QUASI-GORENSTEIN EXTENDED REES ALGEBRAS ASSOCIATED WITH FILTRATIONS

NAOKI ENDO

ABSTRACT. This paper investigates the quasi-Gorenstein property of extended Rees algebras associated with the Hilbert filtrations on a Noetherian local ring. We provide necessary and sufficient conditions for the deformation of the quasi-Gorenstein property, characterized by the Cohen-Macaulayness of the Matlis dual of local cohomology modules. As a consequence, we offer a characterization of the quasi-Gorenstein property of extended Rees algebras in terms of conditions on the length of local cohomology.

1. Introduction

In this paper, we study the quasi-Gorenstein property for extended Rees algebras associated with the Hilbert filtrations of ideals in a Noetherian local ring. As introduced by Platte and Storch in 1977 [13], a Noetherian local ring (R, \mathfrak{m}) is defined to be *quasi-Gorenstein* if it possesses a canonical module K_R such that $R \cong K_R$ as an R-module. Setting $d = \dim R$, this condition is equivalent to $H^d_{\mathfrak{m}}(R) \cong E_R(R/\mathfrak{m})$, where $H^d_{\mathfrak{m}}(-)$ denotes the d-th local cohomology functor with respect to \mathfrak{m} , and $E_R(R/\mathfrak{m})$ represents the injective envelope of R/\mathfrak{m} . Now, let $R = \bigoplus_{n \in \mathbb{Z}} R_n$ be a Noetherian \mathbb{Z} -graded ring with unique graded maximal ideal \mathfrak{M} . We define R to be *quasi-Gorenstein* if it has a graded canonical module and its localization $R_{\mathfrak{M}}$ is quasi-Gorenstein. Equivalently, R admits a graded canonical module K_R such that $K_R \cong R(a)$ for some $a \in \mathbb{Z}$. Here, for a graded R-module M and for an integer ℓ , let $M(\ell)$ denote the graded R-module whose underlying R-module is the same as that of the R-module M and the grading is given by $[M(\ell)]_m = M_{\ell+m}$ for all $m \in \mathbb{Z}$, where $[-]_m$ denotes the m-th homogeneous component.

The quasi-Gorenstein property of the extended Rees algebra has been studied in previous works, such as [4, 5, 11]. This paper focuses on investigating the conditions under which quasi-Gorensteinness deforms, specifically examining its inheritance from the associated graded ring to the extended Rees algebra. The question of whether the quasi-Gorenstein property deforms – that is, whether R is quasi-Gorenstein if a Noetherian local ring (R, m) and its non-zerodivisor $x \in m$ satisfy R/xR being quasi-Gorenstein – has been a fundamental question in commutative ring theory. In 2020, Shimomoto, Taniguchi, and Tavanfar provided a counterexample, using Macaulay2, demonstrating that quasi-Gorensteinness does not deform in general ([18, Theorem 4.2]). Thus, characterizing the circumstances under which quasi-Gorensteinness deforms has become a central problem in this area. In [18], the authors presented various sufficient conditions under which the deformation of quasi-Gorensteinness holds. Moreover, they discussed conditions for the deformation of quasi-Gorensteinness in graded rings, but their results were restricted to \mathbb{N} -graded rings, particularly standard graded rings. In contrast, this paper examines

²⁰²⁰ Mathematics Subject Classification. 13A30, 13H10, 13C14.

Key words and phrases. Quasi-Gorenstein ring, extended Rees algebra, FLC ring.

The author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 23K03058.

the quasi-Gorenstein property of extended Rees algebras, which are \mathbb{Z} -graded rings associated with filtrations of ideals, in relation to the quasi-Gorensteinness of their associated graded rings. In particular, this study characterizes the deformation of quasi-Gorensteinness from the perspective of the Cohen-Macaulayness of the Matlis dual of local cohomology modules.

Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R \geq 3$ which is a homomorphic image of a Gorenstein ring. Let $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ be the Hilbert filtration of ideals in R, i.e., it is a filtration of ideals such that F_1 is \mathfrak{m} -primary and $F_{n+1} = F_1 F_n$ for all $n \gg 0$. Denote by

$$\mathscr{R}'(\mathscr{F}) = \sum_{n \in \mathbb{Z}} F_n t^n \subseteq R[t, t^{-1}] \text{ and } G(\mathscr{F}) = \mathscr{R}'(\mathscr{F})/t^{-1} \mathscr{R}'(\mathscr{F}) \cong \bigoplus_{n \geq 0} F_n/F_{n+1}$$

the extended Rees algebra of \mathscr{F} and the associated graded ring of \mathscr{F} , respectively, where t is an indeterminate over R.

With this notation, the main result of this paper is stated as follows.

Theorem 1.1. Suppose that $G(\mathcal{F})$ is a quasi-Gorenstein graded ring, depth $\mathcal{R}'(\mathcal{F}) \geq d$, and $H^{d-1}_{\mathfrak{M}}(G(\mathcal{F}))$ is finitely generated as an $\mathcal{R}'(\mathcal{F})$ -module, where $H^i_{\mathfrak{M}}(-)$ denotes the i-th graded local cohomology functor with respect to the unique graded maximal ideal \mathfrak{M} of $\mathcal{R}'(\mathcal{F})$. Then $\mathcal{R}'(\mathcal{F})$ is quasi-Gorenstein if and only if the length of $H^{d-1}_{\mathfrak{M}}(R)$ as an R-module coincides with the length of $H^{d-1}_{\mathfrak{M}}(G(\mathcal{F}))$ as a $G(\mathcal{F})$ -module.

This paper is organized as follows. In Section 2, we review fundamental concepts and results pertaining to canonical modules, modules with finite local cohomology (FLC), and blow-up algebras associated with filtrations of ideals. Additionally, we present a refined version of the well-known result [21, Corollary 2.7] concerning regular sequences on associated graded rings. Section 3 focuses on the conditions under which the quasi-Gorenstein property is preserved under deformations, utilizing the Cohen-Macaulay property of the Matlis dual of local cohomology modules. Finally, in Section 4, we provide a proof of Theorem 1.1.

Throughout this paper, unless otherwise specified, we use the following terminology and notation. For a commutative ring R and an R-module N, let $\ell_R(N)$ denote the length of N. When (R,\mathfrak{m}) is a Noetherian local ring, we denote by \widehat{R} the \mathfrak{m} -adic completion of R. The Matlis dual functor is denoted by $(-)^\vee = \operatorname{Hom}_R(-, \operatorname{E}_R(R/\mathfrak{m}))$, where $\operatorname{E}_R(R/\mathfrak{m})$ is the injective envelope of R/\mathfrak{m} . Let $\operatorname{H}^i_{\mathfrak{m}}(-)$ be the i-th local cohomology functor with respect to \mathfrak{m} . Furthermore, for an \mathfrak{m} -primary ideal I in R and a finitely generated R-module M with $s = \dim_R M$, there exist integers $e_i(I,M)$, called the Hilbert coefficients of M with respect to I, satisfying the equality

$$\ell_R(M/I^{n+1}M) = e_0(I,M) \binom{n+s}{s} - e_1(I,M) \binom{n+s-1}{s-1} + \dots + (-1)^s e_s(I,M)$$

for all $n \gg 0$. When $R = \bigoplus_{n \in \mathbb{Z}} R_n$ is a Noetherian \mathbb{Z} -graded ring with unique graded maximal ideal \mathfrak{M} , we denote by $H^i_{\mathfrak{M}}(-)$ the *i*-th graded local cohomology functor with respect to \mathfrak{M} .

2. Preliminaries

In this section, we provide an overview of the preliminaries that will be utilized throughout this paper. Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R$. For a finitely generated R-module M, we define $\mathrm{Assh}_R M = \{\mathfrak{p} \in \mathrm{Supp}_R M \mid \dim R/\mathfrak{p} = \dim_R M\}$. For an ideal I of R, let V(I) denote the set of all prime ideals of R containing I.

2.1. Canonical modules. Recall that a *canonical module* K of R is a finitely generated R-module satisfying the isomorphism

$$\widehat{R} \otimes_R K \cong \operatorname{Hom}_{\widehat{R}}(\operatorname{H}^d_{\widehat{\mathfrak{m}}}(\widehat{R}), \operatorname{E}_{\widehat{R}}(\widehat{R}/\widehat{\mathfrak{m}}))$$

([7, Definition 5.6]). The canonical module is uniquely determined up to isomorphism ([1, (1.5)]; see also [7, Lemma 5.8]), provided it exists. We denote the canonical module by K_R . A canonical module exists for the ring R if R is a homomorphic image of a Gorenstein ring, and the converse also holds when R is Cohen-Macaulay ([15, 17]).

