ON THE WEAKLY ARF (S,)-IFICATIONS OF NOETHERIAN RINGS

NAOKI ENDO, SHIRO GOTO, SHIN-ICHIRO IAI, AND NAOYUKI MATSUOKA

ABSTRACT. The weakly Arf (Ss)-ification of a commutative Noetherian ring R is con-
sidered to be a birational extension which is good next to the normalization. The weakly
Arf property (WAP for short) of R was introduced in 1971 by J. Lipman with his fa-
mous paper [[2], and recently rediscovered by [d], being closely explored with further
developments. The present paper aims at constructing, for a given Noetherian ring R
which satisfies certain mild conditions, the smallest module-finite birational extension
of R which satisfies WAP and the condition (S2) of Serre. We shall call this extension
the weakly Arf (Sp)-ification, and develop the basic theory, including some existence
theorems.

1. INTRODUCTION

The purpose of this paper is to construct, for a given commutative Noetherian ring R,
the smallest module-finite birational extension of R, satisfying the weakly Arf property
and the condition (S3) of Serre.

In 1971 J. Lipman [I2] introduced the notion of Arf ring and developed the basic
theory, extending the results of C. Arf [2], concerning the multiplicity sequences of curve
singularities, to those on one-dimensional Cohen-Macaulay rings. Let R be a Noetherian
semi-local ring and assume that R is a Cohen-Macaulay ring of dimension one, i.e., for
every M € Max R the local ring R, is Cohen-Macaulay and of dimension one. Then we
say that R is an Arf ring, if the following conditions are satisfied ([I2, Definition 2.1]),
where R denotes the integral closure of R in its total ring Q(R) of fractions.

(1) Every integrally closed ideal I in R which contains a non-zerodivisor has a principal
reduction, i.e., I"™ = aI™ for some n > 0 and a € I. -
(2) Let z,y,2 € R such that  is a non-zerodivisor on R. If £, 2 € R, then ¥ € R.

Here, we notice that, provided R is finite as an R-module, among the Arf rings between
R and R, there exists the smallest one, called the Arf closure of R.

In [I2] Lipman introduced also the notion of strict closure for arbitrary extensions
of two commutative rings and developed the underlying theory in connection with a
conjecture of O. Zariski. As is stated in [[Z], Zariski conjectured that the Arf closure
of R should coincide with the strict closure of R in R, provided R is a one-dimensional
Cohen-Macaulay ring, and Zariski himself proved that the Arf closure is contained in the
strict closure ([T2, Proposition 4.5]). Lipman proved the conjecture in the case where R
contains a field ([I2, Corollary 4.8]), and in [4, Theorem 4.4] the authors settled Zariski’s
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conjecture with full generality, by looking into a slight modification of Arf closures which
they call the weak Arf closures.

The research [4] was originally inspired by [[2] and aimed at a higher-dimensional
generalization of the theory of Lipman. In [4] the authors introduced the notion of weakly
Arf ring, and developed the fundamental theory.

Definition 1.1 (Lemma B). Let R be an arbitrary commutative ring and let W(R) =
{a € R | a is a non-zerodivisor of R}. Then the following conditions are equivalent.

(1) The ring R satisfies Condition (2) in the above definition of Arf rings.
(2) aR’ = a(aR) for every a € W(R), where I denotes, for an ideal I of R, the

integral closure of I.
(3) " N R is a subring of R for every a € W(R), where L a 'R in Q(R).
a a
When this is the case, we say that R is a weakly Arf ring.

Let us call Condition (2) in the definition of Arf rings the weakly Arf property (WAP for
short) of R. Both of strict and weakly Arf closures are defined for arbitrary commutative
rings. This fact leads us to the natural question of when the two closures coincide, and it
is proved by [4, Corollary 7.7] that with certain mild assumptions on R (e.g., R contains
an infinite field), the answer to the question is affirmative, once the weakly Arf closure
satisfies (S3). Nevertheless, as is pointed out by [, Example 4.3], in general the weakly
Arf closure does not satisfy (S3), even if the strict and weakly Arf closures coincide.

This fact strongly urged us to start the present research. The main purpose is to show,
for a given Noetherian ring R, the existence of the weakly Arf (S3)-ification, i.e., the
smallest module-finite birational extension of R which satisfies both of WAP and (.53).

Before stating the result of this paper, let us give a little more comment about weakly
Arf rings. As is stated in Definition [, a commutative ring R is weakly Arf if and only if
aR’ = a(aR) for every a € W(R) (see [d, Theorem 2.4] also), while the integral closedness
of R is equivalent to saying that aR = aR for every a € W(R). Namely, the WAP is
originally very close to the integral closedness, which is the reason, for a Noetherian ring
R, why the weakly Arf (S,)-ification is of interest next to the normalization R, and may
have its own significance.

With this observation the conclusion of this paper can be stated as follows.

Theorem 1.2 (Corollary B77). Let R be a locally quasi-unmized Noetherian ring which
satisfies the condition (S1) of Serre. If R is a finitely generated R-module, then R admits
the weakly Arf (Sz)-ification.

