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ABSTRACT. We provide a characterization of the almost Gorenstein property of determinantal rings
of a symmetric matrix of indeterminates over an infinite field. We give an explicit formula for ranks
of the last two modules in the resolution of determinantal rings using Schur functors.

1. INTRODUCTION

An almost Gorenstein ring is, one of the good candidates for generalization of Gorenstein rings,
defined by an existence of embedding of the rings into their canonical modules whose cokernel is
an Ulrich module, i.e, the multiplicity is equal to the number of generators. The motivation of this
generalization comes from the strong desire to stratify Cohen-Macaulay rings, finding new and
interesting classes which naturally extend the Gorenstein rings. The theory of almost Gorenstein
rings was introduced by Barucci and Fröberg [2] in the case where the local rings are analytically
unramified and of dimension one. Their work inspired Goto, Matsuoka, and Phuong [7] to give a
modified definition of the one-dimensional almost Gorenstein local rings in 2013. Two years later
Goto, Takahashi and the second author of this paper [9] defined the almost Gorenstein graded/local
rings of arbitrary dimension. In 2017, the second author studied the question of when the determi-
nantal rings of generic matirices are almost Gorenstein rings. The goal of this paper is to provide
a characterization of the almost Gorenstein property of determinantal rings of a symmetric matrix.

Let k be an infinite field and let n > 0 be an integer. Let X = [Xi j] be a generic n×n symmetric
matrix of indeterminates over k, i.e., Xi j = X ji for all 1 ≤ i, j ≤ n. We denote by S = k[X ] the
polynomial ring over k generated by n(n+ 1)/2 variables {Xi j}1≤i, j≤n. We consider S as a Z-
graded ring under the grading S0 = k and Xi j ∈ S1 for all 1 ≤ i, j ≤ n. Let It+1(X) be the ideal
of S generated by (t + 1)× (t + 1) minors of the matrix X where 0 < t < n is an integer. We set
R = S/It+1(X) and call it the determinantal ring of X . By Kutz [11, Theorem 1], the ring R is
known to be a Cohen-Macaulay integral domain with dimR = nt − 1

2t(t − 1). Goto shows in [6]
that R is Gorenstein if and only if n− t is odd.

With this notation, we state the main result of this paper below, where m = R+ denotes the
graded maximal ideal of R.

Theorem 1.1. The following conditions are equivalent.

(1) R is an almost Gorenstein graded ring.

2020 Mathematics Subject Classification. 13H10, 13H15, 13D02.
Key words and phrases. Almost Gorenstein local ring, Almost Gorenstein graded ring, determinantal ring.
N. Endo was partially supported by JSPS Grant-in-Aid for Young Scientists 20K14299. J. Laxmi was supported

by Fulbright-Nehru fellowship. J. Weyman was partially supported by NSF grant DMS 1802067, Sidney Professorial
Fund, and Polish National Agency for Academic Exchange.

1



2 ELA CELIKBAS, NAOKI ENDO, JAI LAXMI, AND JERZY WEYMAN

(2) Rm is an almost Gorenstein local ring.
(3) Either n− t is odd, or n = 3, t = 1.

In this paper we give a proof of Theorem 1.1 by showing (1) ⇒ (2) ⇒ (3) ⇒ (1). Note that
the equivalence (1) ⇔ (3) follows from the combining existing literature ([9, Theorem 1.6], [4,
page 50], [1, Theorem 4.4]), and the implication (1)⇒ (2) follows from the definition of almost
Gorenstein graded/local rings. Our main contribution is to prove the implication (2) ⇒ (3) (or
equivalently (2) ⇒ (1)). One should note that even if AN is an almost Gorenstein local ring, A
is not necessarily an almost Gorenstein graded ring, where N denotes the unique graded maximal
ideal of a Cohen-Macaulay graded ring A (see [8, Theorems 2.7, 2.8], [9, Example 8.8]) which is
what makes (2)⇒ (1) interesting and difficult.

Theorem 1.1 also gives the following invariant-theoretic application. If the field k has charac-
teristic 0, then the determinantal ring appears as a ring of invariants. Suppose that V is an n× t
matrix of indeterminates over k and A = k[V ] is the polynomial ring over k. Let G = O(t,k) be the
orthogonal group. Assume that the group G acts on the ring A as k-automorphisms by taking V
onto V H−1 for every H ∈ G. Then the ring AG of invariants is generated by the entries of the n×n
symmetric matrix Y = VV T and the ideal of relations on Y is generated by the (t + 1)× (t + 1)
minors of Y ; see [5]. Hence we get the following.