Now assume that the canonical module K_R exists. For every $\mathfrak{p} \in \operatorname{Supp}_R K_R$, the localization $(K_R)_{\mathfrak{p}}$ serves as the canonical module of $R_{\mathfrak{p}}$ ([1, (1.6)]). Moreover, it holds that

$$\operatorname{Supp}_R K_R = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \dim R_{\mathfrak{p}} + \dim R/\mathfrak{p} = d \}$$

- ([1, (1.9)]). Additionally, for every $\mathfrak{p} \in \operatorname{Supp}_R K_R$, any subsystem of parameters for $R_{\mathfrak{p}}$ of length at most 2 forms a K_R -regular sequence. Thus, K_R satisfies Serre's (S_2) -condition ([1, (1.10)]). Here, a finitely generated R-module M satisfies Serre's (S_n) -condition, if $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \geq \inf\{n, \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}}\}$ for every $\mathfrak{p} \in \operatorname{Spec} R$.
- 2.2. **FLC modules.** Following [16], a finitely generated R-module M is said to have *finite local cohomology* (abbr. FLC) if $H^i_{\mathfrak{m}}(M)$ is finitely generated (or equivalently, of finite length) for all $i \neq \dim_R M$. For instance, if either $\dim_R M \leq 1$ or M is a Buchsbaum module (e.g., Cohen-Macaulay), then M possesses FLC. Thus, modules with FLC can be regarded as a generalization of Buchsbaum modules, and they are occasionally referred to as *generalized Buchsbaum* modules or *generalized Cohen-Macaulay* modules.

Note that M has FLC if and only if the \widehat{R} -module \widehat{M} does as well. When $s = \dim_R M \ge 1$, the condition for the R-module M to have FLC is equivalent to the condition that the supremum $\mathbb{I}(M) = \sup_{\mathfrak{q}} (\ell_R(M/\mathfrak{q}M) - e_0(\mathfrak{q}, M))$, taken over all parameter ideals \mathfrak{q} of M, is finite ([16, (3.3) Satz], [20, Lemma 1.1]). Furthermore, it is also equivalent to the condition that there exists an integer $\ell \gg 0$ such that every system of parameters contained in \mathfrak{m}^ℓ acts as a d-sequence on M ([3, Theorem]). In this case, the equality

$$\mathbb{I}(M) = \sum_{i=0}^{s-1} {s-1 \choose i} \ell_R(\mathbf{H}^i_{\mathfrak{m}}(M))$$

holds ([16, (3.7) Satz], [20, Lemma 1.5]). If M has FLC with $s = \dim_R M \ge 1$, the localization $M_{\mathfrak{p}}$ at $\mathfrak{p} \in \operatorname{Supp}_R M \setminus \{\mathfrak{m}\}$ is necessarily a Cohen-Macaulay $R_{\mathfrak{p}}$ -module satisfying the equality

$$\dim_R M = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \dim R/\mathfrak{p}.$$

The converse holds if R is a homomorphic image of a Cohen-Macaulay ring ([16, (2.5) Satz], [2, (1.17)], see also [10, Corollary 1.2]). Consequently, all normal isolated singularities that appear as homomorphic images of Cohen-Macaulay rings possess FLC. For more details on FLC modules, the reader may refer to [2, 3, 6, 16, 19, 20], and others.

2.3. Blow-up algebras associated with filtrations. Let $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ be a filtration of ideals in R, meaning that F_n is an ideal of R, $F_n \supseteq F_{n+1}$, $F_m F_n \subseteq F_{m+n}$ for all $m, n \in \mathbb{Z}$, and $F_0 = R$. Define

$$\mathscr{R}'(\mathscr{F}) = \sum_{n \in \mathbb{Z}} F_n t^n \subseteq R[t, t^{-1}] \text{ and } G(\mathscr{F}) = \mathscr{R}'(\mathscr{F})/t^{-1}\mathscr{R}'(\mathscr{F}) \cong \bigoplus_{n \geq 0} F_n/F_{n+1},$$

as the *extended Rees algebra of* \mathscr{F} and the *associated graded ring of* \mathscr{F} , respectively, where t is an indeterminate over R. Recall that the filtration $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ is *Noetherian*, if the ring $\mathscr{R}'(\mathscr{F})$ is Noetherian. We say that the filtration $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ is *Hilbert*, if F_1 is m-primary and $F_{n+1} = F_1F_n$ for all $n \gg 0$. In addition, for an ideal I of R, we denote by \mathscr{F}/I the filtration $\{(F_n + I)/I\}_{n \in \mathbb{Z}}$ of ideals in R/I.

Examples of Hilbert filtrations are plentiful. Beyond the classical instance of the ideal-adic filtration, when R is analytically unramified, the filtration $\{\overline{I^n}\}_{n\in\mathbb{Z}}$, consisting of the integral closures of powers of an m-primary ideal I, constitutes the Hilbert filtration ([14]). Furthermore, the filtration $\{(I^n)\}_{n\in\mathbb{Z}}$, formed by the Ratliff-Rush closures of the powers of I, also qualifies as the Hilbert filtration.

The following constitutes a generalization of the works of [8, Proposition 6] and [21, Corollary 2.7], while also serving as a partial generalization of [9, Proposition 3.5]. Although this may be familiar to experts in the field, we include a proof for the sake of completeness.

Proposition 2.1. Let (R, \mathfrak{m}) be a Noetherian local ring and $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ the Hilbert filtration of ideals in R. Let $a_1, a_2, \ldots, a_r \in R$ (r > 0) such that $a_i \in F_{n_i}$ with $n_i \geq 0$. Then the following conditions are equivalent.

- (1) $a_1t^{n_1}, a_2t^{n_2}, \dots, a_rt^{n_r} \in \mathcal{R}'(\mathcal{F})$ forms a regular sequence on $G(\mathcal{F})$.
- (2) $a_1, a_2, ..., a_r$ forms a regular sequence on R and the equality $(a_1, a_2, ..., a_r) \cap F_n = \sum_{i=1}^r a_i F_{n-n_i}$ holds for all $n \in \mathbb{Z}$.

When this is the case, one has an isomorphism

$$G(\mathscr{F})/(a_1t^{n_1},a_2t^{n_2},\ldots,a_rt^{n_r})G(\mathscr{F})\cong G(\mathscr{F}/(a_1,a_2,\ldots,a_r))$$

of rings.

Proof. (1) \Rightarrow (2) By induction on r. Suppose r = 1. Let $x \in R$ with $a_1x = 0$. Since the Hilbert filtration is separated, if $x \neq 0$, we can choose $n \geq 0$ such that $x \in F_n \setminus F_{n+1}$. Then

$$a_1t^{n_1}\cdot \overline{xt^n} = \overline{(a_1x)t^{n_1+n}} = 0$$

where $\overline{(-)}$ denotes the image in $G(\mathscr{F})$. Since $a_1t^{n_1}$ is $G(\mathscr{F})$ -regular, it follows that $\overline{xt^n}=0$ in $G(\mathscr{F})$. This implies $x\in F_{n+1}$, which contradicts $x\in F_n\setminus F_{n+1}$. Hence x=0. If $a_1\not\in\mathfrak{m}$, then $n_1=0$ because $a\in F_{n_1}$. Thus, $a_1t^{n_1}=a_1$ is a unit in $\mathscr{R}'(\mathscr{F})$, a contradiction. Therefore $a\in\mathfrak{m}$ is R-regular. Next, we will show that $(a_1)\cap F_n=a_1F_{n-n_1}$ holds for all $n\in\mathbb{Z}$. Indeed, let $x\in(a_1)\cap F_n$, and write $x=a_1y$ for some $y\in R$. Suppose $y\notin F_{n-n_1}$. Choose $\ell\geq 0$ such that $y\in F_\ell\setminus F_{\ell+1}$. Then $n-n_1\geq \ell+1$. Consequently, $a_1y=x\in F_n\subseteq F_{n_1+\ell+1}$. Since $a_1t^{n_1}$ is $G(\mathscr{F})$ -regular, we have $y\in F_{\ell+1}$, a contradiction. Thus, $y\in F_{n-n_1}$, and hence $(a_1)\cap F_n\subseteq a_1F_{n-n_1}$. The converse inclusion follows from $a_1\in F_{n_1}$. Therefore, $(a_1)\cap F_n=a_1F_{n-n_1}$. The canonical surjection $\varepsilon:R\to R/(a_1)$ induces a surjective graded ring homomorphism

$$\varphi: G(\mathcal{F}) \to G(\mathcal{F}/(a_1))$$

defined by $\varphi(\overline{xt^n}) = \overline{(x+F_{n+1})t^n}$ for each $x \in F_n$. For $x \in F_n$, we have $xt^n \in \operatorname{Ker} \varphi$ if and only if $x \in (F_{n+1} + (a_1)) \cap F_n$, or equivalently $x \in F_{n+1} + a_1F_{n-n_1}$, because $(a_1) \cap F_n = a_1F_{n-n_1}$. Hence $\operatorname{Ker} \varphi = (a_1t^{n_1})$, and therefore $G(\mathscr{F})/(a_1t^{n_1})G(\mathscr{F}) \cong G(\mathscr{F}/(a_1))$. Thus, (2) holds for r = 1.

