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Abstract. This paper purposes to characterize Noetherian local rings (A,m) of pos-
itive dimension such that the first Hilbert coefficients of m-primary ideals in A range
among only finitely many values. Examples are explored to illustrate our theorems.

1. Introduction

Let A be a commutative Noetherian local ring with maximal ideal m and d = dimA >
0. For each m-primary ideal I in A we set

HI(n) = ℓA(A/I
n+1) for n ≥ 0

and call it the Hilbert function of A with respect to I, where ℓA(A/I
n+1) denotes the

length of the A-module A/In+1. Then there exist integers {ei(I)}0≤i≤d such that

HI(n) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I) for all n ≫ 0.

The integers ei(I)’s are called the Hilbert coefficients of A with respect to I. These
integers describe the complexity of given local rings, and there are a huge number of
preceding papers about them, e.g., [1, 2, 3, 4, 5]. In particular, the integer e0(I) > 0
is called the multiplicity of A with respect to I and has been explored very intensively.
One of the most spectacular results on the multiplicity theory says that A is a regular
local ring if and only if e0(m) = 1, provided A is unmixed. This was proven by P. Samuel
[9] in the case where A contains a field of characteristic 0 and then by M. Nagata [7] in

the above form. Recall that a local ring A is unmixed, if dim Â = dim Â/p for every

associated prime ideal p of the m-adic completion Â of A. The Cohen-Macaulayness in
A is characterized in terms of e0(Q) of parameter ideals Q of A. On the other hand, L.
Ghezzi and other authors [1] analyzed the boundness of the values e1(Q) for parameter
ideals Q of A and deduced that the local cohomology modules {Hi

m(A)}i̸=d are finitely
generated, once A is unmixed and the set Λ(A) = {e1(Q) | Q is a parameter ideal of A}
is finite.
In the present paper we focus on the first Hilbert coefficients e1(I) for m-primary

ideals I of A. Our study dates back to the paper of M. Narita [8], who showed that if A
is a Cohen-Macaulay local ring, then e1(I) ≥ 0, and also e2(I) ≥ 0 when d = dimA ≥ 2.
We consider the set

∆(A) = {e1(I) | I is an m-primary ideal in A}
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and are interested in the problem of when ∆(A) is finite. Under the light of Narita’s
theorem, if A is a Cohen-Macaulay local ring of positive dimension, our problem is
equivalent to the question of when the values e1(I) has a finite upper bound, and
Theorem 1.1 below settles the question, showing that such Cohen-Macaulay local rings
are exactly of dimension one and analytically unramified, where H0

m(A) denotes the 0-th
local cohomology module of A with respect to m.

Theorem 1.1. Let (A,m) be a Noetherian local ring with d = dimA > 0. Then the
following conditions are equivalent.

(1) ∆(A) is a finite set.
(2) d = 1 and A/H0

m(A) is analytically unramified.

We prove Theorem 1.1 in Section 3. Section 2 is devoted to preliminaries for the
proof. Let A denote the integral closure of A in the total ring of fractions of A. The
key is the following, which we shall prove in Section 2.

Theorem 1.2. Let (A,m) be a Cohen-Macaulay local ring with dimA = 1. Then

sup∆(A) = ℓA(A/A).

Hence ∆(A) is a finite set if and only if A is analytically unramified.

For the proof we need particular calculation of e1(I) in one-dimensional Cohen-
Macaulay local rings, which we explain also in Section 2.
When A = k[[ta1 , ta2 , . . . , taℓ ]] is the semigroup ring of a numerical semigroup H =

{
∑ℓ

i=1 ciai | ci ∈ N} over a field k (here t is the indeterminate over k and 0 < a1 <
a2 < . . . < aℓ are integers such that gcd(a1, a2, . . . , aℓ) = 1), the set ∆(A) is finite and
∆(A) = {0, 1, . . . , ♯(N\H)}, where N denotes the set of non-negative integers (Example
4.1). However, despite this result and the fact sup∆(A) = ℓA(A/A) in Theorem 1.2,
the equality

∆(A) = {n ∈ Z | 0 ≤ n ≤ ℓA(A/A)}
does not necessarily hold true in general. In Section 4 we will explore several concrete
examples, including an example for which the equality is not true (Example 4.7).
Unless otherwise specified, throughout this paper let A be a Noetherian local ring

with maximal ideal m and d = dimA > 0. Let Q(A) denote the total ring of fractions of
A. For each finitely generated A-module M , let ℓA(M) and µA(M) denote respectively
the length of and the number of elements in a minimal system of generators of M .

