ULRICH IDEALS IN NUMERICAL SEMIGROUP RINGS
OF SMALL MULTIPLICITY

NAOKI ENDO AND SHIRO GOTO

ABSTRACT. Ulrich ideals in numerical semigroup rings of small multiplicity are stud-
ied. If the semigroups are three-generated but not symmetric, the semigroup rings are
Golod, since the Betti numbers of the residue class fields of the semigroup rings form an
arithmetic progression; therefore, these semigroup rings are G-regular ([I6]), possessing
no Ulrich ideals. Nevertheless, even in the three-generated case, the situation is differ-
ent, when the semigroups are symmetric. We shall explore this phenomenon, describing
an explicit system of generators, that is the normal form of generators, for the Ulrich
ideals in the numerical semigroup rings of multiplicity at most 3. As the multiplicity is
greater than 3, in general the task of determining all the Ulrich ideals seems formidable,
which we shall experience, analyzing one of the simplest examples of semigroup rings of
multiplicity 4.
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1. INTRODUCTION

This paper aims at the study of Ulrich ideals in numerical semigroup rings of small
multiplicity.

Let H be a numerical semigroup and let k[[H]] be the semigroup ring over a field k. Let
Xy denote the set of Ulrich ideals in k[[H]]. We then naturally attain the following.

Problem 1.1. Determine the set Xjmy).

The present purpose is to report a few partial solutions for Problem [, especially in the
case where H has small multiplicity e(H) = min [H \ {0}].

The notion of Ulrich ideal on which we focus throughout this paper is one of the
modifications of that of stable maximal ideal introduced in 1971 by his famous paper
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[[2] of J. Lipman. The present modification was formulated by S. Goto, K. Ozeki, R.
Takahashi, K.-i. Watanabe, and K.-i. Yoshida [9] in 2014, where the authors developed
the basic theory, revealing that the Ulrich ideals of Cohen-Macaulay local rings enjoy a
beautiful structure theorem for minimal free resolutions.

In order to explain our aim as well as our motivation more precisely, let (A, m) be a
Cohen-Macaulay local ring with dimA = d > 0 and [ an m-primary ideal of A. We
throughout assume that I contains a parameter ideal @) of A as a reduction; hence I"*! =
QI" for some n > 0. This assumption is naturally satisfied, if the residue class field A/m
is infinite, or if A is analytically irreducible and of dimension one; for example, A = k[[H]],
the semigroup ring of a numerical semigroup H over a field k.

Definition 1.2. ([9, Definition 1.1]) We say that I is an Ulrich ideal of A, if the following
conditions are satisfied.

(1) I #Q, I’ = QI and
(2) I/I*is a free A/I-module.

We notice that Condition (1) of the definition is satisfied if and only if the associated
graded ring gr;(A) = @,,5, ["/I"" is a Cohen-Macaulay ring with a(gr;(A)) = 1 — d,
where a(gr;(A)) denotes the a-invariant of gr;(A) (I, Definition 3.1.4]). Thus, Condition
(1) is independent of the choice of reductions @ of I. When I = m, Condition (2) is
automatically satisfied, while Condition (1) is equivalent to saying that A is not regular
but of minimal multiplicity. One finds the general basic results on Ulrich ideals in the
fundamental paper [9]. For example, provided I, J are Ulrich ideals of A, I = J if and
only if for some 7 > 0
Syzy (1) = Syzy(J)

as an A-module, where Syz'(I) (resp. Syz'4(J)) stands for the i-th syzygy module of I
(resp. J) in a minimal free resolution of the A-module I (resp. J).

Let I be an m-primary ideal of A and assume that I? = QI. Then, since Q/QI is a
free A/I-module of rank d, the exact sequence

0—=Q/QI = 1/I* -1/Q—0

of A/I-modules readily shows that I/I? is a free A/I-module if and only if so is I/Q.
Therefore, provided that I is minimally generated by d + 1 elements, the latter condition
is equivalent to saying that I/Q = A/I as an A/I-module, or equivalently @ :4 [ = I.
On the other hand, if I is an Ulrich ideal, by [9, [0] we get the equality

(na(l) = d) - v(A/T) = r(A),

where pa(l) (resp. r(x)) denotes the number of generators of I (resp. the Cohen-Macaulay
type). Therefore

d+1<pa(I) <d+1(A),
so that when A is a Gorenstein ring, that is the case where r(A) = 1, every Ulrich ideal 1

is generated by d + 1 elements (if it exists), whence [ is a good ideal of A in the sense of
[8]. As is shown in [9, 00], all the Ulrich ideals with the extreme number pa(l) = d + 1
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of generators possess finite G-dimension, and their minimal free resolutions have a very
restricted form, so that they are eventually periodic of period one.

Let us explain this phenomenon in the case of dimension one. We now assume that
(A,m) is a Cohen-Macaulay local ring with dim A = 1 and that I is an Ulrich ideal of
A. Therefore, I is an m-primary ideal of A, and I? = al for some a € I, such that
I # (a) but I/(a) is a free A/I-module. We assume that I is minimally generated by two
elements, say I = (a,b) with b € I, and write b*> = ac for some ¢ € I. We then have, since
I/(a) = A/I, that (a) :4 b = I, and the minimal free resolution of I has the following

. —

a b)
—" I —0

([0, Example 7.3]). In particular, I is a totally reflexive A-module, that is I is a reflexive
A-module, Exty (I, A) = (0), and Ext’ (Hom (I, A), A) = (0) for all p > 0 ([l4, Proposition

4.6]). We then clearly have that I = J, once
Syziy(1) = Syzy(J)

for some 7 > 0, provided I, .J are Ulrich ideals of A.

It seems reasonable to expect that behind the behavior of Ulrich ideals and their exis-
tence also, there is hidden some ample information about the structure of the base rings.
For example, if A has finite Cohen-Macaulay representation type, then A contains only
finitely many Ulrich ideals ([9]). In a one-dimensional non-Gorenstein almost Gorenstein
local ring, the only possible Ulrich ideal is the maximal ideal ([T0, Theorem 2.14]). In
[@] the authors explored the ubiquity of Ulrich ideals in 2-AGL rings (one of the gener-
alizations of Gorenstein local rings of dimension one), and showed that the existence of
two-generated Ulrich ideals provides a rather strong restriction on the structure of the
base local rings ([@, Theorem 4.7]). Nevertheless, even for the one-dimensional Cohen-
Macaulay local rings, in general we lack an explicit and physical list of Ulrich ideals
contained inside those rings, which possibly prevents further developments of the study
of Ulrich ideals. In order to supply the lack, continuing the work [7], the present re-
search particularly focuses on and investigates the question of how many and how ample
two-generated Ulrich ideals are contained in a given numerical semigroup ring, which is a
prototype of Cohen-Macaulay local rings of dimension one. As we shall show in the fol-
lowing, although the task is rather tough and the statements of the results are seemingly
complicated, we are able to describe all the Ulrich ideals in certain specific numerical
semigroup rings. The list which we will give could enrich the known class of Ulrich ideals,
providing numerous concrete examples of totally reflexive modules, as well.

In order to explain how this paper is organized, we turn our attention to the following
specific setting. Let ay, as, ..., a; € Z be positive integers such that GCD (ay, as, ..., a;) =
1. We set

¢
H = {ay,aq9,...,ap) = {Zciai

i=1

OﬁciEZforalllgiSK}
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and call it the numerical semigroup generated by {a;}1<;<,. The reader may consult the
book [I5] for the fundamental results on numerical semigroups. Let V' = k[[t]] denote the
formal power series ring over a field k, and set

K[[H]) = k[t %2, ... 1] C V,

which we call the semigroup ring of H over k. The ring A = k[[H]] is a Noetherian integral
local domain and V' is a birational module-finite extension of A, so that A =V (here A
denotes the integral closure of A in its quotient field), dim A = 1, and the maximal ideal
of A is given by m = (¢*,t% ... t*). Let

c¢(H) =min{n € Z | m € H for all m € Z such that m > n}
and set f(H) = c¢(H) — 1. We then have A : V = t“¥)Vand
f(H) =max (Z\ H)
which is called the Frobenius number of H. Let
e(H) = min [H\ {0}].

Notice that e(H) coincides with the multiplicity of A with respect to m. Let X4 stand for
the set of Ulrich ideals in A. The ring A = k[[H]] contains only finitely many Ulrich ideals
generated by monomials in ¢ ([9]), and naturally, the present research is more interested
in Ulrich ideals which are not generated by monomials in ¢.

With this notation, in Section 2 we summarize some basic properties of Ulrich ideals
in A. It is rather difficult to pinpoint the members of X4, and to overcome the difficulty,
we need a new method to make the list of Ulrich ideals, which we will discuss in Section
2 (Theorem 7). Section 3 is devoted to make a complete list of X4 in the case where
e(H) = 3 and ¢ = 2 (Theorem BM). Our proof is elementary, but rather long, so that it
will be divided into several steps. In Section 4, we explore Ulrich ideals in the numerical
semigroup ring A = k[[t*, t'%]] (Theorem ET). As is well-known, three-generated non-
symmetric numerical semigroups are of a special kind ([12]). We will show in Section 5
that for every three-generated non-symmetric numerical semigroup H, the Betti numbers
of the residue class field of the ring A = k[[H]] form an arithmetic progression, whence
A is a Golod ring (Corollary 532), so that it contains no Ulrich ideals generated by two
elements ([6]). On the other hand, every three-generated symmetric numerical semigroup
is obtained by gluing. Thanks to this fact, we shall partially answer in Section 5, for three-
generated symmetric numerical semigroups H, the question of whether X} is empty
or not (Proposition b4).

2. TWO-GENERATED ULRICH IDEALS IN CORE SUBRINGS OF V = k[[t]]

Let k be a field and let V' = k[[t]] denote the formal power series ring over k. Let A
be a k-subalgebra of V. Then, following [d], we say that A is a core of V| if t°V C A for
some ¢ > 0. The semigroup rings k[[H]] of numerical semigroups H are typical examples
of cores of V. Nevertheless, cores of V' do not necessarily arise as semigroup rings. Let us
note one of the simplest examples.
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Example 2.1 (cf. [4, Example 2.1]). Let A = k[t? 4+ t3] + ¢*V. Then A # k[[H]] for any
numerical semigroup H.

If I is an Ulrich ideal in the semigroup ring A of a numerical semigroup, the blowing-up
ring AT = J,o[I" : I"] of A with respect to I is again a core of V, which is, however,
not necessarﬂ}; a semigroup ring. In despite of the disadvantage, inside the core A’ there
is contained ample information about the characteristic of I, which might enable us, for
example, to describe a precise system of generators of I. Keeping this anticipation, we
shall summarize below some preliminary results about cores and their Ulrich ideals.

Let A be a core of V' and suppose that t°V C A with an integer ¢y > 0. We then have

k[t tott . o C AC YV,

so that V is a birational module-finite extension of A. Hence, V = A, and A is a one-
dimensional Cohen-Macaulay integral complete local domain. We have V/n = A/m,
where m (resp. n = tV) stands for the maximal ideal of A (resp. V). Let o(x) denote the

n-adic valuation (or the order function) of V' and set

v(A) ={o(f) [0 # f € A}
Then, H = v(A) is called the value semigroup of A, which is indeed a numerical semigroup,
because ¢g,co+1 € H. Let ¢ = A : V denote the conductor of A. Then, ¢ = t*™)V_ since
toV C ¢. We have e(H) = e(A), where e(A) denotes the multiplicity of A with respect
to m.