Now, assume $r \ge 2$ and that (2) holds for r-1. Since $G(\mathscr{F})/(a_1t^{n_1})G(\mathscr{F}) \cong G(\mathscr{F}/(a_1))$, the sequence $a_2t^{n_2}, a_3t^{n_3}, \ldots, a_rt^{n_r}$ is $G(\mathscr{F}/(a_1))$ -regular. Note that $\mathscr{F}/(a_1)$ is the Hilbert filtration of ideals in $R/(a_1)$. By the induction hypothesis, a_2, a_3, \ldots, a_r is an R-regular sequence, and the equality

$$(a_2, a_3, \dots, a_r)\overline{R} \cap F_n\overline{R} = \sum_{i=2}^r a_i F_{n-n_i}\overline{R}$$

holds, where $\overline{R}=R/(a_1)$. In particular, $a_1,a_2,\ldots,a_r\in \mathfrak{m}$ forms an R-regular sequence. Finally, let $x\in (a_1,a_2,\ldots,a_r)\cap F_n$. We can choose $y_i\in F_{n-n_i}$ such that $x-(a_2y_2+a_3y_3+\cdots+a_ry_r)\in (a_1)$. Since $a_iy_i\in F_n$ for all $2\leq i\leq r$, it follows that $x-(a_2y_2+a_3y_3+\cdots+a_ry_r)\in (a_1)\cap F_n=a_1F_{n-n_1}$. Thus $x\in \sum_{j=1}^r a_jF_{n-n_j}$. Consequently, $(a_1,a_2,\ldots,a_r)\cap F_n=\sum_{j=1}^r a_jF_{n-n_j}$. Furthermore, the induction hypothesis implies

$$G(\mathscr{F})/(a_{1}t^{n_{1}}, a_{2}t^{n_{2}}, \dots, a_{r}t^{n_{r}})G(\mathscr{F}) \cong G(\mathscr{F}/(a_{1}))/(a_{2}t^{n_{2}}, a_{3}t^{n_{3}}, \dots, a_{r}t^{n_{r}})G(\mathscr{F}/(a_{1}))$$

$$\cong G((\mathscr{F}/(a_{1}))/(a_{2}, a_{3}, \dots, a_{r})(\mathscr{F}/(a_{1})))$$

$$\cong G(\mathscr{F}/(a_{1}, a_{2}, \dots, a_{r})).$$

Thus, the result follows.

 $(2) \Rightarrow (1)$ Let $J_i = (a_1, a_2, \dots, a_i)$ for each $1 \le i \le r$. We prove by descending induction that

$$J_i \cap F_n = \sum_{j=1}^r a_j F_{n-n_j}$$

holds for all $1 \le i \le r$ and $n \in \mathbb{Z}$. Assuming the assertion holds for i+1, we proceed by induction on i. Without loss of generality, we assume $1 \le i < r$ and that the assertion holds for i+1. We now further proceed by induction on n. Notice that the desired equality holds trivially for $n \le 0$. Let n > 0, and assume that the equality holds for n-1. By defining $L = \sum_{i=1}^{i} a_i F_{n-n_i}$, we obtain

$$J_i \cap F_n \subseteq J_{i+1} \cap F_n = \sum_{j=1}^{i+1} a_j F_{n-n_j} = L + a_{i+1} F_{n-n_{i+1}}.$$

Thus, $J_i \cap F_n \subseteq \left[L + (a_{i+1}F_{n-n_{i+1}})\right] \cap J_i = L + \left[J_i \cap (a_{i+1}F_{n-n_{i+1}})\right]$. It remains to verify that $J_i \cap (a_{i+1}F_{n-n_{i+1}}) \subseteq L$.

Let $x \in J_i \cap (a_{i+1}F_{n-n_{i+1}})$, and write $x = a_{i+1}y$ with $y \in F_{n-n_{i+1}}$. As $a_{i+1}y = x \in F_i$ and a_{i+1} is a non-zerodivisor modulo J_i , we have $y \in J_i \cap F_{n-n_{i+1}}$.

Case 1. $n_{i+1} > 0$

In this case, $n - n_{i+1} < n$. By the induction hypothesis on n, we have $y \in J_i \cap F_{n-n_{i+1}} = \sum_{j=1}^i a_j F_{(n-n_{i+1})-n_j}$. Since $a_{i+1} \in F_{n_{i+1}}$, it follows that $x = a_{i+1}y \in \sum_{j=1}^i a_j F_{(n-n_{i+1})-n_j} \cdot F_{n_{i+1}} \subseteq \sum_{j=1}^i a_j F_{n-n_j} = L$, as desired.

Case 2.
$$n_{i+1} = 0$$

We first show that $J_i \cap (a_{i+1}F_n) \subseteq (a_{i+1}^mF_n) + L$ for all m > 0. If m = 1, this inclusion is immediate. Assume m > 1, and that the inclusion holds for m - 1. Let $x \in J_i \cap (a_{i+1}F_n)$. Then $x = a_{i+1}^{m-1}y + \ell$ for some $y \in F_n$ and $\ell \in L$. Thus, $a_{i+1}^{m-1}y = x - \ell \in J_i$, and since a_{i+1} is R/J_i -regular, it follows that $y \in J_i$. Therefore $y \in J_i \cap F_n \subseteq J_{i+1} \cap F_n \subseteq L + a_{i+1}F_n$. Hence

 $x = a_{i+1}^{m-1}y + \ell \in a_{i+1}^m F_n + L$, that is, $J_i \cap (a_{i+1}F_n) \subseteq (a_{i+1}^m F_n) + L$. Taking the intersection over all m > 0, we obtain

$$J_i \cap (a_{i+1}F_n) \subseteq \bigcap_{m>0} \left[(a_{i+1}^m F_n) + L \right] \subseteq \bigcap_{m>0} \left[(\mathfrak{m}^m F_n) + L \right] \subseteq L.$$

Consequently, $J_i \cap (a_{i+1}F_{n-n_{i+1}}) \subseteq L$.

In conclusion, for both cases, we have $J_i \cap (a_{i+1}F_{n-n_{i+1}}) \subseteq L$, which implies $J_i \cap F_n = L = \sum_{i=1}^{l} a_i F_{n-n_i}$. Next, it is straightforward to verify that the equality

$$(a_1t^{n_1}, a_2t^{n_2}, \dots, a_it^{n_i})G(\mathscr{F}):_{G(\mathscr{F})} a_{i+1}t^{n_{i+1}} = (a_1t^{n_1}, a_2t^{n_2}, \dots, a_it^{n_i})G(\mathscr{F})$$

holds for all $0 \le i < r$. Consider a surjective graded ring homomorphism

$$\varphi: G(\mathscr{F}) \to G(\mathscr{F}/J_r)$$

defined by $\varphi(\overline{xt^n}) = \overline{(x+F_{n+1})t^n}$ for each $x \in F_n$. Since $\text{Ker } \varphi = (a_1t^{n_1}, a_2t^{n_2}, \dots, a_rt^{n_r})G(\mathscr{F})$, we obtain the isomorphism $G(\mathscr{F})/(a_1t^{n_1}, a_2t^{n_2}, \dots, a_rt^{n_r})G(\mathscr{F}) \cong G(\mathscr{F}/J_r)$. Finally, because $a_1, a_2, \dots, a_r \in \mathfrak{m}$ and F_1 is \mathfrak{m} -primary, we have $(F_1 + J_r)/J_r \neq R/J_r$. This implies $G(\mathscr{F}/J_r) \neq (0)$. Therefore, $a_1t^{n_1}, a_2t^{n_2}, \dots, a_rt^{n_r} \in \mathscr{R}'(\mathscr{F})$ forms a regular sequence on $G(\mathscr{F})$.

Proposition 2.2. Let (R, \mathfrak{m}) be a Noetherian local ring and $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ the Hilbert filtration of ideals in R. Suppose that depth $G(\mathscr{F}) = r > 0$. Then there exists homogeneous elements f_1, f_2, \ldots, f_r in $\mathscr{R}'(\mathscr{F})$ of non-negative degree such that f_1, f_2, \ldots, f_r forms a regular sequence on $G(\mathscr{F})$.

Proof. Let \mathfrak{N} denote the graded maximal ideal of $G(\mathscr{F})$. We aim to prove that $\operatorname{Ass} G(\mathscr{F}) \subseteq \operatorname{Proj} G(\mathscr{F})$. Indeed, note that $\mathfrak{N} \notin \operatorname{Ass} G(\mathscr{F})$. For each $P \in \operatorname{Ass} G(\mathscr{F})$, the ideal P is graded and satisfies $P \subsetneq \mathfrak{N}$. Assume, for the sake of contradiction, that $P \supseteq G(\mathscr{F})_+$, where $G(\mathscr{F})_+ = \bigoplus_{n>0} F_n/F_{n+1}$. Since F_1 is m-primary and $\mathfrak{m} G(\mathscr{F})$ is contained in the integral closure of $G(\mathscr{F})_+$, it follows that $G(\mathscr{F})_+$ is a reduction of \mathfrak{N} . Consequently, we would have $P = \mathfrak{N}$, which is a contradiction. Hence, $P \in \operatorname{Proj} G(\mathscr{F})$. Therefore, we conclude that $\operatorname{Ass} G(\mathscr{F}) \subseteq \operatorname{Proj} G(\mathscr{F})$, as desired.