We are now in a position to explain how this paper is organized. In Section 2 we explain
the basic methods of constructing (Ss)-ifications. We will show that for a Noetherian ring
R which satisfies (S1), the ring

R={feQ(R)|If C R for some ideal I with htgl > 2}

is the (S,)-ification of R and has the form R = § N % in Q(R) for some a,b € W(R),

once R is a finitely generated R-module. This naturally leads us to the problem of when
the (Sq)-ifications R of R is a Noetherian ring, or more specifically, when R is a finitely
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generated R-module, which we shall answer in Section 4. Section 3 is devoted to some
preliminaries which we will later use in Section 4. We shall summarize also the basic results
on the global canonical modules in Section 3, and applying these results, we eventually
prove Theorem I in the final section.

In what follows, unless otherwise specified, let R denote an arbitrary commutative ring,
and R the integral closure of R in its total ring Q(R) of fractions. For an R-module M,
let W(M) = {a € R| ais a non-zerodivisor for M}.

2. CONSTRUCTION OF (.S3)-IFICATIONS

In this section, let M be an R-module and set W = W(M). We consider M as an
R-submodule of W~1M the localization of M with respect to W. For each a € W and
an R-submodule L of W~1M, we set

L_a:
a \a

which forms an R-submodule of W~!M containing L, where L a7tz for all 2 e L. We
a
shall explore, for each a,b € W, the R-submodule of W~1M of the form
M M aM:yb
—n—>—=—""
a b a

xEL} C WM

Recall that, for a, as,...a, € R (£ > 0) and an R-module N, the sequence ay, as, . .. ay
is called N-regular, if a; is a non-zerodivisor on N/(ay, as,...a;_1)N for every 1 < i < /.
Here, we do not necessarily assume N/(ay, ag,...as)N # (0).

We begin with the following, which is essentially given by [LT].

Theorem 2.1 (cf. [I0]). Let a,b € W. Then the following conditions are equivalent.

b

M M M M
(2) The equality — N > = N W holds.

When this is the case, provided M = R, the R-module g N % is a subring of Q(R).

M M
(1) The sequence a,b is (; N —) -reqular.

Proof. We first prove the last assertion. Suppose M = R. By (2), we have the equalities
R R aR:zgb a*R:p1?
a b a a?

This yields a*R :g b* = a(aR :g b). Since I = aR :g b is an ideal of R with I? = al, the

I I R _R
R-submodule — = R [—] has a ring structure. Hence — N n is a subring of Q(R).
a a a

M M
(2) = (1) By setting L = —nN - e get
a

L=—n—cZnZcZn==1L
a b —a b~ a2 b2 ’
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L L L:pb
whence L = — N 3 This shows, because a € W (L) and L = L , the sequence a, b is
a
L-regular.
M M M M M M
(1) = (2) Note that L = — N 7 C =N ok Conversely, we take f € — N =l and
a a
write
_r vy . -1
f = ? = b_2 m W M

for some x,y € M. Since M C L, we have b(bx) = a(ay) € aL. This implies z € al,

because the sequence a, b is L-regular. Thus — € L. Similarly, because the sequence b, a
a,

is also L-regular, we get % € L. The equality — y2 impliesb- — =a - Y € al, so that
a? a

b b
z €al :;, b=alL. Hence f = % € L, as desired. O
a a

Example 2.2. Let R = k[z,y| the polynomlal ring over a field k. We set m = (x,y)R

- (()-0) () § e

MM
a:y_

and

2 @3
]IS
SI=
I
D

for all integers n > 2.

Proof. For each n > 0, note that (2" R?) N (y"R?) = 2™y" R? because ™, y" is R*-regular.
This shows 2" M Ny"M C 2"y" R?, and the equality holds for n > 2. Indeed, the equalities

(7)) ()= (- )

imply (a: Oy ) e x"M Ny"M. Similarly (:c”oy”) e z"MNy"M. Hence 2"M Ny"M =

M M "M Ny*M M M m
2"y"R?, and therefore — N — = TR R To prove — N — = @ , it sufiices

to show that

= { (3. (). (5,) ()

To do this, let f € xM NyM and write

f=u (f1 ("5) + fo (g) + fs (2)) =y (91 @ o (ayc) o @)

where f;,g; € R. Then z(fiz+ foy) = y(g12+g2y) and z( fox+ f3y) = y(g2x+93y). Asz,y
is R-regular, we can choose hq, ho, hg, hy € R such that fix + foy = yhy, for + fsy = yho,

917 + g2y = whs, gox + g3y = xhy. Therefore fi; = yhs, fo = yhs, go = xhy, g3 = whg for
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some hs, hg, h7, hg € R. Then, because f3 = —xhg + xhy + yhg, we get

r=ati () v (1) +ona ()

= 2 (yhs) @ + 2(yh) (i) o =ho + ohy + yhs) (2)

= hs (ﬂfgy) + hg (:632) T hy (xgy) + hg (;;2) .
It is straightforward to check the converse. This completes the proof. U
In what follows, we assume M is a torsion-free R-module and set
V =Q(R) ®r M.
Hence, every f € V has an expression of the form f = " where a € W(R) and m € M.

