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Abstract. This note aims at finding explicit and efficient generation of ideals in sub-
algebras R of the polynomial ring S = k[t] (k a field) such that tc0S ⊆ R for some
integer c0 > 0. The class of these subalgebras which we call cores of S includes the
semigroup rings k[H] of numerical semigroups H, but much larger than the class of nu-
merical semigroup rings. For R = k[H] and M ∈ MaxR, our result eventually shows
that µR(M) ∈ {1, 2, µ(H)} where µR(M) (resp. µ(H)) stands for the minimal number
of generators of M (resp. H), which covers in the specific case the classical result of O.
Forster–R. G. Swan.

1. Introduction

This note aims at finding efficient systems of generators for ideals in certain subalgebras
R of the polynomial ring S = k[t] with one indeterminate t over a field k. The class
of subalgebras which this note concerns naturally includes the semigroup rings k[H] of
numerical semigroups H.

Investigation on the numbers of generators of ideals and modules is one of the classical
subjects of great interest in commutative algebra. One of the main problems was to look
for a bound, in terms of the local data, on the minimal number of generators for a finitely
generated module M over a commutative Noetherian ring R. This problem was solved
by O. Forster [3] in 1964, and subsequently in 1967, R. G. Swan [6] gave an efficient
bound for the number of generators, also generalizing Forster’s argument to the non-
commutative case. The reader may consult [1, 2], where D. Eisenbud and E. G. Evans,
Jr. extended various stability theorems for projective modules to the context of arbitrary
finitely generated modules, developing a beautiful theory of basic elements. Let us note
one of the results in the following form. Throughout, let µR(∗) stand for the minimal
number of generators.

Theorem 1.1 (Forster-Swan Theorem on the number of generators of a module, [1,
Corollary 3], [2, Corollary 5]). Let M be a finitely generated module over a commutative
Noetherian ring R of finite dimension and set

b(M) = sup
p∈SpecR

[dimR/p+ µRp(Mp)].

Then µR(M) ≤ b(M).
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On the other hand, in 1978 J. Sally [5] explored the case where the base rings are local,
giving several fundamental results about the numbers of generators of ideals in Cohen-
Macaulay local rings of small dimension. Combining her results with Theorem 1.1, we
nowadays have satisfactorily general methods to estimate the numbers of generators for
the ideals in rings of small dimension. For example, if R = k[H] =

∑
h∈H kt

h is the
semigroup ring of a numerical semigroup H where t denotes an indeterminate over a field
k, then SpecR has at most an isolated singularity, so that for a maximal ideal M of R we
get µR(M) ≤ 2 if M ̸= P0 and µR(P0) = µ(H), where P0 = (th | 0 < h ∈ H) and µ(H)
stands for the minimal number of generators of H. Nevertheless, even for the maximal
ideals M of k[H], it would be a different and interesting problem to look for explicit and
efficient systems of generators, which we shall pursue in this note.

We explain how this note is organized. In Section 2 we study k-subalgebras R of the
polynomial ring S = k[t] over a field k such that tc0S ⊆ R for some integer c0 > 0. The
class of these algebras which we call cores of S naturally includes (but much larger than)
the class of numerical semigroup rings. We consider the ideals I of the form I = fS ∩ R
where f ∈ S = k[t] such that f(0) = 1, and show that I is at most 2-generated, giving
explicit generators of I which depend only on c0 and f (Theorem 2.4). The result leads
to the study of the integral closures I of arbitrary ideals I of R, and in Section 3, we will
give an estimation of the minimal number of generators of I. In Section 4, we shall focus
on the case where R = k[H], giving rather incredible systems of generators of k-rational
closed points M of SpecR (Theorem 4.2, Corollary 4.4), which eventually shows that
µR(M) ∈ {2, µ(H)}, if 1 ̸∈ H and the field k is algebraically closed (Corollary 4.5).

