
CONSTRUCTION OF STRICTLY CLOSED RINGS
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Abstract. The notion of strict closedness of rings was given by J. Lipman [8] in con-
nection with a conjecture of O. Zariski. The present purpose is to give a practical method
of construction of strictly closed rings. It is also shown that the Stanley-Reisner rings
of simplicial complexes (resp. F -pure rings satisfying the condition (S2) of Serre) are
strictly closed (resp. weakly Arf) rings.

1. Introduction

This paper aims at giving a practical method of construction of strictly closed rings.

The notion of strict closedness of rings was firstly given by J. Lipman in his famous paper

[8] in connection with the Arf property. Let S/R be an extension of commutative rings,

and define

R∗ = {α ∈ S | α⊗ 1 = 1⊗ α in S ⊗R S} .
Then R∗ forms a subring of S containing R, which is called the strict closure of R in S.

We say that R is strictly closed in S, if R = R∗. Since (R∗)∗ = R∗ in S, R∗ is strictly

closed in S ([8, Section 4, p.672]), so that [∗]∗ is actually a closure operation. We simply

say that R is strictly closed, when R is strictly closed in R, where R denotes the integral

closure of R in its total ring Q(R) of fractions. The reader may consult with [8, 4] about

properties of strict closures. Here let us explain some of them for the later use in the

present paper.

Let R be a Noetherian semi-local ring and assume that R is a Cohen-Macaulay ring

of dimension one, which means that for every M ∈ MaxR RM is a Cohen-Macaulay

local ring of dimension one. After [8] we say that R is an Arf ring, if the following two

conditions are satisfied.

(1) Every integrally closed ideal I in R that contains a non-zerodivisor has a principal

reduction, i.e. In+1 = aIn for some n ≥ 0 and a ∈ I.

(2) Let x, y, z ∈ R and assume that x is a non-zerodivisor of R and y
x
, z
x
∈ R. Then

yz
x
∈ R.

The conditions are equivalent to saying that every integrally closed ideal I of R is stable,

that is I2 = aI for some a ∈ I, once I contains a non-zerodivisor of R. By means of this

notation, Lipman extends, to arbitrary Cohen-Macaulay semi-local rings of dimension

one, the result of C. Arf [1] about the multiplicity sequences of curve singularities.
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The connection between the notion of Arf ring and strictly closed ring is expressed

as a conjecture of Zariski. As is explained in [8], Zariski conjectured that for a Cohen-

Macaulay semi-local ring R of dimension one, R is an Arf ring if and only if R is strictly

closed. Zariski himself proved the if part ([8, Proposition 4.5]), and Lipman showed the

converse is also true ([8, Theorem 4.6]), when R contains a field. Until it was recently

proven by [4, Theorem 4.4] with full generality, it seems that Zariski’s conjecture has been

open for more than one half of century.

Let us say that a given commutative ring R is weakly Arf, if it satisfies Condition (2)

in the above definition of the Arf rings. As Lipman predicted in [8] and as the authors of

[4] are now developing a fruitful general theory, there is also a strong connection between

the strict closedness and the weak Arf property. In fact, an arbitrary commutative ring

R is a weakly Arf ring, once it is strictly closed ([8, Proof of Proposition 4.5]), and as

for Noetherian rings R satisfying the condition (S2) of Serre, it is known by [4, Corollary

4.6] that R is strictly closed if and only if R is weakly Arf and the local ring Rp is Arf

for every p ∈ SpecR with htRp = 1, and therefore, provided that htRM ≥ 2 for every

M ∈ MaxR, R is strictly closed if and only if R is weakly Arf ([4, Corollary 4.6]).

The strict closure behaves well with respect to the standard operations, such as local-

izations, polynomial extensions, and faithfully flat extensions ([4, Proposition 4.2, Lemma

4.9], [8, Proposition 4.3]). It is proved in [4, Corollary 13.6] that the invariant subrings of

strictly closed rings under a finite group action (except the modular case) are still strictly

closed. The reader may consult with [8, 4] about further study of strict closed rings.

