, including the notion of integral closures. Section 3 defines

the Ratliff–Rush closure of modules and provides some preliminary results. In Section 4, we

provide a proof of Theorem 1.2, and in the last section, we explore the application of our

theory.

2. Preliminaries

In this section, we summarize some basic properties of the Rees algebras and the integral

dependence for modules. Let A be a commutative Noetherian ring, M a finitely generated

A-module which is contained in a free A-module F of positive rank r > 0. The embedding

M ⊆ F induces the graded A-algebra homomorphism between the symmetric algebras

Sym(i) : SymA(M) −→ SymA(F )

ofM and F . As F is the free A-module, the symmetric algebra S = SymA(F ) of F concides

with the polynomial ring S = A[t1, t2, . . . , tr] over A, where r = rankAF > 0. In 2003, A.

Simis, B. Ulrich, and W. V. Vasconcelos defined the Rees algebra R(M) of the module M

as the image of the induced homomorphism;

R(M) = Im(Sym(i)) ⊆ S = A[t1, t2, . . . , tr]

=
⊕
n≥0

Mn

where Mn denotes the n-th homogeneous component of the graded ring R(M). Hence, if

we take M to be an ideal I and F = R, then the Rees algebra of M is exactly the same as

the usual Rees algebra R(I) of the ideal.

Let us recall the definition of the integral closure of modules.

Definition 2.1. For every integer n ≥ 0, we define the integral closure

Mn =
(
R(M)

S
)
n
⊆ Sn = Fn

of Mn to be the n-th homogeneous component of the integral closure R(M)
S
of R(M) in

S. In other words, Mn is the integral closure of the ideal (MS)n of degree n, i.e.,

Mn =
(
(MS)n

)
n
.



4 NAOKI ENDO

In particular, M =
(
MS

)
1
⊆ F . Hence M consists of the element x ∈ F which satisfies

the integral equation xn + c1x
n−1 + · · · + cn = 0 in S, where n > 0 and ci ∈ M i for every

1 ≤ i ≤ n.

Let us note the following, which might be known, but we include a brief proof for the

sake of completeness. We denote by Q(R) the total ring of fractions of a ring R.

Lemma 2.2. Suppose that rankAM = r. Then one has Q(R(M)) = Q(S). Moreover, if

we assume that A is a normal domain, then R(M)
Q(R(M))

= R(M)
S
.

Proof. Look at the commutative diagram

Q(A)⊗A SymA(M)
∃1 // Q(A)⊗A S

SymA(M)

OO

Sym(i)// S

OO

where the vertical maps are canonical homomorphisms of localizations. The isomorphism

Q(A) ⊗A M ∼= Q(A) ⊗A F yields that Q(A) ⊗A SymA(M) ∼= Q(A) ⊗A S as an A-module.

Since S is free as an A-module, we get the exact sequence

0 → t(SymA(M)) → SymA(M) → R(M) → 0

of A-modules, where t(SymA(M)) denotes the torsion part of SymA(M) as an A-module.

Therefore, Q(A)⊗A S ∼= Q(A)⊗A SymA(M) ∼= Q(A)⊗A R(M), so that Q(R(M)) = Q(S).

The last assertion follows from the fact that S = A[t1, t2, . . . , tr] is a normal domain. This

completes the proof.

Thanks to Lemma 2.2, we have the following, which claims that, up to isomorphism, the

integral closure does not depend on the choice of the embedding of M . Remember that an

A-module M is called an ideal module, if M ̸= (0) is finitely generated, torsion-free, and the

double dual M∗∗ of M is free, where (−)∗ = HomA(−, A). Typically, finite direct sums of

ideals of grade at least two and non-zero finitely generated torsion-free modules over two-

dimensional regular local rings are the ideal modules. The reader is referred to [20, Section

5] for basic properties of ideal modules.

Proposition 2.3. Suppose that A is a normal domain and M is an ideal module. If M

is embedded into the finite free module G of positive rank, then R(M)
S ∼= R(M)

T
where

T = SymA(G).