2. Main result

Let S = k[t] be the polynomial ring over a field k. Let 0 < a1, a2, · · · , av ∈ Z (v > 0)
be integers such that GCD(a1, a2, · · · , av) = 1. We denote by

H = ⟨a1, a2, · · · , av⟩ =

{
v∑

i=1

ciai | 0 ≤ ci ∈ Z for 1 ≤ ∀i ≤ v

}
the numerical semigroup generated by a′is. The reader may consult [4] for a general
reference about numerical semigroups. We set k[H] = k[ta1 , ta2 , · · · , tav ] ⊆ S and call it
the semigroup ring of H. Let

c(H) = min{n ∈ Z | m ∈ H for all m ∈ Z such that m ≥ n}

denote the conductor of H. Hence, k[H] : S = tc(H)S. Unless otherwise specified, we
throughout assume that 1 ̸∈ H. Therefore, c(H) ≥ 2, and Sing(k[H]) = {P0}, where
P0 = (ta1 , ta2 , · · · , tav) = tS ∩ k[H]

Let R be a k-subalgebra of S. Then we say that R is a core of S, if tc0S ⊆ R for some
integer c0 > 0. If R is a core of S, then

k[tc0 , tc0+1, . . . , t2c0−1] ⊆ R ⊆ S,

and a given k-subalgebra R of S is a core of S if and only if R ⊇ k[H] for some numerical
semigroup H. Therefore, once R is a core of S, R is a finitely generated k-algebra
of dimension one, and S is a birational module-finite extension of R with tc0S ⊆ R : S.
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Typical examples of cores are, of course, the semigroup rings k[H] of numerical semigroups
H. However, cores of S do not necessarily arise as semigroup rings for some numerical
semigroups. Let us note one of the simplest examples.

Example 2.1. Let R = k[t2 + t3] + t4S. Then R ̸= k[H] for any numerical semigroup H.

We summarize a few basic facts about cores. For P ∈ SpecR, we say that P is a
k-rational closed point of SpecR, if k = R/P .

Proposition 2.2. Let R be a core of S and set P0 = tS ∩ R. Let SP denote, for each
P ∈ SpecR, the localization of S by the multiplicative system R \ P . Then the following
assertions hold true.

(1) Let Q ∈ SpecS and set P = Q ∩R. If P ̸= P0, then RP = SP = SQ.
(2) The map SpecS → SpecR,Q 7→ Q ∩R is a bijection.
(3) Let Q ∈ SpecS and set P = Q ∩ R. Then Q is a k-rational closed point of SpecS if

and only if so is P in SpecR.

Proof. (1) If tc0S ⊆ P , then t ∈ Q, so that P = P0. Therefore, tc0S ̸⊆ P , whence
RP = SP , because R : S ̸⊆ P . Consequently, SP = SQ, since SP is a local ring and
QSP ∈ MaxSP .
(2) Since S is integral over R, the map SpecS → SpecR,Q 7→ Q∩R is surjective. Let

Q1, Q2 ∈ SpecS and assume that Q1 ∩ R = Q2 ∩ R = P . We will show that Q1 = Q2.
To do this, we may assume that P ̸= (0). If P ̸= P0, then Q1 = Q2, because by assertion
(1) SP is a local ring and Q1SP , Q2SP ∈ MaxSP . If P = P0, then t

c0 ∈ Q1 ∩Q2, so that
Q1 = Q2 = tS, which proves assertion (2).

(3) We may assume that P ∈ MaxR, Q ∈ MaxS, and by assertion (2) that P ̸= P0.
Therefore, R/P = RP/PRP and S/Q = SQ/QSQ, whence R/P = S/Q, because RP = SQ

by assertion (1). Thus, k = R/P if and only if k = S/Q. □

In what follows, we fix a core R of S = k[t]. Let f ∈ S = k[t] such that f(0) = 1.
Choose integers ℓ, c ≥ c0 so that ℓ ≥ 2. We write f =

∑
i≥0 ait

i with ai ∈ k (hence a0 = 1)
and consider the following (ℓ− 1)× ℓ matrix

A =


a1 1 0 0 ··· ··· 0
a2 a1 1 0 ··· ··· 0
a3 a2 a1 1 0 ··· 0
...

...
...

...
...
...
...

aℓ−2 aℓ−3 aℓ−4 ··· a1 1 0
aℓ−1 aℓ−2 aℓ−3 ··· a2 a1 1

 .

Then, rankA = ℓ− 1, so that there exists a unique element v =

 v0
v1
v2
...

vℓ−1

 ∈ k(ℓ) such that

Av = 0 and v0 = 1. Set g =
∑ℓ−1

i=0 vit
i ∈ S. Hence, g(0) = 1, and we have the following.

Proposition 2.3. The following assertions hold true.