Corollary 1.2. Let A and G be given as above. Then AG = k[Y ] is an almost Gorenstein graded
ring if and only if either n− t is odd, or n = 3, t = 1.

This paper is organized as follows. In Section 2 we give some basic properties on almost Goren-
stein rings. We prove Theorem 1.1 in Section 3. We also explain a rank computation of the last two
modules of the resolution of determinantal rings using the techniques in the representation theory
of finite groups.

2. PRELIMINARIES

In this section we list the definition and the basic properties of almost Gorenstein rings, which
we will use throughout this paper. Let (R,m) be a Cohen-Macaulay local ring with d = dimR,
possessing a canonical module KR.

Definition 2.1. ([9, Definition 1.1]) We say that R is an almost Gorenstein local ring, if there exists
an exact sequence

0 → R → KR →C → 0

of R-modules such that µR(C) = e0
m(C), where µR(C) denotes the number of elements in a minimal

system of generators for C and

e0
m(C) = lim

n→∞

ℓR(C/mn+1C)

nd−1 · (d −1)!

is the multiplicity of C with respect to m.

Every Gorenstein ring is an almost Gorenstein ring, and the converse holds if the ring R is
Artinian ([9, Lemma 3.1 (3)]). Definition 2.1 insists that an almost Gorenstein ring R might not be
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Gorenstein, but the ring R can be embedded into its canonical module KR and the difference KR/R
has good properties. For an arbitrary exact sequence

0 → R → KR →C → 0

of R-modules with C ̸= (0), the R-module C is Cohen-Macaulay and of dimension d − 1 ([9,
Lemma 3.1 (2)]). Suppose that R has an infinite residue class field R/m. Consider the local ring
R1 = R/[(0) :R C] with maximal ideal m1. We can choose elements f1, f2, . . . , fd−1 ∈m satisfying
the ideal ( f1, f2, . . . , fd−1)R1 forms a minimal reduction of m1. Then

e0
m(C) = e0

m1
(C) = ℓR(C/( f1, f2, . . . , fd−1)C)≥ ℓR(C/mC) = µR(C).

Therefore, e0
m(C)≥ µR(C) and we say that C is an Ulrich R-module if e0

m(C) = µR(C). Thus, C is
an Ulrich R-module if and only if mC = ( f1, f2, . . . , fd−1)C.

In the rest of this section, let R =
⊕

n≥0 Rn be a Cohen-Macaulay graded ring. Assume k= R0 is
a local ring and there exists the graded canonical module KR. Set a = a(R) the a-invariant of R, i.e.,
a = max{n ∈ Z | [Hd

M(R)]n ̸= 0} where {[Hd
M(R)]n}n∈Z denotes the homogeneous components of

d-th graded local cohomology module of Hd
M(R) of R with respect to the unique graded maximal

ideal M.

Definition 2.2. ([9, Definition 1.5]) We say that R is an almost Gorenstein graded ring, if there
exists an exact sequence

0 → R → KR(−a)→C → 0

of graded R-modules such that µR(C) = e0
M(C).

Note that KR(−a) stands for the graded R-module whose underlying R-module is the same as
that of KR and whose grading is given by [KR(−a)]n = [KR]n−a for all n ∈ Z. Similarly for local
case, every Gorenstein graded ring is an almost Gorenstein graded ring. As CM is Ulrich as an RM-
module and the canonical module KR is compatible with localization, the local ring RM is almost
Gorenstein, provided R is almost Gorenstein as a graded ring. Although the converse doesn’t hold
in general (see e.g., [8, Theorems 2.7, 2.8], [9, Example 8.8]), the theory is still attractive and
worth studying the theory as, for example, the following theorem shows.

Theorem 2.3. ([9, Theorem 1.6]) Let R = k[R1] be a Cohen-Macaulay homogeneous ring over an
infinite residue field k. Suppose that R is not a Gorenstein ring. Then the following conditions are
equivalent.

(1) R is almost Gorenstein and level.
(2) The total ring Q(R) of fractions of R is Gorenstein and a(R) = 1−dimR.

We can directly apply Theorem 2.3 to the determinantal rings of arbitrary matrices. For instance,
we have the following consequences.