Let us now explain where the motivation for the present researches has come from. In

general setting, it is not quite easy to determine whether a given commutative ring R is

strictly closed or not. Even for the following simple case

R = k[X5, XY 4, Y 5]

where X,Y are indeterminates over a field k, we meet some puzzled difficulty to compute

the strict closure

R∗ = k[X5, X9Y 6, X8Y 7, X4Y 11, XY 4, Y 5]

of R. In order to overcome the difficulty, we certainly require some practical method of

constructing strictly closed rings, which we shall provide in Section 2 of the present paper.

As applications, we will explore a few concrete examples, including the above one. The

Stanley-Reisner rings of simplicial complexes (resp. F -pure rings satisfying the condition

(S2) of Serre) are typical examples of strictly closed (resp. weakly Arf) rings, which we

shall show in Section 3 (resp. Section 4).

Unless otherwise specified, throughout this paper let R denote a commutative ring, and

R the integral closure of R in its total ring Q(R) of fractions.

2. Strict closures of rings

Let S/R be an extension of commutative rings and we set

R∗ = {α ∈ S | α⊗ 1 = 1⊗ α in S ⊗R S} ,
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which forms a subring of S containing R. We say that R is strictly closed in S, if R = R∗.

Since (R∗)∗ = R∗ in S, R∗ is strictly closed in S ([8, Section 4, p.672]). We simply say

that R is strictly closed, if R is strictly closed in R. We refer the reader to [8, 4] for

the properties of strict closures. Our present purpose is to give a practical method of

producing strictly closed rings, exploring a few concrete examples.

Our key is the following.

Theorem 2.1. Let R be a commutative ring and T an R-subalgebra of the total ring Q(R)

of fractions of R. Let V be a non-empty subset of T such that T = R[V ]. If fg ∈ R for

all f, g ∈ V , then R is strictly closed in T .

We divide the proof of Theorem 2.1 into a few steps. Firstly, let α ∈ T such that

α ⊗ 1 = 1 ⊗ α in T ⊗R T . Then, there exists a finitely generated R-submodule L of T

which contains both the elements α and 1 such that α⊗ 1 = 1⊗ α in L⊗R L. Since L is

finitely generated, we get a finite subset W of V , so that L ⊆ R[W ]. Because

L ⊆ R[W ] ⊆ R[V ] = T ⊆ Q(R),

we then have α⊗ 1 = 1⊗ α in R[W ]⊗R R[W ]. Therefore, passing to W , without loss of

generality we may assume that V is a finite set.

Let V = {f1, f2, . . . , fn}. Then T = R +
∑n

i=1Rfi. We consider the R-linear map

ε : R⊕(n+1) → T

defined by

ε

( a0
a1
...
an

)
= a0 + a1f1 + . . .+ anfn

for all

( a0
a1
...
an

)
∈ R⊕(n+1). Consequently, if

( a0
a1
...
an

)
∈ Ker ε, then a0 = −

∑n
i=1 aifi, so that

a0fj = −
n∑

i=1

(aifi)fj = −
n∑

i=1

ai(fifj) ∈ R

for all 1 ≤ j ≤ n. Hence, a0T ⊆ R. Therefore, denoting by R : T be the conductor ideal,

we get the following.

Lemma 2.2. We have a0 ∈ R : T for every

( a0
a1
...
an

)
∈ Ker ε.

Proof of Theorem 2.1. Let us choose a non-zero free R-module G and a homomorphism

φ : G → R⊕(n+1) so that Imφ = Ker ε. We consider the exact sequence

T ⊗R G
T⊗Rφ→ T ⊗R R⊕(n+1) T⊗Rε→ T ⊗R T → 0

of T -modules induced from the exact sequence

G
φ→ R⊕(n+1) ε→ T → 0.

Let {gλ}λ∈Λ be a free basis of G and we naturally identify

T ⊗R G = T⊕Λ and T ⊗R R⊕(n+1) = T⊕(n+1).