2. Proof of Theorem 1.2

In this section let (A,m) be a Cohen-Macaulay local ring with dimA = 1. Let I be
an m-primary ideal of A and assume that I contains a parameter ideal Q = (a) as a
reduction. Hence there exists an integer r ≥ 0 such that Ir+1 = QIr. This assumption
is automatically satisfied, when the residue class field A/m of A is infinite. We set

In

an
=

{ x

an

∣∣∣ x ∈ In
}
⊆ Q(A) for n ≥ 0

2



and let

B = A

[
I

a

]
⊆ Q(A),

where Q(A) denotes the total ring of fractions of A. Then

B =
∪
n≥0

In

an
=

Ir

ar
∼= Ir

as an A-module, because In

an
= Ir

ar
if n ≥ r as In

an
⊆ In+1

an+1 for all n ≥ 0. Therefore B is a

finitely generated A-module, whence A ⊆ B ⊆ A, where A denotes the integral closure
of A in Q(A). We furthermore have the following.

Lemma 2.1 ([3, Lemma 2.1]).
(1) e0(I) = ℓA(A/Q).
(2) e1(I) = ℓA(I

r/Qr) = ℓA(B/A) ≤ ℓA(A/A).

Conversely, let A ⊆ B ⊆ A be an arbitrary intermediate ring and assume that B
is a finitely generated A-algebra. We choose a non-zerodivisor a ∈ m of A so that
aB ( A and set I = aB. Then I is an m-primary ideal of A and I2 = a2B = aI. Hence

B = A

[
I

a

]
=

I

a
, so that we get the following.

Corollary 2.2. ℓA(B/A) = e1(I) ∈ ∆(A).

Let us note the following.

Lemma 2.3. Let (A,m) be a Cohen-Macaulay local ring with dimA = 1. Then

sup∆(A) ≥ ℓA(A/A).

Proof. We set s = sup∆(A). Assume s < ℓA(A/A) and choose elements y1, y2, . . . , yℓ

of A so that ℓA(
[∑ℓ

i=1Ayi

]
/A) > s. We consider the ring B = A[y1, y2, . . . , yℓ]. Then

A ⊆ B ⊆ A and

s < ℓA(

[
ℓ∑

i=1

Ayi

]
/A) ≤ ℓA(B/A),

which is impossible, as ℓA(B/A) ∈ ∆(A) by Corollary 2.2. Hence s ≥ ℓA(A/A). �
The assumption in the following Corollary 2.4 that the field A/m is infinite is nec-

essary to assure a given m-primary ideal I of A the existence of a reduction generated
by a single element. We notice that even if the field A/m is finite, the existence is
guaranteed when A is a discrete valuation ring (see Section 4).

Corollary 2.4. Let (A,m) be a Cohen-Macaulay local ring with dimA = 1. Suppose
that the field A/m is infinite. We then have

∆(A) = {ℓA(B/A) | A ⊆ B ⊆ A is an intermediate ring

which is a module-finite extension of A}
3



Proof. Let Γ(A) denote the set of the right hand side. Let I be an m-primary ideal of

A and choose a reduction Q = (a) of I. We put B = A

[
I

a

]
. Then B is a module-finite

extension of A and Lemma 2.1 (2) shows e1(I) = ℓA(B/A). Hence ∆(A) ⊆ Γ(A). The
reverse inclusion follows from Corollary 2.2. �
We finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.3 it suffices to show sup∆(A) ≤ ℓA(A/A). Enlarg-
ing the residue class field A/m of A, we may assume that the field A/m is infinite. Let
I be an m-primary ideal of A and choose a ∈ I so that aA is a reduction of I. Then

e1(I) ≤ ℓA(A/A)

by Lemma 2.1 (2). Hence the result. �

3. Proof of Theorem 1.1

Let us prove Theorem 1.1. Let (A,m) be a Noetherian local ring with d = dimA > 0.
We begin with the following.

Lemma 3.1. Suppose that ∆(A) is a finite set. Then d = 1.

Proof. Let I be an m-primary ideal of A. Then for all k ≥ 1

e0(I
k) = kd·e0(I) and e1(I

k) =
d− 1

2
·e0(I)·kd +

2e1(I)− e0(I)·(d− 1)

2
·kd−1.

In fact, we have

(1) ℓA(A/(I
k)n+1) = e0(I

k)

(
n+ d

d

)
− e1(I

k)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I

k)

for n ≫ 0, while

(2) ℓA(A/(I
k)n+1) = ℓA(A/I

(kn+k−1)+1)

= e0(I)

(
(kn+ k − 1) + d

d

)
− e1(I)

(
(kn+ k − 1) + d− 1

d− 1

)
+ · · ·+ (−1)ded(I),(

kn+ k + d− 1

d

)
= kd

(
n+ d

d

)
+ a

(
n+ d− 1

d− 1

)
+ (lower terms)

and (
kn+ k + d− 2

d− 1

)
= kd−1

(
n+ d− 1

d− 1

)
+ (lower terms),

where

a = kd−1
(
k +

d− 1

2

)
− kd

2
(d+ 1).

