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Abstract. Let (R,m) be a two-dimensional regular local ring with infinite residue class
field. Then the Rees algebra R(I) =

⊕
n≥0 I

n of I is an almost Gorenstein graded ring

in the sense of [6] for every m-primary integrally closed ideal I in R.

1. Introduction

The purpose of this paper is to study the problem of when the Rees algebras of ideals
and modules over two-dimensional regular local rings (R,m) are almost Gorenstein graded
rings. Almost Gorenstein rings in our sense are newcomers and different from those rings
studied in [12]. They form a new class of Cohen-Macaulay rings, which are not necessarily
Gorenstein, but still good, possibly next to the Gorenstein rings. The notion of these local
rings dates back to the paper [2] of V. Barucci and R. Fröberg in 1997, where they dealt
with one-dimensional analytically unramified local rings and developed a beautiful theory.
Because their notion is not flexible enough to analyze analytically ramified rings, in 2013
S. Goto, N. Matsuoka, and T. T. Phuong [4] extended the notion to arbitrary (but still
of dimension one) Cohen-Macaulay local rings. The reader may consult [4] for examples
of analytically ramified almost Gorenstein local rings. S. Goto, R. Takahashi, and N.
Taniguchi [6] finally gave the definition of almost Gorenstein local/graded rings in our
sense. Here let us recall it, which we shall utilize throughout this paper.

Definition 1.1 ([6, Definition 3.3]). Let (R,m) be a Cohen-Macaulay local ring which
possesses the canonical module KR. Then we say that R is an almost Gorenstein local
ring, if there exists an exact sequence

0 → R → KR → C → 0

of R-modules such that µR(C) = e0M(C), where µR(C) denotes the number of elements in
a minimal system of generators of C and e0m(C) is the multiplicity of C with respect to
m.

Definition 1.2 ([6, Definition 8.1]). Let R =
⊕

n≥0Rn be a Cohen-Macaulay graded ring
such that R0 is a local ring. Suppose that R possesses the graded canonical module KR.
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Let M be the unique graded maximal ideal of R and a = a(R) the a-invariant of R. Then
we say that R is an almost Gorenstein graded ring, if there exists an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules such that µR(C) = e0M(C), where µR(C) denotes the number of
elements in a minimal system of generators of C and e0M(C) is the multiplicity of C with
respect to M. Here KR(−a) stands for the graded R-module whose underlying R-module
is the same as that of KR and whose grading is given by [KR(−a)]n = [KR]n−a for all
n ∈ Z.

Definition 1.1 (resp. Definition 1.2) means that if R is an almost Gorenstein local (resp.
graded) ring, then even though R is not a Gorenstein ring, R can be embedded into the
canonical module KR (resp. KR(−a)), so that the difference KR/R (resp. KR(−a)/R)
is an Ulrich R-module ([3]) and behaves well. The reader may consult [6] about the
basic theory of almost Gorenstein local/graded rings and the relation between the graded
theory and the local theory, as well.

It is shown in [6] that every two-dimensional rational singularity is an almost Gorenstein
local ring and all the known examples of Cohen-Macaulay local rings of finite Cohen-
Macaulay representation type are almost Gorenstein local rings. The almost Gorenstein
local rings which are not Gorenstein are G-regular ([6, Corollary 4.5]) in the sense of
[19], that is every totally reflexive module is free, so that the Gorenstein dimension of a
finitely generated module is equal to its projective dimension, while over Gorenstein local
rings the totally reflexive modules are exactly the maximal Cohen-Macaulay modules.
The local rings Rp (p ∈ SpecR) of almost Gorenstein local rings R are not necessarily
almost Gorenstein (see [6, Remark 9.12] for a counterexample). These are particular
discrepancies between Gorenstein local rings and almost Gorenstein local rings.

In this paper we are interested in the almost Gorenstein property of Rees algebras and
our main result is sated as follows.

Theorem 1.3. Let (R,m) be a two-dimensional regular local ring with infinite residue
class field and I an m-primary integrally closed ideal in R. Then the Rees algebra R(I) =⊕

n≥0 I
n of I is an almost Gorenstein graded ring.