Setting 2.2. Let [ be a fixed two-generated Ulrich ideal of A. Let f,g € I such that
I=(f,g) and I? = fI. We consider the A-subalgebra
A=
n>0
of V', where the colon
I":I"={zx € QA) |zI" CI"}
is considered inside the quotient field of A. We then have A’ = I : I since I"*! = f"I for
all n > 0, so that

Al = 1 = A+ A.%

We set a = o(f), b = o(g), and ¢ = c¢(H). Notice that a is an invariant of I, since
IV = fV =t*V (see Lemma P4 also).

Lemma 2.3. -0V N ACT and ¢ C I.
Proof. We have Al = A + A% in V. Therefore, because %V ="V and ¢ = t°V, we get

(==Y A A) % C (=) % — 1tV = ¢ C A.

Hence,
-y N AC A, % =(Nmg=1

where the last equality follows from the fact that I/(f) = A/I as an A/I-module. Since
¢ =tV C ¢t =9V N A, the second assertion follows. O
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Lemma 2.4. a =2-04(A/I).

Proof. Let e(()f)(M ) denote, for each finitely generated A-module M, the multiplicity of
M with respect to the parameter ideal (f) of A. Then, ef; (1) = (a(I/fI), since I is a
maximal Cohen-Macaulay A-module (here £4(x) denotes the length), while

etp () = ey (A) = ey (V) = o(f).
Therefore, a = 2-04(A/I), because I/fI = (A/I)*? as an A-module. O

We furthermore have the following.

Lemma 2.5. The following assertions hold true.

(I)0<a<b<a+ec.

(2) 2b—a € H.

(3) If a > ¢, then e(A) =2 and I = .

Proof. Because fV = IV, we have % € V, whence b — a > 0. Since [ is minimally

generated by f and g, we get g € fA, whence % Zc¢. Thusb—a= 0(%) < ¢. Therefore
O<a<b<a-+tec

Because ¢? € I? = fI, we get 2b — a € H. Assume that a > ¢. Then f,g € ¢ = t°V,
whence I C ¢. Consequently, Lemma P23 forces I = ¢, so that I = fV, because [ is an
ideal of V and IV = fV. Consequently, since I = V' as an A-module, we have

2= pa(l) = pa(V) = e(A)
as claimed 0J
Notice that b—a may belong to H, since I = (f, f+g). We however have the following.
Proposition 2.6. One can choose the elements f,g € I so thatb—a & H.
Proof. Suppose that b —a € H and choose £ € A so that
o(¢) =b—a, olg—f€)>b.
Set g1 = g — f€ and by = o(g1). We then have I = (f, ¢1) and
O<a<b<b<a+c

where the last inequality comes from the facts that 971 ¢ A and that ¢ = t°V C A. If
by —a € H, let us choose go € I so that I = (f,g2) and by < by = 0(gs). Since still
by < a + ¢, this procedure will terminate after finitely many steps, which shows that we
can eventually choose the elements f,g € I sothat I = (f,g), I* = fI,andb—a & H. [

We summarize the above arguments in the following.

Theorem 2.7. Let A be a core of V and let H = v(A). Let I be an Ulrich ideal in A
with pa(I) = 2. Then one can choose elements f,g € I so that the following conditions
are satisfied, where a = o(f), b =o0(g), and ¢ = c(H).

(1) I =(f,g) and I* = fI.
(2) a,be Hand 0 <a<b<a+c.
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B)b—ag H,2b—a€ H, anda=2-L(A/I).
(4) If a > ¢, then e(A) =2 and I = «.

Let us give the following, showing how Theorem P71 works to pinpoint the elements of
the set X4 of Ulrich ideals in A.

Example 2.8 (cf. [0, Theorem 1.7], [i2, Theorem 6.1]). Xys 4y = {(¢*, %)} and Xy o) =
0.

Proof. Let A = E[[t3,t%]] and I = (t*,¢%). Then, I? = t'T and ¢ = (¢5,¢7,1%) C I. We have
CA(A/T) < 2, whence £4(I/(t")) > 2 because £4(A/(t*)) = 4, so that the epimorphism

0: A/l — I/(tY), ¢(1 mod I)=t° mod (t*)

of A-modules must be an isomorphism. Hence, I = (t%,#5) is an Ulrich ideal in A.
Conversely, let I € X4 and choose f, g € I so that all the conditions stated in Theorem 271
are satisfied. Then, b—a = 1,2, or 5, while a is even. If a > ¢ = 6, then [ = ¢ = (¢%,¢7, %)
by Lemma P33, so that us(I) = 3, since I = V as an A-module. This is impossible,
because [ is two-generated. Therefore, a = 4, and b —a = 1,2, or 5. We consider the
following table.

a 414\ 4
b—a 112]5
b 5/6] 9
2b—a 68114
6—(b—a)|b|4]1

Here, the values of the second (resp. the third and the fourth) column indicate the possible
values of b,2b — a, and 6 — (b —a), when a =4 and b — a = 1,2, 5, respectively. We then
have b — a # 1, since 5 ¢ H. Suppose that b —a = 5. Since 6 — (b — a) = 1, we get
t3 € I = (f,g) by Lemma P4, which is impossible, because o(f) = 4 and o(g) = 9.
Therefore, a = 4 and b = 6. Consequently, f = t* + p with p € ¢ and g € ¢, so that

I=(f,g)+ % ¢,t%) = (t*,¢°,¢", %),

because I 2 ¢ by Lemma 223. Thus, I = (¢*,¢°), whence X4 = {(¢,t%)}.
We similarly conclude that Xys 5 = (), whose proof we would like to leave to the
reader. O

Example 2.9. Let A = k[[t?,t***!]] (¢ > 1) . Then
Xy = {(P ) |1 < g < 1),

Proof. We have A = k[[H]] for the semigroup H = (2,20 +1). Hence, ¢ = 2¢ and
¢ = t*V = (229, Let [ = (#29,21) (1 < ¢ < (). Weset x = t? and y = 2+,
Then, since I = (27, y) and since

yQ — x2€+1 — 79. l,2€+1—q c qu’
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we get [? = x], while A/T = [/(z?) as an A-module, because I/(z?) is a homomorphic
image of A/I and

Ca(A/T) = La(I/(2%)) = q.
Therefore, I is an Ulrich ideal of A.

Conversely, let I be an Ulrich ideal of A, and choose f,g € I so that the conditions
stated in Theorem P77 are satisfied. Then, 0 < b —a ¢ H and a > 2 is even. Hence,
b—a€{1,3,5,---,2¢ — 1}, so that b € H and b is odd. Therefore, b > 2¢ + 1 whence
g € t*V = ¢, so that

I=(f.9)=(f)+ec= (£t
where the second equality follows from Lemma EZ3. Let us write a = 2¢g (¢ > 1). If ¢ > ¢,
then f € c also, so that I = ¢ = (#*,¢2**1). Assume ¢ < £, and write

f= 27 Cq+1t2(q+1) + Cq+2t2(q+2) N Ce_th(f—l) +p

where ¢; € k (¢+1 <i</{—1)and p € ¢ = t*V. Then, since 1 — ¢ 41t* is invertible
in A, by replacing f with f — c,1t*f = (1 — ¢,41t?) f if necessary, we may assume that
cq+1 = 0. By repeating the same procedure for the remaining coefficients ¢;’s in f, we
finally obtain

] = (th + p, t%,t%—H) — (th,t%,t%—H) _ (t2q7t2€+1)

as claimed. ]

Remark 2.10. In Example 29, let 1 < g1, ¢o < £. Then (2@, 24+1) = (2@ 26+1) if and
only if ¢; = ¢o.

3. NUMERICAL SEMIGROUP RINGS OF MULTIPLICITY 3

Let H be a numerical semigroup with e(H) = 3 and let A = k[[H]] be the semigroup
ring of H over a field k.

The purpose of this section is to determine all the two-generated Ulrich ideals in A.
Since e(H) = 3, H is at most three-generated, and if H is minimally three-generated,
the Cohen-Macaulay local ring A has minimal multiplicity, so that A is G-regular ([18]),
containing no two-generated Ulrich ideals. This observation allows us to assume that
H = (3,0), where ¢ > 4 is an integer such that GCD(3,¢) = 1. Thanks to Example 28,
we may assume that ¢ > 7.

The goal of this section is Theorem B9 below. With the following setting we divide the
proof into several steps.

Setting 3.1. Let I be an Ulrich ideal of A = k[[t3,#¢]] with £ > 7 and GCD(3,/) = 1.
Hence, pa(I) = 2, because A is a Gorenstein ring. We choose elements f,g € I, so that
all the conditions stated in Theorem P77 are satisfied. We set a = o(f), b = o(g), and
c=c(H). Let
B=Ju: 1, 5:%, and H, = v(B).
n>0

Then B = f~'1 = A+ A€ with ua(B) = 2 and B = k[[t?, %, £]] is a Gorenstein local ring
([@, Lemma 4.3]). We have o(§) = b — a, whence b —a € H; \ H.
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Let us note the following.
Lemma 3.2. £ € mB but £ € mB.

Proof. Let mp be the maximal ideal of B. Then, since {4(B/mB) =2 and B = A + A¢,
we have ¢ € mB and (mp/mB)? = (0). Since the maximal ideal mp/mB of B/mB is

principal and generated by the image & of £, we get EQ =0in B/mB. U

Lemma 3.3. Suppose that H; = (3, a) for some a > 0. Then, % <a</.

Proof. As H; 2 H, we have a ¢ H. Hence, a < ¢, because ¢ € H; = (3,«) and ¢ ¢ 3Z.
Choose 1 € B so that o(n) = a. We then have B = k[[t3,n]]. In fact, let C' = k[[t3, n]].
Then, t"V C C for some n > 0, and therefore, because

C C B and v(B)=(3,a) Cv(C),

we naturally get B C C, whence B = k[[t?,n]] and n*> € mB = (t3,t") B (see the proof of
Lemma B2). Consequently, if 2a < ¢, then passing to the expression

7’ =t + '

of n? with ¢,v € B, we get 2a — 3 = o(p) € Hy, which is impossible, because ¢(H;) =
(3—1)(aw—1) =2a — 2. Thus, 2a > {. O

Since pa(V) = 3, we have B # V, whence 1 ¢ H;. Therefore, if 2 € Hj, then
H, = (2,3), so that Lemma B3 forces ¢ < 6, which violates the assumption that ¢ > 7.
Thus, 2 ¢ Hy. Consequently, e(H;) = min[H; \ {0}] = 3, and H; is symmetric by [L3],
because B is a Gorenstein ring. Hence

H, = (3,a) for some a > 4 such that o # 0 mod 3.
We furthermore have the following.
Proposition 3.4. a« =b—a. Hence H; = (3,b— a) and B = k[[t3,¢]].