By employing the same technique as in the proof of [12, Lemma 3.1], for any subset $\mathscr{X} \subseteq \operatorname{Ass} G(\mathscr{F})$ and any graded ideal I of $G(\mathscr{F})$ with $I \not\subseteq \bigcup_{P \in \mathscr{X}} P$, there exists a homogeneous element $g \in I$ such that $g \not\in \bigcup_{P \in \mathscr{X}} P$. In particular, we can choose a homogeneous $g \in \mathfrak{N}$ such that $g \not\in \bigcup_{P \in \operatorname{Ass} G(\mathscr{F})} P$. Write $g = \overline{a_1 t^{n_1}}$, where $a_1 \in F_{n_1}$ and $n_1 \geq 0$, with $\overline{(-)}$ denoting the image in $G(\mathscr{F})$. By Proposition 2.1, it follows that $a_1 \in \mathfrak{m}$ is R-regular and that

$$G(\mathscr{F})/(a_1t^{n_1})G(\mathscr{F})\cong G(\mathscr{F}/(a_1)).$$

Since the filtration $\mathscr{F}/(a_1)$ is Hilbert and depth $G(\mathscr{F}/(a_1)) = r-1$, the induction hypothesis ensures the existence of homogeneous elements $g_2, \ldots, g_r \in G(\mathscr{F}/(a_1))$ of non-negative degree such that these elements form a regular sequence on $G(\mathscr{F}/(a_1))$. Consequently, there exist homogeneous elements f_1, f_2, \ldots, f_r in $\mathscr{R}'(\mathscr{F})$ of non-negative degree such that f_1, f_2, \ldots, f_r is $G(\mathscr{F})$ -regular.

3. When does the quasi-Gorenstein property deform?

In this section, we explore the conditions under which the quasi-Gorenstein property deforms. Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R > 0$ that admits a canonical module K_R . Note that R is Gorenstein if $d \leq 3$ and R/xR is quasi-Gorenstein for some non-zerodivisor $x \in \mathfrak{m}$. Thus, when addressing the deformation problem of the quasi-Gorenstein property, it is sufficient to focus on cases where $d \geq 4$ and R is not Cohen-Macaulay. In such cases, one has depth $R \geq 3$. We begin with the following, which plays a key in our argument.

Theorem 3.1. Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R \geq 4$ and $\operatorname{depth} R = d - 1$, admitting the canonical module K_R . Suppose that there exists a non-zerodivisor $x \in \mathfrak{m}$ on R such that R/xR is quasi-Gorenstein and $\operatorname{H}^{d-2}_{\mathfrak{m}}(R/xR)$ is finitely generated as an R-module. Then the following assertions hold true, where M denotes the Matlis dual of $\operatorname{H}^{d-1}_{\mathfrak{m}}(R)$.

- (1) R is quasi-Gorenstein if and only if M is a Cohen-Macaulay R-module with $\dim_R M = 1$.
- (2) Supp_RM is the non-Cohen-Macaulay locus of R, i.e., the set of prime ideals \mathfrak{p} of R for which the local ring $R_{\mathfrak{p}}$ is not Cohen-Macaulay.
- (3) If $\dim_R M = 1$, then M is a Cohen-Macaulay R-module if and only if the equality

$$\ell_{R}(\mathrm{H}^{d-2}_{\mathfrak{m}}(R/xR)) = \sum_{\mathfrak{p} \in \mathrm{Assh}_{R} M} \ell_{R_{\mathfrak{p}}}(\mathrm{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})) \cdot \mathrm{e}_{0}(x, R/\mathfrak{p})$$

holds.

Proof. Without loss of generality, we may assume that R is \mathfrak{m} -adically complete. Let $\overline{R} = R/xR$. Note that $M \neq (0)$. By applying the functor $H^i_{\mathfrak{m}}(-)$ to the sequence $0 \to R \xrightarrow{x} R \to \overline{R} \to 0$, we obtain the long exact sequence of R-modules

$$0 \to \mathrm{H}^{d-2}_{\mathfrak{m}}(\overline{R}) \to \mathrm{H}^{d-1}_{\mathfrak{m}}(R) \overset{x}{\to} \mathrm{H}^{d-1}_{\mathfrak{m}}(R) \to \mathrm{H}^{d-1}_{\mathfrak{m}}(\overline{R}) \to \mathrm{H}^{d}_{\mathfrak{m}}(R) \overset{x}{\to} \mathrm{H}^{d}_{\mathfrak{m}}(R) \to 0.$$

Taking Matlis duality yields the exact sequence

$$0 \to \mathsf{K}_R \overset{x}{\to} \mathsf{K}_R \to \mathsf{K}_{\overline{R}} \to M \overset{x}{\to} M \to [\mathsf{H}^{d-2}_{\mathsf{m}}(\overline{R})]^{\vee} \to 0$$

which can be divided into the following three parts

$$0 \to \mathrm{K}_R \overset{x}{\to} \mathrm{K}_R \to \mathrm{K}_R/x\mathrm{K}_R \to 0,$$
 $0 \to \mathrm{K}_R/x\mathrm{K}_R \to \mathrm{K}_{\overline{R}} \to C \to 0,$ and $0 \to C \to M \overset{x}{\to} M \to [\mathrm{H}^{d-2}_{\mathfrak{m}}(\overline{R})]^{\vee} \to 0$

where $C = (0) :_M x$. Since $[H_{\mathfrak{m}}^{d-2}(\overline{R})]^{\vee}$ has finite length, it follows that $\dim_R M \leq 1$.

(1) We first assume that R is quasi-Gorenstein. If $\dim_R M = 0$, the ring R has FLC, because $\ell_R(\mathrm{H}^{d-1}_{\mathfrak{m}}(R)) < \infty$. By [2, (1.16)], we get the isomorphisms

$$M = [H_{\mathfrak{m}}^{d-1}(R)]^{\vee} \cong H_{\mathfrak{m}}^{d-(d-1)+1}(K_R) \cong H_{\mathfrak{m}}^2(R) = (0)$$

which leads to a contradiction. Thus $\dim_R M = 1$, so $x \in \mathfrak{m}$ forms a system of parameters for M. Therefore, it suffices to prove that C = (0). Assume, to the contrary, that $C \neq (0)$, and seek a contradiction. As $\ell_R(M/xM) < \infty$, for each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{\mathfrak{m}\}$, we have the exact sequence

$$0 \to C_{\mathfrak{p}} \to M_{\mathfrak{p}} \stackrel{x}{\to} M_{\mathfrak{p}} \to 0$$

8

of $R_{\mathfrak{p}}$ -modules. This implies that $C_{\mathfrak{p}}=(0)$, and hence $\ell_R(C)<\infty$. Next, applying the depth lemma to the exact sequence

$$0 \to K_R/xK_R \to K_{\overline{R}} \cong \overline{R} \to C \to 0$$
,

we have depth $K_R = 2$. However, this contradicts the facts that $R \cong K_R$ and depth $R \ge 3$. Consequently C = (0), as desired.

Conversely, we assume M is Cohen-Macaulay and of dimension one. Since $\ell_R(M/xM) < \infty$, note that $x \in \mathfrak{m}$ is a non-zerodivisor on M. Thus C = (0) and $K_R/xK_R \cong \overline{R}$. It is straightforward to check that the local ring R is quasi-Gorenstein.

(2) Let $\mathfrak{p} \in \operatorname{Supp}_R M$. To show that $R_{\mathfrak{p}}$ is not Cohen-Macaulay, we may assume $\mathfrak{p} \neq \mathfrak{m}$. Then $\dim_R M = 1$ and $\mathfrak{p} \in \operatorname{Assh}_R M$. In particular, $\operatorname{Supp}_R M \setminus \{\mathfrak{m}\} \subseteq \operatorname{Assh}_R M$. Choose a Gorenstein complete local ring S with $\dim S = d$ such that R is a homomorphic image of S. Let $P = \mathfrak{p} \cap S \in \operatorname{Spec} S$. Then $S/P \cong R/\mathfrak{p}$, which implies $\dim S_P = d - 1$. As S is Gorenstein and complete, we get the isomorphism

$$M = [\mathrm{H}^{d-1}_{\mathfrak{m}}(R)]^{\vee} \cong \mathrm{Ext}^1_S(R,S)$$

which yields $M_{\mathfrak{p}} \cong \operatorname{Ext}^1_{S_P}(R_{\mathfrak{p}}, S_P)$. Hence

$$(0) \neq \widehat{R_{\mathfrak{p}}} \otimes_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \cong \widehat{S_P} \otimes_{S_P} \operatorname{Ext}^1_{S_P}(R_{\mathfrak{p}}, S_P) \cong [\operatorname{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})]^{\vee}.$$

This shows $0 < \ell_{R_{\mathfrak{p}}}(\mathrm{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})) < \infty$, because $\mathfrak{p} \in \mathrm{Assh}_R M$. Then $R_{\mathfrak{p}}$ is not Cohen-Macaulay. Indeed, we assume the contrary, i.e., $R_{\mathfrak{p}}$ is Cohen-Macaulay. As depth $R_{\mathfrak{p}} = d - 2 \geq 2$, we can choose a non-zerodivisor $\alpha \in \mathfrak{p}R_{\mathfrak{p}}$ on $R_{\mathfrak{p}}$. The sequence $0 \to R_{\mathfrak{p}} \to R_{\mathfrak{p}} \to R_{\mathfrak{p}}/\alpha R_{\mathfrak{p}} \to 0$ induces the exact sequence

$$0 \to \mathrm{H}^{d-3}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\alpha R_{\mathfrak{p}}) \to \mathrm{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}) \overset{\alpha}{\to} \mathrm{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}) \to 0$$

of $R_{\mathfrak{p}}$ -modules. Since $H^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})$ is finitely generated, it follows that $H^{d-3}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\alpha R_{\mathfrak{p}})=(0)$. This contradicts the fact that $R_{\mathfrak{p}}/\alpha R_{\mathfrak{p}}$ is Cohen-Macaulay and of dimension d-3. Therefore, $R_{\mathfrak{p}}$ cannot be Cohen-Macaulay, as required.

