BOUNDS FOR THE FIRST HILBERT COEFFICIENTS OF
m-PRIMARY IDEALS
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ABSTRACT. This paper purposes to characterize Noetherian local rings (A, m) of pos-
itive dimension such that the first Hilbert coefficients of m-primary ideals in A range
among only finitely many values. Examples are explored to illustrate our theorems.

1. INTRODUCTION

Let A be a commutative Noetherian local ring with maximal ideal m and d = dim A >
0. For each m-primary ideal [ in A we set

Hi(n) = (A(A/T") for n>0

and call it the Hilbert function of A with respect to I, where £4(A/I™™!) denotes the
length of the A-module A/I""'. Then there exist integers {e;(/)}o<i<a such that

d d—1

The integers e;(I)’s are called the Hilbert coefficients of A with respect to I. These
integers describe the complexity of given local rings, and there are a huge number of
preceding papers about them, e.g., [1, 2, 3, 4, 5|. In particular, the integer ey(I) > 0
is called the multiplicity of A with respect to I and has been explored very intensively.
One of the most spectacular results on the multiplicity theory says that A is a regular
local ring if and only if eg(m) = 1, provided A is unmixed. This was proven by P. Samuel
9] in the case where A contains a field of characteristic 0 and then by M. Nagata [7] in

Hi(n) = eo(1) (” * d) —e(I) (” - 1) Fo ot (=1)ey(I) for all n> 0.

the above form. Recall that a local ring A is unmized, if dim A = dim A\/p for every

associated prime ideal p of the m-adic completion A of A. The Cohen-Macaulayness in
A is characterized in terms of ey(Q) of parameter ideals @) of A. On the other hand, L.
Ghezzi and other authors [1] analyzed the boundness of the values e;(Q) for parameter
ideals @ of A and deduced that the local cohomology modules {H: (A)},.q are finitely
generated, once A is unmixed and the set A(A) = {e,(Q) | @ is a parameter ideal of A}
is finite.

In the present paper we focus on the first Hilbert coefficients e; (/) for m-primary
ideals I of A. Our study dates back to the paper of M. Narita [8], who showed that if A
is a Cohen-Macaulay local ring, then e;(I) > 0, and also e2(I) > 0 when d = dim A > 2.
We consider the set

A(A) ={ei(I) | I is an m-primary ideal in A}
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and are interested in the problem of when A(A) is finite. Under the light of Narita’s
theorem, if A is a Cohen-Macaulay local ring of positive dimension, our problem is
equivalent to the question of when the values e;(I) has a finite upper bound, and
Theorem 1.1 below settles the question, showing that such Cohen-Macaulay local rings
are exactly of dimension one and analytically unramified, where H) (A) denotes the 0-th
local cohomology module of A with respect to m.

Theorem 1.1. Let (A,m) be a Noetherian local ring with d = dim A > 0. Then the
following conditions are equivalent.

(1) A(A) is a finite set.

(2) d =1 and A/H%(A) is analytically unramified.

We prove Theorem 1.1 in Section 3. Section 2 is devoted to preliminaries for the
proof. Let A denote the integral closure of A in the total ring of fractions of A. The
key is the following, which we shall prove in Section 2.

Theorem 1.2. Let (A, m) be a Cohen-Macaulay local ring with dim A = 1. Then
sup A(A) = €4 (A/A).
Hence A(A) is a finite set if and only if A is analytically unramified.

For the proof we need particular calculation of e;(I) in one-dimensional Cohen-
Macaulay local rings, which we explain also in Section 2.

When A = Ek[[t™,t%, ... t*]] is the semigroup ring of a numerical semigroup H =
(3¢ cia; | ¢; € N} over a field k (here t is the indeterminate over k and 0 < a; <
as < ... < ay are integers such that ged(ay, ag,...,ar) = 1), the set A(A) is finite and
A(A) ={0,1,...,4(N\ H)}, where N denotes the set of non-negative integers (Example
4.1). However, despite this result and the fact sup A(A) = £4(A/A) in Theorem 1.2,
the equality

A(A)={neZ|0<n<ls(A/A)}

does not necessarily hold true in general. In Section 4 we will explore several concrete
examples, including an example for which the equality is not true (Example 4.7).