As a direct consequence we have the following.

Corollary 1.4. Let (R,m) be a two-dimensional regular local ring with infinite residue
class field. Then R(mℓ) is an almost Gorenstein graded ring for every integer ℓ > 0.

The proof of Theorem 1.3 depends on a result of J. Verma [21] which guarantees the
existence of joint reductions with joint reduction number zero. Therefore our method of
proof works also for two-dimensional rational singularities, which we shall discuss in the
forthcoming paper [7].

Possessing in [5] one of its roots, the theory of Rees algebras has been satisfactorily
developed and nowadays one knows many Cohen-Macaulay Rees algebras (see, e.g. [11,
16, 18]). Among them Gorenstein Rees algebras are rather rare ([13]). Nevertheless,
although they are not Gorenstein, some of Cohen-Macaulay Rees algebras are still good
and could be almost Gorenstein graded rings, which we would like to report in this paper
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and also in the forthcoming papers [7, 8]. Except [6, Theorems 8.2, 8.3] our Theorem 1.3 is
the first attempt to answer the question of when the Rees algebras are almost Gorenstein
graded rings.

We now briefly explain how this paper is organized. The proof of Theorem 1.3 shall
be given in Section 2. For the Rees algebras of modules over two-dimensional regular
local rings we have a similar result, which we give in Section 2 (Corollary 2.7). In Section
3 we explore the case where the ideals are linearly presented over power series rings.
The result (Theorem 3.1) seems to suggest that almost Gorenstein Rees algebras are still
rather rare, when the dimension of base rings is greater than two, which we shall discuss
also in the forthcoming paper [8]. In Section 4 we explore the Rees algebra of the socle
ideal I = Q : m, where Q is a parameter ideal in a two-dimensional regular local ring
(R,m), and show that the Rees algebra R(I) is an almost Gorenstein graded ring if and
only if the order of Q is at most two (Theorem 4.1).

We should note here that for every almost Gorenstein graded ring R with graded
maximal ideal M the local ring RM of R at M is by definition an almost Gorenstein local
ring, because [KR]M ∼= KRM

. The converse is not true in general. The typical examples
are the Rees algebras R(Q) of parameter ideals Q in a regular local ring (R,m) with
dimR ≥ 3. For this algebra R = R(Q) the local ring RM is always an almost Gorenstein
local ring ([8, Theorem 2.7]) but R is an almost Gorenstein graded ring if and only if
Q = m ([6, Theorem 8.3]). On the other hand the converse is also true in certain special
cases like Theorems 3.1 and 4.1 of the present paper. These facts seem to suggest the
property of being an almost Gorenstein graded ring is a rather rigid condition for Rees
algebras.

In what follows, unless otherwise specified, let (R,m) denote a Cohen-Macaulay local
ring. For each finitely generated R-module M let µR(M) (resp. e0m(M)) denote the
number of elements in a minimal system of generators for M (resp. the multiplicity of M
with respect to m). Let KR stand for the canonical module of R.

2. Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3. Let (R,m) be a Gorenstein local
ring with dimR = 2 and let I ⊊ R be an m-primary ideal of R. Assume that I contains
a parameter ideal Q = (a, b) of R such that I2 = QI. We set J = Q : I. Let

R = R[It] ⊆ R[t] and T = R[Qt] ⊆ R[t],

where t stands for an indeterminate over R. Remember that the Rees algebra R of I
is a Cohen-Macaulay ring ([5]) with a(R) = −1 and R = T + T ·It, while the Rees
algebra T of Q is a Gorenstein ring of dimension 3 and a(T ) = −1 (remember that
T ∼= R[x, y]/(bx− ay)). Hence KT (1) ∼= T as a graded T -module, where KT denotes the
graded canonical module of T .

Let us begin with the following, which is a special case of [20, Theorem 2.7 (a)]. We
note a brief proof.