4 NAOKI ENDO AND SHIRO GOTO

Now let α ∈ R∗, where R∗ denotes the strict closure of R in T , and write

α = a0 + a1f1 + . . .+ anfn

with ai ∈ R. We set β = a1f1 + a2f2 + . . .+ anfn. Then, since β ∈ R∗, we have

(−β)⊗ 1 + 1⊗ β =
n∑

i=1

ai [(−fi)⊗ 1 + 1⊗ fi] = 0

in T ⊗R T = (T ⊗R ε)(T⊕(n+1)). Because

(−fi)⊗ 1 + 1⊗ fi = (T ⊗R ε)


−fi
0
...
0
1
0
...
0


for each 1 ≤ i ≤ n (here in the vector of the right hand side the identity 1 appears at the

i-th entry), we have

n∑
i=1

ai


−fi
0
...
0
1
0
...
0

 ∈ Ker (T ⊗R ε) = Im (T ⊗R φ).

Therefore, the sum
∑n

i=1 ai(−fi) belongs to the ideal I of T generated by the entries of

the first row of the matrix φ = [gλ]. Consequently, Lemma 2.2 shows that
n∑

i=1

ai(−fi) ∈ R : T ⊆ R.

Hence, β ∈ R, so that α = a0 + β ∈ R. Thus, R is strictly closed in T . □

Corollary 2.3. Let R be a commutative ring and assume that R = R[f ] for some f ∈
Q(R). If f 2 ∈ R, then R is strictly closed, so that R is a weakly Arf ring.

Corollary 2.4. Let R be a commutative ring and J = (a1, a2, . . . , an) (n ≥ 3) an ideal of

R such that a21 = a2a3. We set I = (a2, a3, . . . , an) and consider the Rees algebras

R = R(I) = R[It] ⊆ T = R(J) = R[Jt] ⊆ R[t]

of I and J , respectively, where t denotes an indeterminate over R. Then R is strictly

closed in T , provided I contains a non-zerodivisor of R.

Proof. We have Q(R) = Q(T ) = Q(R[t]), because I contains a non-zerodivisor of R.

Therefore, the assertion follows from Theorem 2.1, since T = R[a1t] and (a1t)
2 ∈ R. □

Corollary 2.5. Let T be an integrally closed integral domain and A a subring of T .

Choose a non-empty subset V of T so that T = A[V ] and 0 6∈ V . We set

R = A
[
{fg | f, g ∈ V }, {f 3 | f ∈ V }

]
.

Then, T = R, and R is strictly closed, whence R is a weakly Arf ring.
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Proof. Since f 2, f 3 ∈ R for all f ∈ V , V ⊆ Q(R), whence Q(R) = Q(T ), and T = R. By

Theorem 2.1 R is strictly closed in T , because fg ∈ R for all f, g ∈ V . □

We explore more concrete examples. Let us begin with the following.

Example 2.6. Let S = k[X,Y ] be the polynomial ring over a field k and set

R = k[X5, XY 4, Y 5]

in S. Then

R∗ = k[X5, X9Y 6, X8Y 7, X4Y 11, XY 4, Y 5].

Proof. Notice that

R = k[X5, X4Y,X3Y 2, X2Y 3, XY 4, Y 5].

We set

T = k[X5, X13Y 7, X9Y 6, X4Y 11, XY 4, Y 5].

Then, because R∗ is strictly closed and all the elements

X9Y 6 =
X5Y 5·X5Y 5

XY 4
, X13Y 7 =

X9Y 6·X9Y 6

X5Y 5
, X4Y 11 =

X2Y 8·X2Y 8

Y 5

belong to [R∗]∗, we get T ⊆ R∗, whence T ∗ = R∗ ([8, Section 4, p.672]).

We now notice that R = T + T ·X4Y + T ·X3Y 2 + T ·X2Y 3. Let ε : T⊕4 → R be the

T -linear map defined by

ε

(
a0
a1
a2
a3

)
= a0 + a1X

4Y + a2X
3Y 2 + a3X

2Y 3.