(1) fg − 1 ∈ tℓS, whence fg ∈ R.
(2) f ∈ R if and only if g ∈ R.

(3) Let φ ∈
∑ℓ−1

i=0 kt
i. If fφ− 1 ∈ tℓS, then φ = g.
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Proof. (1) The coefficient bn of tn in fg is given by bn =
∑n

i=0 aivn−i, so that bn = 0 for
all 1 ≤ n ≤ ℓ− 1, while (fg)(0) = f(0)·v0 = 1. Therefore

fg − 1 ∈ tℓS.

(2) Let R = R/J and S = S/J , where J = tℓS. Then, R is a subring of S, and
S is a module-finite extension of R. Therefore, R is a local ring, since so is S, and
mR = mS ∩ R, where mR and mS denote respectively the maximal ideals of R and S.
Then, since fg ≡ 1 mod tℓS in S and tℓS = J , we have fg = 1 in S, where f, g denote
respectively the images of f, g in S. Therefore, if f ∈ R, f ∈ R and it is a unit of R, since
it is a unit of S. Because g is the inverse of f in the ring S, which should belong to the
ring R, just thanks to the uniqueness of the inverse. Therefore, g ∈ R, since g ≡ r mod J
in S for some r ∈ R. The converse is similarly proved.

(3) This is clear, since φ = g in S. □
We set I = fS ∩ R. Then, fg ∈ I since fg ∈ R, and tcf ∈ I for every integer c ≥ c0

since tcS ⊆ R. Therefore, (tcf, fg) ⊆ I. We furthermore have the following.

Theorem 2.4. The following assertions hold true.

(1) I = (tcf, fg) for every integer c ≥ c0, and IS = fS.
(2) I is a principal ideal of R if and only if f ∈ R. When this is the case, I = fR.

Let us divide the proof of Theorem 2.4 into several steps. We may assume that f ̸∈
k. We fix an irreducible decomposition f =

∏n
i=1 f

ei
i of f . Hence, fi

′s are irreducible
polynomials such that fiS = fjS only if i = j, and ei

′s are positive integers. We set
Λ = {1, 2, . . . , n}. Let

Qi = fiS, Pi = Qi ∩R for each i ∈ Λ, and P0 = tS ∩R.

Then, fg ̸∈ P0, since (fg)(0) = f(0)g(0) = 1, but fg ∈ Pi for every i ∈ Λ, since f ∈ Qi.
Let P ∈ SpecR and write P = Q∩R for some Q ∈ SpecS. Let c ≥ c0 be an integer. Then,
tcf ∈ P if and only if tcf ∈ Q, and the latter condition is equivalent to saying that either
t ∈ Q or fi ∈ Q for some i ∈ Λ. Therefore, setting V(tcf) = {P ∈ SpecR | tcf ∈ P}, we
have the following.

Proposition 2.5. The following assertions hold true.

(1) fg ∈ Pi for each i ∈ Λ, but fg ̸∈ P0. Consequently, IRP0 = RP0.
(2) V(tcf) = {P0, P1, . . . , Pn}.

Proposition 2.6. For i ∈ Λ the following assertions hold true.

(1) RPi
= SQi

and IRPi
= fRPi

, whence I ⊆ Pi.
(2) Let h ∈ S. If h ̸∈ Qi, then IRPi

= fhRPi
.

Therefore, for each P ∈ SpecR, I ⊆ P if and only if P = Pj for some j ∈ Λ.

Proof. By Proposition 2.2 (1) RPi
= SPi

= SQi
, since Pi ̸= P0, while

IRPi
= [fS ∩R]RPi

= fSPi
∩RPi

.

Therefore IRPi
= fSQi

∩ SQi
= fSQi

= fRPi
, so that I ⊆ Pi because fSQi

̸= SQi
. If

h ∈ S but h ̸∈ Qi, then IRPi
= fSQi

= fhSQi
= fhRPi

. Let P ∈ SpecR. If I ⊆ P , then
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tcf ∈ P , so that by Proposition 2.5 P = Pj for some j ∈ Λ. Since by assertion (1) I ⊆ Pi

for every i ∈ Λ, the last assertion follows. □

The following is a direct consequence of Proposition 2.6.

Corollary 2.7. I is an invertible ideal of R.