Proof. Since b —a € Hy = (3,a) \ H = (3,{), we have b —a > a. We choose € B,
so that o(n) = a. Then, n € mp = (t3,t!,£)B. Therefore, if b — a > «a, passing to the
expression

n==tp+tp+&5

with ¢,1,d € B, we have o(p) = a —3 € H; = (3,a) since a < ¢ by Lemma B3).
Therefore, @« = 0 mod 3, which is absurd. Thus o = b — a. See the proof of Lemma B=3
for the equality B = k[[t?, £]]. O

Here let us draw the shape of the semigroup H = (3,¢). The figures might be helpful
for the reader to grasp the arguments making progress below. In the following figure, the
numbers located in the gray part describe the elements of H = (3, /), according to the
four cases: ¢ = 3n + 1 where n is odd, ¢ = 3n + 1 where n is even, ¢ = 3n + 2 where n is
odd, and ¢ = 3n + 2 where n is even, respectively.
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0 1 2 0 1 2 0 1 2 0 1 2

3 4 ) 3 4 ) 3 4 ) 3 4 )

6q 6g+1 | 6g+2 6g—3 | 6g—2 | 6g—1 6q 6g+1 | 6g+2 6g—3 | 6g—2 | 6g—1
6g+3 [(=6q+4| 69+5 6g [(=6q+1| 6q+2 6g+3 | 6g+4 [(=6q+5 6q 6g+1 [(=6q+2|
6g+6 | 6g+7 | 648 6g+3 | 6g+4 | 6945 6g+6 | 69+7 | 6g+8 6g+3 | 6g+4 | 6g+5
12g+3 | 12g+4 | 12¢+5 12g—3 [ 12g—2 | 12¢9—1 12¢+6 | 12¢+7 | 12¢+8 12g |12q+1|12q+2
12¢+6 | 12¢+7 | 12¢+8 12 | 12q+1|12q+2 12¢+9 |12q+10|12¢+11 12g+3 | 12g+4 | 12q+5

(=3n+1,nisodd, ¢=3n+1,niseven, ¢ =3n+2,nisodd, ¢=3n+2,niseven,

n—1
2

n—1

and ¢ = "5~ and q =7 and g = and q =7

The proof of Assertion (3) (resp. Assertion (4)) in the following lemma is similar to
that of Assertion (2) (resp. Assertion (1)). Let us include brief proofs.

Lemma 3.5. The following assertions hold true.

(1) Suppose that ¢ = 3n + 1 where n > 3 is odd. Let ¢ = "T_l
(i) If a =1 mod 3, then « = 3q+ 1+ 3j for some 1 < j <q.
(ii) If « =2 mod 3, then a = 3q + 2.

(2) Suppose that £ = 3n + 1 where n > 2 is even. Let ¢ = §. Then a = 3¢ + 1+ 35 for
some 0 < j <q—1.
(3) Suppose that { = 3n + 2 where n > 3 is odd. Let ¢ = "5+. Then o = 3¢ + 2 + 3j for
some 1 < 5 <gq.
(4) Suppose that £ = 3n + 2 where n > 2 is even. Let q = 5.
(i) If « =1 mod 3, then o = 3q + 1.

(ii) If « =2 mod 3, then a = 3q + 2+ 3j for some 0 < j < gq—1.

Proof. (1) (i) This readily follows from the fact that 3¢ +2 = £ < a < ¢ = 6¢ + 4, thanks
to Lemma B73.
(1) (ii) We write « = 38 + 2. Then 8 > ¢, since 3¢ + 2 < a. Assume [ > ¢. Since
¢ =6g+4€ HC H =(3,a), we have ¢ = 3p + a1} for some ¢ > 0 and ¢p > 1. If ¢ > 2,
then
a) >2a0=68+4>6g+4=0>ar)
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which is absurd. Hence, ¢y = 1, and therefore ¢ = 6g + 4 = 3¢ + (35 + 2), which is
impossible. Thus, a = 3¢ + 2.
(2) Since 3¢+ 1 = £ <a < ¢ =6qg+1, it suffices to show & = 1 mod 3. Assume a = 2
mod 3 and let a = 35 + 2. We write { = 3¢ + atp with ¢ > 0 and ¢» > 1. If ¢ > 2, then
a) >20=68+4>60g+1=0>ar)

which is absurd. Hence, 1) = 1, so that £ = 6¢ + 1 = 3¢ + (38 + 2), which is impossible.
Thus, o = 1 mod 3.

(3) We have 3¢+ 2 = £ < o < £ = 6¢g+5 and it suffices to show o = 2 mod 3. Assume
a =1 mod 3 and write « = 35 4+ 1. Notice that g > ¢, since 3¢ + 3 < a. Let us write
(= 3p+ ay with ¢ > 0and ¢» > 1. If ¢ > 2, then

a) >2a0=68+2>6(qg+1)+2>{> ai,

which is absurd. Hence, 1) = 1, so that £ = 6¢ + 5 = 3¢ + (38 + 1), which is impossible.
Thus, o = 2 mod 3.
(4) (i) We write a = 35 + 1 and assume that 5 > ¢. Let ¢ = 3¢ + atp with ¢ > 0 and
> 1. If ¢ > 2, then
a) >2a=60+2>6q+2=10> a1,

which is absurd. Hence, ¢ = 1, so that ¢ = 6¢ + 5 = 3¢ + (35 + 1), which impossible.
Thus, o = 3¢ + 1.
(4) (ii) This readily follows from the fact that 3¢+ 1= £ < a < = 6q+ 2. O

Combining Proposition B4 with Lemma B3, we are able to restrict possible semigroups
H;.
Proposition 3.6. (1) Suppose that { = 3n+ 1 where n > 3 is odd. Let ¢ = “5*. Then
Hy = (3,b—a) whereb—a=3¢+2 orb—a=3q+1+3j for some1 <j<q.
(2) Suppose that £ = 3n + 1 where n > 2 is even. Let ¢ = 5. Then
Hy = (3,b—a) whereb—a=3q+ 1+ 3j for some0<j<q-—1.
(3) Suppose that = 3n + 2 where n > 3 is odd. Let ¢ = "5*. Then
Hy = (3,b—a) whereb—a=3q+ 2+ 35 for some 1 <j<q.
(4) Suppose that £ = 3n + 2 where n > 2 is even. Let ¢ = 5. Then
Hy=(3,b—a) whereb—a=3q+1 orb—a=3q+2+3j for some0<j<q-—1.
The following theorem is the heart of the proof of Theorem B9. The proofs of Assertions
(2), (3), and (4) in it are essentially the same as that of Assertion (1). Nevertheless,

because they are subtly different from each other, we would like to note proofs for all of
them.

Theorem 3.7. (1) Suppose that £ = 3n + 1 where n > 3 is odd. Let q = "T_l Then
(a,b) = (0, +3q+2) or (a,b) = (6i, ¢ + 3i) for some 1 <i<q.
(2) Suppose that { = 3n + 1 where n > 2 is even. Let ¢ = 5. Then
(a,b) = (63,0 + 3i) for some 1 < i <gq.
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(3) Suppose that { = 3n + 2 where n > 3 is odd. Let ¢ = “5t. Then
(a,b) = (63,0 + 3i) for some 1 < i <gq.
(4) Suppose that { = 3n + 2 where n > 2 is even. Let ¢ = 5. Then

(a,b) = (0, +3q+1) or (a,b=)(6i,0 + 3i) for some 1 <i<gq.

M‘

Proof. (1) Since 0 < a < c=2¢( —2=12¢+ 6 and a is even, we have a = 6i (1 <i < 2q)
ora=1/{+6i (0 <i<gq). We first consider the case where a = 6i (1 <1i < 2¢q). We look
at the following table.

a 67 67
b—a 3q + 2 3g+1+3j (1<j<q)
b 3¢+2+46i |3g+1+6i+35 (1<j<q)
2b—a |6g+4+61 6q+2+62+63(1§j§q)
—(b—a)] 9¢+4 9¢+5-3j (1<j<q)

Here, the values of the second (resp. the third) column indicate the possible values of
b,2b—a, and ¢c—(b—a), when a = 67 and b—a = 3¢+2 (resp. a = 6i and b—a = 3¢+1+3j).
Our aim is to prove that (a,b) = (67, ¢ + 3i) for some 1 < i <g.

To begin with, we will check that b—a # 3¢+ 2. Assume the contrary. Then 9¢+6 € H
and b — (9¢+6) = 6(i — q) — 4. Hence i < q. In fact, if i > ¢, then

99+4—a€H,

and 9¢+4 —a > 6g+4 = {, so that 3¢ > 61 > 6(¢+ 1). This is absurd. Therefore, i < g.
Consequently
b=3¢q+24+6i<9g+2<12q+5=c—1,
whence b ¢ H, because b = 2 mod 3. This is absurd and hence b — a # 3q + 2.
Therefore, b — a = 3¢+ 1 + 35 for some 1 < j < ¢, so that
b—(c—(b—a)+2)=b—(9q+T7—-3j)=6(i+j—q—1).
If i > ¢, then b > 9¢g+ 7 — 3j. Since t* =942 ¢ I we have 9¢+7 —3j — 6i € H, so that
99+ 7—3j5 — 61 > =6q+ 4,

which yields ¢ > j 4+ 2¢ — 1 > 21 > 2q. This is absurd. Thus, i <gq.

Because 20 —a € H and 2b — a = 2 mod 3, we have 2b — a > 2¢ = 12q + 8. Hence,
because 2b—a = 6q+ 2+ 6i+ 64, we have 6(i+j —g—1) > 0. In particular, i+7 > ¢+ 1.
Now assume that i 4+ j > ¢+ 1. Then, since b > ¢ — (b—a) +2 and t*==9+2 ¢ [ we get

c—(b—a)+2—a€H and ¢c—(b—a)+2—a=1mod 3

which implies ¢ — (b —a) + 2 —a > ¢ = 6q + 4. Consequently, ¢ > 2i + 7 — 1, whence
i+j>q+1>2i+j. Thisis absurd. Thus, i + j = ¢+ 1, whence (a,b) = (6, ¢ + 3i)
with 1 <17 <gq.
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Secondly, we consider the case where a = ¢+ 6i (0 < ¢ < ¢). This time we, have the
following table.

a {4+ 61 l+ 67
b—a 3q+2 3g+1+3j(1<j<q)
b 9 +6+6i | 9g+5+6i+35 (1<j<q)
2b—a 12 +8+46i | 12¢+6+6i+6j (1 <j<q)
c(H)—(b—a)| 9q+4 9¢+5-3j (1<j<q)

Suppose b — a = 3q + 2. We then have
b—(c—(b—a)+2)=06ic H.

If i >0, then (c—(b—a)+2)—a € H and (c—(b—a)+2)—a < 3g+2. This is impossible,
because (¢ — (b —a) +2) — a = 2 mod 3. Therefore, i =0 and (a,b) = (¢,¢ + 3q + 2).

Lastly, we assume that b —a =3¢+ 1435 (1 < j < q) and seek a contradiction. Since
1+ 5 > 0, we have

b—(c—(b—a)+2)=6(i+j)—2>0,
so that (c—(b—a)+2)—a=3(¢—j—2i+1) € H. Hence ¢ > j+2i— 1. On the other
hand, since b € H and b = 2 mod 3, we get b > 2¢ = 12q + 8. Therefore
6i+3j—3¢—3=0b—(12g+38) >0,
which yields ¢ < 2i 4 5 — 1. Thus ¢ = 2i + 7 — 1. We then, however, have
c—(b—a)+1<a<b and tC I c 1= (f g),

which is impossible. Thus, b —a # 3¢ + 1+ 35 for any 1 < j < ¢, and hence (a,b) =
(0,0 +3q+2).