Proposition 2.1. KR(1) ∼= JR as a graded R-module.
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Proof. Since R is a module-finite extension of T , we get

KR(1) ∼= HomT (R,KT )(1) ∼= HomT (R, T ) ∼= T :F R
as graded R-modules, where F = Q(T ) = Q(R) is the total ring of fractions. Therefore
T :F R = T :T It, since R = T + T ·It. Because Qn ∩ [Qn+1 : I] = Qn[Q : I] for all n ≥ 0,
we have T :T It = JT . Hence T :F R = JT , so that JT = JR. Thus KR(1) ∼= JR as a
graded R-module. □

Corollary 2.2. The ideal J = Q : I in R is integrally closed, if R is a normal ring.

Proof. Since JR ∼= KR(1), the ideal JR of R is unmixed and of height one. Therefore, if
R is a normal ring, JR must be integrally closed in R, whence J is integrally closed in
R because J ⊆ JR, where J denotes the integral closure of J . □

Let us give the following criterion for R to be a special kind of almost Gorenstein
graded rings. Notice that Condition (2) in Theorem 2.3 requires the existence of joint
reductions of m, I, and J with reduction number zero (cf. [21]).

Theorem 2.3. With the same notation as above, set M = mR+R+, the graded maximal
ideal of R. Then the following conditions are equivalent.

(1) There exists an exact sequence

0 → R → KR(1) → C → 0

of graded R-modules such that MC = (ξ, η)C for some homogeneous elements ξ, η of
M.

(2) There exist elements f ∈ m, g ∈ I, and h ∈ J such that

IJ = gJ + Ih and mJ = fJ +mh.

When this is the case, R is an almost Gorenstein graded ring.

Proof. (2) ⇒ (1) Notice that M·JR ⊆ (f, gt)·JR +Rh, since IJ = gJ + Ih and mJ =
fJ +mh. Consider the exact sequence

R φ−−→ JR → C → 0

of graded R-modules where φ(1) = h. We then have MC = (f, gt)C, so that
dimRM

CM ≤ 2. Hence by [6, Lemma 3.1] the homomorphism φ is injective and R is
an almost Gorenstein graded ring.

(1) ⇒ (2) Suppose that R is a Gorenstein ring. Then µR(J) = 1, since KR(1) ∼= JR.

Hence J = R as m ⊆
√
J , so that choosing h = 1 and f = g = 0, we get IJ = gJ + Ih

and mJ = fJ +mh.
Suppose that R is not a Gorenstein ring and consider the exact sequence

0 → R φ−−→ JR → C → 0

of graded R-modules with C ̸= (0) and MC = (ξ, η)C for some homogeneous elements
ξ, η of M. Hence RM is an almost Gorenstein local ring in the sense of [6, Definition 3.3].
We set h = φ(1) ∈ J , m = deg ξ, and n = deg η; hence C = JR/Rh. Remember that
h ̸∈ mJ , since RM is not a regular local ring (see [6, Corollary 3.10]). If min{m,n} > 0,
then MC ⊆ R+C, whence mC0 = (0) (notice that [R+C]0 = (0), as C = RC0). Therefore
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mJ ⊆ (h), so that we have J = (h) = R. Thus Rh = JR and R is a Gorenstein ring,
which is impossible. Assume m = 0. If n = 0, then MC = mC since ξ, η ∈ m, so that

C1 ⊆ R+C0 ⊆ mC

and therefore C1 = (0) by Nakayama’s lemma. Hence IJ = Ih as [JR]1 = φ(R1), which
shows (h) is a reduction of J , so that (h) = R = J . Therefore R is a Gorenstein ring,
which is impossible. If n ≥ 2, then because

M·JR ⊆ ξ·JR+ η·JR+Rh,

we get IJ ⊆ ξIJ + Ih, whence IJ = Ih. This is impossible as we have shown above.
Hence n = 1. Let us write η = gt with g ∈ I and take f = ξ. We then have

M·JR ⊆ (f, gt)·JR+Rh,

whence mJ ⊆ fJ +Rh. Because h ̸∈ mJ , we get mJ ⊆ fJ +mh, so that mJ = fJ +mh,
while IJ = gJ + Ih, because IJ ⊆ fIJ + gJ + Ih. This completes the proof of Theorem
2.3. □

Let us explore two examples to show how Theorem 2.3 works.

