THE ALMOST GORENSTEIN REES ALGEBRAS OF PARAMETERS
SHIRO GOTO, NAOYUKI MATSUOKA, NAOKI TANIGUCHI, AND KEN-ICHI YOSHIDA

ABSTRACT. There is given a characterization for the Rees algebras of parameters in a
Gorenstein local ring to be almost Gorenstein graded rings. A characterization is also
given for the Rees algebras of socle ideals of parameters. The latter one shows almost
Gorenstein Rees algebras rather rarely exist for socle ideals, if the dimension of the base
local ring is greater than two.

1. INTRODUCTION

This paper purposes to study the question of when the Rees algebras of given ideals are
almost Gorenstein rings. Almost Gorenstein rings are newcomers, which form a class of
Cohen-Macaulay rings that are not necessarily Gorenstein but still good, hopefully next
to the Gorenstein rings. The notion of this kind of local rings dates back to the article
[1] of V. Barucci and R. Froberg in 1997. They introduced almost Gorenstein rings in
the case where the local rings are of dimension one and analytically unramified. One can
refer to [1] for a beautiful theory of almost symmetric numerical semigroups. Nevertheless,
since the notion given by [1] was not flexible for the analysis of analytically ramified case,
in 2013 S. Goto, N. Matsuoka and T. T. Phuong [7] extended the notion over arbitrary
(but still of dimension one) Cohen-Macaulay local rings. The reader may consult [7]
for concrete examples of analytically ramified almost Gorenstein local rings as well as
generalizations/repairs of results given in [1]. It was 2015 when S. Goto, R. Takahashi
and N. Taniguchi [9] finally gave the definition of almost Gorenstein graded/local rings of
higher dimension. We recall here the precise definitions which we need throughout this

paper.

Definition 1.1. Let (R,m) be a Cohen-Macaulay local ring possessing the canonical
module Kz. Then we say that R is an almost Gorenstein local ring, if there exists an
exact sequence

0—-R—->Kr—>C—=0
of R-modules such that pr(C) = e2(C), where ur(C) (resp. €2(C)) stands for the

m m
number of elements in a minimal system of generators for C' (resp. the multiplicity of C'

with respect to m).
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Definition 1.2. Let R = @nzo R,, be a Cohen-Macaulay graded ring with Ry a local
ring. Suppose that R possesses the graded canonical module Kz. Then R is called an
almost Gorenstein graded ring, if there exists an exact sequence

0= R—Kg(—a) > C—0

of graded R-modules such that pur(C) = 3 (C), where 9 is the unique graded maximal
ideal of R and a = a(R) denotes the a-invariant of R. Remember that Kz(—a) stands for
the graded R-module whose underlying R-module is the same as that of Kz and whose
grading is given by [Kg(—a)], = [Kg]n—q for all n € Z.

Definition 1.2 means that if R is an almost Gorenstein graded ring, then even though R
is not a Gorenstein ring, R can be embedded into the graded R-module Kg(—a), so that
the difference Kgr(—a)/R is a graded Ulrich R-module (see [2], [9, Section 2]) and behaves
well. The reader may consult [9] about a basic theory of almost Gorenstein graded/local
rings and the relation between the graded theory and the local theory. For instance, it
is shown in [9] that certain Cohen-Macaulay local rings of finite Cohen-Macaulay rep-
resentation type, including two-dimensional rational singularities, are almost Gorenstein
local rings. The almost Gorenstein local rings which are not Gorenstein are G-regular
([9, Corollary 4.5]) in the sense of [18] and they are now getting revealed to enjoy good
properties. However, in order to develop a more theory, it is still required to find more ex-
amples of almost Gorenstein graded/local rings. This observation has strongly motivated
the present research.

On the other hand, as for the Rees algebras we nowadays have a satisfactorily developed
theory about the Cohen-Macaulay property (see, e.g., [8, 14, 16, 17]). Among them
Gorenstein Rees algebras are rather rare ([15]). Nevertheless, as is shown in [10], some
of the non-Gorenstein Cohen-Macaulay Rees algebras can be almost Gorenstein graded
rings, which we are eager to report also in this paper.