Comparing the coefficients of nd in equations (1) and (2), we see

e0(I
k) = kd·e0(I).
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We similarly have

e1(I
k) = −e0(I)a+ e1(I)k

d−1

= −e0(I)
(
kd +

d− 1

2
kd−1 − d+ 1

2
kd
)
+ e1(I)k

d−1 and

=
d− 1

2
·e0(I)·kd +

2e1(I)− e0(I)·(d− 1)

2
·kd−1,

considering nd−1. Hence d = 1, if the set {e1(Ik) | k ≥ 1} is finite. �

Lemma 3.1 and the following estimations finish the proof of Theorem 1.1. Remember

that A is a finitely generated A-module if and only if the m-adic completion Â of A is
a reduced ring, provided A is a Cohen-Macaulay local ring with dimA = 1.

Theorem 3.2. Let (A,m) be a Noetherian local ring with dimA = 1 and set B =
A/H0

m(A). Then

sup∆(A) = ℓB(B/B)− ℓA(H
0
m(A)) and

inf ∆(A) = −ℓA(H
0
m(A)).

Proof. We set W = H0
m(A). Then B = A/W is a Cohen-Macaulay local ring with

dimB = 1. Let I be an m-primary ideal of A. We consider the exact sequence

0 → W/[In+1 ∩W ] → A/In+1 → B/In+1B → 0

of A-modules. Then since In+1 ∩W = (0) for all n ≫ 0,

ℓA(A/I
n+1) = ℓA(B/In+1B) + ℓA(W )

= e0(IB)

(
n+ 1

1

)
− e1(IB) + ℓA(W ).

Hence

e0(I) = e0(IB) and e1(I) = e1(IB)− ℓA(W ) ≥ −ℓA(W ),

because e1(IB) ≥ 0 by Lemma 2.1 (2). If I is a parameter ideal of A, then IB is a
parameter ideal of B and

e1(I) = e1(IB)− ℓA(W ) = −ℓA(W ).

Thus from Theorem 1.2 the estimations

sup∆(A) = sup∆(B)− ℓA(W )

= ℓB(B/B)− ℓA(W ) and

inf ∆(A) = −ℓA(W )

follow, since every mB-primary ideal J of B has the form J = IB for some m-primary
ideal I of A. �
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4. Examples

We explore concrete examples. Let 0 < a1 < a2 < . . . < aℓ (ℓ ≥ 1) be integers such
that gcd(a1, a2, . . . , aℓ) = 1. Let V = k[[t]] be the formal power series ring over a field k.

We set A = k[[ta1 , ta2 , . . . , taℓ ]] and H =
⟨∑ℓ

i=1 ciai | ci ∈ N
⟩
. Hence A is the semigroup

ring of the numerical semigroup H. We have V = A and ℓA(V/A) = ♯(N \ H). Let
c = c(H) be the conductor of H.

Example 4.1. Let q = ♯(N \H). Then ∆(A) = {0, 1, . . . , q}.

Proof. We may assume q ≥ 1, whence c ≥ 2. We write N \ H = {c1, c2, . . . , cq} with
1 = c1 < c2 < · · · < cq = c − 1 and set Bi = A[tci , tci+1 , . . . , tcq ] for each 1 ≤ i ≤ q.
Then the descending chain V = B1 ) B2 ) · · · ) Bq ) Bq+1 := A of A-algebras
gives rise to a composition series of the A-module V/A, since ℓA(V/A) = q. Therefore
ℓA(Bi/A) = q+1− i for all 1 ≤ i ≤ q+1 and hence, setting a = tc and Ii = aBi (( A),
by Corollary 2.2 we have e1(Ii) = q + 1− i. Thus ∆(A) = {0, 1, . . . , q} as asserted. �
Because q = c(H)/2 if H is symmetric (that is A = k[[ta1 , ta2 , . . . , taℓ ]] is a Gorenstein

ring), we readily have the following.

Corollary 4.2. Suppose that H is symmetric. Then ∆(A) = {0, 1, . . . , c(H)/2}.