We set W = R \
∪n

i=0 Pi, Then, W−1I is a principal ideal of W−1R, because it is
an invertible ideal of W−1R (Corollary 2.7) and the ring W−1R is a one-dimensional
semi-local ring whose maximal ideals are precisely {W−1Pi}0≤i≤n. We now notice that
R/(tcf) = W−1[R/(tcf)], since for every w ∈ W the image of w in R/(tcf) is invertible
in R/(tcf) (Proposition 2.5 (2)). Therefore, in order to prove Theorem 2.4 (1), it suffices
to show that W−1I = fg·W−1R, or equivalently

SuppW−1RW
−1I/fg·W−1R = ∅.

Because MaxW−1R = {W−1Pi | 0 ≤ i ≤ n}, by Proposition 2.5 (1) and Proposition 2.6
(2) this is certainly the case, once g ̸∈ Qi for any i ∈ Λ. Suppose that g ∈ Qi for some
i ∈ Λ, and set ξ =

∏
j∈Γ fj, where Γ = {j ∈ Λ | g ̸∈ Qj}. Choose an integer q so that

q ≥ c+ c0 and set h = g + tqξ. We then have the following.

Proposition 2.8. We have h ̸∈ Qi for any i ∈ Λ. Hence, IRPi
= fhRPi

for every i ∈ Λ.

Proof. Assume the contrary and let h ∈ Qi for some i ∈ Λ. If g ∈ Qi, we then have
tqξ ∈ Qi, so that either t ∈ Qi or ξ ∈ Qi. However, if t ∈ Qi, then Qi = tS, which forces
f(0) = 0 because f ∈ Qi. Therefore, ξ ∈ Qi, so that fj ∈ Qi for some j ∈ Γ. Hence,
i = j ∈ Γ, whence g ̸∈ Qi. This is a contradiction. Thus, g ̸∈ Qi, that is i ∈ Γ, whence
tqξ ∈ Qi so that h = g + tqξ ̸∈ Qi. This is also a contradiction. Hence, h ̸∈ Qi for any
i ∈ Λ. The second assertion is a direct consequence of Proposition 2.6 (2). □

Since tq−cξ ∈ R (remember that q ≥ c+c0), we have fh = fg+tcf ·tq−cξ ≡ fg mod tcfR,
so that (tcf, fh) = (tcf, fg) in R. On the other hand, because fh ̸∈ P0 (notice that
(fh)(0) = (fg)(0) = 1) and by Proposition 2.8 IRPi

= fhRPi
for every i ∈ Λ, we get

SuppW−1RW
−1I/fh·W−1R = ∅, so that I = (tcf, fh). Therefore, I = (tcf, fg). Because

(tc, g)S = S and IS = (tcf, fg)S = f ·(tc, g)S, we readily get IS = fS, which proves
assertion (1) of Theorem 2.4.

Let us consider assertion (2). Suppose that I = (tcf, fg) is a principal ideal of R and
let I = φR for some φ ∈ R. We write φ = fψ with ψ ∈ S. Then, since ψR = tcR + gR
and tcS+ gS = S, we have ψS = S, so that 0 ̸= ψ ∈ k. Therefore, I = φR = fψR = fR,
whence f ∈ R. If f ∈ R, then fR ⊆ I = fS ∩ R, while g ∈ R by Proposition 2.3.
Consequently, because tc, g ∈ R, we get fR ⊆ I = (tcf, fg) ⊆ fR. Hence, I = fR, which
completes the proof of Theorem 2.4.

Example 2.9. Let f = 1 − t. Then, g =
∑ℓ−1

i=0 t
i, where ℓ ≥ max{2, c0}. We set

I = (1 − t)S ∩ R. Then, I is a maximal ideal of R, and I = (tc − tc+1, 1 − tℓ) for every
c ≥ c0. The ideal I is a principal ideal of R if and only if R = S.

Example 2.10. Let k = Z/(2) and f = 1 + t2 + t3 + t5 + t6 ∈ S = k[t]. Then f is
an irreducible polynomial in S. Choose a k-subalgebra R of S so that t10S ⊆ R. Let
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I = fS ∩ R and set ℓ = c = 10. We then have g = 1 + t2 + t3 + t4 + t5 + t6 + t7 and
I = (t10f, 1+ t10+ t13). The maximal ideal I is a principal ideal of R if and only if f ∈ R.