On the other hand, pick $\mathfrak{p} \in \operatorname{Spec} R$ such that $R_{\mathfrak{p}}$ is not Cohen-Macaulay. Let S be a Gorenstein complete local ring with $\dim S = d$ such that R is a homomorphic image of S. Setting $P = \mathfrak{p} \cap S$, $n = \dim S_P$, and $t = \operatorname{depth} R_{\mathfrak{p}}$, we have

$$n = \dim S_P \ge \dim R_{\mathfrak{p}} > t = \operatorname{depth} R_{\mathfrak{p}},$$

which implies $\operatorname{Ext}_{S}^{n-t}(R,S) \neq (0)$. If $n-t \geq 2$, then

$$\operatorname{Ext}_{S}^{n-t}(R,S) \cong [\operatorname{H}_{\mathfrak{m}}^{d-(n-t)}(R)]^{\vee} = (0),$$

a contradiction. Hence, n - t = 1, and we conclude that

$$M_{\mathfrak{p}}\cong \operatorname{Ext}^1_{S_P}(R_{\mathfrak{p}},S_P)\neq (0).$$

Thus, $\operatorname{Supp}_R M$ is precisely the non-Cohen-Macaulay locus of R.

(3) Suppose $\dim_R M = 1$. Since $M/xM \cong [\operatorname{H}^{d-2}_{\mathfrak{m}}(\overline{R})]^{\vee}$, we have $\ell_R(M/xM) = \ell_R(\operatorname{H}^{d-2}_{\mathfrak{m}}(\overline{R}))$. First, assume that M is Cohen-Macaulay. Because $x \in \mathfrak{m}$ is a system of parameters for M, we get $e_0(x,M) = \ell_R(M/xM)$. Using the associativity formula for multiplicity, we derive the equalities

$$e_0(x,M) = \sum_{\mathfrak{p} \in \operatorname{Assh}_R M} \ell_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \cdot e_0(x,R/\mathfrak{p}) = \sum_{\mathfrak{p} \in \operatorname{Assh}_R M} \ell_{R_{\mathfrak{p}}}(H_{\mathfrak{p}R_{\mathfrak{p}}}^{d-2}(R_{\mathfrak{p}})) \cdot e_0(x,R/\mathfrak{p})$$

where the second equality follows from the fact that

$$\ell_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \ell_{R_{\mathfrak{p}}}(\widehat{R_{\mathfrak{p}}} \otimes_{R_{\mathfrak{p}}} M_{\mathfrak{p}}) = \ell_{R_{\mathfrak{p}}}[(H^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})]^{\vee}) = \ell_{R_{\mathfrak{p}}}(H^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}))$$

for all $\mathfrak{p} \in \mathrm{Assh}_R M$. This establishes the desired equality. Conversely, assume that

$$\ell_R(\mathrm{H}^{d-2}_{\mathfrak{m}}(R/xR)) = \sum_{\mathfrak{p} \in \mathrm{Assh}_R M} \ell_{R_{\mathfrak{p}}}(\mathrm{H}^{d-2}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})) \cdot \mathrm{e}_0(x,R/\mathfrak{p}).$$

Since $\ell_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \ell_{R_{\mathfrak{p}}}(H_{\mathfrak{p}R_{\mathfrak{p}}}^{d-2}(R_{\mathfrak{p}}))$, it follows that $\ell_{R}(M/xM) = e_{0}(x,M)$. Hence, M is Cohen-Macaulay.

Remark 3.2. Under the assumption of Theorem 3.1, the condition that $H_{\mathfrak{m}}^{d-2}(R/xR)$ is finitely generated as an R-module is equivalent to stating that the ring R/xR has FLC. The latter condition holds if either R/xR is locally Cohen-Macaulay on the punctured spectrum, or dim R=4.

Corollary 3.3. Let (R, \mathfrak{m}) be a Noetherian local ring with $\dim R = 4$ admitting the canonical module K_R . Suppose that R is not Cohen-Macaulay and there exists a non-zerodivisor $x \in \mathfrak{m}$ on R such that R/xR is quasi-Gorenstein. Then the following assertions hold true, where M denotes the Matlis dual of $H^3_{\mathfrak{m}}(R)$.

- (1) R is quasi-Gorenstein if and only if M is a Cohen-Macaulay R-module with $\dim_R M = 1$.
- (2) $Supp_R M$ is the non-Cohen-Macaulay locus of R.
- (3) If $\dim_R M = 1$, then M is a Cohen-Macaulay R-module if and only if the equality

$$\ell_R(\mathrm{H}^2_{\mathfrak{m}}(R/xR)) = \sum_{\mathfrak{p} \in \mathrm{Assh}_R M} \ell_{R_{\mathfrak{p}}}(\mathrm{H}^2_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})) \cdot \mathrm{e}_0(x, R/\mathfrak{p})$$

holds.

Proof. We may assume that R is complete. Set $\overline{R} = R/xR$. Note that depth R = 3. For every $P \in \operatorname{Spec} \overline{R} \setminus \{\overline{\mathfrak{m}}\}$, we have $\dim \overline{R}_P \leq 2$; hence \overline{R}_P is Cohen-Macaulay because \overline{R} satisfies Serre's (S_2) condition. Since $(K_{\overline{R}})_P \cong \overline{R}_P \neq (0)$, it follows that $P \in \operatorname{Supp}_{\overline{R}} K_{\overline{R}}$. Thus, $3 = \dim \overline{R}_P + \dim \overline{R}/P$. As \overline{R} is a homomorphic image of a Cohen-Macaulay ring, \overline{R} has FLC. Therefore, $H^2_{\mathfrak{m}}(\overline{R})$ is finitely generated as an R-module. Hence, the assertions follow from Theorem 3.1.

Corollary 3.4. Let (R,\mathfrak{m}) be a Noetherian local ring with $d=\dim R>0$ admitting the canonical module K_R . Suppose that R has FLC and there exists a non-zerodivisor $x\in\mathfrak{m}$ on R such that R/xR is quasi-Gorenstein. Then R is quasi-Gorenstein if and only if $H^{d-1}_{\mathfrak{m}}(R)=(0)$. In particular, R is quasi-Gorenstein if and only if R is Gorenstein, provided $d\leq 4$.

Proof. Let $\overline{R} = R/xR$. For $d \ge 3$, the ring R is Gorenstein, so we may assume $d \ge 4$. Hence, depth $R \ge 3$. Suppose that $H^{d-1}_{\mathfrak{m}}(R) = (0)$. Applying the functor $H^i_{\mathfrak{m}}(-)$ to the exact sequence $0 \to K_R \xrightarrow{x} K_R \to \overline{R} \to 0$, we obtain the sequence $0 \to H^{d-1}_{\mathfrak{m}}(\overline{R}) \to H^d_{\mathfrak{m}}(R) \xrightarrow{x} H^d_{\mathfrak{m}}(R) \to 0$. This implies the exact sequence

$$0 \to \mathbf{K}_R \stackrel{x}{\to} \mathbf{K}_R \to \overline{R} \to 0$$

of *R*-modules. Therefore, we have $R \cong K_R$. Conversely, assume *R* is quasi-Gorenstein. Then we have the exact sequence

$$0 \to \overline{R} \to \overline{R} \to C \to 0$$

where M denotes the Matlis dual of $H^{d-1}_{\mathfrak{m}}(R)$ and $C=(0):_M x$. Suppose, for the sake of contradiction, that $H^{d-1}_{\mathfrak{m}}(R) \neq (0)$. Then $M \neq (0)$, and $\ell_R(M) = \ell_R(H^{d-1}_{\mathfrak{m}}(R))$ is finite because R has

FLC. Thus, $\dim_R M = 0$. Consequently, $C \neq (0)$, which implies $\dim_R C = 0$ and $\operatorname{depth} R = 2$. This is a contradiction. Hence, $\operatorname{H}^{d-1}_{\mathfrak{m}}(R) = 0$, as required. Finally, assume d = 4 and R is quasi-Gorenstein. Since $\operatorname{H}^3_{\mathfrak{m}}(R) = 0$ and $\operatorname{depth} R \geq 3$, it follows that $\operatorname{depth} R \geq 4$. Hence, R is Cohen-Macaulay, which means R is Gorenstein.

To conclude this section, we articulate the criteria under which a quasi-Gorenstein ring possessing the FLC property is guaranteed to be Gorenstein.