Let Ht>o(R) denote the set of all ideals of R which have height at least 2. We consider
htgp R = oo for convention. Hence R € Ht>o(R). Define

M={feV|IfC M for some I € Htss(R)} C V.

Since IJ € Htsy(R) for all I,J € Htsy(R), M is an R-submodule of V containing the
R-module M. For an R-submodule N of V with M C N C V. we then have N is the
R-submodule of V', whence M C N. When M = R, we identify V' with Q(R), so the
R-submodule R is a subring of Q(R). Then M is an é—sulzglodule of Q(R).

We now summarize some basic results on the R-module M. A part of them will be also
appeared in the forthcoming paper [B, Section 2]. Because the results play an important
role in our argument, let us include brief proofs for the sake of completeness.

Proposition 2.3. Let a,b € W(R). If htg(a,b) > 2, then the sequence a,b is M—r@gular.

Proof. Let f € M. Assume that bf = ag for some g € M. We choose I,J € Ht>2(R)

such that If,Jg C M. Set 90,\:,5 = 4. Then, since I(ap) € M and J(bp) C ]\{j we get

(Ia+ Jb)p C M. Hence ¢ € M because Ia + Jb € Ht>5(R). This shows f € aM. O
In the rest of this section, we furthermore assume R is a Noetherian ring.

Proposition 2.4. Let N be an R-submodule of V such that M C N C V. fflﬁsume that,
for all a,b € W(R) with htr(a,b) > 2, the sequence a,b is N-reqular. Then M C N.

Proof. Let [ € M and write f= T where z € M and a € W(R). Consider the ideal
a
I =M :p f. We then have a € I and I € Ht>5(R). Since
r¢z U r»ru U
pEMing R/aR pEAss R

we choose b € W(R) N I satisfying htgr(a,b) > 2. The sequence a,b is N-regular. As
bf € M C N, we can write bx = ay for some y € N. Hence z € aN :x b = aN. This
implies f € N. O
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Hence we have the following.

Corollary 2.5. The following conditions are equivalent:

(1) M = M.
(2) For every a,b € W(R) with htg(a,b) > 2, the sequence a,b is M-regular.

In particular, the equality M = M holds.

Let n > 0 be an integer and N a nonzero finitely generated R-module. We say that
N satisfies the condition (S,) of Serre, if depthp N, > min{n,dim Ry} for every p €
Suppgr N. The lemma below follows from the induction on n.

Lemma 2.6. Letn > 0 be an integer and N a nonzero finitely generated R-module. Then
the following conditions are equivalent.
(1) N satisfies (Sy).
(2) Every sequence ay,as, ..., a, € R satisfying htg(ay, as,...,a;) > foralll <i<mn
1s N -reqular.
If R satisfies (S1), then one can add the following.

(3) Every sequence ay,as,...,a, € W(R) satisfying htr(ay,as,...,a;) > i for all
1 <@ <nis N-reqular.

To sum up this kind of arguments, we get the following.

Theorem 2.7. Suppose that R satisfies (S1) and M is finitely generated as an R-module.
Then M is the smallest R-submodule of V' which contains M and satisfies (Sa).

Notice that, even if M is a finitely generated R-module, M is not necessarily finitely

generated as an R-module. Theorem 277 leads to the problem of when the R-module M
is finitely generated as an R-module, which we shall discuss in Section 3.

Example 2.8. Let 7' = k[[X, Y, Z]] the formal power series ring over a field k. Consider
the rings R = T/(X)N(Y,Z), A =T/(X), and B = T/(Y,Z). We identify Q(R) =

Q(A) x Q(B). Then R = A x Q(B). Hence R is not finitely generated as an R-module.

Proof. Let ¢ € R and write ¢ = (£,7) for some £ € Q(A) and 5 € Q(B). We then choose
I € Ht>9(R) such that o C R. As R C R = A x B, we obtain I¢ C A. We may assume
I # R. Choose a system a, b of parameters for R with (a,b) C I. The sequence a, b forms
a system of parameters for A. Since (a,b){ € A and the sequence a, b is A-regular, we get
af € aA 4 b=aA. Hence £ € Aand R C A x Q(B).

Conversely, let ¢ € A x Q(B) and write ¢ = (£,n) with £ € A and n € Q(B). By
setting x the image of X in B, we have B = k[[z]], whence we can write n = mﬂn for
somen > 0 and f € B. We consider a = X" +V, b= X""' + Z and I = (a,b)R.
Notice that htzpl = 2, TA = (Y, Z)A, and IB = 2" B. This implies I = (Y, Z)¢ and
In= ;1:"“3% = XfB. For every i € I, we see that

€=YF+ZF, in A and in=XF3; in B
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for some Fi, Fy, F3 € T, where ( ) denotes the image of * in the appropriate rings. Then

i = (i€, in) = <YF1 Y ZF - Xy, YE, - ZF, + XFg).
This yields I C R, whence ¢ € R. Therefore R = A x Q(B), as desired. O

The smallest module-finite birational extension of R satisfying the condition (S2) of
Serre is called the (Ss)-ification of R. We apply Theorem P77 to get the following.

Corollary 2.9. Suppose that R satisfies (S1) and R is a finitely generated R-module.
Then R is the (S2)-ification of R.