Proof. Note that F =M∗∗ is a finitely generated free A-module and we get a canonical

embedding 0 → M
φ→ F of A-modules. We set ξ = ηG

−1 ◦ ψ∗∗, where ψ : M → G denotes

another embedding of M and ηG : G → G∗∗ stands for the biduality map. We then have

the commutative diagram

0 // M
φ //

idM

��

F

ξ

��
0 // M

ψ // G
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of A-modules. Passing to the localization Q(A)⊗A (−), we obtain the injectivity of ψ∗∗, so

is ξ. Hence we get the homomorphism

Sym(ξ) : S = SymA(F ) −→ T = SymA(G)

which is induced by ξ : F → G. The splitting exact sequence

0 −→ Q(A)⊗A F −→ Q(A)⊗A G −→ Q(A)⊗A X −→ 0

implies that Q(A)⊗ S(ξ) is a split monomorphism, where X = Coker ξ. Therefore Sym(ξ)

is injective. Passing to the map Sym(ξ), let us consider R(M) ⊆ S ⊆ T . To prove the

equality of the integral closures of R(M), it is enough to show that S is integrally closed in

T . We take x ∈ T , satisfying an integral equation

xn + c1x
n−1 + · · ·+ cn = 0

where n > 0 and ci ∈ S for every 1 ≤ i ≤ n. Then 1⊗ x ∈ Q(A)⊗A T , 1⊗ ci ∈ Q(A)⊗A S,
and

(∗) (1⊗ x)n + (1⊗ c1)(1⊗ x)n−1 + · · ·+ (1⊗ cn) = 0 in Q(A)⊗A T.

Since F ⊆ G, note that Q(A) ⊗A T is the polynomial ring over Q(A) ⊗A S with q ≥ 0

variables. To see the degree of the integral equation (∗), 1⊗ x is a constant in Q(A)⊗A T ,
so that 1 ⊗ x ∈ Q(A) ⊗A S. Because S is a normal domain, S is integrally closed in T , as

desired.

3. Ratliff–Rush closure of modules

The aim of this section is to introduce the notion of Ratliff–Rush closure of modules and to

give some basic properties. Firstly let us fix the notation. Let A be a Noetherian ring, M a

finitely generated A-module which is contained in a finite free module F of rank r > 0. Let

us denote by a = R(M)+ =
⊕

n>0M
n the positive part of R(M). We define

R̃(M)
S

= ε−1
(
H0

a(S/R(M))
)
⊆ S

which forms a graded subring of S, containing R(M), where S = SymA(F ) is the symmetric

algebra of F , H0
a(−) denotes the 0-th local cohomology functor with respect to the ideal a,

and ε : S → S/R(M) stands for the canonical surjection.

Definition 3.1. For every integer n ≥ 0, we define the the Ratliff–Rush closure

M̃n =

(
R̃(M)

S
)
n

⊆ Sn = Fn

of Mn to be the n-th homogeneous component of R̃(M)
S

.

In the present paper, we adapt the above definition of Ratliff–Rush closures. However,

the notion has already defined by J.–C. Liu in 1998 in the case where A is a Noetherian

domain ([14, Definition 2.2]). She defined the Ratliff–Rush closure M̃ ofM to be the largest

A-submodule N of F which satisfies the following two conditions;

(1) M ⊆ N ⊆ F ,

(2) Mn = Nn for every n≫ 0.
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Note that these definitions coincide, when A is a Noetherian domain (see Proposition 3.13).

The following ensures that Definition 3.1 is a natural generalization of the ordinary

Ratliff–Rush closure of ideals. The proof immediately comes from the definition.

Proposition 3.2. For every non-negative integer n ≥ 0, we have

M̃n =
∪
ℓ>0

[
(Mn)ℓ+1 :Fn (Mn)ℓ

]
=

(
˜(MS)n

)
n
.

In particular

M̃ =
∪
ℓ>0

[
M ℓ+1 :F M

ℓ
]
=

(
M̃S

)
1
.

By Proposition 3.2, we reduce to the case of ideals, and therefore we get the following.

Notice thatM is faithful as an A-module if and only if the idealMS of S contains a non-zero

divisor on S.

Corollary 3.3. Suppose that M is a faithful A-module. Then M̃n ⊆ Mn ⊆ Fn for

every non-negative integer n ≥ 0. Hence, R(M) ⊆ R̃(M)
S

⊆ R(M)
S
⊆ S.

Proof. Since MS contains a non-zero divisor on S, ˜(MS)n ⊆ (MS)n by [17, Section 1].

Hence the result comes from Proposition 3.2.

Similarly for the case of integral closures, we have the following.

Proposition 3.4. Suppose that A is a normal domain and M is an ideal module. If M

is embedded into the finite free module G of positive rank, then R̃(M)
S ∼= R̃(M)

T

where

T = SymA(G).