Let us now state our results, explaining how this paper is organized. Throughout this
paper let (R,m) be a Gorenstein local ring with d = dim R. For each ideal I in R let
R(I) = R[It] (t denotes an indeterminate over R) be the Rees algebra of I. We set
R = R(I) and M = mR + R,.. We are mainly interested in the almost Gorenstein
property of R and Ry in the following two cases. The first one is the case where I = Q)
is generated by a part ai,as,...,a, of a system of parameters for R. The second one is
the case where I = () : m, that is I is the socle ideal of a full parameter ideal ) of R. In
Section 2 we study the first case. We will show that Rgy is an almost Gorenstein local ring
if and only if R is a regular local ring, provided @ = (a1, as,...,a,) with r = ur(Q) > 3
(Theorem 2.7). The result on the almost Gorensteinness in the ring R is stated as follows,
which is a generalization of [9, Theorem 8.3].

Theorem 1.3 (Theorem 2.8). Let R be a Gorenstein local ring. Let a1, as, ..., a, (r > 3)
be a subsystem of parameters for R and set QQ = (ay,aq9,...,a,). Then the following
conditions are equivalent.

(1) R(Q) is an almost Gorenstein graded ring.
(2) R is a regular local ring and ay, as, . . ., a, form a part of a reqular system of parameters

for R.
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In Section 3 we shall study the second case where I = @) : m is the socle ideal of a
parameter ideal @) in a regular local ring R. The reader may consult [10] for the case
where dim R = 2 and in the present paper we focus our attention on the case where
dim R > 3. Then somewhat surprisingly we have the following.

Theorem 1.4 (Theorem 3.6). Let (R, m) be a regular local ring with d = dim R > 3 and
infinite residue class field. Let QQ be a parameter ideal of R such that Q # m and set
I =@ :m. Then the following conditions are equivalent.

(1) R(I) is an almost Gorenstein graded ring.
(2) Either I =m, ord =3 and I = (z) +m? for some x € m \ m?.

Theorems 1.3 and 1.4 might suggest that when dim R > 3, except the case where
I = @ the Rees algebras which are almost Gorenstein graded rings are rather rare. We
shall continue the quest also in the future to get more evidence.

In what follows, unless otherwise specified, let R stand for a Noetherian local ring with
maximal ideal m. For each finitely generated R-module M let ugr(M) (resp. (r(M))
denote the number of elements in a minimal system of generators of M (resp. the length
of M). We denote by 2 (M) the multiplicity of M with respect to m. Let K denote the
canonical module of R.

2. THE CASE WHERE THE IDEALS ARE GENERATED BY A SUBSYSTEM OF
PARAMETERS

Let (R, m) be a Gorenstein local ring with d = dim R > 3 and let ay, as, ..., a, (r > 3)
be a subsystem of parameters for R. We set Q = (ay,as,...,a,). Let

R =R(Q) = R[Qt] € Rlt]

denote the Rees algebra of () and set 9 = mR + R, where ¢ is an indeterminate over
R. Remember that a(R) = —1. In this section we study the almost Gorenstein property
of R and Rgy. To do this we need some machinery.

Let S = R[X, X5, ..., X,] be the polynomial ring over R. We consider S as a graded
ring with deg X; = 1 for each 1 <7 < r and set M =mS + S,. Let ¥ : S — R be the
R-algebra map defined by U (X;) = a;t for 1 <i <r. We set

A= <X1 Xz oo XT).
a1 a9 e Q,
Then Ker V¥ is generated by 2 x 2 minors of the matrix A, that is
Ker W — 1, (Xl Xy - X,n)’

which is a perfect ideal of S with grade r — 1. Let

Co: 0=Cry ™ Cry == C) = Co
be the Eagon-Northcott complex associated with the matrix A ([3]). Since we are strongly

. : . . . . dy
interested in the form of the matrix corresponding to the differentiation C,_; 50, s,
let us briefly remind the reader about the construction of the complex.
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Now let L be a finitely generated free S-module of rank r with basis {7;}1<i<,. We
denote by K = AL the exterior algebra of L over S and let Ko(X;, Xo,..., X;;S) (resp.
Ke(ay,ag,...,a,;S)) be the Koszul complex of S generated by Xi, Xo, ..., X, (resp.
ai, as, . ..,a,) with differentiations 0y (resp. d;). Let U = S[Y1,Y3] be the polynomial
ring with two indeterminates Y7, Y5 over S. We set Cy = S and C,, = K41 ®g U, _; for
each 1 <n <r — 1. Hence C, is a finitely generated free S-module with free basis

(T, T,,--- T,
We consider C,, to be a graded S-module so that
deg(ﬂlﬂzﬂ ®}/1V1Y2V2) =1 + 1.