Unless otherwise specified, throughout this paper let A be a Noetherian local ring
with maximal ideal m and d = dim A > 0. Let Q(A) denote the total ring of fractions of
A. For each finitely generated A-module M, let £4(M) and p4(M) denote respectively
the length of and the number of elements in a minimal system of generators of M.

2. PROOF OF THEOREM 1.2

In this section let (A, m) be a Cohen-Macaulay local ring with dim A = 1. Let I be
an m-primary ideal of A and assume that I contains a parameter ideal @ = (a) as a
reduction. Hence there exists an integer > 0 such that I = QI". This assumption
is automatically satisfied, when the residue class field A/m of A is infinite. We set

]n

x
anr a_”

xGI”}QQ(A) for n>0
2



and let ,
B- AH c Q(A),
a
where Q(A) denotes the total ring of fractions of A. Then
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—| | ==

am a”

mt
ant

n T . n
as an A-module, because i—n = i_r ifn>rasLi C

o 1 for all n > 0. Therefore B is a

finitely generated A-module, whence A C B C A, where A denotes the integral closure
of Ain Q(A). We furthermore have the following.

Lemma 2.1 ([3, Lemma 2.1]).
(1) eo(l) = £a(A/Q). _
(2) ex(I) = La(I"/Q") = La(B/A) < La(A/A).

Conversely, let A C B C A be an arbitrary intermediate ring and assume that B
is a finitely generated A-algebra. We choose a non-zerodivisor a € m of A so that
aB C A and set I = aB. Then [ is an m-primary ideal of A and I? = a>B = al. Hence

B4l

I
} = —, so that we get the following.
a

a
Corollary 2.2. (4(B/A) = e (I) € A(A).

Let us note the following.
Lemma 2.3. Let (A, m) be a Cohen-Macaulay local ring with dim A = 1. Then

sup A(A) > £4(A/A)

Proof. We set s = sup A(A). Assume s < £4(A/A) and choose elements y1,9s, . ..,y
of A so that £4( [Zle Ayi] JA) > s. We consider the ring B = A[y1,v2, ..., y¢. Then
ACBCAand

¢
Z Ay;

i=1
which is impossible, as £4(B/A) € A(A) by Corollary 2.2. Hence s > £4(A/A). O

s < la( JA) < la(BJ/A),

The assumption in the following Corollary 2.4 that the field A/m is infinite is nec-
essary to assure a given m-primary ideal I of A the existence of a reduction generated
by a single element. We notice that even if the field A/m is finite, the existence is
guaranteed when A is a discrete valuation ring (see Section 4).

Corollary 2.4. Let (A,m) be a Cohen-Macaulay local ring with dim A = 1. Suppose
that the field A/m is infinite. We then have

A(A) = {ts(BJA) | AC BC A is an intermediate ring

which is a module-finite extension of A}
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Proof. Let I'(A) denote the set of the right hand side. Let I be an m-primary ideal of
I

A and choose a reduction @) = (a) of I. We put B = A [—} . Then B is a module-finite
a

extension of A and Lemma 2.1 (2) shows e, (/) = £4(B/A). Hence A(A) CT'(A). The
reverse inclusion follows from Corollary 2.2. O

We finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.3 it suffices to show sup A(A) < £4(A/A). Enlarg-
ing the residue class field A/m of A, we may assume that the field A/m is infinite. Let
I be an m-primary ideal of A and choose a € I so that aA is a reduction of I. Then

e1(I) < La(A/A)
by Lemma 2.1 (2). Hence the result. O

3. PROOF OF THEOREM 1.1

Let us prove Theorem 1.1. Let (A, m) be a Noetherian local ring with d = dim A > 0.
We begin with the following.

Lemma 3.1. Suppose that A(A) is a finite set. Then d = 1.

Proof. Let I be an m-primary ideal of A. Then for all £ > 1

eO([k) = kd‘eo(f) and el([k) = %'eo(l)'kd + 2e, (1) — e(;([)(d - 1)

'kd_l.