We consider semigroup rings R = k[H] of numerical semigroups H.

Example 2.11. Let e ≥ 2 be an integer and set H = ⟨e, e+ 1, · · · , 2e− 1⟩. Hence,
R = k[te+i | 0 ≤ i ≤ e − 1] and c(H) = e. Let 0 ̸= α ∈ k and set f = 1 − αt ∈ S,
M = fS ∩R. Then, taking ℓ = c = e, we have g =

∑e−1
i=0 α

iti, whence

M = (te − αte+1, 1− αete) =
((

1
α

)e+1 − te+1,
(
1
α

)e − te
)
.

A similar result holds true for k-rational closed points except the origin of arbitrary
monomial curves Spec k[H], which we shall discuss in Section 4.

Example 2.12. Let k = R and f = 1 + at + bt2, where a, b ∈ k such that b ̸= 0 and
a2 < 4b. Let H = ⟨2, 5⟩ or H = ⟨4, 5, 6, 7⟩. Hence c(H) = 4. Let R = k[H]. We set
M = fS ∩R and choose ℓ = c = 4. Then

A =
[
a 1 0 0
b a 1 0
0 b a 1

]
, v =

[ 1
−a
a2−b

2ab−a3

]
.

We have fg = 1 + (3a2b − b2 − a4)t4 + (2ab − a3)bt5 and M = (t4f, fg). We now take
a = 0. Then g = 1− bt2 and M = (t4f, 1− b2t4). By Theorem 2.4 (2), we have M = fR
if H = ⟨2, 5⟩, but µR(M) = 2 if H = ⟨4, 5, 6, 7⟩. This example shows that even though
the generating system of M = fS ∩ R depends only on c(H) and f , the whole structure
of H has an influence on the minimal number µR(M) of generators for M .

3. Integral closures I of an ideal I in R

Similarly as in Section 2, we fix a core R of S. Hence, R is a k-subalgebra R of S = k[t]
such that tc0S ⊆ R for some integer c0 > 0. In this section, let I (̸= (0)) denote an ideal
of R throughout. Let us write IS = φS with φ ∈ S. We are interested in the efficient
generation of the integral closure I of I. To do this, notice that I = IS ∩ R, since S is
a module-finite (hence an integral) extension of R. Without loss of generality, we may
assume that φ = tqf , where q ≥ 0 is an integer and f ∈ S such that f(0) = 1. We
choose integers ℓ, c ≥ c0 so that ℓ ≥ 2 in order to obtain the polynomial g ∈ S explored
in Section 2 (see Proposition 2.3). Hence fS ∩R = (tcf, fg) by Theorem 2.4.
With this notation we have the following.

Lemma 3.1. I = (tqS ∩R) ∩ (fS ∩R) = (tqS ∩R)·(fS ∩R) and (tqS ∩R)S = tqS.

Proof. We have tqfS = tqS ∩ fS, because (tq, f)S = S, so that the first equality follows,
since I = (tqfS)∩R. To see the second equality, it suffices to show (tqS∩R)+(fS∩R) = R.
Assume the contrary and choose M ∈ MaxR so that (tqS ∩ R) + (fS ∩ R) ⊆ M . We
write M = N ∩ R for some N ∈ MaxS. Then, since tc0+qS ⊆ R, we get tc0+q ∈ M ,
whence t ∈ N . On the other hand, we have fg ∈ N , since fg ∈ fS ∩ R (Proposition 2.3
(1)). Therefore, t, fg ∈ N , which is impossible, because (fg)(0) = 1. Hence, (tqS ∩R) +
(fS ∩R) = R, and the second equality follows. To see that (tqS ∩R)S = tqS, notice that
IS = IS, since

IS ⊆ IS ⊆ IS = φS = φS = IS.
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We then have tqfS = IS = IS = [(tqS ∩ R)·(fS ∩ R)]S = [(tqS ∩ R)S]·[(fS ∩ R)S], so
that tqS = (tqS ∩R)S, because (fS ∩R)S = fS by Theorem 2.4. □

We furthermore have the following.

Proposition 3.2. The following assertions hold true.

(1) If c ≥ q, then I = (tcf) + fg·(tqS ∩R), whence µR(I) ≤ 1 + µR(t
qS ∩R).

(2) If q ≥ c0, then I = φS and µR(I) = µR(S).

