WHEN ARE THE REES ALGEBRAS OF PARAMETER IDEALS
ALMOST GORENSTEIN GRADED RINGS?
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ABSTRACT. Let A be a Cohen-Macaulay local ring with dim A = d > 3, possessing the
canonical module K4. Let a1, aqo,...,a, (3 <r <d) be a subsystem of parameters of A
and set @ = (a1, az,...,a,). It is shown that if the Rees algebra R(Q) of @ is an almost
Gorenstein graded ring, then A is a regular local ring and aj,as,...,a, is a part of a
regular system of parameters of A.

1. INTRODUCTION

The purpose of this note is to study the question of when the Rees algebras of ideals
generated by subsystems of parameters in a Cohen-Macaulay local ring are almost Goren-
stein graded rings.

For the last sixty years commutative algebra has been concentrated mostly in the study
of Cohen-Macaulay rings/modules and experiences in our researches show that Gorenstein
rings are rather isolated in the class of Cohen-Macaulay rings. Gorenstein local rings
are, of course, defined by the finiteness of self-injective dimension. However there is a
substantial gap between the conditions of the finiteness of self-injective dimension and
the infiniteness of it. The notion of almost Gorenstein ring is an attempt to go beyond
this gap or a desire to find a new class of Cohen-Macaulay rings which might be non-
Gorenstein but still good, say the next to Gorenstein rings.

The notion of almost Gorenstein local ring in our sense dates back to the paper [1] of V.
Barucci and R. Froberg in 1997, where they introduced the notion to one-dimensional ana-
lytically unramified local rings and developed a very beautiful theory of almost symmetric
numerical semigroups. Because their definition is not flexible enough for the analysis of
analytically ramified local rings, S. Goto, N. Matsuoka, and T. T. Phuong [4] relaxed in
2013 the restriction and gave the definition of almost Gorenstein local rings for arbitrary
but still one-dimensional Cohen-Macaulay local rings, using the first Hilbert coefficients
of canonical ideals. In [4] they constructed numerous examples of almost Gorenstein local
rings which are analytically ramified, extending several results of [1]. However it might be
the most striking achievement of [4] that the paper prepared for the higher dimensional
definition and opened the door led to the theory of higher dimension. In fact in 2015
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S. Goto, R. Takahashi, and N. Taniguchi [6] gave the definition of almost Gorenstein
local/graded rings of higher dimension and started the theory.
Let us recall their definition.

Definition 1.1 (The local case). Let (A, m) be a Cohen-Macaulay local ring of dimension
d, possessing the canonical module K4. Then we say that A is an almost Gorenstein local
ring, if there exists an exact sequence

0—-A—-Ky—C—=0

of A-modules such that either C' = (0) or C' # (0) and p4(C) = €2%(C), where pa(C)
denotes the number of elements in a minimal system of generators of C' and
!‘KA(C/m”“C’)

n

d—1

e (C) = lim (d — 1)

m
n—o0

denotes the multiplicity of C' with respect to the maximal ideal m (here ¢4 () stands for
the length).

Let us explain a little more about Definition 1.1. Let (A,m) be a Cohen-Macaulay
local ring of dimension d and assume that A possesses the canonical module K4. The
condition of Definition 1.1 requires that A is embedded into K 4 and even though A # Ky,

the difference C' = K4/A between K4 and A is an Ulrich A-module (cf. [2]) and behaves
well. Here we notice that for every exact sequence

0—-A—-Ky—C—=0

of A-modules, C' is a Cohen-Macaulay A-module of dimension d — 1, provided C' # (0)
([6, Lemma 3.1 (2)]).

Definition 1.2 (The graded case). Let R =) ., R, be a Cohen-Macaulay graded ring
such that A = Ry is a local ring. Assume that A is a homomorphic image of a Gorenstein
local ring and let Kg denote the graded canonical module of R. We set d = dim R and
a = a(R) the a-invariant of R. Then we say that R is an almost Gorenstein graded ring,
if there exists an exact sequence

0= R—Kgr(—a) = C—0

of graded R-modules such that either C'= (0) or C' # (0) and pr(C) = e4,(C), where M
denotes the graded maximal ideal of R.