(2) We shall prove that a = 6i for some 1 < i < ¢. Firstly, we assume that a = 0 mod
3. Hence, a = 6i (1 <7< 2g— 1), because a is even. We look at the following table

a 67
b—a 3g+1+3 (0<j<q-1)
b 30+1+6i+3j (0<j<q—1)
2b—a |6g+2+6i+65 (0<j<qg-—1)
—(b-a)| 99-1-3j(0<j<q-1)

and notice that
b—(c—(b—a)+2)=b—(9¢+1—-3j)=6(i+j—q).
Ifi > g, then b > 9¢+1—3j. Since t*~9+2 ¢ [ we get 9¢+ 1 —3j — 6i € H. Therefore
99+1—-3j—6i > ¢ =06q+ 1,

which yields ¢ > j + 2¢ > 21 > 2¢. This is absurd. Hence, ¢« < q. Because 2b —a € H and
2b — a = 2 mod 3, we have

2b—a > 20 =12q + 2.
Therefore, since 2b —a = 6g+ 2+ 6i + 67, we get 6(i +j —¢) > 0. In particular, i+ j > gq.
Suppose now that i + j > ¢. Then, since b > ¢ — (b — a) + 2 and t*~ =942 ¢ [ we have

c—(b—a)+2—a€H and c—(b—a)+2—a=1mod 3,



14 NAOKI ENDO AND SHIRO GOTO

sothat c— (b—a)+2—a>{¢=06¢g+ 1. Hence ¢ > 2i+j. Thusi+j > q > 2i+ j. This
is absurd. Consequently, i + j = ¢q. Therefore, (a,b) = (6i,¢ + 3i), and 1 <i < q.

We must show that @ Z 1 mod 3. Assume that a = 1 mod 3, that is a = ¢+ 3+ 6¢ with
0 <7< q—1. We then have the following table.

a 0+ 3+ 61
b—a 3g+14+3j (0<j<qg-—1)
b 9 +5+6i+3(0<j<q—1)

2—a |12¢+6+6i+6j (0<j<q—1)
c—(b—a)] 99-1-3j(0<;<q-1)

Since
b—(c—(b—a)+2)=6(i+7j)+4>0,
we have (c— (b—a)+2)—a=3(¢—j—2i—1) € H. Therefore, ¢ > j + 2i + 1. Because
be H and b =2 mod 3, we furthermore have b > 2¢ = 12¢ + 2, whence
6i+3j—3¢+3=b—(12¢+2) >0,
which yields ¢ < 2i 4 7+ 1. Thus, ¢ =2i+ j + 1, and we get
c—(b—a)+1<a<b and t= O T
which is impossible. Consequently, a Z 1 mod 3.

(3) Suppose that @ = 0 mod 3. Then a = 6¢ (1 < i < 2¢+ 1). We consider the table
below.

a 62
b—a 3¢+2+3j (1<j<gq)
b 3¢+2+6i+3j (1<j<q)
20— a 6g +4+6i+65 (1<j<q
c(H)—(b—a)] 99+6-3j(1<j<gq)

Notice that
b—(c—(b—a)+2)=b—(9g+8—-3j)=6(i+j—q—1).
If i > ¢, then b > 9¢ 4+ 8 — 3j. Since t“"~9*2 ¢ [ we have 9¢ + 8 — 3j — 6i € H. Hence
99+ 8—3j —6i > {=06q+ 5,

which yields ¢ > j 4+ 2¢ — 1 > 21 > 2q. This is absurd. Hence, i < gq.
Because 2b — a € H and 2b — a = 1 mod 3, we have

2b —a > 20 = 12¢ + 10.

Therefore, since 2b — a = 6q + 4 + 6i + 67, we get 6(i +j — ¢ — 1) > 0. In particular,
i+j>q+1.Ifi+j>q+1,then since b>c— (b—a)+ 2 and =942 ¢ [ we have

c—(b—-—a)+2—a€H and ¢c—(b—a)+2—a=2mod 3,
whence ¢ — (b —a) +2 —a > { = 6q+ 5. Therefore, ¢+ 1 > 2i + j, so that
ity >q+12>214

which is absurd. Consequently, we get i + j = ¢ + 1, and therefore (a,b) = (6i,¢ + 3i)
with 1 <17 <gq.
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We shall show that a #Z 2 mod 3. Assume the contrary. We then have a = ¢ + 3 + 6¢
with 0 <17 < ¢ — 1. We look at the following table.

a {+ 3+ 61
b—a 3g+2+3j (1<7<q)
b 99+10+6i+35j (1<j<q)
2b—a 129+ 12+ 61+ 65 (1 < j <q)
c(H)—(b—a) 99+6—-37 (1<j5<4q)

Because
b—(c—(b—a)+2)=6(i+j)+2>0,
we have (c— (b—a)+2)—a=3(q—j—2i) € H, whence ¢ > j + 2i. On the other hand,
since b € H and b = 1 mod 3, we get b > 2¢ = 12¢q + 10. Consequently
6i+3j—3¢+3=0b— (129 + 10) > 0,
which yields ¢ < 2i 4 j. Thus, ¢ = 2¢ + j, so that
c—(b—a)<a<b and tOV e

which is impossible. Thus, a # 2 mod 3.
(4) First let us consider the case where a = 0 mod 3. Hence, a = 6i (1 < i < 2¢). Look
at the following table.

a 67 67
b—a 3g+1 3¢+2+4+3j (0<7<qg—1)
b 3¢+1+6i|3¢+2+6i+3j (0<j<g—1)
20—a |6g+24+6i|6g+44+6i4+6j (0<7<qg—1)
c—(b—a)| 9g¢+1 99 —3j (0<j<q—1)

Suppose that b —a = 3¢ + 1. Then, since
b—(c—(b—a)+1)=b—(9¢+2)=6(i—q) — 1,
we get ¢ < ¢. Indeed, if 7 > ¢, then 9¢ + 2 — a € H, which implies
99+2—-a>l=06q+2,
so that ¢ > 2i > 2(q + 1). This is absurd. Hence, i < ¢q. Consequently
b=3¢+14+6:<9¢+1<12¢+1=c—1,

which yields b ¢ H because b = 1 mod 3. This is, of course, impossible. Hence, b — a #
3q + 1.
Therefore, b —a = 3q + 2 + 35 for some 0 < j < g — 1, whence

b—(c—(b—a)+2)=b— (9¢+2—3j) =6(i +j — q).

If i > g, then b > 9¢ + 2 — 3j. On the other hand, since t*~=9+2 ¢ [ we get 9¢ + 2 —
3j — 61 € H. Consequently

99+2—3j — 61t > =06q+ 2,
which yields ¢ > j 4+ 2¢ > 2i > 2¢q. This is absurd. Thus, + <gq.
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Since 2b — a € H and 2b — a = 1 mod 3, we have
2b—a > 20 = 12q + 4.

Therefore, because 2b — a = 6q + 4 + 61 + 65, we get 6(i + j — q) > 0, whence i + j > g.
Suppose now that ¢ + j > ¢. Then, since b > ¢ — (b — a) + 2 and t*~ =942 ¢ [ we have

c—(b—a)+2—a€H and ¢c—(b—a)+2—a=2mod 3,
which implies
c—(b—a)+2—a>0=06q+2.
Thus g > 2i + j, whence ¢ + j > g > 2¢ + j. This is absurd. Consequently, i + j = q.
Hence, (a,b) = (61,0 + 3i) with 1 <i <q.
Lastly, we consider the case where a = 2 mod 3, that is a = ¢+ 67 for some 0 <7 < g—1.
This case, we have the following.

a {4+ 61 { + 6@
b—a 3g+1 3g+2+3j (0<j<qg—1)
b 99 +3+6i | 9g+4+6i+35 (0<j<qg—1)
2b —a 12¢g+4+6: | 12¢g+6+6i+67 (0<j<qg—1)
cH)—(b—a)| 9g+1 99 —3j (0<j<q—1)

Suppose that b —a = 3¢g+ 1. Then
b—(c—(b—a)+2)=06i € H.

If i > 0, then (c—(b—a)+2)—a € H and (¢c—(b—a)+2)—a < 3¢+ 1. This is impossible,
because (¢ — (b —a) 4+ 2) — a =2 mod 3. Therefore, i =0 and (a,b) = (¢,¢ + 3q+ 1).
Let us now assume b —a =3¢+ 2+ 35 (0 < j < ¢—1) and seek a contradiction. Since

b—(c—(b—-a)+2)=6(i+j)+2>0,

we get (c—(b—a)+2)—a=3(¢q—j—2i) € H. Hence, ¢ > j+ 2i.
On the other hand, because b € H and b = 1 mod 3, we get b > 2¢ = 12q+4. Therefore

6i+3j—3¢=0b—(12¢+4) >0,
which yields ¢ < 2¢ 4+ j. Thus, ¢ = 2¢ + 7, and therefore

(b—a)

c—(b—a)<a<b and t el

which is a required contradiction. Consequently, b—a # 3¢+2+3j forany 0 < j < g¢g—1.
This completes the proof Theorem B74. U

We now have the following, which guarantees that every Ulrich ideal I of A has one of
the forms stated in Theorem B below.

Corollary 3.8. (1) Suppose that { = 3n + 1 where n > 3 is odd. Let q = ”T_l
(i) If (a,b) = (¢, + 3¢+ 2), then

I — (tf _|_ altf—i-Z _|_ 042t£+5 _|_ . + aqté+3q—l’t€+3q+2)

for some oy, g, ..., 04 € k.
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(i) If (a,b) = (60,0 + 3i) with 1 <i < ¢, then
I = (t% + agt! + ant™3 4 -« 4 a;_ 143670 443i)
for some ag,aq, ..., q;_1 € k such that ag # 0.
(2) Suppose that £ = 3n + 1 where n > 2 is even. Let ¢ = 3. If (a,b) = (61, £ + 3i) with
1 <4 <q, then
T = (15 1 agt! + ant™® 1 - 4 g 130D 4t430)
for some ag,aq,...,q;_1 € k such that ag #£ 0.
(3) Suppose that { = 3n + 2 where n > 3 is odd. Let ¢ = "5*. If (a,b) = (6i,( + 3i) with
1 <i<yq, then
T = (15 4 apt’ + gt 4 -y 130D 30
for some ag,aq, ..., ;1 € k such ag # 0.

(4) Suppose that { = 3n + 2 where n > 2 is even. Let ¢ = §.
(i) If (a,b) = (¢, £+ 3q + 1), then
]’ — (té + Oéltz+1 + a2t€+4 + - + th£+3q72,t£+3q+l)
for some oy, o, ..., a4 € k.
(ii) If (a,b) = (6,0 + 3i) with 1 <1i < g, then

for some ag,aq, ..., q;_1 € k such that ag # 0.

Proof. Let I € X4. Then pus(I) =2 and ¢ C I by Lemma PZ3. Choosing f,g € I so that
all the conditions stated in Theorem P77 are satisfied, we get, similarly as in the proof of
Example 29, the ideal I possesses a minimal system of generators of the specified form.
For example, suppose that £ = 3n+1 where n > 3 is odd and set ¢ = ”T_l Let us consider
the case where (a,b) = (¢,¢+ 3¢ + 2). We firstly write
Fe gt ot by 23 4 and
g = T2 § AT Gt S g, st2 TR 4,

where

vi€kforalll<i<{¢{—-3andy;=0if j =1 mod 3,

di€kforalll1<i<{¢—3g—5andd; =0if j =2 mod 3, and

p,n € c=t*2V,
Then, because ¢ C I, replacing ¢ with g — 6,373 f, we may assume that §; = 0, and
replacing g with g — 0,#39%6 £ we may assume that J, = §, = 0. Repeating this procedure,
we may safely assume that g = t“39%2 4. As for f, replace f with f—st3f = (1—3t®) f,
and we may assume that 3 = 0. Replacing f with f — v4t%f, we may also assume that
v3 = 76 = 0. Continuing this procedure, we may now assume that f has the form

f=t+at™ bt 4t 4
with a; € k (1 <i < q). Therefore, since ¢ = (£272,¢*71 #2!) C I = (f,g), we obtain

] — (tf —I— a1t€+2 _I_ a2tf+5 —I— R + Oéqt£+3q_1, t€+3q+2’ t2€—27 t2€_17 t2£),
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so that
] = (tﬁ + a1t£+2 + a2t£+5 T aqt£+3q_1, tﬁ+3q+2)7
because pi4(I) =2 and t°73%2 & (t° + ayt™? + ot 4 - 4 et 22 g2 20
To see the additional condition o # 0 in (1)(ii), (2), (3), and (4)(ii), notice that t* € I,
and write t2* = fy + g1 with ¢, € A, and comparing the orders of both sides, we will
meet a contradiction, once ay = 0. 0

Thanks to Corollary B8, we are now ready to give the main result of this section.