Then, it is just a routine work to check that Ker ε is generated by the following vectors:(
X5Y 5

−XY 4

0
0

)
,

(
X9Y 6

−X5Y 5

0
0

)
,

(
X13Y 7

−X9Y 6

0
0

)
,

(
X17Y 8

−X13Y 7

0
0

)
,(

X9Y 6

0
−X6Y 4

0

)
,

(
X13Y 7

0
−X10Y 5

0

)
,

(
X12Y 8

0
−X9Y 6

0

)
,

(
X16Y 9

0
−X13Y 7

0

)
,

(
X4Y 11

0
−XY 9

0

)
,

(
X3Y 12

0
−Y 10

0

)
,

(
X7Y 13

0
−X4Y 11

0

)
,

(
X5Y 10

0
−X2Y 8

0

)
,(

X13Y 7

0
0

−X11Y 4

)
,

(
X2Y 8

0
0

−Y 5

)
,

(
X11Y 9

0
0

−X9Y 6

)
,

(
X15Y 10

0
0

−X13Y 7

)
,

(
X3Y 12

0
0

−XY 9

)
,

(
X6Y 14

0
0

−X4Y 11

)
,

(
X4Y 11

0
0

−X2Y 8

)
,(

0
Y 5

−XY 4

0

)
,

(
0

X9Y 6

−X10Y 5

0

)
,

(
0

X13Y 7

−X14Y 6

0

)
,

(
0

X12Y 8

−X13Y 7

0

)
,

(
0

X4Y 11

−X5Y 10

0

)
,

(
0

X3Y 12

−X4Y 11

0

)
,(

0
X9Y 6

0
−X11Y 4

)
,

(
0

X13Y 7

0
−X5Y 5

)
,

(
0

X7Y 8

0
−X9Y 6

)
,

(
0

Y 10

0
−X2Y 8

)
,

(
0

X4Y 11

0
−X6Y 9

)
,

(
0

X3Y 12

0
−X5Y 10

)
,

(
0

X11Y 9

0
−X13Y 7

)
,

(
0

X2Y 13

0
−X4Y 11

)
,(

0
0
Y 5

−XY 4

)
,

(
0
0

X9Y 6

−X10Y 5

)
,

(
0
0

X13Y 7

−X14Y 6

)
,

(
0
0

X12Y 8

−X13Y 7

)
,

(
0
0

X4Y 11

−X5Y 10

)
,

(
0
0

X3Y 12

−X4Y 11

)
.

Therefore, Proof of Theorem 2.1 guarantees that T ∗ ⊆ T + J , where J denotes the ideal

of R generated by the entries of the first rows in the vectors above, so that we have

T ∗ ⊆ T + J = T + kX8Y 7

since

T + J = T +X5Y 5·R.
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On the other hand, because
X8Y 7

0
0

−X6Y 4

 = X3Y 2


X5Y 5

−XY 4

0
0

+X4Y


0
Y 5

−XY 4

0

+X5


0
0
Y 5

−XY 4

 ,

we see X8Y 7 ⊗ 1 = 1 ⊗ X8Y 7 in R ⊗T R, that is X8Y 7 ∈ T ∗, which guarantees T ∗ =

T + kX8Y 7. Consequently

R∗ = k[X5, X9Y 6, X8Y 7, X4Y 11, XY 4, Y 5],

since T ∗ = R∗. □

Example 2.7. Let (R,m) be a two-dimensional regular local ring with m = (x, y). Let

I = (x3, xy4, y5) and R = R[It], where t denotes an indeterminate. Then R is a strictly

closed ring with R = R[Jt], where J = (x3, x2y2, xy4, y5). Therefore R 6= R.

Proof. Let J = (x3, x2y2, xy4, y5) and set T = R[Jt]. Then, since J is an integrally closed

ideal of R, we get T = R, while T = R[x2y2t] and (x2y2t)2 ∈ R. Hence, by Corollary 2.3

R is strictly closed. □

Example 2.8. Let S = k[X,Y ] be the polynomial ring over a field k. Let n ≥ 3 be an

integer and set

R = k[Xn−iY i | 0 ≤ i ≤ n, i 6= 1]

in S. Then R is a strictly closed Cohen-Macaulay ring with dimR = 2.