In Definition 1.2 suppose C' # (0). Then C'is a Cohen-Macaulay graded R-module and
dimp C = d — 1. As €),(C) = lim, o0 (d — 1)ECATTO e get e (Car) = (0,
so that Cy is an Ulrich Rjy-module. Therefore since Kg,, = [Kg|,;, Rum is an almost
Gorenstein local ring if R is an almost Gorenstein graded ring. The converse is not true
in general ([5, Theorems 2.7, 2.8], [6, Example 8.8]).

The present research has been motivated by [5] and comes from a natural question of
when the Rees algebras of ideals and modules are almost Gorenstein graded rings. Here
we notice that the condition of the almost Gorenstein property in Rees algebras is a rather
strong restriction. For example, let (A, m) be a Gorenstein local ring with d = dim A > 3
and let @ be a parameter ideal of A. Then the Rees algebra R(Q) of @ is an almost
Gorenstein graded ring if and only if @@ = m ([6, Theorem 8.3]). Therefore when this is
the case, A is a regular local ring. This result was more closely analyzed in [5] and the
authors showed among other results that when @) is an ideal of generated by a subsystem
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aj,as, . ..,a, of parameter with 3 <r < d = dim A, the Rees algebra R(Q) is an almost
Gorenstein graded ring if and only if A is a regular local ring and aq, as, ..., a, is a part
of a regular system of parameters of A, while R(Q),s is an almost Gorenstein local ring
if and only if A is a regular local ring, where M denotes the graded maximal ideal in
R(Q). We should note here that for all these results the authors assume the base local
ring A is a Gorenstein ring. It seems natural to ask if this assumption is really necessary.
Because the almost Gorenstein property in Rees algebras is a strong restriction, it might
be enough just to assume that A is a Cohen-Macaulay local ring which is a homomorphic
image of a Gorenstein local ring.

The present paper answers this question affirmatively and our result is stated as follows.

Theorem 1.3. Let A be a Cohen-Macaulay local ring with dim A = d > 3 and assume that
A is a homomorphic image of a Gorenstein local ring. Let ay,aq,...,a, (3 <1 <d) be a
subsystem of parameters of A and set Q = (ay,as,...,a,). Then the following conditions
are equivalent.

(1) The Rees algebra R(Q) of Q is an almost Gorenstein graded ring.
(2) A is a regular local ring and a1, as, ..., a, is a part of a reqular system of parameters
of A.

As is stated above, our contribution in Theorem 1.3 is the implication (1) = (2) under
the weaker assumption that A is a Cohen-Macaulay local ring which is a homomorphic
image of a Gorenstein local ring. The implication (2) = (1) is due to [5, Theorem 2.8].
Our method of proof of Theorem 1.3 is to give a whole proof of the implication (1) = (2)
and does not directly deduce the fact that A is a Gorenstein ring once the Rees algebra
R(Q) is an almost Gorenstein graded ring. Therefore the following conjecture is still
open.

Conjecture 1.4. Let A be a Cohen-Macaulay local ring and assume that A is a homo-
morphic image of a Gorenstein local ring. Let I C A be an ideal of A with ht4I > 3. If
the Rees algebra R(I) of I is an almost Gorenstein graded ring, then A is a Gorenstein
ring.