Proof. Let us maintain the notation as in the proof of Proposition 2.3. By the proof

of Proposition 2.3, we may assume that R(M) ⊆ S ⊆ T . Then, thanks to Proposition 2.3

and Corollary 3.3, we get R̃(M)
T

⊆ R(M)
T
= R(M)

S
⊆ S which implies that R̃(M)

S

⊇

R̃(M)
T

as desired.

Therefore, up to isomorphism, the Ratliff–Rush closure does not depend on the choice of

the embedding of M .

Let us now explore some examples. To do this, we first recall the notion of parameter

module. Notice that, if M is an ideal of A, then the parameter module in A is exactly

the same as the usual parameter ideal. We denote by µA(−) (resp. ℓA(−)) the number of

elements in a minimal system of generators (resp. the length as an A-module).

Definition 3.5 ([2, 10]). Suppose that (A,m) is a Noetherian local ring with d = dimA.

Then M is called a parameter module in F , if ℓA(F/M) < ∞, M ⊆ mF , and µA(M) =

d+ r − 1.

Remark 3.6. Let (A,m) be a Noetherian local ring with d = dimA > 0, N a parameter

module in F . If N is integrally closed, then r ≤ d− 1. In particular, if d = 2, then F ∼= A.

Proof. Note that µA(N) = d+ r−1 ≥ r. Thanks to [13, Propositions 2.5, 4.3], we have

µA(N) = ordA(FittA(F/N)) + r ≥ 2r, because N ⊆ mF . Hence r ≤ d− 1, as desired.
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We say that the module M is Ratliff–Rush closed, if M̃ =M .

Proposition 3.7. Suppose that (A,m) is a Cohen–Macaulay local ring with d = dimA >

0. IfM is a parameter module in F , then R̃(M)
S

= R(M). In particular, M is Ratliff–Rush

closed.

Proof. First, we consider the case where r = 1. Then M forms the parameter ideal Q

of A. Notice that the associated graded ring G = grQ(A)
∼= (A/Q)[X1, X2, . . . , Xd] of Q

is a Cohen–Macaulay ring with dimG = d > 0. Hence Qn is Ratliff–Rush closed for every

n ≥ 0. We may assume that r ≥ 2. Remember that r = htR(M)a (see [20, Proposition

2.2]). Since R(M) is a Cohen–Macaulay ring, we have Hia(R(M)) = (0) for i = 0, 1, whence

H0
a(S/R(M)) = (0). Consequently, R̃(M)

S

= R(M).

We note some examples.

Example 3.8. Let A = k[[X,Y ]] be the formal power series ring over a field k. We set

M =

⟨(
X
0

)
,

(
Y
X

)
,

(
0
Y

)⟩
⊆ F = A⊕A.

Then M is a parameter module in F and hence M is Ratliff–Rush closed.

There is an example of the parameter module which is Ratliff–Rush closed, even if A is

not a Cohen–Macaulay ring.

Example 3.9. Let R = k[[X,Y, Z,W ]] be the formal power series ring over a field k.

We set A = R/(X,Y ) ∩ (Z,W ) which is a two-dimensional Buchsbaum local ring with

depthA = 1. Then the parameter ideal Q = (X − Z, Y −W )A is Ratliff–Rush closed.

The following property is useful for finding the Ratliff–Rush closure. An A-submodule L

of M is called a reduction of M , if Mr+1 = LMr for some integer r ≥ 0, which is equivalent

to saying that M ⊆ L.

Proposition 3.10. Let L = Ax1 +Ax2 + · · ·+Axℓ ⊆M be an A-submodule of M such

that L is a reduction of M . Then

M̃ =
∪
n>0

[
Mn+1 :F (Ax1

n +Ax2
n + · · ·+Axℓ

n)
]
.

Proof. We set N =
∪
n>0

[
Mn+1 :F (Ax1

n +Ax2
n + · · ·+Axℓ

n)
]
. Let x ∈ N and

choose an integer n > 0 such that x · xin ∈ Mn+1 for each 1 ≤ i ≤ ℓ. We than have

xLm ⊆ Mm+1 for every m ≥ (n− 1)ℓ+ 1. Since L is a reduction of M , we take an integer

s ≥ 0 such that Ms+1 = L ·Ms. Therefore

xMm+s = x(LmMs) = (xLm)Ms ⊆Mm+1Ms =Mm+s+1

whence x ∈ M̃ by Proposition 3.2.

As a consequence of Proposition 3.10, we immediately get the following.