Let S be a Noetherian ring which is a birational extension of R. Note that, provided
S is a finitely generated R-module, S satisfies (S3) as a ring (i.e., S satisfies (53) as an
S-module) if and only if it satisfies (S;) as an R-module. Although R is not necessarily
finitely generated as an R-module, the ring R is integral over R, provided R is locally

quasi-unmixed (see [I3]).
Proposition 2.10. Suppose that R satisfies (S1) and R is a Noetherian n Ting which s

mtegml over R. Assume that M is a finitely generated R-module. Then M satisfies (Sa)
as an R-module. In particular, R satisfies (S3) as a ring.

Proof. Let P € Specé such that depthz M, p < 2. We will show that M, p is a maximal

Cohen-Macaulay Rp-module. To do this, we may assume htz P > 1. Set p = PN R.
Suppose htz P > 2. Then htg p > 2, so there exist a,b € pNW(R) such that hty (a, b) > 2.
By Proposition 23, the sequence a,b is M- regular. This contradicts depthp M p < 2.
Therefore htz P = 1, so that htgpp = 1. Hence we can choose a € p M W(R) Since
a is M- regular we get depthy M, p = 1. Therefore M, p is a maximal Cohen-Macaulay

Ep—module. O
In addition, we assume M is finitely generated as an R-module. For a € W(R), we set
Miny, M/aM = {p € Ming M /aM | htzp = 1}.
Then Miny, M/aM = Ming M /aM = Ming R/aR, whenever (0) :r M = (0).
A Noetherian local ring (A,m/z is said to be quasi-unmized, if all the minimal prime
ideals of the m-adic completion A of A have the same codimension. A Noetherian ring S

is said to be locally quasi-unmized, if Sp is quasi-unmixed for every P € SpecS.
We note the following.

Lemma 2.11. Suppose that R is locally quasi-unmized and satisfies (S1). Then dimpg, M, =
dim R, for all p € Suppyp M. Consequently, Ming M/aM = Ming M/aM, if a € W(R).

Proof. Let p € Supprp M and set dimg, M, = n. Choose q € Ming M, so that q C p
and htp/p/q = n. We then have q € Min R, because M is torsionfree and R satisfies
(S1). Therefore, htgpp = n, because R, is quasi-unmixed and qR, € Min R,. Thus
dimp, M, = dim R,,. O
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Let a € W(R) and
aM= (] Qb

pEAssp M/aM

be a primary decomposition of aM in M, where Q(p) denotes the p-primary component

of aM in M. We set,
Ulal) = {M, if Mink M/aM =0,

(wpeMin}R M/aM Q(p)7 if Mlﬂ}% M/GM ?é 0.

Lemma 2.12. For each a € W(R) with Mink, M/aM # 0, there exists b € W(R) such
that htg(a,b) > 2 and U(aM) = aM :p b.

Proof. Let a € W(R) such that Minp M/aM # 0. We may assume Assgp M/aM #
Miny, M/aM. Notice that, for every p € (Assg M/aM) \ (Ming M/aM), htgp > 2.

Consider
0= H p

pe(Assg M/aM)\(Mink M/aM)

and choose an integer ¢ > 0 such that U(aM) = aM :p; a’. We then have htga > 2 and

aN'W(R) # (). Hence
at ¢ U q U U q.

q€Mingr R/aR qgEAss R
Now we take an element b € a but b ¢ Userting rrar8 U Ugeassr 9- Then b € W(R),
htg(a,b) > 2, and U(aM) = aM :ps b, as desired. O

Theorem 2.13. Let a € W(R). Then U(aM) = aM N M.

M~
Proof. Let a € W(R). If Minj, M/aM = (), then — C M because
a

htr([(0) :r M|+ aR) > 2 and ([(0) :r M] +aR)-% C M.

Hence we have U(aM) = M = aM N M in this case. Thus we may assume Mink, M/aM #

(. Let m € aM N M and write m = af for some f € M. Then there exists an ideal
I € Ht>o(R) so that If C M. Hence htg(aM :g m) >2by I C M :g f =aM :g m.
Therefore we have m € aM, N M = Q(p) for every p € Miny M/aM which shows that
m € ﬂpeMin}% mjans @P) = U(aM). Next, we prove the converse inclusion. By Lemma

P12, there exists b € W(R) such that htg(a,b) > 2 and U(aM) = aM :p; b. We then
M U(aM —~ —~
have (a,b) - U(aM) C M which implies (C; ) C M. Therefore U(aM) = aM N M, as

claimed. O

We summarize some consequences.

~ U(aM
Corollary 2.14. The equality M = U M holds.
a

aeW(R)
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Proof. By Theorem 213, we have U(aM) C aM for all a € W(R). Conversely, let f € M
and write f = ¥ where 2 € M and a € W(R). Then z = af € aM N M = U(aM), and

a
hence f € U<C;M). O

Corollary 2.15 ([13, Corollary 10.5)). If R is locally quasi-unmized, then R C R.
Proof. Since aR = aR N R for all a € W(R), we have

Ro || B
aG%J(R)

It suffices to show U(aR) C aR for all a € W(R). Suppose the contrary, i.e., U(aR) Z aR
for some a € W(R), and seek a contradiction. Indeed, we consider the R-module

N = (U(aR) + aR)/aR

and take p € Assg N. Then p € Assg R/aR. Since R is locally quasi-unmixed, by [I7,
Theorem 2.12], we see that htgp = 1. So U(aR), = aR,, and hence N, = (0). This makes
a contradiction. Therefore U(aR) C aR for all a € W(R). O

Corollary 2.16. The following conditions are equivalent.