®}/1V1}/2V2’1§i1<i2<"'<’in+1§T, V1+V2:n—1}.

n+1

n+1

Then the Eagon-Northcott complex
Ce : 0C1 —=Crg—--—=CL—=>Cy—0
associated with A is defined to be a complex of graded free S-modules with differentiations

dn(T’hT’h'“ﬂnﬁ-l ®}/1V1}/éy2) = Z aj(EIEQH.En+I) ®Y'1V1 .._}/;Vj_l__.}/'zVQ

j=1,2 and v;>0

for n > 2 and
dl(ﬂlEQ & 1) = det <X’Ll Xl?) .
iv Qg
Hence d;(C) = I;(A) € S. The complex C, is acyclic and gives rise to a graded minimal
S-free resolution of R, since Io(A) is perfect of grade r — 1 and X;,a;, € M =mS + S, for
all 1 <i <r (cf. [3]).
Let M denote the matrix of the differentiation C)_; dT—A) C,_o with respect to the free

=>J = VYSh >

C,_1 and C)_,, respectively. Then a standard computation gives the following.

Proposition 2.1.

a1 —ag---(—l)”'la,« 0

X1 —X2~~~(—1)T+1X7~ al —O,Q"-(—].)TJrlar
M —

X1 —Xo--(=)"X, a1—az--(=1)""a,
0 X1 — Xo--- (1) X,

We take the S(—r)-dual of the resolution C, to get the following presentation of the
graded canonical module Kz of R, where @S (—(i+1))*" and @_] S(—i) con-
sist of column vectors, say @)_; S(—i) = '[S(—(r—1))@---® S(-2) ® S(-1)] and
B S (—(i+ 1) =[S (~(r — 1) @5 (~3)7 & 5 (~2)""].

Corollary 2.2.
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Hence r(R) =r — 1 > 2, where r(R) denotes the Cohen-Macaulay type of R.

For each graded S-module M and ¢ € Z we denote by M@ = > nez Mnq the Veronesean
submodule of M with degree q. Remember that M@ is a graded S@-module whose
grading is given by [M @], = M,,, for n € Z. We then have the following. This might be
known (see, e.g., [6]). Let us note a brief proof in our context.

Proposition 2.3. R(Q"™1) is a Gorenstein ring.

Proof. Notice that R(Q""!) = R"Y. Let n = &(f) € [Kg],_; in the presentation given
é r—1 .

by Corollary 2.2 where f = | . | € @,2; S(—i), and set D = Kg/Rn. Then D, = (0),

0
since [Kg],—1 = Rn and we get by Proposition 2.1 the isomorphism
r—2
D/mD = B[S/ (—i)
i=1

of graded S-modules, which shows that dimg,, Doy < d and that D=1 = (0), because
DU /mD=D = [D/mD]"Y = (0).

We now consider the exact sequence
(Bry) RSBKp(r—1)— D=0

of graded R-modules, where 1(1) = 7. Then the homomorphism ¥ is injective by |9,
Lemma 3.1 (1)], so that applying the functor [ * ] to sequence (E,_;), we get the
isomorphism

RO 2 [Ke ] (<1
of graded R ~Y-modules. Thus R(Q""') = R~V is a Gorenstein ring, because
[Kr]" ™ = Kpoon (cf. [12)). O

Before going ahead, let us discuss a little bit more about the presentation
r—2 . r—1
P S(—(i+1)% = @ S(—i) =+ Kg — 0
i=1 i=1
in Corollary 2.2 of the graded canonical module Ki of R. We set £ = ¢(e) € [Kg]; where

0
1

0
e= ( > € @._} S(—i), whence [Kg]; = RE. We set C' = K /RE. Hence

C = Coker é}S(—(i%—l))@’" ﬁ>é§5(—i) ;

=1 =2

where N denotes the matrix obtained from ‘M by deleting the bottom row, so that Propo-
sition 2.1 gives the following.
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Lemma 2.4.

D 5(-@)]

= DIRr/QI(-)

i=2
as graded S-modules, where R = S/Sy is considered trivially to be a graded S-module.
In particular dimg,, Con < d. Therefore by [9, Lemma 3.1 (1)] dimg C' = d and the

homomorphism ¢ : R — Kg(1) defined by (1) = £ is injective, so that we get the
following.