Proof. (1) Since tcf ∈ tqS∩R and fS∩R = (tcf, fg) by Theorem 2.4, we have by Lemma
3.1 that

I = (tqS ∩R) ∩ (fS ∩R) = tcfR + [(tqS ∩R) ∩ (fg)],

while (tqS ∩R) ∩ (fg) = (fg)·(tqS ∩R), since (tqS ∩R) + (fg) = R (see the proof of the
second equality in Lemma 3.1). Thus, I = (tcf) + fg·(tqS ∩R).
(2) We have I = φS ∩R = φS, since φ ∈ tc0S ⊆ R. □

We consider the case where R = k[H]. Let e ≥ 2 be an integer and set R = k[H], where
H = ⟨e, e+ 1, . . . , 2e− 1⟩. Then, since (tqS ∩ R)S = tqS by Lemma 3.1, we have q ∈ H.
Therefore, either q = 0, or q ≥ e = c0, so that Proposition 3.2 shows the following, since
µR(S) = e.

Corollary 3.3. Let e ≥ 2 be an integer and set H = ⟨e, e+ 1, . . . , 2e− 1⟩. Let R = k[H].
Then, for each ideal I (̸= (0)) of R, we have µR(I) ∈ {1, 2, e}.

4. Maximal ideals of numerical semigroup rings

In this section we study the semigroup rings of numerical semigroups. In what follows,
let 0 < a1, a2, · · · , av ∈ Z be integers such that GCD(a1, a2, · · · , av) = 1. Let H =
⟨a1, a2, · · · , av⟩, and S = k[t], where k is a field. We consider the ring

R = k[H] = k[ta1 , ta2 , · · · , tav ],

assuming that 1 ̸∈ H. Therefore, c(H) ≥ 2, and Sing(R) = {P0}, where P0 =
(ta1 , ta2 , · · · , tav) = tS ∩R.

Let M ∈ SpecR. Recall that M is said to be a k-rational closed point of SpecR, if
k = R/M . As for the rationality in SpecR, the following result is well-known, which
allows us to naturally identify the k-rational closed points of SpecR with the points of
the monomial curve C = {(αa1 , αa2 , . . . , αav) | α ∈ k}.

Proposition 4.1. Let M ∈ MaxR. Then the following conditions are equivalent.

(1) M is a k-rational closed point of SpecR.
(2) M = (αai − tai | 1 ≤ i ≤ v) for some α ∈ k.
(3) M ⊆ (α− t)S for some α ∈ k.

When this is the case, the element α ∈ k given in conditions (2) and (3) is uniquely
determined for M .

Let us consider k-rational closed points of SpecR which do not correspond to the origin
of the curve C = {(αa1 , αa2 , . . . , αav) | α ∈ k}. We begin with the following.
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Theorem 4.2. Let M = (1− tai | 1 ≤ i ≤ v). Then

M = (1− tc | c ∈ H) = (1− ta, 1− tb)

for all 0 < a, b ∈ H such that GCD(a, b) = 1.

Proof. Let 0 < c ∈ H. Without loss of generality, we may assume that c = (−n)a +mb
with n,m ≥ 2. Then, since[

1− t(q−1)a+c
]
−

[
1− tqa+c

]
= −(1− ta)t(q−1)a+c

for all q = 1, 2, . . . , n, taking the sum of both sides, we have

[1− tc]−
[
1− tna+c

]
= −(1− ta)·

n∑
q=1

t(q−1)a+c.

Consequently, because 1 − tna+c = 1 − tmb = (1 − tb)
∑m−1

q=0 (t
b)q ∈ (1 − tb), we get

1− tc ∈ (1− ta, 1− tb). Therefore

M ⊆ (1− tc | c ∈ H) ⊆ (1− ta, 1− tb) ⊆ (1− t)S ∩R,

whence the required equalities follow, because M = (1− t)S ∩R by Proposition 4.1. □

Example 4.3. Let H = ⟨3, 5, 7⟩ and set M = (1 − tc | c ∈ H). Then, M is a maximal
ideal of R = k[t3, t5, t7] and M = (1− t3, 1− t5) = (1− t3, 1− t7) = (1− t5, 1− t7).