Corollary 2.4. Let k be an infinite field, and 0 < t < n be integers. Let X = [Xi j] be a symmetric
matrix of indeterminates over k, and It+1(X) denotes the ideal generated by (t+1)×(t+1) minors
of X. Then R = k[X ]/It+1(X) is an almost Gorenstein graded ring if and only if n− t is odd, or
n = 3, t = 1.
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Proof. May assume R is not Gorenstein, i.e., n− t is even. By [4, page 50] (or [1, Theorem 4.4]),
we see that a(R) = 1

2(−t)(n+1). Hence, the equality a(R) = 1−dimR holds if and only so does
the equality t(n− t) = 2. Since n− t is even, the latter condition is equivalent to saying that n = 3
and t = 1. □

Corollary 2.5. Let k be an infinite field and n ≥ 3 be an odd integer. Let X = [Xi j] be a generic
n×n skew-symmetric matrix over k, i.e., Xi j =−X ji for all 1≤ i, j ≤ n. Let I be the ideal generated
by submaximal Pfaffians of X. Then R = k[X ]/I2 is an almost Gorenstein graded ring if and only
if n = 3.

Proof. Note that R = k[X ]/I2 is a Cohen-Macaulay ring with dimR =
(n

2

)
−3 possessing the pro-

jective dimension 3 ([3, Theorem 2.5]). By [12], I2 has linear minimal free resolution. We have
the Betti numbers as β1(I2) =

(n+1
2

)
, β2(I2) = n2 − 1, and β3(I2) =

( n
n−2

)
. By setting n = 2k+ 1

with k ≥ 1, the sequence

0 → S⊕(
n
2)(−2k−2)→ S⊕(n2−1)(−2k−1)→ S⊕(

n+1
2 )(−2k)→ S → R → 0

forms a minimal S-free resolution of R, where S = k[X ]. Hence the a-invariant is n+ 1−
(n

2

)
, so

that the assertion follows from Theorem 2.3. □

Let 1 ≤ t ≤ n be integers and X1, . . . ,Xn+t−1 be indeterminates over an infinite field k. A Hankel
determinantal ring is a ring of the form

R = k[X1, . . . ,Xn+t−1]/It(H)

where It(H) denotes the ideal of the polynomial ring k[X1, . . . ,Xn+t−1] generated by t × t minors
of the Hankel matrix H

H =


X1 X2 X3 · · · Xs
X2 X3 X4 · · · Xs+1
...

...
... . . . ...

Xr Xr+1 · · · · · · Xs+r−1

 .
We now consider the generic determinantal ring A = k[Y ]/It(Y ), where Y is a t × n matrix of
indeterminates over k, and It(Y ) denotes the ideal of k[Y ] generated by t × t-minors of Y . Since
the coset of elements Yi, j+1 −Yi+1, j are part of a system of parameters for A, we have a ring
isomorphism between A modulo these elements and R = k[X1, . . . ,Xn+t−1]/It(H). Therefore, R is
a Cohen-Macaulay ring with dimR = 2t −2, and hence R is Gorenstein if and only if n = t.

Corollary 2.6. R is an almost Gorenstein graded ring if and only if n = t or n ̸= t, t = 2.

Proof. The coset of elements X1, . . . ,Xt−1,Xn+1, . . . ,Xn+t−1 are a homogeneous system of parame-
ters for R, and the socle modulo this system of parameters is spanned by the degree t−1 monomials
in Xt , . . . ,Xn. Hence a(R) = 1− t. By Theorem 2.3, we get the required assertion. □

3. PROOF OF THEOREM 1.1

This section aims at proving Theorem 1.1. First of all, we fix our notation and assumptions on
which all the results in this section are based.
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Setup 3.1. Let k be an infinite field, and 0 < t < n be integers. Let X = [Xi j] be a symmetric
matrix of indeterminates over k, and S = k[X ](= k[Xi j]1≤i≤ j≤n) be the polynomial ring over k in
n(n+ 1)/2 variables. We set R = S/It+1(X), where It+1(X) denotes the ideal of S generated by
(t +1)× (t +1) minors of X . Let M = (xi j | 1 ≤ i ≤ j ≤ n) where xi j stands for the image of Xi j

in R. Set d = dimR = nt − 1
2t(t −1).