Corollary 3.11. If L is a reduction of M , then L̃ ⊆ M̃ .



8 NAOKI ENDO

Remark 3.12 ([11, (1.1)]). In general, the embedding L ⊆ M does not imply L̃ ⊆ M̃ ,

even if rankAF = 1. For example, let k[[t]] be the formal power series ring over a field k.

We set A = k[[t3, t4]], I = (t8), and J = (t11, t12). Then J ⊆ I, but J̃ ⊈ Ĩ.

The following is the key in our argument. Assertion (2) of Proposition 3.13 shows that

the Ratliff–Rush closure in the sense of Definition 3.1 is equivalent to [14, Definition 2.2],

when A is a Noetherian domain.

Proposition 3.13. Suppose thatM is a faithful A-module. Then the following assertions

hold.

(1) M̃n = (M̃)n =Mn for every n≫ 0.

(2) Let N be an A-submodule of F such that M ⊆ N . Then the following conditions

are equivalent.

(i) N ⊆ M̃ .

(ii) M ℓ = N ℓ for some ℓ > 0.

(iii) Mn = Nn for every n≫ 0.

(iv) M̃ = Ñ .

(3) M̃ is Ratliff–Rush closed, i.e.,
˜̃
M = M̃ .

Proof. The assertion (3) immediately comes from (2). To prove the assertions (1) and

(2), by Proposition 3.2, we are able to reduce to the case of ideals. Then the assertions

follow from [17, Theorem 2.1, Corollary 2.2].

The following is essentially due to Y. Shimoda.

Remark 3.14. Let N be an A-submodule of F such that M ⊆ N . If M ℓ = N ℓ for some

ℓ > 0, then Mn = Nn for every n ≥ ℓ.

Proof. By the assumption, we obtain the case where n = ℓ. Suppose that n > ℓ and

the assertion holds for n − 1. Then, by the induction hypothesis, we get Mn−1 = Nn−1 ⊆
MNn−2 ⊆ MMn−2 = Mn−1, so that Nn−1 = MNn−2. Therefore Nn = Nn−1N =

(MNn−2)N =MNn−1 =MMn−1 =Mn which completes the proof.

Let us note the following.

Lemma 3.15. Suppose that (A,m) is a Noetherian local ring. If M = F , then M = F .

In particular, if M is a faithful A-module and M ̸= F , then M̃ ̸= F .

Proof. Suppose the contrary and choose a counterexample M so that r = rankAF > 0

is as small as possible. Then the minimality shows M ⊆ mF . Therefore F = M ⊆ mF =

mF = mF , whence we get F = mF , which makes a contradiction. Let us make sure of the

last assertion. Suppose that M ̸= F and M is faithful. Then M ̸= F and we get M̃ ̸= F

by Corollary 3.3.

In what follows, we focus on the Buchsbaum–Rim coefficients for the module. Suppose

that A is a Noetherian local ring with maximal ideal m, M ̸= (0) and 0 < ℓA(F/M) <

∞. With this notation, in 1964, Buchsbaum and Rim showed that there exists an integer
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bri(M) ∈ Z (0 ≤ i ≤ d+r−1) such that ℓA(F
n+1/Mn+1) can be expressed as the polynomial

of the form;

ℓA(F
n+1/Mn+1) =

d+r−1∑
i=0

(−1)i · bri(M) ·
(
n+ d+ r − i− 1

d+ r − 2

)
for every n ≫ 0 (see [2]). The integer bri(M) is called the i-th Buchsbaum–Rim coefficient

of M . We set

S = {N ⊆ F |M ⊆ N ⊊ F, bri(M) = bri(N) for every 0 ≤ i ≤ d+ r − 1}.

We then have the following, which shows that M̃ is the largest A-submodule N of F

having the same Buchsbaum–Rim polynomial of M .

Proposition 3.16. Suppose that M is a faithful A-module. Then M̃ ∈ S and N ⊆ M̃

for every N ∈ S.

Proof. Note that M̃ ̸= F by Lemma 3.15. Choose an integer ℓ > 0 such that M̃n =Mn

for every n ≥ ℓ. Then we have Mn ⊆ (M̃)n ⊆ M̃n = Mn and hence (M̃)n = Mn. Thus

ℓA(F
n+1/Mn+1) = ℓA(F

n+1/(M̃)
n+1

) for every n≫ 0, as desired.

4. Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. First of all, we fix our notation and

assumptions on which all the results in this section are based.