Theorem 3.9. Let £ > 7 be an integer such that GCD(3,£) = 1 and set A = k[[t3,1"]].
Then the following assertions hold true.

(1) Suppose that { = 3n + 1 where n > 3 is odd. Let ¢ = an Then

Xy = {(tf ot gt gt I ) 0y a0y € k}

U {(tGi + Oé(]tz + 04175“_3 + -+ ai71t£+3(i—1)’t€+3i) | 1<i<q,a0,...,04-1 € kg # 0} .

(2) Suppose that { = 3n + 1 where n > 2 is even. Let ¢ = 5. Then

Xy = {(t"’i +aot! 4 auttB g t6F30D 30 | 1 < < gag, ... i € K, ao # 0} .

(3) Suppose that ¢ = 3n + 2 where n > 1 is odd. Let ¢ = "T_l Then

Xy = {(tﬁ" Faott + art™3 4 #7836 ¢80 11 < < g ag,. .., qi1 € K, ap £ 0} :
(4) Suppose that { = 3n + 2 where n > 2 is even. Let ¢ = 5. Then
Xy = {(tf +oant™ gt gt T2 B oy a, ey € k}

U {(tﬁi + Oéote + a1t€+3 + -+ Oéiflt“_?)(i_l),tz—’—?’i) | 1<i<q,a0,...,04-1 € kg # 0} .

Here, the coefficients «;’s in the given system of generators of each ideal I € X4 are
uniquely determined for I.

Proof. The proofs of Assertions (1), (2), (3), and (4) are essentially the same. Let us give
the proof only for Assertion (1).

It remains to show that the listed ideals are all Ulrich. Firstly, let f = t* 4+ a2 +
ot 4 ttT3L g = 47392 and T = (f,g). We shall show that I is an Ulrich
ideal of A. Weset a=/¢,b=/(+ 3qg+ 2, and

v(I)={o(h) |0 #h eI}

Since f, g € I, it is standard to check that ¢ = 2a — 2,2a — 1,2a € v([), so that n € v(I)
for all n > ¢, whence ¢ = t°V C I. Therefore, because

e
o= |=2b—a=20>c,
(f>

we have g? € fI, whence I? = fI + (g?) = fI. We now consider the exact sequence
0—=1/(f) = A/(f) > A/l —0

of A-modules,; and remember that {4(A/(f)) = by (V/fV) =a. Let J = (t" | n € v(I)) be
the initial ideal of I, that is the ideal of A generated by the initial forms of the elements in
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I. We then have (4(A/J) < §, counting the number of monomials ¢" ¢ J. Consequently,
since

CA(AJT) = La(A))) <

|

the epimorphism

w: AT = 1/(f), (1 modI)=gmod (f)

of A-modules is an isomorphism. Thus, [ is an Ulrich ideal of A, which implies the first
half of Assertion (1). Similarly, we are able to prove also the second half of Assertion (1).
To see the last claim in Theorem B for Assertion (1), we must show the following.
(i) (854 D29yt gi8a2) = (¢f 4 371 gttt #4802) only if oy = f; for all
1<j<gq ’
(i) (% + Z;;t o tEF3I sy = (60 4 Z;;B B33 1431 Donly if oy = B for all 0 < j <
1 — 1.
Indeed, suppose (t/+>"7_, ozj'tg+3j_1, tiH3a+2) = (#4’2?:1 Bittr3i=1 ¢392) with oy, B; €
k. We write t* + > i it = f L (# > i Bitcr3i=1) 4 g - 41392 for some f, g € A.
By setting f = v+ fo + fi + & where v € k, f) € Z?gl k3, f € Z?io kt+37 ) and
& € t°V, we then have the equalities

q q
tf + Zoéjtgﬁi))j*l — f . (tf + Z/Bjt‘e+3]1) + g . t2+3q+2

J=1 J=1

_ (7+f0) . (té + Zﬁjt@ri’)jl)

j=1
+(terms of degree greater than ¢+ 3q — 1).

Comparing the coefficients of ¢" in both sides, we get v = 1 and f; = 0. Hence, Assertion
(i) follows, that is a; = f; for all 1 < j < ¢. We similarly have, assuming (¢% +
STt ) = (46 4 ST B 4843 with oy, B; € k, that a; = B; for all
0 < j <1i—1, which completes the proof of Theorem Z9. O

Let us note some direct consequences.

Corollary 3.10. Let H = (3,¢) where { > T is an integer such that GCD(3,¢) = 1 and let
A = k[[H]] stand for the semigroup ring of H over a field k. Then the following assertions
hold true.

(1) X4 #0.

(2) #(X4) < o0 if and only if #(k) < oc.

(3) The ring A contains no Ulrich ideals generated by monomials in t if and only if
(=3n+1orl=3n+2 for some even integer n > 2.

For example, consider the simplest case A = k[[t3,¢7]]. Then
Xy ={(t"+at", t'9) |0 # a € k}.

Therefore, #(X4) = #(k) — 1, and A contains no Ulrich ideals generated by monomials
in £.
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4. THE CASE WHERE H = (4,13)

Example 29 and Theorem B are the starting points for our study of Xy where H
is a numerical semigroup of small multiplicity. Naturally, the next target should be the
case of multiplicity 4. Nevertheless, contrary to our lighthearted expectations, even for
A = K[[t*,#'3]] (which is one of the simplest cases) the task of determining the elements
of X4 is much more formidable than that of the case of e = 2 or 3, as we shall report in
this section.

Let H = (4,13)
01|2]3
415|6]7
8 |9 ]10]11

12 1 13 | 14 | 15

16 | 17 | 18 | 19

20 | 21 | 22 | 23

24| 25|26 | 27

28129 |30 |31

32133 ]34 | 35

36 | 37 | 38 | 39

and let A = k[[t*,¢3]] denote the semigroup ring of H over a field .
Our goal is the following.

Theorem 4.1. We have

{(t*2 42887 + at®® 2 + Bt*) | a, B € k, B#0}

{(t10 4+ 28817 + apt® + ast®®, 1% + pt*) | aw, a3, 8 € k, B # 0}

(t* + ot 1*%) | a € K}

(t* + ant™® + oot 1*%) | oy, a0 € K}

t12 £ aqt? + aut' + ast? 170) | ay, a0, a3 € k}

10+ agt!” + ant® + ast® 170 | ay, a0, a3 € k}

20+ agt? + aot® + ast® 17 + BtP) | a1, an, a3, B € k, of =28}

2+ agt® + aot® + ast® 170 + Bt + Bot®®) | ay, a0, a3, B, Be € F,
a; =0if chk=2; ag =ay =01 =02 =0if chk # 2}.

For each I € Xy 15, the elements of k which appear in the listed expression are uniquely

determined by I.

Xk[[tél,tlS”

cCccCccccc

{
{
{(
{(
{(
{(
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This result shows that if k is a finite field, then k[[t?,#!3]] contains only finitely many
Ulrich ideals, but if k is infinite, then it contains numerous Ulrich ideals which are not
generated by monomials in ¢.

The proof of Theorem B is divided into several steps. First of all, let us fix the
following.

Setting 4.2. Let I be an Ulrich ideal of A and choose f, g € I so that all the conditions
stated in Theorem 277 are satisfied. Namely

eabceH 0<a<c,0<a<b<a-+ec,

eb—ad H 2b—a€c H a=2 -04(A/]),
where ¢ = ¢(H), a = o(f), and b = o(g). We set B = |, [{™ : I"] and let mp be the
maximal ideal of B. Let { = ¢ € B and Hy = {o(z) [ 0 # z € B}, the value semigroup of
B. Hence, B = E[[t*,t'3,£]]. Notice that B = f~'I is a Gorenstein ring, pa(B) = 2, and
b—a € H,. In particular, H; is a symmetric numerical semigroup.

Our strategy is the following. Similarly as in Section 3, first of all, we enumerate all
the possible semigroups H;. Secondly, we determine the possible pairs (a,b) according to
the list of possible H;. Lastly, we will show that the pairs (a,b) actually appear to be the
data for some I € X4, pinpointing the elements of X4.

We denote by p(H;) the number of a minimal system of generators of H;. Let us begin
with the following.

Proposition 4.3. u(H;) =2 or 3.

Proof. Notice that pu(H;) < 4, since e(H;) < 4. Because pus(V) =4 and ps(B) = 2, we
get B # V, whence 1 ¢ Hy and u(H,) > 2. Suppose pu(H;) = 4 and let C' = k[[H,]].
Then C' is a Gorenstein ring and peo(me) = 4 (here me denotes the maximal ideal of C').
Therefore, because puc(me) < e(C) = e(H;) < 4, C has minimal multiplicity, whence C
must be a hypersurface of multiplicity 2, which is impossible. O

Proposition 4.4. If2 € Hy, then H; = (2,13).

Proof. Suppose that 2 € H;. Then H; = (2,a) for some odd integer 3 < o < 13. Take
n,p € B so that o(n) = 2 and o(p) = a. Then, B = k[[n, p]], and therefore, because
le(B/mB) = {4(B/mB) = 2, the elements 1,7, p mod mB are linearly dependent over k

inside B/mB. Therefore, p € mB. In fact, choose 0 # <%> € k3 so that

a—+ Bn+yp € mB.
We then have o = 0. If 8 # 0, then n + vp € mB for some v € k, whence

n+p =t + 1y
with ¢, € B. This is impossible, since o(n+vp) = 2. Thus, § =0, and p € mB. Let us
write
p = tlor + 1%
with ¢1,11 € B. If @« < 13, then o(¢1) = a—4 € Hy = (2, a), which is impossible. Hence,
a =13 and H, = (2,13). O
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Lemma 4.5. H; # (3,4, (4,5),(4,5,6), (4,6,7),(4,6,9), (4,9, 10)

Proof. Assume that H; = (3,4) and write B = k[[n, t*]] with € B such that o(n) = 3.
Then, since n?> € mB by the proof of Lemma B2, we have n? = t*p + t'31) for some
@, ¥ € B, which shows 2 = o(p) € H; = (3,4). This is impossible.

Assume that H; = (4,5) and write B = k[[t*, n]] with € B such that o(n) = 5. Then,
since > € mB for the same reason as above, we get

with ¢, 1 € B, which forces 6 = o(p) € H; = (4,5). This is absurd.

Assume that H; = (4,5,6) and write B = k[[t*,n, p]] with 1, p € B such that o(n) =5
and o(p) = 6. Then, the elements 1,7, p mod mB are linearly dependent over k inside
B/mB, and we have p € mB for the same reason as in the proof of Proposition @,
Writing

p=tlor + 1%
with 1,11 € B, we see 2 = o(p1) € H; = (4,5,6), which is impossible. Hence, H; #
(4,5, 6).
The assertion that Hy # (4,6,7),(4,6,9),(4,9,10) is similarly proved. O

Lemma 4.6. If2 ¢ Hy, then 3,5 ¢ H;.
Proof. Assume that 3 € Hy. Then, since Hy 2 (3,4) by Lemma B3, we get H; D (3,4,5)

(remember that the k[[t3, ¢*]]-submodule k[[H,]]/k[[t?, t*]] of V/E[[t3,t%]] contains a unique
socle t° mod k[[t3,t1]], since k[[t?, Y]] is a Gorenstein ring). Consequently, H; = (3,4, 5),
since (3,4,5) 2 H; (because 1,2 ¢ Hy). This is, however, impossible, since (3,4, 5) is not
symmetric.