Until Proposition 3.3, we assume char(k) = 0 and R = S/It+1(X) is not a Gorenstein ring. Let

0 → Fℓ → Fℓ−1 → ··· → F0 → R → 0

be a minimal S-free resolution of R. The key of the proof of Theorem 1.1 is the equalities

rankFℓ−1 = n
(

n
t +1

)
−
(

n
t +2

)
and rankFℓ =

(
n
t

)
.

To show this, we need some techniques from representation theory of the general linear group.
More precisely, let X s be the space of n × n symmetric matrices over k. The coordinate ring
A = k[X s] of X s is isomorphic to the polynomial ring k[ϕi, j]1≤i≤ j≤n, where ϕi, j denotes the (i, j)-th
coordinate function on X s with ϕi, j = ϕ j,i.

We identify X s with the space S2E∗, the 2nd symmetric power of E∗, where E is the vector
space over k with dimkE = n and (−)∗ = Homk(−,k) is the dual functor. Let us also identify the
coordinate ring A = k[X s] of X s with the symmetric algebra Sym(S2E∗). By setting {ei}1≤i≤n the
k-basis of E, the coordinate function ϕi, j can be identified with the element eie j in Sym(S2E∗).

For each integer t with 0 < t < n, let us consider the subvariety

Y s
t = {ϕ ∈ X s | rank ϕ ≤ t}

of X s, called the symmetric determinantal variety. Note that the variety Y s
t can be identified with

the set of symmetric matrices Φ whose minors of size t + 1 vanish. Hence, in order to compute
the ranks of the tail and its before one of the resolution of determinantal rings R = S/It+1(X), it
comes down to think about the resolution of A/Jt+1, where Jt+1 denotes the ideal of A generated
by (t +1)× (t +1) minors of Φ.

Let λ = (λ1,λ2, . . . ,λm) be a partition of a positive integer n, i.e., a weakly decreasing sequence
λ1 ≥ λ2 ≥ ·· · ≥ λm of non-negative integers such that |λ | = ∑m

i=1 λi = n, where |λ | is called the
weight of λ . We identify the partitions (λ1,λ2, . . . ,λm) and (λ1,λ2, . . . ,λm,0). For each partition,
we associate its Young diagram, so that we now identify the partition with its Young diagram. The
length of the diagonal of λ is called the rank of λ , denoted by rankλ . In other words, rankλ = r
is the biggest r× r square fitting inside λ . For each box X in a Young diagram λ , the set of boxes
to the right (resp. below) of X (including X) is called an arm of X (resp. a leg of X). A hook of
X consists of the arm and leg of X, and the number of boxes in the hook of X is called the hook
length of X.

Let λ be a partition of rank r. For each 1 ≤ i ≤ r, we denote by ai (resp. bi) the arm length
(resp. the leg length), i.e., the number of boxes in the arm (resp. the leg), of the i-th box on the
diagonal of λ . Since the partition is uniquely determined by its rank r and the numbers ai, bi for
all 1 ≤ i ≤ r, we can write

λ = (a1,a2, . . . ,ar | b1,b2, . . . ,br)
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which is called the hook notation for λ . Notice that, in the hook notation, we have a1 > a2 > · · ·>
ar > 0, b1 > b2 > · · ·> br > 0, and |λ |= ∑r

i=1(ai+bi)− r. Let λ = (λ1,λ2, . . . ,λm) be a partition.
The conjugate partition λ ′ of λ is defined by

λ ′
i = #{t | 1 ≤ t ≤ m, λt ≥ i}.

This means the Young diagram of λ ′ is obtained from the Young diagram of λ by reflecting at the
line y =−x in the coordinate plane. The reader may consult with [15, Chapter 1] for more details
regarding partitions.

We denote by Qt−1(2m) the set of partitions λ of rank r that can be written as

λ = (a1,a2, . . . ,ar | b1,b2, . . . ,br)

in the hook notation, where ai = bi +(t −1) for each 1 ≤ i ≤ r and |λ | = 2m. This partition with
even rank can be put in the form

λ = λ (α,u) = (α1 +2u+ t −1, . . . ,α2u +2u+ t −1,α ′
1, . . . ,α

′
v)

where u = 1
2 rankλ and α is a partition with α ′

1 ≤ rankλ . Therefore, for example, the Young
diagram of the partition λ in Qt−1(2m) with even rank has the following form

X X • • •
X X • • •
X X • •
X X •

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦

where the boxes corresponding to α are filled by •, the boxes corresponding the conjugate partition
α ′ are filled by ◦, and the boxes providing additional t −1 elements for diagonal hook lengths are
filled by X.