(1) M is a finately generated R-module.
(2) U(aM) = aM for some a € W(R).

(3) (M :r M) NW(R) # 0.

U(aM

When this is the case, one has M = ) for some a € W(R).

We now reach the goal of this section.

Theorem 2.17. Suppose that M is a finitely generated R-module. Then there exist a,b €
W(R) such that

MM
a b

Hence, if R satisfies (S1), then - N > 1s the smallest R-submodule of V' which contains

M and satisfies (Sz).

U(aM)

a

. Thanks to

~ M M

Lemma 2712, there exists b € W(R) such that U(aM) = aM :p; b. Hence M = — N 5
a

U

and the last assertion follows from Theorem P74.

Proof. By Corollary 2718, we can choose a € W(R) such that M =

3. GLOBAL CANONICAL MODULES AND MODULE-FINITENESS OF M

This section aims at considering the problem of when the R-module M is finitely
generated. To attack this problem, we apply the theory of global canonical module given
by R. Sharp [I8].
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Let R be a Noetherian ring and assume that R is a homomorphic image of a Gorenstein
ring. We set
R=25/I
where [ is an ideal of a Gorenstein ring S. Let
I= (] QP
PcAsss R

be a primary decomposition of I in S, where Q(P) stands for a P-primary component.
For each ideal J of S, we set V(J) = {P € SpecS | J C P}. Then

n

v =]]¢

where Cy,Cy, ... C, are the connected components of V(I), i.e., the equivalence classes
of the equivalence relation ~ on V(I), which is given by, for P,P" € V(I), P ~ P’ if
and only if there exist an integer ¢ > 0 and a sequence Py, Ps, ..., Ppyq in V(I) such that
Pr=P, Py =P, ,and P,+ P, # Sforall 1 <i</{. We put

L= (] ew.
PE(ASSS R)ﬂCi

We then have (_, [; = I and C; = V(I;) for all 1 < ¢ < n. Since [; + I; = S for all
1 <1,j <n with ¢ # j, we have an isomorphism

R=S/I x---x S/,
of rings. We define
i=1
and call it the global canonical module of R, where t; = htgl; for 1 < i < n. Notice

that K is a finitely generated R-module, and Ky coincides with the ordinary canonical
module provided R is a local ring.

Example 3.1. Let S = k[X, Y] the polynomial ring over a field k. We consider
Ql - (X), Qg — (1 +Y>, Q3 - (1 +XY>, Q4 - (X2,Y), Q5 - (1 ‘|—X +XY, YZ),

and [ = ﬂ?zl Q;. The ring R = S/I is not Cohen-Macaulay and R = S/I; x S/I, as a
ring, where [; = ﬂle Q; and I, = Q5. By setting U; = ﬂle Q; the principal ideal of S,
we have the isomorphisms

Extg(S/I,S) = Exts(S/Uy, S) = S/U,
of R-modules. Since I, is generated by the S-regular sequence, we get
Ext3(S/I,S) = S/1,
as an R-module. Therefore K = S/U; & S/I5 as an R-module.

We now summarize some basic results of Kg.

Proposition 3.2. Assg Kg = J,_,{PR | P € V(I;),htsP = htgI,}.
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Proof. Let 0 — S — E° — E' — ... — EJ — ... be the minimal injective resolution of
S. We fix an integer ¢ with 1 <4 < n. Since Homg(S/I;, E7) = (0) for all integers j < t;,
we get the monomorphism Ext%(S/1;, S) < Homg(S/I;, E%). Hence

Assg Ext%(S/1;,S) C V(I;) N Assg E' = {P | P € V(I;),htsP = t;}.

This shows Assp Kg C J_{PR| P € V(;),htsP = t;}. Conversely, let P € V(I;) such
that htgPP = t;. Since

dim SP - lel(S/Iz)p = htSp (Iz)p = ti,

we then have P € Suppg Ext%(S/I;,S), while P € Ming Ext%(S/I;,S). Therefore P €
Assg Exttsf(S’/Ii, S) C Assg Kg, as desired. O

Lemma 3.3. (Kg), = Kg, as an R,-module for every p € Suppy Kg.

Proof. Let p € Suppp Kg. Then there exist an integer ¢ and P € V(I;) such that 1 <i <n
and p = PR. Choose q € Assg Kg such that ¢ C p. We write ¢ = QR for some Q € V(I;).
Then htg@ = t;. Since @ C P, we have htg,(l;)p = t;. Hence

dim Sp — dim(S/1;), = dim Sp — dim Sp/(L;)p = hts, (Li)p = t;
so we obtain the isomorphisms

(Kr)p = Ext§(S/1;, ), = Bxt§, (/i) Sp) = Ks/n),) = Kiy)
of Ry,-modules. OJ

Let us now state the first main theorem of this section.
Theorem 3.4. Suppose that R is locally quasi-unmixed. Then
Asspr Kr = Min R.
Hence (Kg), = Kg, as an Ry-module for every p € Spec R.
Proof. Let ¢ be an integer with 1 <1¢ < n. It suffice, by Proposition B2, to show that
Ming S/I; C {P € V(I;) | htsP = htsl;}.