Corollary 2.5. The sequence
0—-R - Ke(l) =C —0
of graded R-modules is exact and dimpr C' = d.
We need the following result to prove Theorem 2.7 below.

Proposition 2.6. Let a be an ideal in a Gorenstein local ring B and suppose that A = B/a
s an almost Gorenstein local ring. If A is not a Gorenstein ring but pdg A < oo, then B
15 a reqular local ring.

Proof. Enlarging it if necessary, we may assume the residue class field of B to be infinite.
We choose an exact sequence

0—-A—-Ky—C—=0

of A-modules so that C' # (0) and C'is an Ulrich A-module. Then pdz K4 < oo, because
B is a Gorenstein ring and pdz A < oo. Hence pdz C' < oo. We take an A-regular
sequence f1, fo, ..., fa-1 € n (d = dim A) such that nC = (fy, fo,..., fa—1)C (this choice
is possible; see [9, Proposition 2.2 (2)]) and set b = (f1, fa,..., fa—1). Then by [9, Proof
of Theorem 3.7] we get an exact sequence

0— A/BA — K,4/bK4 — C/6C — 0,
whence B is a regular local ring, because pdz C/bC < oo and C'/bC' (# (0)) is a vector

space over B/n. O
Theorem 2.7. The following conditions are equivalent.
(1) Raon is an almost Gorenstein local ring.

(2) R is a regular local ring.

Proof. (1) = (2) This readily follows from Proposition 2.6. Remember that R is a perfect
S-module.
(2) = (1) We maintain the same notaion as in Lemma 2.4. Then

C/mC = (S/9M)%0—2)
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by Lemma 2.4, whence 9C = m(C'. Therefore C' is a graded Ulrich R-module, because
dimgp C' = d (cf. Corollary 2.5) and m is generated by d elements. Thus the exact sequence

derived from the sequence in Corollary 2.5 guarantees that Roy is an almost Gorenstein
local ring, because Kg,, = [Kz]m- O

We are now in a position to study the question of when the Rees algebra R(Q) is an
almost Gorenstein graded ring. Our answer is the following.

Theorem 2.8. The following conditions are equivalent.

(1) R is an almost Gorenstein graded ring.
(2) R is a regular local ring and aq, as, . . ., a, form a part of a reqular system of parameters

for R.

Proof. (2) = (1) We maintain the same notation as in Lemma 2.4. Firstly choose
elements 41,2, ...,Y4—r € m so that m = @ + a, where a = (y1,92,...,Ya—r). We then
have by Lemma 2.4

r—1

C/(S: +aS)C = EPIR/m](~i),

so that 9 [(C/(Sy + aS)C] = (0). Therefore C' is a graded Ulrich R-module, whence R
is an almost Gorenstein graded ring by Corollary 2.5.

(1) = (2) Suppose that R is an almost Gorenstein graded ring and consider the exact
sequence

0— R -2 Kg(l) — C — 0

of graded R-modules such that ur(C) = eX(C'). We set p = ¢(1). Then since r(R) =
r—1 > 2, we have p = ¢(1) ¢ m-[Kg]; by [9, Corporally 3.10]. Hence [Kg]i = Rp
(remember that [Kg]; = R; see Corollary 2.2). Thus C' # (0), dimg C' = d, and C,, = (0)
for every n < 1. Therefore C' = Z:;zl S¢; with & € C; by Corollary 2.2 and hence
Q"2C = (0), because Q(C/S,C) = (0) by Lemma 2.4. We set a = (0) :g C' and
b=anNR. Hence Q"2 C b C Q (see Proposition 2.4).

Claim. e (C) = (r — 2)-e), o(R/Q).

Proof of Claim. We may assume the field R/m to be infinite. Weset S = S/a, A = [S]y (=
R/b), and n the maximal ideal of A. Notice that dim A = d — 7, since Q"2 C b C Q. Let
B = Alz1,2,..., 2] be the standard graded polynomial ring and let ¢ : B — S be the
A-algebra map defined by 1(z;) = X; for each 1 < i < r, where X; denotes the image of
X; in S. We regard C to be a graded B-module via 1. Notice that dimp C = dim B = d.
Let us choose elements 41, ¥s, . . ., Y4s—r of m so that their images {¥; }1<i<a—r in A = R/b
generate a reduction of n. Then (7; | 1 <i < d—r)B + By is a reduction of the unique
graded maximal ideal nB + B, of B, while the images of {y;}i1<i<a—r in R/Q generate
a reduction of the maximal ideal m/Q of R/Q, since R/() is a homomorphic image of
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A = R/b. Hence setting Mg = nB + B, , we get
em(C) = en,(C)
= (p(C/ @ |1<i<d—-r)B+ B,]C)
ls(Cl il 1<i<d—1)S+5,]C)
= (r—=2)4r(R/[Q+ (y; |1 <i<d-r)]) (by Lemma 2.4)
= (r—2)eno(R/Q)
as claimed. ]