Assume that 5 € Hy. Then, Hy 2 (4,5) by Lemma B3. Hence, for the same reason as

=

above Hy D (4,5,11) (notice that (4,5,11) is not symmetric). Consequently, considering
the socle of the k[[t*, ¢, t'!]]-module V/k[[t*, >, t'!]] which is spanned by the images of ¢°
and t7, we get 6 € H, or 7 € Hy. Therefore, H; 2 (4,5,6) by Lemma B3 or H; D (4,5,7)
(since (4,5, 7) is not symmetric). Suppose now that 7 € H;. Then, considering the socle
of the k[[t1, t°,t"]]-module V/k[[t* 17, 7]], we get 3 € H, or 6 € H,. Hence, 6 € H; even
in the case where 7 € Hy, because 3 ¢ H; as is shown above. Therefore, H; 2 (4,5, 6),
whence Hy 2 (4,5,6,7), because (4,5, 6) is symmetric and the socle of k[[t, t°, t%]]-module
V/k[[t!, t?,15]] is spanned by the image of t”. Thus, H; = (4,5,6,7) since (4,5,6,7) 2O Hy,

which is impossible because (4,5, 6,7) is not symmetric. Hence, 5 € Hy, as is claimed. [

We now give an account of the possible semigroups H; in the following way. We will
later show that all of the listed semigroups appear as the value semigroups v(A?) of A!
for some I € X4.

Proposition 4.7. (1) If u(Hy) = 2, then Hy = (2,13) or H; = (4,9).
(2) If p(Hy) = 3, then Hy = (4,9,14) or H; = (4,2n,13) for some n € {3,5,7,9,11}.
Proof. Thanks to Proposition B4, we may assume that 2 ¢ H;. Then, Lemma B8 shows

min[H; \ {0}] = 4. Therefore, if u(H;) = 2, then Hy; = (4, ) for some odd integer o > 7
(see Lemma BH). Because 13 € Hy, we readily get a = 9. This proves Assertion (1).
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Suppose that pu(H;) = 3. Symmetric numerical semigroups which are minimally gen-
erated by three elements are complete intersections (I, Theorem 3.10], [I5, Corollary
10.5]) and they are obtained by gluing ([I2, Section 3], [I4, Proposition 3]). According to
the structure theorem, our semigroup H; must have one of the following forms.

(i) Hy = (4, as, 2n), where both as and n are odd such that a; > 5 and n > 3, ay # n,
and as € (2,n). Hence n < as.
(ii) H, = (4,da),day), where d > 3 is odd, aj,a% > 2 such that GCD(a},a}) = 1,
4 € (ay,al), 4 & {a},as}, and either afy or af is even.
Firstly, we consider Case (i). Notice that ay < 13 since 13 € H;, while ay # 5 by Lemma
B4. If ay < 13, then ay = 7,9, 11. Let us write

13 =4a + a8 + 2ny
with a,y > 0 and 8 > 0. Suppose that ay = 7; hence Hy; = (4,7,2n). Then, § =1 and
3 =2a+ny.

Since n > 3 and n is an odd integer, we have o = 0 and n = 3, whence H; = (4,7,6),
which violates Lemma BZH. Suppose that a; = 9. Then, since 13 = 4a + 95 + 2nvy, we
have f = 1 and 2 = 2a + ny. Therefore, v = 0 and a = 1, while n = 3,5,7 since
9 € (2,n) and n < 9. Suppose that a = 11. Then 13 = 4o + 113 + 2ny, so that 5 =1
and 1 = 2a + nvy, which impossible. Consequently, if as < 13, then H; = (4,9, 14),
since H; # (4,6,9),(4,9,10) by Lemma B3. If ay = 13, then H; = (4,13,2n) where
n=3,5"7,9,11, because n < ay and n is odd.

We now consider Case (ii) and will show that it doesn’t occur. Without loss of generality
we may assume that a), < aj. We set ay = da}, and as = da}. Then ay < 13, since 13 € H;.
Therefore, ay = 6,7,9,10,11,13, since u(H;) = 3 and 5 ¢ H;. The number ay cannot
be prime; otherwise d = as and ay divides as. Therefore, as = 6,9,10. Suppose a, = 6.
Then, d = 3 and a3 = 3¢, where ¢ = a4 > 3 is odd. Hence, ¢ = 3 because 13 € Hy, so
that H; = (4,6,9), which violates Lemma 5. Suppose a; = 9. Then d = 3 and az = 3g,
where ¢ > 4 is even. Hence, because az < ¢((4,9)) = 24 (notice that H; = (4,9, a3) and
w(Hy) = 3), we have ¢ = 4 or ¢ = 6, so that H; = (4,9), which is absurd. Suppose
a; = 10. Then d = 5 and a3 = 5¢. Hence, ¢ > 3 is odd, because 4 € (2,q) and
GCD(2,q) = 1. Therefore, ag > 15, whence 13 & (4,10, a3) = H;. This is absurd. Thus,
Case (ii) is excluded and Assertion (2) follows. O

Lemma 4.8. (1) Suppose that Hy = (4,9) or Hy = (4,9,14). Thenb—a =9.
(2) Suppose that Hy = (4,2n,13) for some n € {1,3,5,7,9,11}. Then b —a = 2n.

Proof. (1) We choose 7 € B so that o(n) = 9. Firstly, suppose that H; = (4,9) and write
b—a=4a+ 98 with a, 5 > 0. Then 5 > 0 since b —a ¢ H, whence b —a > 9. Let us
write

n=tlo+t?Y+£6
with p,¢,0 € B. If b—a = 0(§) > 9, then o(¢) =5 € H; = (4,9), which is impossible.
Hence, b — a = 9. Next, suppose that H; = (4,9,14) and write

b—a=4a+ 95 + 14y
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with «, 8,7 € B. We then have b —a > 9, since b — a € H. Because n € k[[t*, '3, ]],
writing n = t*o + t'3¢ + £§ with ¢, 1,0 € B, similarly as in the case where H; = (4,9)
we get b —a <9, whence b — a =9 as claimed.

(2) Since b —a € Hy = (4,2n,13) \ H, we have b — a > 2n. Take n € B so that
o(n) = 2n and write n = ttp + 13y + &5 with ¢,1,0 € B. If b—a = o(£) > 2n, then
o(t*e + t'3¢) = 2n, so that
and mp = (¢4, 113, t*p + t'3¢Y) = (t*,#'3) B = mB. Hence, {4(B/mB) = 1, so that A = B.
This is absurd. Thus b — a = 2n. 0J

We are now ready to determine the pair (a,b). Let v(I) = {o(z) | 0 # x € I'}. Hence
v(l) = a+ Hy, because I = fB.

Proposition 4.9. (1) If H; = (4,9), then (a,b) = (12,21).
(2) If Hy = (4,9,14), then (a,b) = (16,25).
(3) Letn € {1,3,5,7,9,11}. If Hy = (4,2n,13), then (a,b) = (26 — 2n, 26).

Proof. (1),(2) We have a € {4, 8,12, 16,20, 24, 26, 28, 30, 32,34}, since a € H is even and
a < c=36. Wesee b —a =9 by Lemma I8, and similarly as in the proof of Example
8 we consider the table

a 418 11211620 |24]26 2830|3234
b—a 9979719719719 191919191]1919
b 13 1171211252933 [35|37|39]|41]43

2b—a 2212630 |34|38|42 |44 |46 |48 |50 | 52
36 —(b—a) |27 |27 |27 |27 | 27|27 | 27 | 27| 27 | 27 | 27

where the values of each column indicate the possible values of b, 2b — a, and 36 — (b — a),
when a is given. The value 36 — (b —a) = 27 and Lemma P23 indicate that t" € I = (f, g)
for every n € H such that n > 27.

This table tells us many things. For example, a # 4, since 2b — a = 22 ¢ H. We have
a # 24. In fact, if @ = 24, then b = 33, so that t* € I = (f,g), which is impossible
because 5 ¢ H. Thanks to the same observation, we readily get that a # 26, 28, 30, 32, 34.
Hence, a € {8,12,16,20}. We will show that a # 8,20. Suppose that a = 8. We then
have v(I) = 8 + H; > 35, since 9 € H;. This is however, impossible, because v(I) C H
and 35 = c— 1 ¢ H. Hence, a # 8. If a = 20, then t* € I since 36 — (b — a) < 30. We
consider the expression

0 = (20 + faut® + - ) (g0 + pat! + @st® + 01t + o1t 4+ -)
+ (17 4 gsot™ + - ) (o + gt + st + ot 4 )

with coefficients f;, g;, @i, ¥; € k for each ¢ € H. Then, comparing the order of both sides,
it is straightforward to check that oy, v4, ps = 0 and 1y = 0, so that the term #3° doesn’t
appear in the right hand side. Hence, a # 20.

Let @ = 12. If Hy = (4,9,14), then H, > 23, so that v(I) = 12+ H; > 35. This is
impossible. Therefore, H; # (4,9,14) and hence H; = (4,9), if a = 12.
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Let a = 16 and we will show H; = (4,9, 14). Assume that H; # (4,9, 14). We then have
Hy = (4,9), whence v(I) 3 16 + 18 = 34, so that 3 € I because 35 ¢ H and 3V C I.
Therefore, the k-space A/I is spanned by the images of the monomials {t"},cn. 0<n<3s3-
Because among the images of these monomials, there are relations induced from the
vanishing

f = t*% + (higher terms) = 0 mod I and g = t* + (higher terms) = 0 mod I,
the k-space A/I is spanned by the images of the following 9 monomials
Of course, these nine monomials cannot be linearly independent over k, since

Ca(A)I) = g =8

(see Theorem 271 (3)). Therefore, there must be a non-trivial relation, say
ag + CL4t4 + a8t8 + a12t12 + a13t13 + a17t17 + a21t21 + a26t26 + a30t30 el

with a; € k. Nevertheless, because v(I) = 16 + (4, 9), we readily get ag = a4 = ag = a1z =
a3 = 0, so that

arrt'” + ant®' + aset®® + azt™ € I.
Hence, a17 = ag; = agg = asg = azg = 0 also, because 17,21,26,30 ¢ 16 + (4,9), which
violates the non-triviality of the relation. Thus, if a = 16, then H; # (4,9), so that
H; = (4,9,14). This completes the proof of Assertions (1) and (2).

(3) We have a € {4,8,12,16, 20, 24,26, 28, 30,32,34} and b — a € {2,6,10, 14,18, 22}.
Similarly as above, we consider the tables where b — a is fixed and a takes various values.
Our aim is to show that only the cases (a,b) = (4¢,26) (1 < ¢ < 6) are possible.

Let us examine the case where b —a = 2 or 6. Suppose that b —a = 2 and we have the
following.

a 478 [12]16[20[24 (2628303234
b—a 2122221222222
b 6 (1014 18] 2226|2830 (323436
2—a | x| x| x| x|x|28[30[32/34]36]383
36— (b—a) | x| x | x| x| x |34[34[34[34]3434

Therefore, because 6,10,14,18,22 ¢ H, a # 4,8,12,16,20. If a = 28,30, 32,34, then,
since 37 € H and 34 < 37, we have t37 € I = (f, g). This is, however, impossible, which
we can check similarly as in the case where a = 20 of Assertions (1) and (2), writing
37 = fo + gy with p,¢ € A. Hence, (a,b) = (24,26), if b —a = 2.