Take @ € Ming S/1;. Let Q" € Ming S/I; such that hts@’ = htgl;. We shall show htg@ =
htgl;. Since @, Q" € V(I;), there exist an integer £ > 0 and a sequence Q1,Qs, ..., Qi1 €
V(I;) such that Q1 = Q, Q1 = @', and Q; + Q41 # S for all 1 < j < /. We may
assume Q1,Qs, ..., Qw1 € Ming S/I;. We fix an integer j with 1 < j < ¢. There exists
P € Max S such that Q; + Q;+1 C P, and then P € V(I;). Since Rp = (S/1;)p and R is
locally quasi-unmixed, we have htg/q, P/Q; = hts/q,,, P/Qj11, so that htsQ; = htsQ; 1
because S is a Cohen-Macaulay ring. Consequently, htg@Q) = hts@’, as wanted. The last
assertion follows from Lemma BZ3. O

Lemma 3.5. The endomorphism ring Homg(Kg, Kg) is commutative.

Proof. Set T'= R\ quASSRKR
subring of the commutative ring 7' R. O

g. The ring Homg(Kg, Kg) is naturally isomorphic to a
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Let ¢ : R — Hompg(Kg,Kg) be the natural homomorphism of rings. We denote by
(0) = Nyeass g @(q) the primary decomposition of (0) in R, and set

U= () Q).

qEAssR KR

With this notation we have the following.
Lemma 3.6. The equality U = (0) :gr Kg holds. Hence, one has U = Ker ¢.

Proof. Suppose UKg # (0) and take p € Assg UKg. Since p € Assg Kg C Min R, we get
U, = (0) and hence (UKpg), = (0). This is absurd. Therefore UKz = (0), so that U C
(0) :r Kg. Suppose U C (0) :g Kg and seek a contradiction. Let p € Assg[(0) :gr Kg|/U.
Since p € Assgp R/U, we get p € AssgKg, so that (Kg), = Kz,). Since dim R, = 0,
we have (0) :r, Kg,) = (0), whence [(0) :r Kg], = (0). This makes a contradiction.
Therefore (0) :g Kg = U, as wanted. O

Hence, if Ass R = Assg Kg, then the canonical map ¢ : R — Hompg(Kg, Kg) is injective
and Q(R) = T7'R, where T = R\ U,caq,x, - Therefore, Homg(Kg, Kg) is naturally
isomorphic to a birational extension of R.

Example 3.7. We maintain the same notation as in Example B. Since Kg = S/U &S/ 15
as an R-module, we have

HOIHR(KR,KR) = S/Ul X S/]Q

as a ring, which is a Gorenstein ring. The ideal U = (0) :g K coincides with the nonzero
ideal (U; N I3)R of R, so the canonical map ¢ is not injective.

From now on, let us consider the finite generation of the R-module M. We begin with
the following.

Lemma 3.8. Let a,b € W(R). If htg(a,b) > 2, then the sequence a,b is Kg-reqular.

Proof. As Assp Kg C Assg R, we see that a € W(Kg). Suppose b is a zerodivisor on
Kgr/aKg. Then Kr/aKg # (0) and there exists p € Assg Kr/aKg such that b € p. Since
depthp (Kr/aKg), = 0, we have depthp Kg, = 1. Therefore dim R, = 1, because Kp, is
the ordinary canonical module of R,. This contradicts that htz p > 2. Hence the sequence
a, b is Kg-regular. 0

Let (—)¥ = Hompg(—,Kpg) denote the Kg-dual. For a finitely generated R-module M,
by Proposition B2, we have

Assp MY = Suppy M N Assp Kp = | J{PR | P € V(I;),htsP = htsI;, Mp # (0)},
i=1
so that MY is a torsion-free R-module since Assp MY C Ass R. Moreover dim M, =
dim R, for every p € Suppy M.

Lemma 3.9. Suppose that Ass R = Assg Kg. Let M be a finitely generated torsion-
free R-module. Then MYV is naturally isomorphic to an R-submodule of Q(R) ®r M
containing M.
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Proof. Let ¢ : M — M"Y denote the natural homomorphism of R-modules. Since Ass R =
Assp Kg, we have dim Ry = 0 and (Kg)q = K(g,) for all q € Ass R, so that Q(R) ®g ¥ is
an isomorphism of Q(R)-modules. Thus we have a commutative diagram

~

v
Q(R) ®p M QH(R)(@RUJ Q(R) ®r M

of R-modules, where the vertical monomorphisms are canonical (recall that both M and
MYV are torsion-free R-modules). We set p = (Q(R) ®g ¢)~' o h. Then MY = Imp
as an R-module and Imp is an R-submodule of Q(R) ®g M. Hence M"YV is naturally
isomorphic to an R-submodule of Q(R) ® g M which contains M. O

We are now in a position to state the second main theorem.