Remark 3.5. Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R \ge 2$ that admits the canonical module K_R . Suppose R is quasi-Gorenstein having FLC. Then R is Gorenstein if and only if $\operatorname{depth} R \ge \frac{d}{2} + 1$.

Proof. We may first assume that R is complete. Suppose R is Gorenstein. Since $d \ge 2$, we have $d \ge \frac{d}{2} + 1$; hence, depth $R \ge \frac{d}{2} + 1$. Conversely, when d = 2, the ring R is Cohen-Macaulay because depth $R \ge \frac{d}{2} + 1 = 2$. This implies that R is Gorenstein. Therefore, we may assume $d \ge 3$. Since R is complete and has FLC, we have the isomorphisms

$$\mathrm{H}^i_{\mathfrak{m}}(R) \cong [\mathrm{H}^{d-i+1}_{\mathfrak{m}}(\mathrm{K}_R)]^{\vee} \cong [\mathrm{H}^{d-i+1}_{\mathfrak{m}}(R)]^{\vee}$$

for every $2 \le i \le d-1$. Set $t = \operatorname{depth} R$. Then $t \ge \frac{d}{2} + 1$, which implies that $t \ge 3$. Assume R is not Cohen-Macaulay. Then $t \le d-1$. This leads us to $(0) \ne \operatorname{H}^t_{\mathfrak{m}}(R) \cong [\operatorname{H}^{d-t+1}_{\mathfrak{m}}(R)]^{\vee}$. Thus, $\operatorname{H}^{d-t+1}_{\mathfrak{m}}(R) \ne (0)$. Consequently, $t \le d-t+1$. This yields $\frac{d}{2} + 1 \le t \le \frac{d+1}{2}$, which is a contradiction. Therefore, R must be Cohen-Macaulay, and hence R is Gorenstein. \square

4. Proof of Main Theorem

First, we establish the notation and assumptions that form the basis of all the results in this section.

Setup 4.1. Let (R, \mathfrak{m}) be a Noetherian local ring, and let $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ denote a Noetherian filtration of ideals of R with $F_1 \neq R$. Let t be an indeterminate over R. The *extended Rees algebra of* \mathscr{F} and the *associated graded ring of* \mathscr{F} are defined as

$$\mathscr{R}'(\mathscr{F}) = \sum_{n \in \mathbb{Z}} F_n t^n \subseteq R[t, t^{-1}], \ G(\mathscr{F}) = \mathscr{R}'(\mathscr{F})/t^{-1} \mathscr{R}'(\mathscr{F}) \cong \bigoplus_{n > 0} F_n/F_{n+1},$$

respectively. Let \mathfrak{M} and \mathfrak{N} denote the unique graded maximal ideals of $\mathscr{R}'(\mathscr{F})$ and $G(\mathscr{F})$, respectively. For each $\mathfrak{p} \in \operatorname{Spec} R$, we define $\mathfrak{p}' = \mathfrak{p} \cdot R[t, t^{-1}] \cap \mathscr{R}'(\mathscr{F})$.

Note that \mathfrak{p}' is a graded prime ideal of $\mathscr{R}'(\mathscr{F})$ with $t^{-1} \not\in \mathfrak{p}'$ and $\mathfrak{p}' \subsetneq \mathfrak{M}$. There exists a one-to-one correspondence between $\operatorname{Spec} R$ and ${}^*D(t^{-1})$, the set of all graded prime ideals P of $\mathscr{R}'(\mathscr{F})$ such that $t^{-1} \not\in P$, where $\mathfrak{p} \in \operatorname{Spec} R$ corresponds to $\mathfrak{p}' \in {}^*D(t^{-1})$. Furthermore, we have the isomorphisms

$$\mathscr{R}'(\mathscr{F})_{\mathfrak{p}'} \cong R[t,t^{-1}]_{\mathfrak{p}R[t,t^{-1}]} \cong R[t]_{\mathfrak{p}R[t]}$$
 and $\mathscr{R}'(\mathscr{F})/\mathfrak{m}' \cong (R/\mathfrak{m})[t^{-1}].$

Lemma 4.2. Suppose the following conditions hold.

- (1) R is not a Cohen-Macaulay ring but possesses FLC.
- (2) F_1 is an \mathfrak{m} -primary ideal of R.
- (3) $G(\mathcal{F})_Q$ is Cohen-Macaulay for every graded prime ideal Q of $G(\mathcal{F})$ with $Q \neq \mathfrak{N}$.

Then, for every $P \in \operatorname{Spec} \mathscr{R}'(\mathscr{F})$ such that P is graded and $P \neq \mathfrak{M}$, the local ring $\mathscr{R}'(\mathscr{F})_P$ is not Cohen-Macaulay if and only if $P = \mathfrak{m}'$. In particular, $V(\mathfrak{m}')$ coincides with the non-Cohen-Macaulay locus of $\mathscr{R}'(\mathscr{F})$.

Proof. Let P be a graded prime ideal of $\mathscr{R}'(\mathscr{F})$ with $P \neq \mathfrak{M}$. Suppose that $\mathscr{R}'(\mathscr{F})_P$ is not Cohen-Macaulay. If $t^{-1} \in P$, then P contains $F_n = F_n t^n \cdot t^{-n}$ for all n > 0, which implies $F_\ell t^\ell \nsubseteq P$ for some $\ell > 0$. By our assumption, $G(I)_Q$ is Cohen-Macaulay, where $Q = P \cdot G(I) \subsetneq \mathfrak{N}$. Hence, $\mathscr{R}'(I)_P$ must be a Cohen-Macaulay local ring, which leads to a contradiction. Therefore, $t^{-1} \notin P$. Thus, $P \in {}^*D(t^{-1})$, and there exists $\mathfrak{p} \in \operatorname{Spec} R$ such that $P = \mathfrak{p}'$. This shows that

$$\mathscr{R}'(\mathscr{F})_P \cong \mathscr{R}'(\mathscr{F})_{\mathfrak{p}'} \cong R[t, t^{-1}]_{\mathfrak{p}R[t, t^{-1}]} \cong R[t]_{\mathfrak{p}R[t]}$$

is not Cohen-Macaulay. Consequently, $R_{\mathfrak{p}}$ is not Cohen-Macaulay either. Since R has FLC, it follows that $\mathfrak{p}=\mathfrak{m}$. Hence, we conclude that $P=\mathfrak{m}'$. Conversely, if we assume $P=\mathfrak{m}'$, then the isomorphism $\mathscr{R}'(\mathscr{F})_P\cong R[t]_{\mathfrak{m}R[t]}$ guarantees that $\mathscr{R}'(\mathscr{F})_P$ is not Cohen-Macaulay. Let us verify the last assertion. For each $P\in V(\mathfrak{m}')$, there exists an isomorphism $(\mathscr{R}'(\mathscr{F})_P)_{\mathfrak{m}'\mathscr{R}'(\mathscr{F})_P}\cong \mathscr{R}'(\mathscr{F})'_{\mathfrak{m}}$. In particular, $\mathscr{R}'(\mathscr{F})_P$ is not Cohen-Macaulay. Conversely, suppose $P\in \operatorname{Spec}\mathscr{R}'(\mathscr{F})$ such that $\mathscr{R}'(\mathscr{F})_P$ is not Cohen-Macaulay. Let P^* denote the ideal of $\mathscr{R}'(\mathscr{F})$ generated by the homogeneous elements of P. Observe that $P^*\subseteq \mathfrak{M}$. If $P^*=\mathfrak{M}$, then $P=\mathfrak{M}$. Suppose $P^*\neq \mathfrak{M}$. Then $P^*=\mathfrak{m}'$, because $\mathscr{R}'(\mathscr{F})_{P^*}$ is not Cohen-Macaulay. In either case, we have $P\subseteq \mathfrak{m}'$, and thus $P\in V(\mathfrak{m}')$.

We now present the main result of this paper.

Theorem 4.3. Let (R, \mathfrak{m}) be a Noetherian local ring with $d = \dim R \geq 3$ which is a homomorphic image of a Gorenstein ring. Let $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ be the Hilbert filtration of ideals in R. Suppose that $G(\mathscr{F})$ is a quasi-Gorenstein graded ring, $\operatorname{depth} \mathscr{R}'(\mathscr{F}) \geq d$, and $\operatorname{H}^{d-1}_{\mathfrak{M}}(G(\mathscr{F}))$ is finitely generated as an $\mathscr{R}'(\mathscr{F})$ -module. Then the following conditions are equivalent.

- (1) $\mathcal{R}'(\mathcal{F})$ is a quasi-Gorenstein graded ring.
- (2) The equality $\ell_R(\mathrm{H}^{d-1}_{\mathfrak{m}}(R)) = \ell_{G(\mathscr{F})}(\mathrm{H}^{d-1}_{\mathfrak{M}}(G(\mathscr{F})))$ holds.