To prove Theorem 1.3 we need some preliminaries which we summarize in Section 2.
We shall prove Theorem 1.3 in Section 3.
2. PRELIMINARIES

This section is devoted to preliminaries which we need to prove Theorem 1.3.
Let A be an arbitrary commutative ring and let L be an A-module. Let n and ¢ be pos-

itive integers and choose elements x1, s, ..., Zs, aq,a0,...,a;, of A. Set a = ay,as,...,a,
1
f2 ¢

and x = mx1,29,...,2y. For each £ = _ € L% we set af = Y,  a;f; and
fe

€ = Zle x;f; in L and consider the A-linear map ¢ : (L@é)ean — L®™ given by
the n x nf matrix

SIS
IS

s -
)
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&1 aé1 31
3 z€1+a& 13
that is ¢ 2 ) = 1, ’ for each :2 € (L¥H%", Let Q = (ay,as,...,a;)
! z€n— 1+a£n :
and let Hy (a; L) denote the first Koszul homology module of L generated by the sequence
a = ay,as,...,ap,. With this notation we have the following.
gl
Lemma 2.1. Let £1,&, ..., &, € L® and suppose that 2 € Kerg. IfHy(a; L) = (0),
€n
then x&, € QL.
Proof. When n = 1, the assertion is clear. Suppose that n > 1. We consider two
Koszul complexes Kq(a; L) and Ko(z; L) of L generated by a = ay,as,...,a, and z =
X1, To, ..., Ty, respectively. More precisely, let F' be a finitely generated free A-module

with rankaF' = ¢ and a free basis {T;}i<;<s. Let K = AF be the exterior algebra of F
and consider two differentiations 0¢ and 0% on K such that

N (Ti) = a; and O(T) = z;

for all 1 <7 </, making K into the Koszul complexes K,(a; A) and K,(z; A), respectively.
For simplicity let us denote by 0% and 0% also the differentiations of the Koszul complexes
Ko(a; L) = Ko(a; A) ®4 L and K(z; L) = Ko(z; A) ®4 L, respectively.

61 fal

52 502

Let us now suppose that : € Kerp. We set Ky = A’F and write &, = :

&n Eat
for each 1 < o < n. Then since 9} (ZleTZ- ®§1¢) = a-&; = 0, there exists elements
p1, po € Ko ®4 L such that

ZT ® &1 = 05 (p1) + 95 (po)
(take pg = 0 to be the initial data). We then have
0=2x6 40l = %(iﬂ ® &1i) + ads
i=1
= 01(05(p1)) + ay

¢
= —0y(05(p1)) + a%(ZTz ® £2i)

12
= 5%(271'@521'—32&(01))-
i=1

Because Hy(a; L) = (0), we get Z 1 Ti ® & — O5(p1) = 05(p2) for some py € Ko @4 L,
whence

ZT @ & = O5(p2) + 95 (p1)
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with po, p1 € Ko ®4 L. Repeat this procedure and we have

¢
Z T ®&ni = a%(ﬂﬂ) + a%(pn—ﬁ
=1

for some py,, pn_1 € Ko ®4 L. Consequently

l
26, = 07D Ti ® &) = 0195 (pn)) € QL
=1

as claimed. O

We now furthermore assume that (A, m) is a Noetherian local ring and that L is a

non-zero finitely generated A-module. We set D = Cokery and let € : L®* —5 D denote
the canonical map. Hence we get the exact sequence

(L¥Y*" 25 1o S5 D — 0.
Proposition 2.2. Suppose that a = ay,as,...,a, forms an L-reqular sequence. Then
(1) D #(0), Q"D = (0), dimy D = dima L — ¢, and depth, D = depth, L — ¢.

(2) If L is a Cohen-Macaulay A-module, then D is a Cohen-Macaulay A-module with
dima L — 7.

Proof. Assertion (2) readily follows from assertion (1). We prove assertion (1) by induction
onn. If n =1, then D = L/QL and we have nothing to prove. Suppose that n > 1 and
assertion (1) holds true for n — 1. Let 8 : L — L®" be the homomorphism defined by

0
Bly) = <0> for each y € L and consider the composite map
)

where Z denotes for each z € L®" the image of z in D. We set E = Ima and D = D/E.
We then have the exact sequence

(£ Ly pe) D 50

of A-modules, where 1 is given by the (n — 1) x (n — 1)¢ matrix
a
T a

L a

Therefore, thanks to the exact sequence 0 — E — D — D — 0, assertion (1) directly
follows from the hypothesis of induction, once we get £ = L/QL. Let y € L and notice
that