Theorem 3.10. Suppose that Ass R = Assg Kgr. Let M be a finitely generated torsion-free

R-module. Then M is a finitely generated R-module. In addition, the equality M = MYV
holds in Q(R) ®r M.

Proof. Since Ass R = Assg Kg C Ming R, we have Ass R = Min R, i.e., R satisfies (57).
Thus Assg M C Min R. By Lemma B, we consider M"Y as an R-submodule of Q(R) ®r
M which contains M. Set I = M :p MYY. Then htgrl > 2. In fact, take p € V()
and assume htgp < 1. Since R, is a Cohen-Macaulay ring and M, is a maximal Cohen-
Macaulay R,-module, we see that M, = (M""),. This is a contradiction. Hence htpl > 2.

As I(MYY) C M, we get MYV C M. So M = M"Y by Proposition E4. Therefore M is a
finitely generated R-module. U

By combining Theorems PZT7 and B0, we have the following.

Corollary 3.11. Suppose that Ass R = Assg Kg. Then there exist a,b € W(R) such that

R= Hompg(Kg, Kg) = g N %

Hence, by Corollary 279, R= Hompg(Kg, Kg) is the (Ss)-ification of R.
We close this section by proving the following.

Corollary 3.12. Let R be a Noetherian ring and assume that R is a homomorphic image
of a Gorenstein ring. Suppose that R is locally quasi-unmized and satisfies (S1). Let M

be a finitely generated torsion-free R-module. Then M 1is a finitely generated R-module.

Proof. By Theorem B4, we have Assg Kp = MinR = Ass R. Hence, Theorem B0
guarantees that M is finitely generated as an R-module. U
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4. WEAKLY ARF (S3)-IFICATIONS

In this section, we consider the question of how the weakly Arf property is inherited
under the (S2)-ifications. Recall that W(R) denotes the set of non-zerodivisors on R.
We begin with the following.

Lemma 4.1. The following conditions are equivalent.
(1) The ring R satisfies WAP.

(2) aR’=a (aR) for all a € W(R).
(3) g N R is a subring of R for all a € W(R).

Proof. For each a € W(R), we have
R T aRNR _ aR’

a a a

which shows (2) < (3). On the other hand, let a € W(R). Then
be € R if and only if QE € E,
a aa  a
where b, ¢ € R. Hence we get (1) < (3). O

In what follows, we assume R is a Noetherian ring.

Theorem 4.2. Suppose that R is a finitely generated R-module. If R satisfies WAP, then
so does R.

Proof. Assume that R satisfies WAP. Then, for each a € W(R), the module-finite bira-

tional extension & = £ N R of R satisfies WAP ([#, Proposition 2.10]). By Theorem
PT1, there exist a,b € W(R) such that R = £ N1 £ We then have

E:Eﬂﬁ:ﬁmﬁm?:ﬁ @
a b a b a b
where the second equality comes from R C R. Since WAP is maintained by taking the
intersection ([, Lemma 4.5]), R satisfies WAP, as desired. O

As a consequence of Theorem B2, we readily get the following.

Corollary 4.3. Suppose that R is locally quasi-unmized and that R is a finitely generated
R-module. If R satisfies WAP, then so does R.

Proof. As R is locally quasi-unmixed, we have R C R. The assertion follows from Theorem
A2, because R is a module-finite extension of R. 0

Even if the normalization R is not finitely generated as an R-module, the ring R could
be finitely generated; see Corollary BT2. Hence we have the following.

Corollary 4.4. Suppose that R is locally quasi-unmized and satisfies (S1). Assume that
R is a homomorphic image of a Gorenstein ring. If R satisfies WAP, then so does R.
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By Lemma B0, WAP is equivalent to saying that, for each a € W(R), the reduction
number of aR is at most 1. Remember that R is integrally closed if and only if aR = aR
for every a € W(R). This indicates that WAP is very close to the integral closedness,
which is the reason why the weakly Arf (Ss)-ification is of interest next to the integral
closure R, and may have its own significance.

Definition 4.5. The weakly Arf (Sy)-ification of R is the smallest module-finite birational
extension of R satisfying both WAP and the condition (Ss) of Serre.

The following provides sufficient conditions for the existence of weakly Arf (.Ss)-ifications.

Corollary 4.6. Suppose that R is a locally quasi-unmized ring satisfying WAP and (Sh).
Then R is the weakly Arf (Ss)-ification, if one of the following conditions holds.

(1) R is a finitely generated R-module.
(2) R is a homomorphic image of a Gorenstein ring.

Proof. Use Corollaries 29, B3, and £4. 0
Finally, we reach the goal of this paper.

Corollary 4.7. Let R be a locally quasi-unmized Noetherian ring which satisfies (S1). If
R is a finitely generated R-module, then R admits the weakly Arf (S3)-ification.