In fact, we have

W ) =er (") —a (ML) e et
for n > 0, while

(2) Ca(A/(I)"HY) = La(A)1EmHEDT

~ o) <(kn + kd— 1) + d) — e () ((lm + kd—_1)1+ d— 1)

o (1) (D),

k k+d—1 d d—1
(n+ + ):kd<n+ >+a(n+ )—l—(lowerterms)

d d d—1
and
kn+k+d—-2\ 4, (n+td-1
( J_1 ) =k ( Jo1 )+(lower terms),
where .
d—1 k
_ pd-1 _
o=k (k+ 5 ) (d+1).

Comparing the coefficients of n¢ in equations (1) and (2), we see

eo(lk) = k’d'eg(I).
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We similarly have

er(I*) = —eo(Da+e (k!
d—1 d+1
= —eo(D) (! + kT %kd> + ek and
d—1 2e1(I) —eo(l)(d—1
— 'eo(]>‘kd+ el( ) eo( ) ( )'kdfl,
2 2
considering n¢~!. Hence d = 1, if the set {e;(I*) | k > 1} is finite. O

Lemma 3.1 and the following estimations finish the proof of Theorem 1.1. Remember
that A is a finitely generated A-module if and only if the m-adic completion A of A is
a reduced ring, provided A is a Cohen-Macaulay local ring with dim A = 1.

Theorem 3.2. Let (A,m) be a Noetherian local ring with dim A = 1 and set B =
A/HO(A). Then

supA(A) = (5(B/B) —A(H2(A)) and

inf A(A) = —£4(H2(A)).

Proof. We set W = H2(A). Then B = A/W is a Cohen-Macaulay local ring with
dim B = 1. Let I be an m-primary ideal of A. We consider the exact sequence

0— W/[I"'nW] — A/I" — B/I"M'B — 0
of A-modules. Then since I N W = (0) for all n > 0,

CA(AJI™YY = LA(B/I"MB) + £4(W)

_ e(IB) (“Tl) —e1(IB) + £a(W).

Hence
eo(l) =eo(IB) and e(I) =e (IB) — la(W) > —LA(W),

because e;(IB) > 0 by Lemma 2.1 (2). If I is a parameter ideal of A, then IB is a
parameter ideal of B and

er(l) =e1(IB) —l4(W) = —L4(W).
Thus from Theorem 1.2 the estimations
supA(A) = supA(B) —(a(W)
= (p(B/B) —{4(W) and
inf A(A) = —l,(W)

follow, since every mB-primary ideal J of B has the form J = I B for some m-primary
ideal I of A. [l
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4. EXAMPLES

We explore concrete examples. Let 0 < a; < as < ... < a; (¢ > 1) be integers such
that ged(ay, ag, . . .,ap) = 1. Let V' = E[[t]] be the formal power series ring over a field k.

We set A = E[[t™,t%2, ... t*]] and H = <Zf:1 cia; | ¢ € N>. Hence A is the semigroup

ring of the numerical semigroup H. We have V = A and £4(V/A) = 4(N\ H). Let
¢ = ¢(H) be the conductor of H.

Example 4.1. Let ¢ = §(N\ H). Then A(A) ={0,1,...,q}.

Proof. We may assume ¢ > 1, whence ¢ > 2. We write N\ H = {¢,¢9,...,¢,} with
l=c <c<--<c¢ =c—1andset B, = A[t4 %+, ... t%] for each 1 < i < g.
Then the descending chain V. = By 2 By 2 --- 2 B, 2 By = A of A-algebras
gives rise to a composition series of the A-module V/A, since £4(V/A) = q. Therefore
la(BiJA) =q+1—iforall 1 <i<gqg+1 and hence, setting a = t° and I; = aB; (T A),
by Corollary 2.2 we have e;(l;) = ¢+ 1 —i. Thus A(A) = {0,1,...,q} as asserted. O

Because ¢ = ¢(H)/2 if H is symmetric (that is A = E[[t*, %2, ..., t*]] is a Gorenstein
ring), we readily have the following.

Corollary 4.2. Suppose that H is symmetric. Then A(A) ={0,1,...,c(H)/2}.