Corollary 4.3. Let A = k[[ta, ta+1, . . . , t2a−1]] (a ≥ 2). Then ∆(A) = {0, 1, . . . , a− 1}.
For the ideal I = (ta, ta+1, . . . , t2a−2) of A, one has

e1(I) =

{
r(A)− 1 (a = 2),
r(A) (a ≥ 3)

where r(A) = ℓA(Ext
1
A(A/m, A)) denotes the Cohen-Macaulay type of A.

Proof. See Example 4.1 for the first assertion. Let us check the second one. If a = 2,
then A is a Gorenstein ring and I is a parameter ideal of A, so that e1(I) = r(A)−1 (=
0). Let a ≥ 3 and put Q = (ta). Then Q is a reduction of I, since IV = QV . Because

A

[
I

ta

]
= k[[t]] and m = taV , we get A :Q(A) m = k[[t]]. Thus e1(I) = ℓA(k[[t]]/A) =

ℓA([A :Q(A) m]/A) = r(A) ([6, Bemerkung 1.21]). �
Remark 4.4. In Example 4.3 I is a canonical ideal of A ([6]). Therefore the equality
e1(I) = r(A) shows that if a ≥ 3, A is not a Gorenstein ring but an almost Gorenstein
ring in the sense of [3, Corollary 3.12].

Let us consider local rings which are not analytically irreducible.

Example 4.5. Let (R, n) be a regular local ring with n = dimR ≥ 2. Let
X1, X2, . . . , Xn be a regular system of parameters of S and set Pi = (Xj | 1 ≤ j ≤
n, j ̸= i) for each 1 ≤ i ≤ n. We consider the ring A = R/

∩n
i=1 Pi. Then A is a

one-dimensional Cohen-Macaulay local ring with ∆(A) = {0, 1, . . . , n− 1}.

Proof. Let xi denote the image of Xi in A. We put pi = (xj | 1 ≤ j ≤ n, j ̸= i) and B =∏n
i=1(A/pi). Then the homomorphism φ : A → B, a 7→ (a, a, . . . , a) is injective and
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B = A. Since mB = m and µA(B) = n, ℓA(B/A) = n−1. Let ej = (0, . . . , 0,
j

1̌, 0, . . . , 0)

for 1 ≤ j ≤ n and e =
∑n

j=1 ej. Then B = Ae+
∑n−1

j=1 Aej. We set Bi = Ae+
∑i

j=1Aej
for each 1 ≤ i ≤ n − 1. Then since Bi = A[e1, e2, . . . , ei], Bi is a finitely generated
A-algebra and Bi ( Bi+1. Hence B = Bn−1 ) Bn−2 ) · · · ) B1 ) B0 := A gives
rise to a composition series of the A-module B/A. Hence ∆(A) = {0, 1, . . . , n− 1}, as
ℓA(Bi/A) = i for all 0 ≤ i ≤ n− 1. �

Let A be a one-dimensional Cohen-Macaulay local ring. If A is not a reduced ring,
then the set ∆(A) must be infinite. Let us note one concrete example.

Example 4.6. Let V be a discrete valuation ring and let A = V n V denote the
idealization of V over V itself. Then ∆(A) = N.

Proof. Let K = Q(V ). Then Q(A) = KnK and A = V nK. We set Bn = V n
(
V · 1

tn

)
for n ≥ 0. Then A ⊆ Bn ⊆ A and

ℓA(Bn/A) = ℓV (Bn/A)

= ℓV ([V ⊕
(
V · 1

tn

)
]/[V ⊕ V ])

= ℓV (V · 1
tn
/V )

= ℓV (V/t
nV )

= n.

Hence n ∈ ∆(A) by Corollary 2.2, so that ∆(A) = N. �

Example 4.7. Let K/k (K ̸= k) be a finite extension of fields and assume that there
is no proper intermediate field between K and k. Let n = [K : k] and choose a
k-basis {ωi}1≤i≤n of K. Let K[[t]] be the formal power series ring over K and set
A = k[[ω1t, ω2t, . . . , ωnt]] ⊆ K[[t]]. Then ∆(A) = {0, n− 1}.

Proof. Let V = K[[t]]. Then V =
n∑

i=1

Aωi and V = A. Since tV ⊆ A, we have

n = tV = m, where m and n stand for the maximal ideals of A and V , respectively.
Therefore ℓA(V/A) = n−1. Let A ⊆ B ⊆ V be an intermediate ring. Then B is a local
ring. LetmB denote the maximal ideal of B. We then havem = mB = n sincem = n and
therefore, considering the extension of residue class fields k = A/n ⊆ B/n ⊆ K = V/n,
we get V = B or B = A. Since V = A is a discrete valuation ring, every m-primary
ideal of A contains a reduction generated by a single element. Hence ∆(A) = {0, n−1}
by Corollary 2.4. �
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