Proof. By [4, Proposition 7.5] we can construct the smallest module-finite birational ex-
tension, denoted by R?, of R which satisfies WAP. Then R" is a locally quasi-unmixed
Noetherian ring satisfying (S7). Corollary B3 guarantees that R® is a module-finite bira-
tional extension of R satisfying WAP and the condition (S2). Let S be a module-finite
birational extension of R which satisfies WAP and (S3). Then, by the minimality of R,

we see that R* C S. Hence Ra - S = S. This completes the proof. O

The notion of strict closedness of rings was introduced by Lipman [I2] in connection
with the Arf property. We define

R={acR|a®l=1®ain RQrR}.

Then R* is a birational extension of R, which is called the strict closure of R in R.
We say that R is strictly closed, if R = R* holds. As (R*)* = R* in R, R* is strictly
closed in R ([I2, Section 4, p.672]), so that [—]* is a closure operation. The strict closure
behaves well with respect to the standard operations in ring theory, such as localizations,
polynomial extensions, and faithfully flat extensions (see [4, Proposition 4.2, Lemma 4.9,
(T2, Proposition 4.3]). It is also proved in [@, Corollary 13.6] that the invariant subrings of
strictly closed rings under a finite group action (except the modular case) are also strictly
closed. The reader may consult with [I2, @ 7] about further properties.

As Lipman predicted in [I2] and as the authors of [@, [] are trying to develop a general
theory, there might have a strong connection between the strict closedness and WAP.
Indeed, an arbitrary commutative ring R is a weakly Arf ring, once it is strictly closed
([T2, Proof of Proposition 4.5]), and as for Noetherian rings R with (Sg), it is known by
[@, Corollary 4.6] that R is strictly closed if and only if R satisfies WAP and R, is Arf for
every p € Spec R with htgp = 1. Therefore, provided either R contains an infinite field,
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or htpM > 2 for every M € Max R, R is strictly closed if and only if R satisfies WAP
([@, Corollary 4.6]).

In this direction, we have the following.

Corollary 4.8. Let R be a locally quasi-unmized Noetherian ring which satisfies (S1).
Suppose that R satisfies WAP and one of the following conditions.

(1) R is a finitely generated R-module.
(2) R is a homomorphic image of a Gorenstein ring.

Then R is strictly closed if one of the following conditions holds.

(i) R contains an infinite field.
(ii) htpM > 2 for every M € Max R.

Closing this paper, we prove the following.

Proposition 4.9. Let (A,m) be a Noetherian local ring with dim A = 2 possessing the
canonical module K. Suppose that A is a finitely generated A-module and that all the
minimal prime ideals of A have the same codimension. We choose non-zerodivisors a,b €
m on A such that a € A: A, a,b is a system of parameters of A, and aA 14 b= aA :4 b>.

Then A = 4 N 4 holds.
a b

Proof. Since A is finitely generated as an A-module, we can choose a € W (A)N(A : A)Nm.
Then A = @ where U(aA) denotes the minimal component of a primary decomposition
of aA. Let b € W(A) Nm such that a,b is a system of parameters of A. Since A is
Noetherian, we may assume aA :4 b = aA :4 b? by taking a large enough powers of b.
Hence aA :4 b= J,.,aA :4 b". Since dim A = 2, there exists an m-primary ideal I of A
such that a4 = U(aA) N I. Thus, for all integers i > 0, we have b’ & U(aA) and V' € I.
Therefore we obtain U(aA) = [J,,aA :4 0", and hence U(aA) = aA :4 b. O

Remark 4.10. Proposition B9 also holds for graded setting. More precisely, let A be
a Noetherian positively graded ring with dim A = 2 possessing the graded canonical
module K 4. Suppose that Ay is a local ring, A is a finitely generated A-module, and all
the associated prime ideals of A have the same codimension. We choose homogeneous
non-zerodivisors a, b on A such that a € A : A, a, b is a homogeneous system of parameters

~ A A
of A, and aA 4 b=aA 4 b2 ThenA:—ﬂghOIdS.
a

Example 4.11 (see [5, Example 2.6]). Let " = k[X, Y] be the polynomial ring over a field
k. We consider the subring R = k[X?, XY* V5] of T. Note that R is a Cohen-Macaulay
ring and

R=k[X° XY, X?Y? X?Y? XY* YY)
is a finitely generated R-module. Let R® denote the weak Arf closure of R (see [4]). By
(6, Example 2.6], we then have

R = RIXPY® X®Y7T X*Y') = k[X°, XY* Y, XPYS XY™ X4y

so that R" is not a Cohen-Macaulay ring. Set A = R". Since A= AXYY + AX3Y? +
AX?Y3 we get Y10 € A: A. By setting a = Y and b = X?, the pair a,b is a system of



ON THE WEAKLY ARF (S2)-IFICATIONS OF NOETHERIAN RINGS 17

parameters of A. In addition, we have
aA:gb=aA: 4, b = (YO, X3V XYyl A,
whence
~ A . A _ aA . b _ (Y10, X3Y17, X4Y16) 4

a b a Y10
= A+ AXPYT + AXYYS = A[XPYT, X1Y9).

Therefore, the (Sy)-ification R is given by
Re = RUXPYT XYY = RIXPYT, XYY = k[X® XV Y? X3Y7, XYY,

This is the weakly Arf (Ss)-ification of R. Since Re # R, the ring Re is not normal.
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