Example 2.4. Let S = k[[x, y, z]] be the formal power series ring over an infinite field
k. Let n = (x, y, z) and choose f ∈ n2 \ n3. We set R = S/(f) and m = n/(f). Then
for every integer ℓ > 0 the Rees algebra R(mℓ) of mℓ is an almost Gorenstein graded ring
and r(R) = 2ℓ+ 1, where r(R) denotes the Cohen-Macaulay type of R.

Proof. Since e0m(R) = 2, we have m2 = (a, b)m for some elements a, b ∈ m. Let ℓ > 0 be
an integer and set I = mℓ and Q = (aℓ, bℓ). We then have I2 = QI and Q : I = I, so
that R = R(I) is a Cohen-Macaulay ring and KR(1) ∼= IR by Proposition 2.1, whence
r(R) = µR(I) = 2ℓ+ 1. Because mℓ+1 = amℓ + bℓm and Q : I = I = mℓ, by Theorem 2.3
R is an almost Gorenstein graded ring. □

Example 2.5. Let (R,m) be a two-dimensional regular local ring with m = (x, y). Let
1 ≤ m ≤ n be integers and set I = (xm)+mn. Then R(I) is an almost Gorenstein graded
ring.

Proof. We may assume m > 1. We set Q = (xm, yn) and J = Q : I. Then Q ⊆ I and
I2 = QI. Since I = (xm) + (xiyn−i | 0 ≤ i ≤ m− 1), we get

J = Q : (xiyn−i | 0 ≤ i ≤ m− 1) =
m−1∩
i=1

[
(xm, yn) : xiyn−i

]
=

m−1∩
i=1

(xm−i, yi)

= mm−1.

Take f = x ∈ m, g = xm ∈ I, and h = ym−1 ∈ J = mm−1. We then have mJ = fJ +mh

and IJ = Ih+gJ , so that by Theorem 2.3 R(I) is an almost Gorenstein graded ring. □
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To prove Theorem 1.3 we need a result of J. Verma [21] about joint reductions of
integrally closed ideals. Let (R,m) be a Noetherian local ring. Let I and J be ideals of
R and let a ∈ I and b ∈ J . Then we say that a, b are a joint reduction of I, J if aJ + Ib
is a reduction of IJ . Joint reductions always exist (see, e.g., [17]) if the residue class field
of R is infinite. We furthermore have the following.

Theorem 2.6 ([21, Theorem 2.1]). Let (R,m) be a two-dimensional regular local ring.
Let I and J be m-primary ideals of R. Assume that a, b are a joint reduction of I, J .
Then IJ = aJ + Ib, if I and J are integrally closed.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let (R,m) be a two-dimensional regular local ring with infinite
residue class field and let I be an m-primary integrally closed ideal in R. We choose a
parameter ideal Q of R so that Q ⊆ I and I2 = QI (this choice is possible; see [23,
Appendix 5] or [10]). Therefore the Rees algebra R = R(I) is a Cohen-Macaulay ring
([5]). Because R is a normal ring ([23]), by Corollary 2.2 J = Q : I is an integrally closed
ideal in R. Consequently, choosing three elements f ∈ m, g ∈ I, and h ∈ J so that
f, h are a joint reduction of m, J and g, h are a joint reduction of I, J , we readily get by
Theorem 2.6 the equalities

mJ = fJ +mg and IJ = gJ + Ih

stated in Condition (2) of Theorem 2.3. Thus R = R(I) is an almost Gorenstein graded
ring. □

We now explore the almost Gorenstein property of the Rees algebras of modules. To
state the result we need additional notation. For the rest of this section let (R,m) be a two-
dimensional regular local ring with infinite residue class field. Let M ̸= (0) be a finitely
generated torsion-free R-module and assume thatM is non-free. Let (−)∗ = HomR(−, R).
Then F =M∗∗ is a finitely generated free R-module and we get a canonical exact sequence