0 a &1
: T a &2
y € Ker« if and only if O = ] )
Yy z a &n
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for some &1, &, ...,&, € L% When this is the case, z&,_1 € QL by Lemma 2.1, so that
y=2x&_1+a&, € QL. If y € QL, then

0 a 0
: L a :
O - .. . .. ) 0
y T a §
for some ¢ € L®. Thus Kera = QL. Hence £ = L/QL as wanted. OJ

3. PROOF OF THEOREM 1.3

The purpose of this section is to prove Theorem 1.3. Let (A, m) be a Cohen-Macaulay
local ring with d = dim A > 3. Let aq, ag,...,a, (r > 3) be a subsystem of parameters of
A and set Q = (a1, as,...,a,). We denote by

R =TR(Q) = AlQt] € Al{]

the Rees algebra of () where t stands for an indeterminate over A. Hence R is a Cohen-
Macaulay ring with dimR = d + 1 and a(R) = —1. Let S = A[X;, Xs,..., X,] be
the polynomial ring which we consider to be a standard graded A-algebra and set N =
mS + S5,, the graded maximal ideal of S. Let ¢ : S — R be the homomorphism of
A-algebras defined by ¢(X;) = a;t for each 1 < i <r. We set

X — ( X, Xy - Xr) .
aq a9 PN Q,
Then Ker ¢ is generated by the 2 x 2 minors of the matrix X that is
_ X, Xy - X,
Kerp =15 (Ch 4y - ar>

which is a perfect ideal of S with grade r—1. Therefore a minimal graded S-free resolution
of R is given by the Eagon-Northcott complex associated with the matrix X ([3]).

For later use let us briefly recall the construction of the Eagon-Northcott complex. Let
F be a finitely generated free S-module with ranksF = r and a free basis {T;}1<i<.
We denote by K = AF the exterior algebra of F over S. Let K¢(X1,Xs,...,X,;5)
(resp. Ke(a,ag, ..., a,;S)) be the Koszul complex of S generated by X;, Xs, ..., X, (resp.
ai, as, . .., a,) with differentiation 0; (resp. 0s). Let U = S[Y}, Y3| be the polynomial ring.
We set Cp = S and C; = K41 ®g Uy for each 1 < g < r — 1. Hence Cj is a finitely
generated free S-module with a free basis

{Elﬂz“‘ﬂq+1®yiyly2y2 | 1 Sll <i2 < .- <iq+1 S’f‘, V1+V2:q—1}.
We regard (), to be a graded S-module such that
deg(T;,T5, ... Ti,, @Y'YY?) =1 + 1.

With this notation the Eagon-Northcott complex associated with X is defined to be a
complex of graded S-modules of the form

Co : 0—>Cr_1d:>1CT_Q—)"'—>01$CO—)O
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where

dQ(Ti1Ti2 T

ig+1

1

®Y1V1Yéy2): Z a](ﬂlﬂ ...Eq+1>®Y1V1”.Y'Vj7 ..

J

Y
j=1,2 and v;>0
for ¢ > 2 and
(T, T, ® 1) = det (X X) ,
aiy Ajy

whence Im d; = I,(X) C S. Then the complex C, is a graded minimal S-free resolution of
R, since I5(X) is a perfect ideal of grade r — 1 and X;,a; € N =mS+ 5, forall1 <i<r

([3)-

We are especially interested in the presentation matrix M of the homomorphism
Cr_q dr—71> C,._o with respect to the basis
(N T, @ YYYS 7 Yocicr—2
and
{T\-- TVE T YV P e, oskers

of C._; and C,_,, respectively. Notice that M is an (r — 2)r x (r — 1) matrix. Then a
direct computation shows
0

a

< 12

X
0

where @ = ay, —ag, -, (—=1)""a, and X = X1, —Xo,--- ,(=1)""1 X,.. Taking the S(—7)-
dual of d,_; with acounting degrees, we get the homomorphism of graded S-modules

S(—r+1)*" S(—r+1)

< 1=

@ @
M
—
@ @
S (—2)%" S(—1).