Since R is an almost Gorenstein graded ring with r(R) =r — 1 > 2, we have eJ,(C) =
r—2 by [9, Corollary 3.10], so that e?n/Q(R/Q) = 1 by the above claim. Thus R is a regular
local ring and ay, as, ..., a, form a part of a regular system of parameters for R. U

Remark 2.9. Let R = @, ., R, be a Cohen-Macaulay graded ring such that R, is a local
ring. Assume that R possesses the graded canonical module Ky and let 9 denote the
graded maximal ideal of R. Then because Kg,, = [Kg]m, R is by definition an almost
Gorenstein local ring, once R is an almost Gorenstein graded ring. Theorems 2.7 and 2.8
show that the converse is not true in general. This phenomenon is already recognized by
9, Example 8.8]. See [9, Section 11] for the interplay between the graded theory and the
local theory.

Before closing this section, let us discuss a bit about the case where r = 2.

Proposition 2.10. Let (R, m) be a Cohen-Macaulay local ring and let a,b be a subsystem
of parameters for R. We set Q = (a,b), R = R(Q), and M = mR + Ry. If Rop is an
almost Gorenstein local ring, then R is a Gorenstein ring, so that R is a Gorenstein ring.

Proof. Let S = R[z,y] be the polynomial ring over R and consider the R-algebra map
U : S — R defined by ¥(z) = at, ¥(y) = bt. Then Ker ¥ = (bx — ay) and bx — ay € N?,
where 91 = mS+.S,. Therefore since Rop = Sqr/(bx — ay) Sy is an almost Gorenstein local
ring, by [9, Theorem 3.7 (1)] Sn must be a Gorenstein local ring, whence so is R. O

Remark 2.11. Let (R, m) be a Cohen-Macaulay local ring and let @ be an ideal of R
generated by a subsystem aj,as,...,a, of parameters for R. We set R = R(Q) and
M = mR + R,;. With this setting the authors do not know whether R is necessarily a
Gorenstein ring and hence a regular local ring, if R (resp. Rgy) is an almost Gorenstein
graded (resp. local) ring, provided r > 3.

3. THE CASE WHERE THE IDEALS ARE SOCLE IDEALS OF PARAMETERS

In this section we explore the question of when the Rees algebras of socle ideals are
almost Gorenstein. In what follows, let (R, m) be a Gorenstein local ring of dimension
d > 3 with infinite residue class field. Let I be an m-primary ideal of R. We assume that
our ideal I contains a parameter ideal Q = (a1, as,...,aq) of R such that I? = QI. We
set J =@ : I, R = R[It] C R[t] (t an indeterminate over R), and 9t = mR + R .. Notice
that R is a Cohen-Macaulay ring ([8]) and a(R) = —1. We are interested in the question
of when R (resp. Ron) is an almost Gorenstein graded (resp. local) ring.

Let us note the following.
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Theorem 3.1 ([19, Theorem 2.7]).
d—3
Kr(l) =) "Rt + R-Jt
=0

as a graded R-module.
As a direct consequence we get the following.
Corollary 3.2. 1(R) = (d — 2) + ur(J/I).

Here r(R) denotes the Cohen-Macaulay type of R. Consequently, R is a Gorenstein
ring if and only if d = 3 and I = J, that is [ is a good ideal in the sense of [5].
Let us begin with the following.

Lemma 3.3. Suppose that Q C m?. Then pur(mQ) = d-ug(m).

Proof. Let 0 : m®p Q — mQ be the R-linear map defined by o(x ® y) = zy for all z € m
and y € Q. To see pur(m@Q) = d-pr(m), it is enough to show that

Kero Cm- [m®g Q).
Let x € Kero and write z = zgzl fi ® a; with f; € m. Then since Z?Zl a;fi =0
and ag,as,...,aq form an R-regular sequence, for each 1 < ¢ < d we have f; €
(aq,... i, ,aqg) Cm? Hence r € m- [m ®p Q)] as required. O

Theorem 3.4. If J =m and I C m?, then Ray is not an almost Gorenstein local ring.