Proof. Let T = k[Xn−iY i | 0 ≤ i ≤ n]. Then, T = R, and T = R[Xn−1Y ], so that R

is strictly closed by Corollary 2.3, because (Xn−1Y )2 ∈ R. Since Xn, Y n forms a regular

sequence in R, R is a Cohen-Macaulay ring of dimension 2. □

Example 2.9. Let S = k[X1, X2, . . . , Xn] (n ≥ 1) be the polynomial ring over a field k

and set

R = k[{XiXj | 1 ≤ i ≤ j ≤ n}, {X3
i | 1 ≤ i ≤ n}]

in S. Then R is a strictly closed ring such that R 6= R.

The condition that R = A [{fg | f, g ∈ V }, {f 3 | f ∈ V }] in Corollary 2.5 is in some

sense the best possible as the following example shows. Notice that R2 is not a weakly

Arf ring, because X3

X2 ,
X2Y
X2 ∈ S but X3·X2Y

X2 = X3Y 6∈ R2.

Remark 2.10. Let S = k[X,Y ] be the polynomial ring over a field k. We set

R1 = k[X2, XY, Y 2, X3, Y 3] and R2 = k[X2, X2Y, Y 2, X3, Y 3]

in S. Then S = R1 = R2. The ring Ri is strictly closed, while R2 is not weakly Arf, so

that R2 is not strictly closed.
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3. Stanley-Reisner rings

The purpose of this section is to show that Stanley-Reisner algebras are strictly closed

rings. Let R be a Noetherian reduced ring. We write MinR = {p1, p2, . . . , pℓ} where

ℓ = ♯MinR ≥ 2. We assume that the following specific condition is satisfied:

(∗) R/pi is integrally closed for every 1 ≤ i ≤ ℓ.

We then have the embedding

0 → R
φ→ R/p1 ⊕R/p2 ⊕ · · · ⊕R/pℓ = R,

where φ(α) = (α, α, . . . , α) for each α ∈ R (here we denote by α the image of α in each

R/pi). Let ei = (0, . . . , 0,

i
∨
1, 0, . . . , 0) ∈ R for each 1 ≤ i ≤ ℓ. Hence

R =
ℓ∑

i=1

Rei =
ℓ⊕

i=1

Rei

and

R⊗R R =
∑

1≤i,j≤ℓ

R(ei ⊗ ej) =
⊕

1≤i,j≤ℓ

Rei ⊗R Rej.

Let α ∈ R and write α = (α1, α2, . . . , αℓ) with αi ∈ R. We then have

α⊗ 1 =
∑

1≤i,j≤ℓ

αi(ei ⊗ ej) and 1⊗ α =
∑

1≤i,j≤ℓ

αj(ei ⊗ ej)

in R⊗R R. Therefore, α⊗ 1 = 1⊗ α if and only if

αi(ei ⊗ ej) = αj(ei ⊗ ej)

for all 1 ≤ i, j ≤ ℓ. Since

R(ei ⊗ ej) = Rei ⊗R Rej ∼= R/pi ⊗R R/pj ∼= R/[pi + pj],

the latter condition is equivalent to saying that

αi − αj ∈ pi + pj

for all 1 ≤ i, j ≤ ℓ.

With this notation we have the following.

Proposition 3.1. Suppose that ℓ = 2. Then R is strictly closed, so that it is a weakly

Arf ring.

Proof. Let α ∈ R and assume that α⊗ 1 = 1⊗ α in R⊗R R. We write α = (α1, α2) with

αi ∈ R. Then, since α1 − α2 ∈ p1 + p2, we get α1 − α2 = β1 + β2 for some β1 ∈ p1 and

β2 ∈ p2. Because

α = (α1, α2) = (α2 + β1 + β2, α2) = (α2 + β2, α2) = (α2 + β2, α2 + β2),

we have α ∈ R, whence R = R∗ in R. □
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Corollary 3.2. Let S be a regular local ring and let a1, a2, . . . , am, b1, b2, . . . , bn be a regular

system of parameters of S (hence m+ n = dimS). Then

R = S/[(a1, a2, . . . , am) ∩ (b1, b2, . . . , bn)]

is a strictly closed ring, so that it is weakly Arf.

We now consider the case where R is the Stanley-Reisner ring of a simplicial complex.