Proof. Set $\mathscr{R}'=\mathscr{R}'(\mathscr{F})$ and $G=G(\mathscr{F})$. The ring \mathscr{R}' admits the graded canonical module $K_{\mathscr{R}'}$. $(2)\Rightarrow (1)$ We may assume that R is not Cohen-Macaulay. Indeed, if R were Cohen-Macaulay, then G would also be Cohen-Macaulay due to the equality $\ell_R(H^{d-1}_{\mathfrak{M}}(R))=\ell_G(H^{d-1}_{\mathfrak{M}}(G))$ and the fact that depth $G\geq d-1$. Consequently, G would be Gorenstein, which in turn implies that \mathscr{R}' is Gorenstein as well. Now, assume for contradiction that \mathscr{R}' is Cohen-Macaulay. The Cohen-Macaulayness of G would imply that the localization $R_{\mathfrak{p}}$ is Cohen-Macaulay for every $\mathfrak{p}\in V(F_1)$. However, this leads to a contradiction, as it conflicts with the facts that F_1 is \mathfrak{m} -primary and R is not Cohen-Macaulay. Therefore, \mathscr{R}' cannot be Cohen-Macaulay. We conclude, in particular, that depth $\mathscr{R}'=d$.

We set $A = \mathscr{R}'_{\mathfrak{M}}$. Then $\dim A = d+1 \geq 4$ and $\operatorname{depth} A = d$. Note that $G_{\mathfrak{N}} \cong G_{\mathfrak{M}} \cong A/t^{-1}A$. Let M denote the Matlis dual of $\operatorname{H}^d_{\mathfrak{M}A}(A)$. Observe that $M \neq (0)$. Applying the functor $\operatorname{H}^i_{\mathfrak{M}A}(-)$ to the exact sequence $0 \to A \overset{t^{-1}}{\to} A \to G_{\mathfrak{M}} \to 0$ of A-modules, we obtain the long exact sequence

$$0 \to \mathrm{H}^{d-1}_{\mathfrak{M}\!A}(G_{\mathfrak{M}}) \to \mathrm{H}^{d}_{\mathfrak{M}\!A}(A) \overset{t^{-1}}{\to} \mathrm{H}^{d}_{\mathfrak{M}\!A}(A) \to \mathrm{H}^{d}_{\mathfrak{M}\!A}(G_{\mathfrak{M}}) \to \mathrm{H}^{d+1}_{\mathfrak{M}\!A}(A) \overset{t^{-1}}{\to} \mathrm{H}^{d+1}_{\mathfrak{M}\!A}(A) \to 0.$$

Taking the Matlis dual of this sequence yields

$$0 \to \mathsf{K}_A \stackrel{t^{-1}}{\to} \mathsf{K}_A \to \mathsf{K}_{G_{\mathfrak{M}}} \to M \stackrel{t^{-1}}{\to} M \to [\mathsf{H}^{d-1}_{\mathfrak{M}A}(G_{\mathfrak{M}})]^{\vee} \to 0.$$

Since $\ell_A(M/t^{-1}M) = \ell_A(\mathrm{H}^{d-1}_{\mathfrak{M}A}(G_{\mathfrak{M}}))$ is finite, we conclude that $\dim_A M \leq 1$. If $\dim_A M = 0$, the ring A has FLC. Consequently, A is locally Cohen-Macaulay on the punctured spectrum, and thus

$$A_{\mathfrak{m}'A} \cong (\mathscr{R}')_{\mathfrak{m}'} \cong R[t, t^{-1}]_{\mathfrak{m}R[t, t^{-1}]} \cong R[t]_{\mathfrak{m}R[t]}$$

is Cohen-Macaulay. By flat descent, this would imply that R is Cohen-Macaulay, which contradicts our assumption. Therefore, we must have $\dim_A M = 1$.

Observe that depth G = d - 1 > 0. By Proposition 2.2, it follows that depth R = d - 1. Since both $H_{\mathfrak{m}}^{d-1}(R)$ and $H_{\mathfrak{M}}^{d-1}(G)$ are finitely generated, the rings R and $G_{\mathfrak{N}}$ have FLC. We now claim that $\operatorname{Assh}_A M = \{\mathfrak{m}'A\}$. To establish this, let $P \in \operatorname{Assh}_A M$. By Theorem 3.1, the local ring A_P is not Cohen-Macaulay. Set $\mathfrak{p} = P \cap \mathscr{R}'$. Then $\mathfrak{p} \in \operatorname{Spec} \mathscr{R}'$ and $\mathfrak{p} \subseteq \mathfrak{M}$. Since $P \in \operatorname{Assh}_A M$ and $\dim_A M = 1$, we deduce that $\mathfrak{p} \neq \mathfrak{M}$. Note further that $A_P \cong \mathscr{R}'_{\mathfrak{p}}$. Let \mathfrak{p}^* denote the ideal of \mathscr{R}' generated by the homogeneous elements of \mathfrak{p} . It follows that $\mathscr{R}'_{\mathfrak{p}^*}$ is not Cohen-Macaulay. By Lemma 4.2, we conclude that $\mathfrak{p}^* = \mathfrak{m}'$. Hence $\mathfrak{m}' \subseteq \mathfrak{p} \subsetneq \mathfrak{M}$. Since $\dim \mathscr{R}'/\mathfrak{m}' = 1$, it must be that $\mathfrak{m}' = \mathfrak{p}$, and thus $P = \mathfrak{m}'A$. Consequently, $\operatorname{Assh}_A M = \{\mathfrak{m}'A\}$, as claimed.

By setting $R(t) = R[t]_{\mathfrak{m}R[t]}$, we obtain

$$\begin{split} \sum_{P \in \operatorname{Assh}_{A}M} \ell_{A_{P}}(\mathbf{H}^{d-1}_{PA_{P}}(A_{P})) \cdot \mathbf{e}_{0}(t^{-1}, A/P) &= \ell_{A_{\mathfrak{m}'A}}(\mathbf{H}^{d-1}_{(\mathfrak{m}'A)A_{\mathfrak{m}'A}}(A_{\mathfrak{m}'A})) \cdot \mathbf{e}_{0}(t^{-1}, A/\mathfrak{m}'A) \\ &= \ell_{R(t)}(\mathbf{H}^{d-1}_{\mathfrak{m}R(t)}(R(t))) = \ell_{R}(\mathbf{H}^{d-1}_{\mathfrak{m}}(R)) \\ &= \ell_{G}(\mathbf{H}^{d-1}_{\mathfrak{m}}(G)) = \ell_{A}(\mathbf{H}^{d-1}_{\mathfrak{m}A}(A/t^{-1}A)). \end{split}$$

Here, the second equality follows from the fact that

$$A/\mathfrak{m}'A \cong (\mathscr{R}'/\mathfrak{m}')_{\mathfrak{M}} \cong ((R/\mathfrak{m})[t^{-1}])_{(t^{-1})},$$

which is a regular local ring. By Theorem 3.1, we conclude that M is Cohen-Macaulay. Consequently, the local ring $A = \mathcal{B}'_{\mathfrak{M}}$ is quasi-Gorenstein, and therefore \mathcal{B}' is also quasi-Gorenstein.

 $(1)\Rightarrow (2)$ Suppose \mathscr{R}' is Cohen-Macaulay. Then both G and R are Cohen-Macaulay, and hence $\ell_R(\mathrm{H}^{d-1}_{\mathfrak{m}}(R))=0=\ell_G(\mathrm{H}^{d-1}_{\mathfrak{m}}(G))$. Therefore, we may assume that \mathscr{R}' is not Cohen-Macaulay, in which case $\operatorname{depth}\mathscr{R}'=d$. Let $A=\mathscr{R}'_{\mathfrak{M}}$, and denote by M the Matlis dual of $\mathrm{H}^d_{\mathfrak{M}A}(A)$. Then $M\neq (0)$. Since A is quasi-Gorenstein, Theorem 3.1 ensures that M is Cohen-Macaulay of dimension one. Consequently, the equality

$$\ell_G(\mathrm{H}^{d-1}_{\mathfrak{M}}(G)) = \ell_A(\mathrm{H}^{d-1}_{\mathfrak{M}A}(A/t^{-1}A)) = \sum_{P \in \mathrm{Assh}_A M} \ell_{A_P}(\mathrm{H}^{d-1}_{PA_P}(A_P)) \cdot \mathrm{e}_0(t^{-1}, A/P)$$

holds. We claim that $\operatorname{Assh}_A M = \{\mathfrak{m}'A\}$. To verify this, let $P \in \operatorname{Assh}_A M$. By Theorem 3.1, the localization A_P is not Cohen-Macaulay. Let $\mathfrak{p} = P \cap \mathscr{R}'$. Then $\mathfrak{p} \subseteq \mathfrak{M}$. If $\mathfrak{p} = \mathfrak{M}$, then $P = \mathfrak{m}A$, which contradicts the assumption that $P \in \operatorname{Assh}_A M$ and $\dim_A M = 1$. Thus $\mathfrak{p} \subseteq \mathfrak{M}$. Next, let \mathfrak{p}^* denote the ideal of \mathscr{R}' generated by the homogeneous elements of \mathfrak{p} . It follows that $\mathscr{R}'_{\mathfrak{p}^*}$ is not Cohen-Macaulay, and consequently $A_{\mathfrak{p}^*A}$ is not Cohen-Macaulay either. By Theorem 3.1 again, we have $\mathfrak{p}^*A \in \operatorname{Supp}_A M$. Since M is Cohen-Macaulay, it holds that $\dim_{A_{\mathfrak{p}^*A}} M_{\mathfrak{p}^*A} \leq 1$.