Setting 4.1. Let (A,m) be a two-dimensional regular local ring with infinite residue

class field, M ̸= (0) a finitely generated torsion-free A-module. We set F = M∗∗ a finitely

generated free A-module with r = rankAF > 0, where (−)∗ = HomA(−, A).

Passing to the biduality map M → F = M∗∗, we have M ⊆ F and ℓA(F/M) < ∞ (see

e.g., [13, Proposition 2.1]). Let us consider the projective scheme ProjR(M) = {P ∈
SpecR(M) | P is a graded ideal, P ⊉ a} of the Rees algebra R(M), where a = R(M)+. It

is known by [20, Proposition 2.2] that dimR(M) = r+2. Moreover, in 1995, V. Kodiyalam

proved an analogue of the famous result of O. Zariski, i.e., the products of integral closures

are the integral closure of the products of modules, namely the equality Mn = (M)n holds

for every n ≥ 0 ([13, Theorem 5.2]). Therefore, the integral closure of R(M) in its total ring

of fractions is given by R(M) which is a module finite extension over R(M).

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The implications (2) ⇒ (1), (4) ⇒ (3), (6) ⇒ (5) are obvious.

(1) ⇒ (4) By Proposition 3.13, Mn = (M̃ )n for every n ≫ 0. Therefore we get Mn =

(M̃ )n = (M)n =Mn, as wanted.

(3) ⇒ (1) Suppose that Mn = Mn = (M)n for some n > 0. Then, by Remark 3.14, we

have (M)n+1 = Mn+1. Thus M ⊆ Mn+1 :F (M)n = Mn+1 :F Mn ⊆ M̃ ⊆ M so that

M̃ =M .

(1) ⇒ (2) By our assumption, we have (M̃ )n = (M)n for every n > 0. Then Mn =

(M)n = (M̃ )n ⊆ M̃n ⊆Mn as desired.
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(4) ⇒ (6) Suppose Mn = Mn for every n ≫ 0. Let C = R(M)/R(M). We then have

Cn = (0) for n≫ 0, so that C is finitely graded. Therefore, since ℓA(F/M) <∞, we obtain

am · C = (0), mm · C = (0)

for some integer m > 0, where a = R(M)+. Thus M ⊆
√
(0) : C and hence SuppR(M) C ⊆

{M}. Consequently, CP = (0) for every P ∈ SpecR(M) \ {M}, whence R(M)P = R(M)P

is normal.

(5) ⇒ (4) Let C = R(M)/R(M). For each Q ∈ SuppR(M) C, there exists P ∈ AssR(M) C

satisfying P ⊆ Q. Note that P is a graded prime ideal of R(M). We claim that P ⊇ a.

Indeed, if we assume that contrary, that is, P ̸⊇ a. Then P ∈ Proj(R(M)), so that R(M)P

is normal by our hypothesis. Hence R(M)P = R(M)P , which yields CP = (0). This

makes a contradiction, because P ∈ AssR(M) C. Thus P ⊇ a and hence Q ⊇ a. Therefore

a ⊆
√
(0) : C, so that aℓ · C = (0) for every ℓ ≫ 0. Consequently, C is finitely graded,

because C is finitely generated as an R(M)-module. We finally get Mn = Mn for every

n≫ 0. This completes the proof of the equivalent conditions.

Let us make sure of the last assertions. Since A has an infinite residue class field, we

choose a parameter module L in F such that L is a reduction of M . Thanks to [12, Propo-

sition 2.2], we have (M)2 = L ·M , so that R(M) is a Cohen–Macaulay ring. Therefore,

H1
M(R(M)) ∼= R(M)/R(M) and HiM(R(M)) = (0) for i ̸= 1, r + 2. Hence R(M) has finite

local cohomology, and R(M) is a Cohen–Macaulay ring if and only if H1
M(R(M)) = (0).

The latter condition is equivalent to saying that (M)n = Mn for every n > 0; in other

words, M is integrally closed.

Remark 4.2. By [12, Proposition 3.2] or [20, Proposition 4.4 (a)], it is proved that R(M)

is a Cohen–Macaulay ring, provided M is integrally closed. Besides this, if M is integrally

closed, then R(M) is an almost Gorenstein graded ring (see [8, Corollary 2.7]).

As a corollary of Theorem 1.2, we completely determine the Buchsbaum–Rim coefficients,

when the Ratliff–Rush closure coincides the integral closure.