For a partition λ = (λ1,λ2, . . . ,λm), we consider the Schur module Lλ E, i.e.,

Lλ E =

(
λ1∧

E ⊗k

λ2∧
E ⊗k · · ·⊗k

λm∧
E

)
/R(λ ,E)

where the submodule R(λ ,E) is the sum of submodules of the form:

λ1∧
E ⊗k · · ·⊗k

λa−1∧
E ⊗k Ra,a+1(E)⊗k

λa+2∧
· · ·⊗k

λm∧
E
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for 1 ≤ a ≤ m− 1. Here, Ra,a+1(E) denotes the submodules of
∧λa E ⊗k

∧λa+1 E spanned by the
images of the composite maps with u+ v < λa+1 below:∧u E ⊗k

∧λa−u+λa+1−v E ⊗k
∧v E

id⊗∆⊗id
��∧u E ⊗k

∧λa−u E ⊗k
∧λa+1−v E ⊗k

∧v E

m12⊗m34
��∧λa E ⊗k
∧λa+1 E

where ∆ stands for the diagonal map, and m12 and m34 are the multiplication maps.

With this notation above, we recall the following theorem that shows how to find the components
of minimal free resolutions of A/Jt+1 in terms of Lλ E corresponding to λ .

Theorem 3.2. ([15, Theorem 6.3.1 (c)]) The i-th term Fi of the minimal free resolution of A/Jt+1

as an A-module is given by the formula

Fi =
⊕

λ∈Qt−1(2m), rankλ even, i=m−t· 1
2 ·rankλ

Lλ E ⊗k A.

Note that the representations occurring in the resolution of A/Jt+1 are the Schur modules Lλ (α,u)E
for all choices of α and u. The term Lλ (α,u)E occurs in the i-th term in the resolution where
i = 1

2(|λ |− t · rankλ ). For all λ = λ (α,u) ∈ Qt−1(2m) with even rank 2u, we have

|λ |= (2u)2 +2u(t −1)+ |α|+ |α ′|= (2u)2 +2u(t −1)+2|α|
so that m = 1

2 |λ |= 2u2 +u(t −1)+ |α|. Hence the term occurs in Fi with i = 2u2 −u+ |α|.

The following is a key in the proof of Theorem 1.1. Note that the rank of Fℓ corresponds to the
Cohen-Macaulay type of the determinantal ring R (see [6]).

Proposition 3.3. Let λ (αℓ,uℓ) and λ (αℓ−1,uℓ−1) be partitions associated with Fℓ and Fℓ−1, re-
spectively. Then the following assertions hold true.

(1) rankλ (αℓ,uℓ) = rankλ (αℓ−1,uℓ−1) = n− t.

(2) rankFℓ =
(

n
t

)
and rankFℓ−1 = n

(
n

t +1

)
−
(

n
t +2

)
.

Proof. (1) We consider a partition λ (αℓ,uℓ) associated with Fℓ of rank 2uℓ for some 0 < uℓ ∈ Z.
Suppose that 2uℓ > n− t. Since n− t is even, we write 2uℓ = n− t +2k with k > 0. The projective
dimension ℓ of A/Jt+1 as an A-module is given by

ℓ=
n(n+1)

2
−nt +

t(t −1)
2

.

Hence the weight of αℓ is

|αℓ| = ℓ−2u2
ℓ +uℓ =

(
n(n+1)

2
−nt +

t(t −1)
2

)
− 1

2
(
4u2

ℓ −2uℓ
)

= (n− t + k)(1−2k)< 0
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which makes a contradiction. Thus we get rankλ (αℓ,uℓ) = 2uℓ ≤ n− t. We then have

|λ (αℓ,uℓ)| = 2ℓ+2uℓt = (n− t)2 +(n− t)+2uℓt

≥ (n− t)2 +(n− t)+ t(n− t)

≥ (n− t)2

where the first equality comes from ℓ= 2u2
ℓ−uℓ+ |αℓ| and 1

2 |λ (αℓ,uℓ)|= 2u2
ℓ+uℓ(t−1)+ |αℓ|. In

particular, there is an (n− t)× (n− t) square sitting inside λ (αℓ,uℓ). This proves rankλ (αℓ,uℓ) =
n− t. Similarly, one can show that rankλ (αℓ−1,uℓ−1) = n− t, as well.
(2) Since rank(αℓ,uℓ) = n− t, we have

|λ (αℓ,uℓ)|= (n− t)2 +(n− t)+2uℓt = (n− t)2 +(n− t)+ t(n− t) = (n− t)(n+1).