0 →M
φ−−→ F → C → 0

of R-modules with C ̸= (0) and ℓR(C) < ∞. Let Sym(M) and Sym(F ) denote the
symmetric algebras ofM and F respectively and let Sym(φ) : Sym(M) → Sym(F ) be the
homomorphism induced from φ :M → F . Then the Rees algebra R(M) of M is defined
by

R(M) = Im
[
Sym(M)

Sym(φ)−−−−→ Sym(F )
]

([18]). Hence R(M) = Sym(M)/T where T = t(Sym(M)) denotes the R-torsion part of
Sym(M), so that M = [R(M)]1 is an R-submodule of R(M). Let x ∈ F . Then we say
that x is integral over M , if it satisfies an integral equation

xn + c1x
n−1 + · · ·+ cn = 0

in the symmetric algebra Sym(F ) with n > 0 and ci ∈ M i for each 1 ≤ i ≤ n. Let M be
the set of elements of F which are integral over M . Then M forms an R-submodule of F ,
which is called the integral closure of M . We say that M is integrally closed, if M =M .

With this notation we have the following.
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Corollary 2.7. Let M = mR(M)+R(M)+ be the unique graded maximal ideal of R(M)
and suppose that M is integrally closed. Then R(M)M is an almost Gorenstein local ring
in the sense of [6, Definition 3.3].

Proof. Let U = R[x1, x2, . . . , xn] be the polynomial ring with sufficiently large n > 0 and
set S = UmU . We denote by n the maximal ideal of S. Then thanks to [18, Theorem 3.5]
and [9, Theorem 3.6], we can find some elements f1, f2, . . . , fr−1 ∈ S ⊗RM (r = rankRF )
and an n-primary integrally closed ideal I in S, so that f1, f2, . . . , fr−1 form a regular
sequence in R(S ⊗R M) and

R(S ⊗R M)/(f1, f2, . . . , fr−1) ∼= R(I)

as a graded S-algebra. Therefore, because R(I) is an almost Gorenstein graded ring
by Theorem 1.3, S ⊗R R(M) = R(S ⊗R M) is an almost Gorenstein graded ring (cf.
[6, Theorem 3.7 (1)]). Consequently R(M)M is an almost Gorenstein local ring by [6,
Theorem 3.9]. □

3. Almost Gorenstein property in Rees algebras of ideals with linear
presentation matrices

Let R = k[[x1, x2, . . . , xd]] (d ≥ 2) be the formal power series ring over an infinite field
k. Let I be a perfect ideal of R with gradeR I = 2, possessing a linear presentation matrix
φ

0 → R⊕(n−1) φ−−→ R⊕n → I → 0,

that is each entry of the matrix φ is contained in
∑d

i=1 kxi. We set n = µR(I) and
m = (x1, x2, . . . , xd); hence I = mn−1 if d = 2. In what follows we assume that n > d and
that our ideal I satisfies the condition (Gd) of [1], that is µRp(IRp) ≤ dimRp for every
p ∈ V(I) \ {m}. Then thanks to [16, Theorem 1.3] and [11, Proposition 2.3], the Rees
algebra R = R(I) of I is a Cohen-Macaulay ring with a(R) = −1 and

KR(1) ∼= mn−dR

as a graded R-module.
We are interested in the question of when R is an almost Gorenstein graded ring. Our

answer is the following, which suggests that almost Gorenstein Rees algebras might be
rare in dimension greater than two.

Theorem 3.1. With the same notation as above, set M = mR+R+, the graded maximal
ideal of R. Then the following conditions are equivalent.

(1) R is an almost Gorenstein graded ring
(2) RM is an almost Gorenstein local ring
(3) d = 2.

Proof. (1) ⇒ (2) This follows from the definition, since [KR]M ∼= KRM
.

(3) ⇒ (1) We have I = mn−1 since d = 2 and so R is an almost Gorenstein graded ring
(Corollary 1.4).
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(2) ⇒ (3) Let ∆i = (−1)i+1 detφi for each 1 ≤ i ≤ n, where φi stands for the
(n − 1) × (n − 1) matrix which is obtained from φ by deleting the i-th row. Hence
I = (∆1,∆2, . . . ,∆n) and the ideal I has a presentation

(P ) 0 → R⊕(n−1) φ−−→ R⊕n [ ∆1 ∆2 ··· ∆n ]−−−−−−−−−→ I → 0.