Corollary 4.3. Suppose that M ̸= F and M̃ = M . Then br1(M) = br0(M) −
ℓA(F/M), bri(M) = 0 for every 2 ≤ i ≤ r + 1, and

ℓA(F
n+1/(M)n+1) = br0(M) ·

(
n+ r + 1

r + 1

)
− br1(M) ·

(
n+ r

r

)
for every n ≥ 0.

Proof. We have bri(M) = bri(M̃) = bri(M) for every 0 ≤ i ≤ r + 1. Since M has the

reduction number at most one, by [12, Corollary 4.2], we get

ℓA(F
n+1/(M)n+1) = br0(M) ·

(
n+ r + 1

r + 1

)
− ℓA(M/L) ·

(
n+ r

r

)
for every n ≥ 0, where L is a parameter module in F such that L is a reduction of M .

Moreover, it is known by [3, Theorem 3.1] that br0(M) = br0(L) = ℓA(F/L). Hence

br1(M) = ℓA(M/L) = ℓA(F/L)− ℓA(F/M) = br0(M)− ℓA(F/M)

which completes the proof.
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5. Applications

In this section we explore the application of Theorem 1.2. Let us maintain the notation as

in Setting 4.1.

Theorem 5.1. The following conditions are equivalent.

(1) R(M) is a Buchsbaum ring and M̃ =M .

(2) R(M) is a Buchsbaum ring and ProjR(M) is normal.

(3) mM ⊆M and M ·M =M2.

When this is the case, one has H1
M(R(M)) =

[
H1

M(R(M))
]
1
∼= M/M and Mn = Mn for

every n ≥ 2.

Proof. The equivalence between (1) with (2) follows from Theorem 1.2.

(1) ⇒ (3) Since M̃ =M , by Theorem 1.2, we have an isomorphism

H1
M(R(M)) ∼= R(M)/R(M)

of graded R(M)-modules. As R(M) is Buchsbaum, M · H1
M(R(M)) = (0). Hence M ·

R(M) ⊆ R(M), so that mM ⊆M and M ·M =M2.

(3) ⇒ (1) Since M ·M = M2, we get M ⊆ M2 :F M ⊆ M̃ ⊆ M . Then M̃ = M . By

induction on n ≥ 0, we have that m ·Mn ⊆Mn andM ·Mn =Mn+1 for every n ≥ 0. Hence,

M · H1
M(R(M)) = (0). Remember that, because M̃ = M , we have HpM(R(M)) = (0) for

every p ̸= 1, r + 2. By [21, Corollary 1.1], we conclude that R(M) is a Buchsbaum ring.

Let us note concrete examples in order to illustrate Theorem 5.1.

Example 5.2. Let A = k[[X,Y ]] be the formal power series ring over an infinite field k.

We set I = (X4, X3Y 2, XY 6, Y 8) and M = I ⊕ I ⊆ F = A ⊕ A. Then M̃ = M , so that

R(M) has finite local cohomology, but not Buchsbaum.

Example 5.3. Let A = k[[X,Y ]] be the formal power series ring over an infinite field

k. We set I1 = (X6, X5Y 2, X4Y 3, X3Y 4, XY 7, Y 8), I2 = (X5, X4Y 2, X3Y 3, XY 6, Y 7), and

M = I1 ⊕ I2 ⊆ F = A⊕A. Then M̃ =M and R(M) is a Buchsbaum ring.

The following ensures that there exist numerous examples of Buchsbaum Rees algebras.

Corollary 5.4. Suppose that R(M) is a Buchsbaum ring and M̃ = M . Then, for

every integrally closed m-primary ideal I, R(IM) is a Buchsbaum ring and ĨM = IM . In

particular, R(mℓM) is a Buchsbaum ring for every ℓ ≥ 0.

Proof. Since I is an m-primary ideal in A, we get ℓA(F/IM) <∞. Then the assertion

follows from m(IM) = I(mM) ⊆ IM and (IM)(IM) = I2(MM) = (IM)2.

For the ideals Ii (i = 1, 2) of A as in Example 5.3, the Rees algebra R(Ii) is Buchsbaum

and Ĩi = Ii (see [7, 15]). Let us consider the relation between the Buchsbaum properties of

R(M1 ⊕M2) and R(Mi) (i = 1, 2).