Let 0 ̸= α ∈ k and set Mα = (αai − tai | 1 ≤ i ≤ v) in R = k[H]. Let φα ∈ Autkk[t]
defined by φα(t) = t1, where t1 = t

α
. Then, φα(k[H]) = k[H], so that φα induces the

automorphism ψα of R. Therefore, since ψα(M1) =Mα, we get the following.

Corollary 4.4. Let 0 ̸= α ∈ k. Then Mα = (αa − ta, αb − tb) for all 0 < a, b ∈ H such
that GCD(a, b) = 1.

Let µ(H) stand for the minimal number of generators of H. Hence µ(H) = µR(P0).
Every M ∈ MaxR is a k-rational closed point of SpecR if the base field k is algebraically
closed, so that by Theorem 2.4 (2) and Corollary 4.4 we readily get the following.

Corollary 4.5 (cf. Theorem 1.1). Suppose that k is an algebraically closed field. Then,
µR(M) = 2 if M ̸= P0, and µR(M) = µ(H) if M = P0.

As another application of Theorem 4.2, we have an explicit system of generators for
the integral closures of certain ideals in R. Let us perform the task before closing this
note. In what follows, let I be an ideal of R. Similarly as in Section 3, we write IS = φS
with φ ∈ S, and assume that φ = tqf , where 0 < q ∈ H and f ∈ S with f(0) = 1. Let
a = tqS ∩R. Hence, I = a·(fS ∩R) by Lemma 3.1. We set n = µR(a). We then have the
following.

Proposition 4.6. n ≥ 2.

Proof. Assume that n = 1. Then, a = tqS ∩ R = tqR, so that {h ∈ H | h ≥ q} = q +H.
Therefore, ♯{h ∈ H | h < q} = ♯{H\(q+H)} = dimk R/t

qR = q, which is a contradiction,
as soon as 1 ̸∈ H. □
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We consider the specific case where f = 1 − t. Let us write a = (tb1 , tb2 , . . . , tbn) with
bi ∈ H such that bi ≥ q for each 1 ≤ i ≤ n, and set b = (tb2 , tb3 , . . . , tbn). Then, R/b is an
Artinian local ring with maximal ideal P0/b (see Proposition 2.2), whence tmS ⊆ b for
all m≫ 0. Therefore, we can choose an integer b ∈ H so that tb ∈ b and GCD(b1, b) = 1.
Hence b ≥ q. Let b0 = b. We then have the following.

Theorem 4.7. I = (tb1 − tb0 , {tbi − tb0+bi}2≤i≤n). Hence µR(I) ≤ µR(a).

Proof. Let a = b1. By Lemma 3.1 and Theorem 4.2, I = a·(fS ∩ R) = a·(1− ta, 1 − tb),
while by Lemma 3.1 ta − tb ∈ I, because ta − tb ∈ tqS ∩ R = a and ta − tb ∈ fS ∩ R.
Therefore, since a = (tb0 , tb1 , . . . , tbn), we get

I = (tbi − ta+bi | 0 ≤ i ≤ n) + (tbi − tb+bi | 0 ≤ i ≤ n).

Therefore, I = (ta − tb) + (tbi − tb+bi | 0 ≤ i ≤ n), since

tbi − ta+bi = (−tbi)(ta − tb) + (tbi − tb+bi)

for each 0 ≤ i ≤ n. We set J = (ta − tb) + (tbi − tb+bi | 2 ≤ i ≤ n). Then, since tb ∈ b, we
have b = bi + h for some 2 ≤ i ≤ n and h ∈ H, so that tb − tb+b0 = th(tbi − tb+bi) ∈ J . On
the other hand, because

tb1 − tb+b1 = (ta − tb) + (tb0 − ta+b0) and tb0 − ta+b0 = (−tb0)(ta − tb) + (tb − tb+b0),

we get tb1 − tb+b1 ∈ J . Thus I = J , as claimed. □

Let us note one example.

Example 4.8. Let H = ⟨4, 11, 13⟩ and R = k[H]. Let q = 12 and f = 1 − t. Let I be
an ideal of R such that IS = (t12f)S. Hence, I = (t12f)S ∩ R. We have a = t12S ∩ R =
(t12, t13, t15, t22). Set b = (t13, t15, t22), and take a = 12, b = 13. Then, by Theorem 4.7
I = (t12 − t13, t13 − t26, t15 − t28, t22 − t35).
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