Let V = {1, 2, . . . , n} be a vertex set and ∆ a simplicial complex on V . We assume ∆ 6= ∅
and denote by F(∆) the set of facets of ∆. We write F(∆) = {F1, F2, . . . , Fℓ} where

ℓ = ♯F(∆). Let S = k[X1, X2, . . . , Xn] be the polynomial ring over a field k and set

R = k[∆] = S/I∆,

where I∆ =
⋂ℓ

i=1 Pi and Pi = (Xα | α 6∈ Fi) for each 1 ≤ i ≤ ℓ.

We then have the following.

Theorem 3.3. The Stanley-Reisner ring R = k[∆] of ∆ is strictly closed, whence R is a

weakly Arf ring.

Proof. We consider S to be naturally a Zn-graded ring. Then, since both of the rings R

and R are Zn-graded, we get the commutative diagram

S //

��

S/P1 ⊕ S/P2 ⊕ · · · ⊕ S/Pℓ

∼=
��

R = S/I∆ // R/p1 ⊕R/p2 ⊕ · · · ⊕R/pℓ = R

of Zn-graded rings, where pi = Pi/I∆ for each 1 ≤ i ≤ ℓ and the vertical maps are

canonical. Notice that R∗ = Kerφ is a Zn-graded subring of R, since the R-linear map

φ : R → R⊗R R, α 7→ α⊗ 1− 1⊗ α

is a homomorphism of graded R-modules.

We now assume that R∗ 6⊆ R and choose a homogeneous element α ∈ R∗ \ R. We set

h = degα and write h = (a1, a2, . . . , an) where ai ≥ 0 for each 1 ≤ i ≤ n. Then, since

R = R/p1 ⊕R/p2 ⊕ · · · ⊕R/pℓ, we get

α = (α1, α2, . . . , αℓ)

with αi ∈ Rh. Let us choose elements fi ∈ Sh so that αi = fi in R. Then, since α ∈ R∗,

we get αi − αj ∈ pi + pj for all 1 ≤ i, j ≤ ℓ, as we have shown above. Therefore

fi − fj ∈ Pi + Pj

for all 1 ≤ i, j ≤ ℓ. Let us write fi = ciX
h with ci ∈ k, where Xh = Xa1

1 Xa2
2 · · ·Xan

n . We

now set

Γ = { i | 1 ≤ i ≤ ℓ and fi 6∈ Pi}.
Then Γ 6= ∅, and for all i, j ∈ Γ we have

(ci − cj)X
h ∈ Pi + Pj.

Therefore, if ci 6= cj, then Xh ∈ Pi + Pj, so that either Xh ∈ Pi or Xh ∈ Pj (because

each Pi is a graded ideal of S generated by monomials in Xi’s), which implies that either
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fi ∈ Pi or fj ∈ Pj. This is absurd, whence ci = cj for all i, j ∈ Γ. We set c = ci (i ∈ Γ);

hence c 6= 0.

If ♯Γ = ℓ, we then have f1 = f2 = · · · = fℓ, so that α ∈ R. Therefore, ♯Γ < ℓ, and we

may choose at least one index 1 ≤ i ≤ ℓ so that i 6∈ Γ. For each j ∈ Γ, we then have

(ci − c)Xh ∈ Pi + Pj,

while ci = 0 or Xh ∈ Pi, since ciX
h ∈ Pi. If X

h 6∈ Pi, then ci = 0, so that

cXh ∈ Pi + Pj,

which shows Xh ∈ Pj. This is impossible, as j ∈ Γ. Therefore, Xh ∈ Pi for each i 6∈ Γ,

and so, setting f = cXh and β = f in R, we get

β = αi in R/pi

for every 1 ≤ i ≤ ℓ. Hence, α ∈ R, which gives the final contradiction. Therefore,

R = k[∆] is strictly closed in R. □

One of the simplest example of Stanley-Reisner rings is the following. When the char-

acteristic of the field k is positive, this ring is so called F -pure, and the weak Arf property

of R can be deduced in a different way, which we shall discuss in the next section.

Example 3.4. Let S = k[X1, X2, . . . , Xn] (n ≥ 3) be the polynomial ring over a field k

and set

R = S/(X1 · · ·
∨
Xi · · ·Xn | 1 ≤ i ≤ n).