Suppose that b — a = 6 and we have the following.

a 418 112116]20(24|26|28|30]|32]|34
b—a 61666 6[6|]6|6|6]|6]6
b 10114 11812212630 |32|34|36|38]|40

2b—a X | x| x| x 3236|3840 (42|44 |46
36—(b—a)| x| x| x| x[30[30[30]30]30/|30]30
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Hence, a # 4,8,12,16. Suppose a > 24. Then, since 33 € H and 33 > 30, we have
t3 € I = (f,g). This is impossible, which we can show, writing 37 = fp + gi with
v, € A and just counting o(y) and o(¢). Hence, (a,b) = (20,26), if b —a = 6.

The proofs of the other cases are quite similar to that of the case where b —a = 6,
which we would like to leave to the reader. 0

We are now in a position to describe the normal form of systems of generators for a
given I € X,. First we consider the case where H; = (4,9) or H; = (4,9, 14).

Theorem 4.10. (1) Suppose that Hy = (4,9). Then
I = ("2 + 280" + a1, 12! 1 B2)
where o, B € k and  # 0.
(2) Suppose that Hy = (4,9,14). Then
I = (19 + 2887 1 ant? + agt? 1% + 129)
where oy, a3, 0 € k and 5 # 0.

Proof. Since ¢ — (b — a) = 36 — 9 = 27, by Lemma P23 we have t? € [ for all ¢ € H such
that ¢ > 27.
(1) Therefore, for the same reason as in the proof of Corollary B8 we may assume that

f=t7+at"? + apt’” + a3t®® and g =" + pit*°
with aq, as, a3, 81 € k. Hence

52%2759—04115104—77

where n € V with o(n) > 11. Because t'3,t'¢ € B, we have —ayt!'* + t'n € B, which
implies oy = 0, since 14 ¢ Hy = (4,9). Therefore, continuing the division algorithm, we
get
E=1"+ (81 — aa)t" — ax(B1 — aa)t"? — ast® + p
where p € V with o(p) > 24. Consequently, expanding
2
97 = g& = (t*' + ut™)- (tg + (B1 — ao)t™ — (B — an)t™ — at® + P)

and considering the coefficient of 35, we get 28; = an, because % €I CAand t* ¢ A.
Hence

I = (" 428" + a3t 2 + pit*0).
To see that f # 0, we choose ¢,¢ € A so that 0 = fo+ gY. Let o = > 2 ¢it" and
Y =Y oo itt with ¢;,1; € k. Then, comparing the coefficients of t** and ¢'¢ of both

sides in the equation
o o
0= £ gt + gy it
i=0 =0

we obtain
201913 + pacz + Prpy =1 and g = 0.
Hence, 1 # 0, which proves Assertion (1).
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(2) We may assume
F=1 4 gt 4+ apt? + agt? and g = 25 + 5,12
with aq, as, asz, f1 € k. Since

£ = % =14+ (B — )t — (B — an)t 4 p

with o(p) > 12, we get % = g& =3 + (26; — a)t® mod 3V, which implies 28, = ay,
because % €I but t*° ¢ A. We take p = o2 @it', 10 = oo hit" € A so that

0= f> it +g- Y it
i=0 i=0
Then, comparing the coefficients of #3° and t?° of both sides, we get

201013 + paaz + frpa =1 and g = 0.
Hence, 1 # 0, which proves Assertion (2). O

If H, = (4,2n,13), we have the following.

Theorem 4.11. Suppose that Hy = (4,2n,13) for with n € {1,3,5,7,9,11}.
(1) If n =11, then
I ="+ at'® %)
where o € k.
(2) If n =9, then
where aq, oy € k.
(3) If n =17, then
I=(t" 4 ait" + aot' + ast™, t*°)
where oy, g, a3 € k.
(4) If n =5, then
I=(t" 4 art"" + aot® + ast™, t*°)
where aq, ao, a3 € k.
(5) If n =3, then
=+ art™ + aat® + ast® 2% + pt*)
where oy, i, a3, 3 € k and of = 23.
(6) If n =1, then
I = (" + aat® + aot™ + ast®, 1% + Bit™ + Bot™)

where oy, g, ag, b1, P2 € k and

a; =0 if chk =2,
041:()[2:61252:0 Zf Chk;éQ
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Proof. For the same reason as in the proof of Corollary B8, we may assume

where oy, ag, as, ay, as, ag, B1, B2 € k. Notice that t? € I for all ¢ € H with ¢ > 36 —2n =
10 + a.
(1) Therefore, because a = 4, we have

I=(f,g,t") = (t* + aqt™® 126 ') = (t* + a3, #%0),

t'7 € I, whence

where the last equality follows from the equation '7 = (t* + ayt!3)¢1? — ;t%.
(2) We have t*! € I and

t21 = (tS -+ O(ltlg + a2t17) — (a1 + a2t4)t26,
whence
[ — (f,g,t21) — (t8 + Oéltlg + O[2t17,t26).

(3) We have % € T and
whence

(4) We have t* € T and

2 = (#'9 + g t'T + ant® + agt®)t"? — (agt? + ant® + ast'?)
whence
I=(fg,t2) =1=(t"+at'" + apt® + ast®, ).

(5) We have 33 € I. Hence
Let J = (1204 t*! +aot® +a3t?®, 1264 5,¢*°) C I and consider v(J) = {o(h) | 0 # h € J}.
Then, 20,26, 33 € v(J), so that 36,37,38,39 € v(J) whence J D t*V = ¢. Because
t34 — (t26_'_51t29)t8_/81t37 and t33 — <t20+a1t21 +062t25+053t29>t13_(a1t34+042t38+063t42),
we obtain t3* € J by the first equality, and hence t3* € J by the second one. Therefore,
I=J,since J CI=J+ (t*). We now have

6 = % = t6 — Oé]_t7 + a%tS + (51 — @?)tg — Oé]_(ﬁ]_ — Oé?)tlo —+ P

with p € V such that o(p) > 11. Consequently, 23; = o3, because

2
97 = g€ =17 — ayt® + oMM + (B — )t mod 1V

and because % € Abut t¥ & A.
(6) Since f = t** + a1t?° + ot® + a3t®® and g = 20 + B1t% + Bot3, we get

= % = -+t + (B — o — (B — oD + (@E (B — aF) — ap)t”

+ (20102 — fia] + o))t + (ap — ajas — a1 (20100 — fraf + o))t +p
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with p € V with o(p) > 10. Therefore
T=g6 = 0 —at® + ot + (26 — o)t + (= (81 — af)ar — fron)tP

+ (26107 — a® — a)tP 4 (2o — Brad 4+ af) + Bi(Br — o))t
+ (26; — 3ajas + 2610) — of — Bian )t + 1,
where o(n) > 36. Consequently
261 =a} and 283 = 3ajas + fiay,

since % = g¢ € A. Therefore, if chk = 2, then of = 0, so that a; = 0.
Suppose that ch k # 2. Then, since
2
97 = g¢ =1 — gt + aft® — aut® + (20105 + D) mod t*°V

and since t3* € I (remember ¢ — (b — a) = 10 + a = 34), we have
2 — ot + 3t — apt® € I

Notice that
thf =17 + at® + aot® + at?”
and that ¢ = 3V C I. We then have 2¢*® + o2t* € I and, writing

2t + it = fo + gib

with o = Y 2 it = D2 it € A (¢i,1 € k) and comparing the coefficients of
128 429 39 and 3 in both sides of the above equation, we have

01 =2, @1 =0, Py = 04%7 and @go + paan + B1y = 0.

Therefore, a; = 0. Because 283, = o3 and 23, = 3aas + B2y, we get B = [Bo = 0,
whence as = 0. This completes the proof of Theorem E—TTI. O

We are ready to prove Theorem B

Proof of Theorem BZl. It suffices to show that the listed ideals are all Ulrich. We will
check it, following the grouping of cases given by Theorems B10 and ET1. Because the
proof of Cases (1) and (2) of Theorem B0 and the proof of Cases (1), (2), (3), and (4)
(resp. () and (6)) of Theorem E-IT are almost the same, we shall consider Case (1) of
Theorem B10 and Cases (1) and (5) of Theorem BT only.

Case (1) of Theorem BEI0. Let f = t'2+28t17 +at?0, g = t?* + Bt%6 where «, 3 € k such
that 5 # 0 and set I = (f,g). We want to show I € X4. Let L = v(I). Then, 28,32,36 €
L since 12 € L, while 29,33, 34, 37,38 € L since 21 € L. We have 534 3%t = Bt13g € I,
while St3* + at®® = t1"f — 8¢ € I. Hence, 5%t3° — at?3 € I, so that 39 € L (since 8 # 0).
Thus, ¢ = 3V C I, because 36,37, 38,39 € L. Therefore, we have 3% € I (resp. t* € I),
considering t12g (resp. t2°f). Because St30 +at®® = t13f —t'g € I, we get t3° € I. Hence,
130 432 433 39 ¢ I. Thus, t? € I for all ¢ € H such that ¢ > 30. Remember that

g

fz?:t9—6t14+2ﬁ2t19+p
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where p € V' with o(p) > 22, and we get

92

. = g

f
Hence, % € I, because t3° € I and t3V C I. Thus, I? = fI. On the other hand, since
the k-space A/I is spanned by the images of

¢ =t + 2% mod t*V.

14 8 413 AT 42
we get £4(A/I) <6, so that the epimorphism
v: A/l = 1/(f), ¢(1 modI)=gmod (f)

of A-modules is an isomorphism, because £4(I/(f)) > 6 (since €4(A/I) = 12). Hence,
AJI = T/(f), so that I is an Ulrich ideal of A with £4(A/I) = 6, and the images of the
above six monomials form a k-basis of A/I.

Case (1) of Theorem ETT. Let f = t* + at'® (o € k) and g = t*°, and set I = (f, g).
We want to show I € X,. Firstly, notice that t!7 € I, since

Therefore, 37,3 39 € I, while t3¢ € I, since t32f = 36 + at* and t** € I. Hence,
2
¢ = t3V C I. Because o(%) = 48, we get g> € fc C fI, whence I? = fI. On the other

hand, because the k-space A/I is spanned by the images of {t? | ¢ € H,q < 34} and
because among them, there are relations induced from the vanishing

f=t"4at®=0mod I and ¢g=1t*=0mod I

of f and g, the k-space A/I is spanned by the images of 1,¢1%, whence £4(A/I) < 2.
Therefore, the epimorphism

w: A/l —=1/(f), v(1 mod I)=gmod (f)

of A-modules is an isomorphism, because £4(I/(f) > 2 (since €4(A/(f) = 4). Thus,
I/(f) = A/I and €4(A/I) = 2. Hence, A/I possesses the images of 1, as a k-basis,
and [ is an Ulrich ideal of A.