Proof of Theorem 3.4. We set A = Rgy and suppose that A is an almost Gorenstein local
ring. Notice that A is not a Gorenstein ring, since J # I (Corollary 3.2). We choose an
exact sequence

03 AB Ky —C—0

of A-modules with C' # (0) and C an Ulrich A-module. Let n denote the maximal ideal
of A and choose elements f1, fo, ..., fa € nso that nC' = (f1, fa,..., fa)C. Let £ = ¢(1).
Then because £ € nK4 by [9, Corollary 3.10], we get

pa(nC) < d-(r —1),

where r =r(A) = (d — 2) + ur(J/I) (Corollary 3.2). As £ ¢ nK4, we also have the exact
sequence
0—né = nKy —»nC — 0.

Therefore because K4 = [Kglyy, we get the estimation

pr(MKR) = pa(nKa) < pa(nC) + pa(n)
< d-[(d=2) + pr(J/1) = 1] + [pr(m) + pr(D)] .
d—3
On the other hand, since M = (m, [t)R and K (1) = ZR-ti + R-Jt*? by Theorem

i=0
3.1), it is straightforward to check that

HR(MKR) = (d — 2)-pr(m) + (L +mJ) + pr(LT/1).
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Therefore

[r(I +mJ) + pr(1J/1%)] = [ur(I) + d-pr(J/T)] < (d = 3)-[d — pr(m)] <0,
whence
() pr(l+mJ) + pr(IJ/1?) < pgr(l) + d-pr(J/1).

We now use the hypothesis that J = m and I C m?. Notice that mI = mQ, since
I =@ :m and @ is a minimal reduction of /. Then by the above estimation (%) we get
pr(m?) + pr(mQ) < pp(l) + d-pr(m),

whence pr(m?) < pgr(I) by Lemma 3.3. Therefore
d+1
( ! ) < pn(m?) < (1) = d+ 1,
which is impossible, because d > 3. ([l

Corollary 3.5. Let QQ be a parameter ideal of R such that Q C m?. Then Reyp is not an
almost Gorenstein local ring, where R = R(Q : m) and M =mR + R..

Proof. Let I = Q : m. Then I? = QI and I C m? by [20, Theorem 1.1], while Q : [ = Q :
(Q : m) =m, since R is a Gorenstein ring. O

Let us study the case where R is a regular local ring. The goal is the following.

Theorem 3.6. Let (R, m) be a reqular local ring of dimension d > 3 with infinite residue
class field. Let Q) be a parameter ideal of R. Assume that Q # m and set I = @ : m.
Then the following conditions are equivalent.

(1) R(I) is an almost Gorenstein graded ring.
(2) Either I =m, ord=3 and I = (z) +m? for some r € m\ m?.

We divide the proof of Theorem 3.6 into several steps. Let us begin with the case where
Q € m? Our setting is the following.

Setting 3.7. Let (R, m) be a regular local ring of dimension d > 3 with infinite residue
class field. We write m = (z1,x9,...,24). Let Q be a parameter ideal of R and let
1 <1i<d-—2 be an integer. For the ideal () and the integer ¢ we assume that

(2;]1<j <) CQC (v ] 1<) <i)+m?

Weseta= (z; |1 <j<i),b=(r]|i+1<j<d),and ] = :m Hence
Q=a+(a; | i+1<j<d) with a; € b? so that we have the presentation

T 1 T
X9 X2
' 0
T = 1 ZT;
Ait1 Li+1

. 0 Oéjk

aq Td
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with aj, € b for every i +1 < j,k < d. Let A = det(aj;). Then A € b? and Q : A =m
by [13, Theorem 3.1], whence I = @ + (A). Consequently we have the following. See
Corollary 3.2 for assertion (4).

Proposition 3.8. The following assertions hold true.
(1) I* = QI.

(2) Q:1=m.

(3) I Ca+ b2

(4) ur(m/I) =d—i and r(R) = 2d — (i + 2).
Proposition 3.9. pur(mQ/I?) = d(d — ).