If $\dim_{A_{\mathfrak{p}^*A}} M_{\mathfrak{p}^*A} = 1$, then $\dim A/\mathfrak{p}^*A = 0$, which is a contradiction because $\mathfrak{p}^*A \subseteq \mathfrak{p}A \subsetneq \mathfrak{M}A$. Thus, $\dim_{A_{\mathfrak{p}^*A}} M_{\mathfrak{p}^*A} = 0$, and so $\dim A/\mathfrak{p}^*A = 1$. Consider the exact sequence

$$0 \to \mathsf{K}_A \stackrel{t^{-1}}{\to} \mathsf{K}_A \to \mathsf{K}_{G_{\mathfrak{M}}} \to M \stackrel{t^{-1}}{\to} M \to [\mathsf{H}^{d-1}_{\mathfrak{M}A}(G_{\mathfrak{M}})]^{\vee} \to 0.$$

This implies that $\ell_A(M/t^{-1}M) < \infty$, so t^{-1} acts as a non-zerodivisor on M. In particular, $t^{-1} \notin \mathfrak{p}^*$. Thus $\mathfrak{p}^* \in {}^*D(t^{-1})$. There exists $\mathfrak{q} \in \operatorname{Spec} R$ such that $\mathfrak{q}' = \mathfrak{p}^*$. Therefore

$$\mathfrak{p}^*A = \mathfrak{q}'A \subseteq \mathfrak{m}'A \subseteq \mathfrak{M}A$$
,

and since $\dim A/\mathfrak{p}^*A=1$, we deduce $\mathfrak{p}^*A=\mathfrak{q}'A=\mathfrak{m}'A$. As $\mathfrak{m}'A=\mathfrak{p}^*A\subseteq \mathfrak{p}A=P\subsetneq \mathfrak{M}A$, it follows that $\mathfrak{m}'A=\mathfrak{p}A=P$, because $\dim A/\mathfrak{m}'A=1$. Consequently, $\operatorname{Assh}_A M=\{\mathfrak{m}'A\}$. Finally, we obtain

$$\ell_G(\mathrm{H}^{d-1}_{\mathfrak{M}}(G)) = \sum_{P \in \mathrm{Assh}_A M} \ell_{A_P}(\mathrm{H}^{d-1}_{PA_P}(A_P)) \cdot \mathrm{e}_0(t^{-1}, A/P) = \ell_R(\mathrm{H}^{d-1}_{\mathfrak{m}}(R)).$$

as desired. This completes the proof.

A direct application of Theorem 1.1 yields the following result.

Corollary 4.4. Let (R, \mathfrak{m}) be a Noetherian local ring with $\dim R = 3$ and $\mathscr{F} = \{F_n\}_{n \in \mathbb{Z}}$ the Hilbert filtration of ideals in R. Suppose that R is a homomorphic image of a Gorenstein ring and $G(\mathscr{F})$ is quasi-Gorenstein. Then the following conditions are equivalent.

- (1) $\mathcal{R}'(\mathcal{F})$ is a quasi-Gorenstein graded ring.
- (2) The equality $\ell_R(\mathrm{H}^2_\mathfrak{m}(R)) = \ell_{G(\mathscr{F})}(\mathrm{H}^2_\mathfrak{m}(G(\mathscr{F})))$ holds.

Recall that a Noetherian graded k-algebra $R = \bigoplus_{n \ge 0} R_n$ over a field $R_0 = k$ is called *homogeneous*, if $R = k[R_1]$, i.e., R is generated by R_1 as a k-algebra.

Corollary 4.5. Let $R = k[R_1]$ be a quasi-Gorenstein homogeneous ring over a field k with $\dim R = 3$. Then the extended Rees algebra $\mathscr{R}'(\mathfrak{m}R_{\mathfrak{m}})$ is quasi-Gorenstein, where $\mathfrak{m} = R_+$ denotes the graded maximal ideal of $\mathscr{R}'(\mathfrak{m})$.

Proof. As R is homogeneous, we have $R \cong G(\mathfrak{m})$. Thus, $G(\mathfrak{m}R_{\mathfrak{m}}) \cong R_{\mathfrak{m}} \otimes_R G(\mathfrak{m}) \cong G(\mathfrak{m})_{\mathfrak{m}}$ is quasi-Gorenstein. The $\mathfrak{m}R_{\mathfrak{m}}$ -adic filtration is Hilbert, and the local ring $R_{\mathfrak{m}}$ is a homomorphic image of a Gorenstein ring. By Corollary 4.4, the ring $\mathscr{R}'(\mathfrak{m}R_{\mathfrak{m}})$ is quasi-Gorenstein.

Example 4.6. Let Δ be a two-dimensional finite abstract simplicial complex whose geometric realization is homeomorphic to an orientable manifold that is not a sphere. Then the Stanley-Reisner ring $R = k[\Delta]$, defined over a field k of characteristic 0, is quasi-Gorenstein but not Gorenstein ([22, Remark 4.6]). Denote by $\mathfrak{m} = R_+$ the graded maximal ideal of R. Consequently, $\mathscr{R}'(\mathfrak{m}R_{\mathfrak{m}})$ is a non-Gorenstein quasi-Gorenstein ring.

Acknowledgments. The author would like to thank K.-i. Watanabe for his valuable comments.

REFERENCES

- [1] Y. AOYAMA, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), no. 1, 85–94.
- [2] Y. AOYAMA AND S. GOTO, Some special cases of a conjecture of Sharp, J. Ma th. Kyoto Univ., 26 (1986), no.4, 613–634.
- [3] S. GOTO AND T. OGAWA, A note on rings with finite local cohomology, *Tokyo J. Math.*, **6** (1983), no.2, 403–411.

- [4] W. HEINZER, M.-K. KIM, AND B. ULRICH, The Gorenstein and complete intersection properties of associated graded rings, *J. Pure Appl. Algebra*, **201** (2005), 264–283.
- [5] W. HEINZER, M.-K. KIM, AND B. ULRICH, The Cohen-Macaulay and Gorenstein properties of rings associated to filtrations, *Comm. Algebra*, **39** (2011), no.10, 3547–3580.
- [6] M. HERRMANN, S. IKEDA, AND U. ORBANZ, Equimultiplicity and Blowing Up, Springer-Verlag, Berlin, 1988.
- [7] J. HERZOG AND E. KUNZ, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, 238, *Springer-Verlag, Berlin-New York*, 1971.
- [8] H. HIRONAKA, Certain numerical characters of singularities, J. Math. Kyoto Univ., 10 (1970), 151–187.
- [9] S. HUCKABA AND T. MARLEY, Hilbert coefficients and the depths of associated graded rings, *J. London Math. Soc.*, **56** (1997), 64–76.
- [10] T. KAWASAKI, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc., 354 (2002), no.1, 123–149.
- [11] Y. KIM, Quasi-Gorensteinness of extended Rees algebras, Comm. Algebra, 9 (2017), no.4, 3547–3580.
- [12] C. NASTASESCU AND F. VAN OYSTAEYEN, Graded and filtered rings and modules, Lecture Notes in Mathematics, 758, *Springer-Verlag, Berlin-New York*, 1979.
- [13] E. PLATTE AND U. STORCH, Invariante reguläre Differentialformen auf Gorenstein-Algebren, *Math. Z.*, **157** (1977), 1–11.
- [14] D. REES, A note on analytically unramified local rings, J. London Math. Soc., 36 (1961), 24–28.
- [15] I. REITEN, The converse to a theorem of Sharp on Gorenstein modules, *Proc. Amer. Math. Soc.*, **32** (1972), 417–420.
- [16] P. SCHENZEL, N. V. TRUNG, AND N. T. CUONG, Verallgeminerte Cohen-Macaulay- Moduln, *Math. Nachr.*, **85** (1978), 57–73.
- [17] R. Y. SHARP, On Gorenstein modules over a complete Cohen-Macaulay ring, *Quart. J. Math.*, **22**, no. 3 (1971), 425–434.
- [18] K. SHIMOMOTO, N. TANIGUCHI, AND E. TAVANFAR, A study of quasi-Gorenstein rings II: Deformation of quasi-Gorenstein property, *J. Algebra*, **562** (2020), 368–389.
- [19] J. STÜCKRAD AND W. VOGEL, Buchsbaum rings and applications, An interaction between algebra, geometry and topology, *Springer-Verlag, Berlin*, 1986.
- [20] N. V. TRUNG, Toward a theory of generalized Cohen-Macaulay modules, *Nagoya Math. J.*, **102** (1986), 1–49
- [21] P. VALABREGA AND G. VALLA, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93–101.
- [22] M. VARBARO AND H. YU, Lefschetz duality for local cohomology, J. Algebra, 639 (2024), 498–515.

School of Political Science and Economics, Meiji University, 1-9-1 Eifuku, Suginami-ku, Tokyo 168-8555, Japan

Email address: endo@meiji.ac.jp

URL: https://www.isc.meiji.ac.jp/~endo/