Case (5) of Theorem BTl Let

where aj,as,a3,8 € k and o = 28. We set I = (f,g) and L = wv([). Then,
20,26,33,39 € L. Hence, 36,37,38,39 € L, so that ¢ = t3°VV C I. On the other hand,
because

£ = 134 5t7) = Bt*7 and % =" (1 + a1 t*" + aot® + ast™) —(rt* + st +ast??),

we get 134, ¢33 € 1. We furthermore have 30,32 39 € I, because t*g, t'2f,t13g € I. Hence,
t4 € I for all ¢ € H such that ¢ > 30. Therefore, because a3 = 23, we have

92

729

£ =17 — ait*® + oft* mod t*°V,
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which yields that % € I, whence I? = fI. Because the k-space A/I is spanned by the
images of {t? | ¢ € H,q < 30} and because there are relations among them induced by
the vanishing
F=t2 4+ a1t + ut® + os5t® =0mod I and ¢ = t*° + St* =0 mod I,
A/I is spanned by the images of the following ten monomials
1 4 48 f12 413 416 417 421 425 429
Therefore, (4(A/I) < 10, so that the epimorphism

@ A/T = 1/(f), (1 modI)=gmod (f)
is an isomorphism, because €4(I/(f) > 10 (since £4(A/(f) = 20). Thus, I/(f) is a free
A/I-module, and A/I possesses the images of the above ten monomials as a k-basis. In
particular, I is an Ulrich ideal of A.
Let us check the second assertion of Theorem ETIl. For example, we consider Case (1)
of Theorem B-T0. Let
= 12 428" + at®®,
fi = 2+ 2817+t
g o= 4 /it

where «a, 8, a1, 1 € k such that § # 0,0, # 0, and assume that I = (f,g9) = (f1,91)-
Then, since f — f1,9 — g1 € I and the images of 1,#* 5 13 17 1?5 form a k-basis of A/l
(as we have shown above), we readily get & = o and § = ;. This argument works also
for the proof of the other cases. This completes the proof of Theorem EI. O

Remark 4.12. We are able to pinpoint the set Xys 411y also. The results on k[[t?, t'1]]
are more subtle and the proof is more formidable than those of the case of k[[t?, t1%]],
which we shall give on another occasion.

5. THE CASE OF THREE-GENERATED NUMERICAL SEMIGROUP RINGS

In this section we explore the semigroup ring of a three-generated numerical semigroup.

Throughout, let a,b,c € Z be positive integers with GCD(a,b,c) = 1. We set H =
(a, b, c) and assume that H is minimally generated by a, b, c. Let k[[t]] be the formal power
series ring over a field k and k[[H]] = K[[t%,t°,t¢]]. We set m = (t%,°,¢°), the maximal
ideal of A = Ek[[H]]. We are interested in the size of the set X4.

We begin with the case where H is not symmetric. For a given finitely generated
A-module M let Pi}(t) stand for the Poincaré series

Pi(t) =Y B (M)t € Z[[t]

of M over A, where 32/(M) denotes the n-th Betti number of M. With this notation we
have the following.
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Theorem 5.1. Suppose that A = k[[H]] is not a Gorenstein ring. Then the Betti numbers
of the residue class field A/m of A are given by

1 (n=0)

Hence -
+
P () = ——.
Proof. Let k[[X,Y, Z]] be the formal power series ring over k and let ¢ : k[[X,Y, Z]] = A
be the k-algebra map defined by ¢(X) = t%, o(Y) = t*, and ¢(Z) = t¢. Then, since A is
not a Gorenstein ring, thanks to [I2, Section III], we have an isomorphism

A2 KXY, Z])/1, (Xa e )

YBI Z’V/ XO/

s . a yB gv
of k-algebras for some positive integers «, 3,7, d/, 5',+', where Iy (ffﬁ/ ;/ 5&) denotes

the ideal generated by the 2 x 2-minors of the matrix ( ff;, ;B, )f:/ ) Hence
a\ ~v B / / 2
A/t = K]Y, Z)/1, (YOB, v ZO”) — kY, Z)) (Y8 YO 70, 20+
as a k-algebra. Let
B =k[Y, Z)/(YPHP YP 77, 27+

and let y, z denote the images of Y, Z in B, respectively. Then, because

PB o sz/m(t)
B/wa(t) =
we readily get P f/m(t) = =L once we have
1
s - = 2 nyn
PB/(y,z)(t) —1_—%—1+2t+4t T A A B

To see it, we consider the minimal B-free resolution of B/(y, z). It is straightforward to
check that
pot 2y goz Mo gy By 2) — 0
forms a part of minimal B-free resolution of B/(y, z), where ¢ is the canonical epimor-
phism,
M():(y Z), and M, = <yﬁ+671 g1 0 2 >

0 0 2+ -1 -y
We want to know the remainder part of the resolution. To do this, firstly let o € Ker M

and write o = *(ayq, ag, ag, ay) with a; € B, where *(x) denotes the transpose. Then, since
a2’ —auy =0 in B,

we have
as=yfi+z2fs and ay =2 =P S0
for some fla f27f37 f4 S B, so that

ary? T gy T+ (T =y — P T )z = .
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Hence

— fiz— gy =" and goy + 327 — ag + goz = uy)”
for some g1, 9o, 93,94 € B, which shows that a = *(ay, g, az,ay) is contained in the
B-submodule of B* generated by the columns of the matrix

y z 0 0 0 0 0 0
0 0 y z 0 0 0 0
My = { o 0 0 0 y oz 0 0 .

0 —yBt8 =1 g B 17 vy =1 g BB =1y =1 B 1 v te -1

Hence KerM; = ImM,. Next, let @ € KerMy and write a = *(ay, s, ..., ag) with
a; € B. Then, because a1y + asz = 0, azy + ayz = 0, and a5y + agz = 0, we get

(a3),(ai),(ag) € ImM,y

whence ay, ay, ag € (271771 y). This implies oy 1 4+ auy® 127 — a5z~ = 0 in
B, so that apy® TP 1271 4+ agy® ~127t"~1 = 0, whence

ar— fiy— frz=2"fs and as — fay — for = 1y’ fs
for some fi1, f2, f3, f4, f5s € B. Thus

D e(®).(5).(v).(2).

which guarantees that « is contained in the B-submodule of B** generated by the columns

of the matrix
M
M
M3 — My .
Mo
Mo

poe 2y gos Mz, pod Ty poz Mo gy By ) — 0

Consequently, the sequence

forms a part of the minimal B-free resolution of B/(y, z). Since the matrix M3 consists
of submatrices M and M, the Poincaré series of B/(y, z) has the form

PE oy () = 1426442 -+ 27" 4.
as claimed. ]

For an arbitrary Noetherian local ring A with the maximal ideal m, the Poincaré series
Pf/m(t) of A/m over A is not necessarily a rational function ([l]). On the other hand,
J.-P. Serre proved that Pf/m(t) is coefficientwise bounded above by the rational series

(1+1¢)"
L=y Ca(Hizy, mo, . ooy w5 A) Y
where zy,29,...,2, (n = pa(m)) is a minimal system of generators of m and
H;(z1,x2,...,x,; A) denotes the i-th Koszul homology module of A with respect to the
sequence xi,Ts,...,T,. With this notation, A is called a Golod ring, if Pf/m(t) coincides

with the upper bound given by Serre.
The following result is known (see, e.g., [6]) and it is equivalent to the assertion of
Theorem BTl. Here let us give it as a direct consequence of Theorem Bl
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Corollary 5.2 (cf., e.g., [B]). Every three-generated non-Gorenstein numerical semigroup
ring k[[t*,t°,t°]] is Golod.

Proof. Let S = k[[X,Y, Z]] be the formal power series ring over k. Then, the S-module
A has a minimal free resolution

xo y#

!

Y#P z

A G
X S

0— 52 3 58— A0,
whence Theorem B tells us that
1+t (1+1) Pg, ()
Pi(t) = = i

T1-2t 1-32—28 1—¢t (PS(t)—1)
where n = (XY, Z) denotes the maximal ideal of S. Therefore, the natural surjection
S — A is a Golod homomorphism, so that A is a Golod ring ([, Remark, page 32]). O

We say that a Noetherian local ring A is G-regular, if every totally reflexive A-module
is free ([16]), and [3, Example 3.5] guarantees that every Golod local ring which is not a
hypersurface must be G-regular. Consequently, we readily get the following.

Corollary 5.3. FEvery three-generated non-Gorenstein numerical semigroup 71ing
k[[t?,t°,t¢]] contains no Ulrich ideals generated by two elements.

When H = (a, b, ¢) is symmetric, few things are known about the size of &yzy. Closing
this paper, let us note a part of them.

First of all, remember that H is symmetric if and only if k[[H]] is a complete intersection
([T2, Theorem 3.10], [, Corollary 10.5]). If H is symmetric, then as is partially stated in
the proof of Proposition B4 (2), H is obtained by a gluing of a two-generated numerical
semigroup H' and N ([I2, Section 3|, [I'4, Proposition 3]). Let us explain more precisely,
preparing new notation.

Let «, 5 € Z be positive integers such that GCD(«, ) = 1. We set H' = («, ) and
assume that p(H’) = 2. Choose a € H' and b € N so that a, b satisfy the conditions that
a>0,b>1 a¢{ap}, and GCD(a,b) = 1. Hence, GCD(ba, bf,a) = 1. We consider
the numerical semigroup H = (ba, b3, a) , and call it the gluing of H" and N with respect
to a € H and b € N. Notice that H = (ba, bf,a) is actually symmetric. In fact, let
a = ol + pm with integers ¢,m > 0. Let k[[X,Y, Z]] be the formal power series and
consider the k-algebra map ¢ : k[[X,Y, Z]] — V defined by

p(X) =1, oY) =1", and ¢(Z)=1"
We then have the isomorphism
A= k[[Xa Y> Z]]/(Xﬁ - Yaa Zb - XEYm)

of k-algebras. Every symmetric three-generated numerical semigroup is obtained by gluing
some H' and N with respect to suitable a € H' and b € N.

Assume that our symmetric semigroup H has the form H = (ba, b3, a) stated above.
We then have the following.

Proposition 5.4. Suppose that one of the following conditions is satisfied.
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(1) b is even and ¢ > 2.
(2) b is even and m > 2.
(3) either a or B is even.

Then A admits at least one Ulrich ideal.

Proof. We identify A = k[[X,Y, Z]]/(XP—Y*, Z°— X*Y™) and let x, y, and 2 respectively
denote the images of X, Y, and Z in A. We set [; = (z,22) for Case (1), Iy = (y, 2?)
for Case (2), Is = (z,y?) for Case (3) if o is even, and [ = (x,yg) for Case (3) if g is
even. Then, these ideals are Ulrich ideals of A. Let us check Case (1) only. The others

are similarly proved.
(1) Since 2* = z%y™ and £ > 2, I? = 2 + (2Y = xI. Notice that

(X, XP —ye, 20 — XY™ = (X, Y, Z%).
We then have (z) :4 I = I, because
(X7 Ye, Zb) “k[[X,Y,Z]] Z% = (X’ Ye, Z%),

so that I is a good ideal of A in the sense of [8]. Therefore, I € X4 by [4, Corollary 2.6
(b)], because A/I = E[[Y]]/(Y*) is a Gorenstein ring. O

For example, choose an even integer ¢ > 8 so that GCD(3,¢) = 1 and set H' = (3, /).
Let a € H and b € Nsuch thata > 0,0 > 1, a & {3, ¢}, and GCD(a,b) = 1. Then, thanks
to Theorem B9 and Proposition 54, the semigroup ring k[[t%, %, t%]] of H = (3b, b/, a)

be?

admits the Ulrich ideal I = (#%,¢2). We have Xyps o 15)) = 0 and the symmetric
semigroup H = (8,9, 15) does not satisfy any one of the conditions stated in Proposition
64. On the other hand, as for H = (8,15,25) or H = (8,21,35), we are sure that
the semigroup ring A = k[[H]] contains no Ulrich ideals generated by monomials in ¢,
although we don’t know whether X4, = () or not. Thus, at this moment, for a general
three-generated symmetric semigroup H the answer to the question of how large the set
AXp(im) 1s remains open rather far from comprehension.
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