This implies |αℓ|= n− t, because |λ (αℓ,uℓ)|= (n− t)2 +(n− t)(t −1)+2|αℓ|. Hence the Young
diagram of λ (αℓ,uℓ) has the following form, for example in the case n = 8 and t = 4.

X X X •
X X X •
X X X •
X X X •

◦ ◦ ◦ ◦

Therefore

λ (αℓ,uℓ) = (n,n, . . . ,n︸ ︷︷ ︸
n− t times

,n− t).

Note that we have the isomorphisms

Lλ (αℓ,uℓ)E
∼= L(t)E

∗⊗k

(
n∧

E

)⊕(n−t+1)

∼= L(t)E
∗ ∼=

t∧
E∗

where the first isomorphism follows from [15, Chapter 2, Exercise 18] and E ∼= E∗∗. Hence

rankLλ (αℓ,uℓ)E = rank
t∧

E∗ =

(
n
t

)
.

On the other hand, since |λ (αℓ−1,uℓ−1)|= (n+1)(n− t)−2, we have |αℓ−1|= n− t −1 and thus

λ (αℓ−1,uℓ−1) = ( n,n, . . . ,n︸ ︷︷ ︸
n− t −1 times

,n−1,n− t −1).

Hence the Young diagram of λ (αℓ,uℓ) has the following form, for example in the case n = 8 and
t = 4.

X X X •
X X X •
X X X •
X X X

◦ ◦ ◦
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By [15, Chapter 2, Exercise 18] and E ∼= E∗∗, we have the isomorphisms

Lλ (αℓ−1,uℓ−1)E
∼= L(t+1,1)E

∗⊗k

(
n∧

E

)⊕(n−t+1)

∼= L(t+1,1)E
∗.

Since L(t+1,1)E∗ =
(∧t+1 E∗⊗k E∗)/R((t +1,1),E∗) and the submodule R((t +1,1),E∗) is gen-

erated by the image of the diagonal injective map ∆ :
∧t+2 E∗ →

∧t+1 E∗⊗k E∗, we conclude that

rankLλ (αℓ−1,uℓ−1)E = rankL(t+1,1)E
∗ = n

(
n

t +1

)
−
(

n
t +2

)
.

Hence, by Theorem 3.2, we obtain

rankFℓ =
(

n
t

)
and rankFℓ−1 = n

(
n

t +1

)
−
(

n
t +2

)
as desired. □

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (1) ⇒ (2) We choose an exact sequence 0 → R → KR(−a) → C → 0 of
graded R-modules with µR(C) = e0

m(C), where a denotes the a-invariant of R. Since [KR]m ∼= KRm

and Cm is Ulrich as an Rm-module, the local ring Rm is almost Gorenstein.
(3)⇒ (1) This follows from Corollary 2.4.
(2)⇒ (3) Set A = Rm and n=mA. We choose an exact sequence

0 → A
φ−→ KA →C → 0

of A-modules such that µA(C) = e0
n(C). We may assume n− t is even, i.e., A is not a Gorenstein

ring. Then, because φ(1) ̸∈ nKA, we get µA(C) = r(A)−1 and

0 → nφ(1)→ nKA → nC → 0

is an exact sequence of A-modules. Here r(A) denotes the Cohen-Macaulay type of A. Hence we
get an inequalities

µA(nKA)≤ µA(n)+µA(nC)≤ n(n+1)
2

+(d −1)(r(A)−1)

where the second inequality follows from nC = ( f1, f2, . . . , fd−1)C for some fi ∈ n. This choice is
possible, because k is an infinite field; see [9, Proposition 2.2 (2)].