Corollary 4.3. Let A = k[[t*,t*™, ..., t**7 )] (a > 2). Then A(A) ={0,1,...,a—1}.
For the ideal I = (t*,t*"1 ... 12972) of A, one has

r(A)—1 (a=2),
eld) = { (4)  (a>3)

where 1(A) = £4(Exty(A/m, A)) denotes the Cohen-Macaulay type of A.

Proof. See Example 4.1 for the first assertion. Let us check the second one. If a = 2,
then A is a Gorenstein ring and [ is a parameter ideal of A, so that e;(/) =r(A)—1 (=
0). Let @ > 3 and put @ = (t*). Then @ is a reduction of I, since IV = QV. Because

A{tia} = K[[t]] and m = t*V, we get A :qay m = k[[t]]. Thus e;(I) = L4(K[[t]]/A) =

Ca([A :qay m]/A) = 1r(A) ([6, Bemerkung 1.21}). O

Remark 4.4. In Example 4.3 [ is a canonical ideal of A ([6]). Therefore the equality
e1(I) = r(A) shows that if a > 3, A is not a Gorenstein ring but an almost Gorenstein
ring in the sense of [3, Corollary 3.12].

Let us consider local rings which are not analytically irreducible.

Example 4.5. Let (R,n) be a regular local ring with n = dimR > 2. Let
X1, X, ..., X, be a regular system of parameters of S and set P, = (X; |1 < j <
n, j # 1) for each 1 < i < n. We consider the ring A = R/(\_, P,. Then A is a
one-dimensional Cohen-Macaulay local ring with A(A) ={0,1,...,n — 1}.

Proof. Let x; denote the image of X; in A. Weputp, = (z; |1 <j<n, j#i)and B =
[T;-,(A/p;). Then the homomorphism ¢ : A — B, a +— (@,a,...,a) is injective and
6



J
B = A. SincemB = mand pa(B) =n, {4(B/A) =n—1. Lete; = (0,...,0,1,0,...,0)
for1<j<nande=} "  e; Then B= Ae+2?;11 Ae;. Weset B; = Ae+Z;:1 Ae;
for each 1 < i < mn — 1. Then since B; = Alej,ey,...,€], B; is a finitely generated
A-algebra and B; € B;i1. Hence B = B,,_1 2 B, 2 2 --- 2 By 2 By := A gives
rise to a composition series of the A-module B/A. Hence A(A) ={0,1,...,n — 1}, as
la(Bi/A)=iforall0<i<n-—1. O

Let A be a one-dimensional Cohen-Macaulay local ring. If A is not a reduced ring,
then the set A(A) must be infinite. Let us note one concrete example.

Example 4.6. Let V be a discrete valuation ring and let A = V x V denote the
idealization of V' over V itself. Then A(A) = N.

Proof. Let K = Q(V). Then Q(A) = Kx K and A = V x K. Weset B, = V (v%ﬂ)
for n > 0. Then A C B,, C A and
((BA) = (B
= e (v v ev)

= W)
= G(V/Y)

= n.
Hence n € A(A) by Corollary 2.2, so that A(A) = N. O

Example 4.7. Let K/k (K # k) be a finite extension of fields and assume that there
is no proper intermediate field between K and k. Let n = [K : k] and choose a
k-basis {w;}1<i<n of K. Let K][[t]] be the formal power series ring over K and set
A = kllwit, wat, ... ,wpt]] € K[[t]]. Then A(A) = {0,n —1}.

Proof. Let V. = K]J[t]]. Then V = ZAM and V = A. Since tV C A, we have

n =tV = m, where m and n stand f(z)rlthe maximal ideals of A and V', respectively.
Therefore £4(V/A) =n—1. Let A C B CV be an intermediate ring. Then B is a local
ring. Let mp denote the maximal ideal of B. We then have m = mp = n since m = n and
therefore, considering the extension of residue class fields k = A/n C B/n C K = V/n,
we get V = B or B = A. Since V = A is a discrete valuation ring, every m-primary
ideal of A contains a reduction generated by a single element. Hence A(A) = {0,n— 1}
by Corollary 2.4. O
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