Proof. Since m =a+ b and a C ), we get

mQ/[I* + m*Q] = bQ/[6Q N (Q* + mbQ)],
while Q@ Nb C mb, since @ =a+ (a; |i+1<j<d)and a; € b*foreveryi+1<j <d.
Hence Q% N bQ C mbQ, so that
bQ N (Q* + mbQ) = mbQ.
Therefore pr(m@Q/I?) = pr(bQ). The method in the proof of Lemma 3.3 works to get
ur(6Q) = pr(b ®r Q) = d(d — i) as claimed. O

The following is the heart of the proof.

Proposition 3.10. Suppose that R(I) is an almost Gorenstein graded ring. Then d = 3
and I = (z1) + m?.

Proof. Since r(R) = 2d — (i + 2) > 3 by Proposition 3.8 (4), R is not a Gorenstein ring.
We take an exact sequence

0+RI3IKr(l) - C =0

of graded R-modules so that C' # (0) and pgr(C) = e (C). Since [Kg]1 = R (see
Corollary 3.2) and & = (1) ¢ M- [Kz(1)], £ is a unit of R. Therefore the isomorphism of

Theorem 3.1 shows s

> Rt + R-mtd2] /R,
=1

from which by a direct computation we get the following.

C =

Fact 3.11.

| pr(m2/INm?) + pr(mQ/I2) (d=3),
Hr(MC) = { fbd — i) +d(d - 4)/1 pr(I +m?) + pr(mQ/I%) (d = 4).

On the other hand we have ug,, (Cm) =1(R) — 1= 2d — (i + 3) by [9, Corollary 3.10].
Consequently

UR(MC) = Ry (MCoy) < d-(2d — (i +3)),
because Coy is an Ulrich Rop-module with dimg,, Con = d ([9, Proposition 2.2 (2)]).
Assume now that d > 4. Then by Fact 3.11 and Proposition 3.9 we have

(d—1i) +d(d—4)+ pr(I +m?) +d(d —1i) < d2d — (i + 3)),
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so that pr(I +m?) <. This is impossible, because

d—i+1
uR(I+m2):uR(a+m2):i+( ;+ )>i.

Therefore we get d = 3 and 7 = 1, whence
/I Nm?]) + pur(m@Q/T?) < 6,

I, because pur(m@Q/I%) = 6 by Proposition 3.9. Thus
(3)- m

1R (

m
so that we have m?> = INm? C
I = (x1) +m? by Proposition 3.8

We are now in a position to finish the proof of Theorem 3.6.

Proof of Theorem 3.6. (1) = (2) If @ is integrally closed in R, then by [4, Theorem 3.1]
Q = (1, m9,...,x4-1,2%) for some regular system {x;}1<;<4 of parameters of R and for
some integer ¢ > 1. Therefore

-1
I=Q:m=0Q:2q= (331,352,---,960171,953 ),

so that we have ¢ = 2 by Theorem 2.8, that is I = m. Suppose that @) is not integrally
closed in R. Then @ ¢ m? by Corollary 3.5. Let {z;}1<j<q be a regular system of
parameters for R and take the integer 1 < i < d—2so that (z; |1 <j <i) CQ C
(z; ] 1 <j <i)+m? (cf. [4, Theorem 3.1]). We then have d = 3 and I = (z1) + m? by
Proposition 3.10.

(2) = (1) This follows from Theorem 2.8 and the following proposition. O

Proposition 3.12. Let (R,m) be a Gorenstein local ring with dim R = 3 and infinite
residue class field. Let Q) be a parameter ideal of R. Assume that Q # m and set
I=Q:m. IfI?=QI and m* C I, then R(I) is an almost Gorenstein graded ring.

Proof. We have Kgr(1) = R + R-mt. Consider the exact sequence
0-RL5Kr(l) = C—0

of graded R-modules with (1) = 1. Then since m? C I and mI = m@Q, we readily see
M [R-mt] C R+ Qt [R-mt]

which shows C' is a graded Ulrich R-module (see [9, Proposition 2.2 (2)]. Thus R is an
almost Gorenstein graded ring. 0

Let us note one example.

Example 3.13. Let R = k[[z,y, z]] be the formal power series ring over an infinite

field k. We set m = (z,y,2), Q = (z,9%2") with n > 2, and [ = @ : m. Then

I=(z,y*yz""12") and I* = QI.

(1) If n =2, then I = (x) + m?, so that R(I) is an almost Gorenstein graded ring.

(2) Suppose n > 3. Then I #m, Q # m, and I # (f) + m? for any f € m \ m?. Hence
R(I) is not an almost Gorenstein graded ring.
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