Let
0 → Fℓ → Fℓ−1 → ··· → F0 → R → 0

be a graded minimal S-free resolution of R. By taking the S-dual of the resolution, we get the
presentation of the graded canonical module KR. If char(k) = 0, then

(†) µR(mKR)≥ µR(m) · rankFℓ− rankFℓ−1

because all the entries of the matrix corresponding to the map Fℓ → Fℓ−1 have degree one; see [14,
Proposition 2.5]. Note that the Hilbert series of R is independent of the characteristic of the field
(see e.g., [15, Chapter 6]), and so is the Hilbert series of KR ([13, Theorem 4.4]). In particular,
since R is homogeneous and level, we conclude that µR(mKR) = dimk[KR]−a+1 does not depend on
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the characteristic of the field k, where a denotes the a-invariant of R. Hence the above inequality
(†) holds for any characteristic of k. Therefore we get the inequality

n(n+1)
2

(
n
t

)
−n
(

n
t +1

)
+

(
n

t +2

)
≤ n(n+1)

2
+(d −1)

((
n
t

)
−1
)
.

Putting d = nt − t(t −1)
2

, we have

(♯)

((
n
t

)
−1
)(

n(n+1)
2

−nt +
t(t −1)

2
+1
)
≤ n
(

n
t +1

)
−
(

n
t +2

)
.

By multiplying both sides by (t +2)! in the above inequality, we obtain

t(t +1)≤ 6

which yields t ≤ 2. Suppose t = 2. Then((
n
2

)
−1
)(

n(n+1)
2

−2n+2
)
≤ n
(

n
3

)
−
(

n
4

)
.

Hence n2 − 5n+ 8 ≤ 0 by multiplying 4! in the above inequality. This makes a contradiction.
Therefore t = 1. By (♯), a direct computation shows n− t ≤ 2. As n− t is even, then n− t = 2, and
hence n = 3. □

As a consequence of Theorem 1.1, if we take the mRm-adic completion of the local ring Rm, we
obtain the following conclusion by [9, Theorem 3.9].

Corollary 3.4. The local ring k[[X ]]/It+1(X) is almost Gorenstein if and only if either n− t is odd
or n = 3, t = 1.

Acknowledgments. The authors would like to thank Aldo Conca and the referee for their valuable
comments and suggestions.
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[2] V. Barucci, R. Fröberg, One-dimensional almost Gorenstein rings, J. Algebra, 188 (1997), 418–442.
[3] G. Boffi, R. Sánchez, On the resolutions of the powers of the Pfaffian ideals, J. Algebra, 152 (1992), 463–491.
[4] A. Conca, Symmetric Ladders, Nagoya Math. J., 136 (1994), 35–56.
[5] C. D. Consini, C. Procesi, A characteristic free approach to invariant theory, Adv. Math, 21 (1976) 330–354.
[6] S. Goto, On the Gorensteinness of determinantal loci, J. Math. Kyoto Univ., 19 (1979) 371–374.
[7] S. Goto, N. Matsuoka, T.T. Phuong, Almost Gorenstein rings, J. Algebra, 379 (2013) 263–278
[8] S. Goto, N. Matsuoka, N. Taniguchi, K.-i. Yoshida, The almost Gorenstein Rees algebras of parameters, J.

Algebra, 452 (2016), 263–278.
[9] S. Goto, R. Takahashi, N. Taniguchi, Almost Gorenstein rings towards a theory of higher dimension., J. Pure

Appl. Algebra, 219 (2015) 2666–2712.
[10] A. Higashitani, Almost Gorenstein homogeneous rings and their h-vectors, J. Algebra, 456 (2016) 190–206.
[11] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. Amer.

Math. Soc. , 194 (1974) 115–129.
[12] M. Perlman, Regularity and cohomology of Pfaffian thickenings, J. Comm. Algebra, (to appear).
[13] R. P. Stanley, Hilbert functions of graded algebras, Adv. Math., 28 no.1 (1978), 57–83.



ALMOST GORENSTEIN DETERMINANTAL RINGS 11

[14] N. Taniguchi, On the almost Gorenstein property of determinantal rings, Comm. Algebra, 46 (2018) 1165–1178.
[15] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge University Press, (2003).

DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, MORGANTOWN, WV 26506
Email address: ela.celikbas@math.wvu.edu

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, TOKYO UNIVERSITY OF SCIENCE, 1-3 KAGU-
RAZAKA, SHINJUKU, TOKYO 162-8601, JAPAN

Email address: nendo@rs.tus.ac.jp
URL: https://www.rs.tus.ac.jp/nendo/

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI-400005, INDIA.
Email address: laxmiuohyd@gmail.com
Email address: jailaxmi@math.tifr.res.in

INSTYTUT MATEMATYKI, JAGIELLONIAN UNIVERSITY, KRAKÓW 30–348
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