Now suppose that A is a homomorphic image of a Gorenstein local ring and let K4 be
the canonical module of A. We set L = S ®4 K4. Then Kg = L(—r), so that taking
the Kg-dual of the Eagon-Northcott resolution, we have the following presentation of the
graded canonical module Ky of R.

Proposition 3.1.

® t @
® ®
L(—2)%" L(-1)

We are now ready to prove Theorem 1.1.
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Proof of (1) = (2) in Theorem 1.1. Enlarging the residue class field of A if necessary, we
may assume the field A/m is infinite ([6, Theorem 3.9]). We choose an exact sequence

0= R -5 Kp(l) = C—0

of graded R-modules such that either C'= (0) or C' # (0) and C}y is an Ulrich Rjy-module
(remember that a(R) = —1). We actually have C' # (0), since pr(Kg) = (r—1)-pa(Ka) >
2 by Proposition 3.1. We set

D = C/RCy = (Kn/R{Kal1) (1).

Hence the sequence
0—-RCy—C—-D—=0 (E)

of graded R-modules is exact and because (1) € [Kg]i, by Proposition 3.1 we readily
get the presentation

L(=r+1%  L(-r+1)

P ®
: Ay ; =5 D(-1) — 0
P ®

L(=2)%" L(-2)

of D(—1) = Kgr/R-[Kg]; as a graded S-module, where A is an (r — 2) x (r — 2)r matrix
of the form

ISTS
s

X a
Therefore D is a Cohen-Macaulay S-module with dimg D = d by Proposition 2.2. Setting
a=(X1,Xs,...,X,)S, by the above presentation of D(—1) we get isomorphisms

L)@+ L) (—r+1)  (Ka/QKa) (—r+1)
©® ©®
(D/aD)(-1) = ' '

I
—
*
~—

® ®
(L/(Q+a)L) (=2) (Ka/QKa) (—2)
also.

Claim 1. €%,(D) = ugr(D).

Proof of Claim 1. Since both C' and D are Cohen-Macaulay S-modules with dimg C' =
dimg D = d, RCj is also a Cohen-Macaulay S-module of dimension d if RCy # (0).
Therefore us(RCy) < X (RCy) and pg(D) < e%(D), while by exact sequence (E) we get

(C) = (D) +e%(RCy) and
1r(C) < pr(D) + pr(RCo).
Hence €%(D) = pur(D) because €%,(C) = ur(C). O
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We have Q"2D = (0) by Proposition 2.2. Hence D is a finitely generated graded
S-module, where

S =85/Q" %S = (A/Q"H[X1, Xo,..., X,].

We choose elements a,11,0,49,...,a5 € m so that the images of a,11,a,49,...,a4 in
A/Q"~% generate a reduction of the maximal ideal m/Q" 2 of A/Q" 2. Then because

I:(a/rJr]_, Apry2, ... ,Cld) + (Xl, XQ, P ,XT)]E
is a reduction of N'S and D is a Cohen-Macaulay S-module with dimg D = d, we get

eN(D) = La(D/[(Ars1, Qrpas .. aq) + (X1, Xg, ..., X,)]D)
(T —-2)~€A(I(A/(a1,a2,...,ad)I(A)
(7"—2)-€A(A/(a1,a2,...,ad))

where the second equality follows from isomorphisms (x), while

ps(D) = (r —2)-pa(Ka)

also by isomorphisms (). Therefore because

pa(Ka) = Ca(la: m]/q)

where q = (ay, as,...,aq) ([7, Satz 6.10]) and because r > 2, Claim 1 guarantees that

(a(A/q) = La([q : m]/q).

Consequently A = q : m, whence m = q. Thus A is a regular local ring and a, as, .. ., a,
is a part of a regular system of parameters of A. O
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