Corollary 5.5. Let M1,M2 ̸= (0) be finitely generated torsion-free A-modules. We set

F1 = (M1)
∗∗, F2 = (M2)

∗∗, and M = M1 ⊕ M2 ⊆ F = F1 ⊕ F2. Then the following

conditions are equivalent.
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(1) R(M) is a Buchsbaum ring and M̃ =M .

(2) R(Mi) is a Buchsbaum ring, M̃i =Mi (i = 1, 2), and M1 ·M2 =M1 ·M2 =M1 ·M2.

Proof. Since M =M1 ⊕M1, we have the condition mM ⊆M if and only if mMi ⊆Mi

for i = 1, 2. Moreover, by comparing the following equalities

MM = M1M1 ⊕ (M1M2 +M2M1)⊕M2M2

M2 = M1
2 ⊕M1M2 ⊕M2

2

we conclude that M ·M = M2 is equivalent to the condition of Mi ·Mi = M2
i for i = 1, 2

and M1 ·M2 =M1 ·M2 =M1 ·M2.

We now summarize some consequences.

Corollary 5.6. Suppose that R(M) is a Buchsbaum ring and M̃ =M . Then R(N) is

a Buchsbaum ring and Ñ = N for all direct summand N of M .

Corollary 5.7. Suppose that R(M) is a Buchsbaum ring and M̃ =M . Then R(M⊕ℓ)

is a Buchsbaum ring and M̃⊕ℓ =M⊕ℓ for every ℓ > 0.

Corollary 5.8. Let L be an A-submodule of M such that M2 = LM . Suppose that

R(M),R(L) are Buchsbaum rings and L̃ = L. Then R(M ⊕ L) is a Buchsbaum ring and

M̃ ⊕ L =M ⊕ L.

Proof. Since L is a reduction of M , we get L = L̃ ⊆ M̃ ⊆ M = L, so that M̃ = M .

Then MM = M2 and hence ML = MM = M2 = LM , LM = LL = L2 = LM . Hence

R(M ⊕ L) is a Buchsbaum ring and M̃ ⊕ L =M ⊕ L.

Remark 5.9 ([14, Example 4.3]). In general, Ĩ ⊕ J ̸= Ĩ ⊕ J̃ . For example, let A =

k[[X,Y ]] be the formal power series ring over a field k, I = (X4, X3Y,XY 3, Y 4), and

J = (X5, X2Y 2, Y 5). Then Ĩ = m4, J̃ = J , and Ĩ ⊕ J ⊊ Ĩ ⊕ J̃ .

Let us note the example of the Buchsbaum Rees algebra which does not appear as the

multi-Rees algebra. To do this, we need some auxiliaries. For each ideal I of A, let ordA(I) =

max{n ∈ Z | I ⊆ mn} and call it the order of I. Recall that an ideal I is simple, if I ̸= JK

for any proper ideals J,K. We denote by Fitti(N) the i-th Fitting invariant of an A-module

N .

With this notation, we have the following.

Lemma 5.10. Suppose that Fitt0(F/M) is integrally closed and write Fitt0(F/M) =

I1·I2 · · · Iℓ, where ℓ > 0 and Ii is a simple m-primary integrally closed ideal of A for ev-

ery 1 ≤ i ≤ ℓ. If r = rankAF = 2 and ordA(Fitt1(F/M)) > min{ordA(Ii) | 1 ≤ i ≤ ℓ}, then
M is indecomposable.

Proof. Suppose the contrary. We write M ∼= X ⊕ Y for some A-modules X ̸= (0) and

Y ̸= (0). SinceM is a torsion-free A-module with rankAM = 2, we get X,Y are torsion-free

A-modules of rank one. Therefore, since A is a two-dimensional regular local ring, we may

choose m-primary ideals I and J such that X = I, Y = J . Hence C ∼= A/I ⊕ A/J as an
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A-module. To see the minimal free resolutions of C, A/I, and A/J , we choose the invertible

matrices P , Q satisfying

P ·M ·Q =

(
f1 f2 · · · fℓ 0 0 · · · 0
0 0 · · · 0 g1 g2 · · · gm

)
where I = (f1, f2, . . . , fℓ), J = (g1, g2, · · · , gm), ℓ = µA(I) > 1, m = µA(J) > 1, and

A⊕(ℓ+m) M−→ A⊕2 −→ F/M −→ 0

denotes the presentation of F/M as an A-module. Then, since P , Q are invertible, we get

Fitt1(F/M) = I1(M) = I1(P ·M ·Q) = I + J

and

Fitt0(F/M) = I2(M) = I2(P ·M ·Q) = IJ

where Ii(L) stands for the ideal of A generated by i × i minors of a matrix L. Note that,

since Fitt0(F/M) is an integrally closed ideal of A, we obtain I · J = I1·I2 · · · Iℓ. Thanks to
Zariski’s theorem (see [19, Theorem 14.4.8]), we have ℓ = 2, and may assume that I = I1,

ordA(I1) ≤ ordA(I2). Hence, ordA(I) ≤ ordA(Fitt1(F/M))−1, which makes a contradiction,

because I ⊆ I + J = Fitt1(F/M).