Then, R is a strictly closed Cohen-Macaulay ring of dimension one, so that it is weakly

Arf.

4. F -pure rings

The purpose of this section is to explore certain F -pure rings are always weakly Arf.

Before going ahead, we need some preliminaries.

Proposition 4.1 (cf. [6, Corollary 3.14]). Let (R,m) be an arbitrary local ring (not

necessarily Noetherian, and not necessarily of positive characteristic). If mR ⊆ R, then

R is a weakly Arf ring.

Proof. Let x, y, z ∈ R. Assume that x is a non-zerodivisor of R and that y
x
, z
x
∈ R. We

have to show yz
x
∈ R. To do this, we may assume x ∈ m. We then have

yz

x
= x · y

x
· z
x
∈ mR ⊆ R.

Hence, R is a weakly Arf ring. □

Remark 4.2. Let R be a Cohen-Macaulay local ring with dimR = 1. If mR ⊆ R, then R

is an analytically unramified local ring and R is an almost Gorenstein ring ([6, Corollary

3.12]).
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Example 4.3. Let S = k[[X1, X2, . . . , Xd]] (d > 0) be the formal power series ring over

a field k and let n = (X1, X2, . . . , Xd), the maximal ideal of S. Let J be an arbitrary

n-primary ideal of S and set R = k + J. Then, R is a Noetherian local ring with m = J

the maximal ideal, so that R is a weakly Arf ring, because S = R and mS = J ⊆ R.

We are now back to the main topic of this section. Let R be a commutative ring,

containing a field of positive characteristic p > 0. We denote R by S when we regard R

as an R-algebra via the Frobenius map

F : R → R, a 7→ ap.

Notice that R is a reduced ring if and only if F : R → S is injective. We say that the

ring R is F -pure, if for each R-module M the homomorphism

M → S ⊗R M, m 7→ 1⊗m

is injective. The Frobenius map naturally induces the homomorphism

f : Q(R)/R → Q(R)/R, a 7→ ap

of R-modules, where a (resp. ap) denotes, for each a ∈ Q(R), the image of a in Q(R)/R

(resp. the image of ap in Q(R)/R). Notice that the homomorphism f : Q(R)/R →
Q(R)/R is injective, once R is an F -pure ring.

Remember that a Noetherian ring R is said to satisfy the condition (S2) of Serre, if

depthRp ≥ inf{2, dimRp}
for every p ∈ SpecR. We now come to the main result of this section.

Theorem 4.4. Every Noetherian F-pure ring R satisfying (S2) is a weakly Arf ring.

Proof. Let p ∈ SpecR with depthRp ≤ 1. By [4, Theorem 2.6] it is enough to show that

Rp is a weakly Arf ring. To do this, we may assume dimRp = 1, since R satisfies (S2).

Hence, Rp is a one-dimensional Cohen-Macaulay local ring. Because F -purity is preserved

under localization and Q(Rp) = [Q(R)]p, without loss of generality we may also assume

that (R,m) is a Cohen-Macaulay local ring with dimR = 1. Therefore, since the m-adic

completion R̂ of R remains F -pure ([7, Lemma 3.26]), R̂ is a reduced ring, so that the

normalization R of R is a module-finite extension of R, whence ℓR(R/R) < ∞, that is

mℓ·(R/R) = (0) for some ℓ � 0. Hence, f ℓ(m·(R/R)) = (0) for all ℓ � 0. Therefore, the

injectivity of the homomorphism f : Q(R)/R → Q(R)/R guarantees that m·(R/R) = (0).

Thus, R is a weakly Arf ring by Proposition 4.1. □
Closing this paper, let us note one consequence, which follows from Theorem 4.4 and

[4, Corollary 4.6].

Corollary 4.5. Let R be a Noetherian ring of characteristic p > 0 such that R is F -pure,

satisfying (S2). If one of the following conditions

(1) R contains an infinite field.

(2) htRM ≥ 2 for every M ∈ MaxR.

is satisfied, then R is strictly closed and Rp is an Arf ring for every p ∈ SpecR with

htRp = 1.
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