We are now ready to state the example.

Proposition 5.11. Let A = k[[X,Y ]] be the formal power series ring over an infinite

field k. We set

M =

(
X3 X2Y 2 XY 3 Y 5 0 0 0
0 0 X3 0 X2Y 2 XY 4 Y 5

)
and consider the presentation

A⊕7 M−→ A⊕2 −→ C −→ 0

of A-modules. We put M = ImM ⊆ F = A⊕2. Then R(M) is a Buchsbaum ring, M̃ =M ,

M ̸=M , and R(M) is not a multi-Rees algebra.

Proof. One can check that µA(M) = 7. Since µA(M) = 7, we get M ̸= M by [13,

Proposition 2.2, Proposition 2.5]. Note that Fitt0(F/M) = I2(M) = (X,Y 2)(X5, Y 8) is an

integrally closed ideal of A and Fitt1(F/M) = I1(M) = (X3, X2Y 2, XY 3, Y 5), so that M is

indecomposable by Lemma 5.10. The integral closure of M is given by

M =M +

⟨(
XY 4

0

)⟩
.

Indeed, we set L = M +
⟨(

XY 4

0

)⟩
and write F = At1 + At2, where t1, t2 forms a free basis

of F . Then the integral equation

(XY 4t1)
2 − Y (XY 3t1 +X3t2)(XY

4t1) + (X3t1)(Y
5t2) = 0

shows XY 4t1 ∈ M , so that M ⊇ L. Let pi : F → A denote the i-th projection of F . We

then have

p1(M) = (X,Y 2) · (X2, Y 3) and p2(M) = (X3, Y 5)

which are integrally closed. Moreover, we have X4t2 ∈ M . Therefore, we get the chain of

A-submodules of F ;
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J1 = (X3, X2Y 2, Y 5)
⊕

J2 = (X4, X2Y 2, XY 4, Y 5)
⊆M ⊊ L ⊆M ⊊

p1(M)
⊕

p2(M)
.

Note that

ℓA(J1 ⊕ J2/p1(M)⊕ p2(M)) = 4 and ℓA(M/J1 ⊕ J2) ≥ 2

whence we have M = L, as desired. It is straightforward to show that mM ⊆ M and

MM =M2. Finally, R(M) is a Buchsbaum ring and M̃ =M .

Closing this paper, let us now discuss the Buchsbaum property for the fiber cone of

modules. We now define

F(M) = A/m⊗A R(M) ∼= R(M)/mR(M)

and call it the fiber cone of M . In 2001, J. Brennan, B. Ulrich, and W. V. Vasconcelos

showed that dimF(M) = r + 1 (see [3, Proposition 2.2]). Recently, it is proved by R.

Balakrishnan and A. V. Jayanthanan an analogue of the result about the Cohen–Macaulay

property for the fiber cone. More precisely, the fiber cone F(M) is Cohen–Macaulay, if M

has the reduction number at most one ([1, Theorem 1.2]). By using their results, we finally

reach the following.

Theorem 5.12. Suppose that R(M) is a Buchsbaum ring and M̃ = M . Then F(M) is

a Buchsbaum ring.

Proof. Thanks to Theorem 5.1, we get C = R(M)/R(M) = M/M . Look at the

exact sequence 0 → R(M) → R(M) → C → 0 of graded R(M)-modules. Applying

the functor A/m ⊗A −, we have the sequenece 0 → K → F(M) → F(M) → C → 0

where K denotes the kernel of the induced homomorphism F(M) → F(M). Note that

K = K1 = mM/mM . By [1, Theorem 1.2], F(M) is a Cohen–Macaulay ring. Hence,

H0
M(F(M)) ∼= K, H1

M(F(M)) ∼= C, and HiM(F(M)) = (0) for every 2 ≤ i ≤ r. Therefore,

by [6, Proposition 3.1], we conclude that F(M) is a Buchsbaum ring.
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