Notice that R is not a Gorenstein ring, since r(R) = µR(m
n−d) =

(
n−1
d−1

)
> 1. We set

A = RM and n = MA; hence KA = [KR]M. We take an exact sequence

0 → A
ϕ−−→ KA → C → 0

of A-modules such that C ̸= (0) and C is an Ulrich A-module. Let f = ϕ(1). Then
f ̸∈ nKA by [6, Corollary 3.10] and we get the exact sequence

(E) 0 → nf → nKA → nC → 0.

Because nC = (f1, f2, . . . , fd)C for some f1, f2, . . . , fd ∈ n ([6, Proposition 2.2]) and
µA(n) = d+ n, we get by the exact sequence (E) that

µR(MKR) = µA(nKA) ≤ (d+ n) + d· (r(A)− 1) = d

(
n− 1

d− 1

)
+ n,

while

µR(MKR) = µR(m
n−d+1) + µR(m

n−dI) =

(
n

d− 1

)
+ µR(m

n−dI)

since M = (m, It)R and KR(1) = mn−dR. Consequently we have

(∗) µR(m
n−dI) ≤ d

(
n− 1

d− 1

)
+ n−

(
n

d− 1

)
.

To estimate the number µR(m
n−dI) from below, we consider the homomorphism

ψ : mn−d ⊗R I → mn−dI

defined by x⊗ y 7→ xy and set X = Kerψ. Let x ∈ X and write x =
∑d

i=1 xi ⊗∆i with

xi ∈ mn−d. Then since
∑d

i=1 xi∆i = 0 in R and since every entry of the matrix φ is linear,
the presentation (P ) of I guarantees the existence of elements yj ∈ mn−d−1 (1 ≤ j ≤ n−1)
such that 

x1
x2
...
xn

 = φ


y1
y2
...

yn−1

 .

Hence X is a homomorphic image of [mn−d−1]⊕(n−1). Therefore in the exact sequence

0 → X → mn−d ⊗R I → mn−dI → 0

we get

µR(X) ≤ (n− 1)

(
n− 2

d− 1

)
.

Consequently

(∗∗) µR(m
d−nI) ≥ n

(
n− 1

d− 1

)
− (n− 1)

(
n− 2

d− 1

)
,
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so that combining the estimations (∗) and (∗∗), we get

0 ≤
[
d

(
n− 1

d− 1

)
+ n−

(
n

d− 1

)]
−

[
n

(
n− 1

d− 1

)
− (n− 1)

(
n− 2

d− 1

)]
=

[
(d− n)

(
n− 1

d− 1

)
+ (n− 1)

(
n− 2

d− 1

)]
+

[
n−

(
n

d− 1

)]
= n−

(
n

d− 1

)
.

Hence d = 2, because n <
(

n
d−1

)
if n > d ≥ 3. □

Before closing this section, let us note one concrete example.

Example 3.2. Let R = k[[x, y, z]] be the formal power series ring over an infinite field k.
We set I = (x2y, y2z, z2x, xyz) and Q = (x2y, y2z, z2x). Then Q is a minimal reduction
of I with redQ(I) = 2. The ideal I has a presentation of the form

0 → R⊕3 φ−−→ R⊕4 → I → 0

with φ =

(
x 0 0
0 y 0
0 0 z
y z x

)
and it is direct to check that I satisfies all the conditions required

for Theorem 3.1. Hence Theorem 3.1 shows that R(I) cannot be an almost Gorenstein
graded ring, while Q is not a perfect ideal of R but its Rees algebra R(Q) is an almost
Gorenstein graded ring with r(R) = 2; see [14].

4. The Rees algebras of socle ideals I = (a, b) : m

Throughout this section let (R,m) denote a two-dimensional regular local ring with
infinite residue class field. Let Q = (a, b) be a parameter ideal of R. We set I = Q : m
and R = R(I). For each ideal a in R we set o(a) = sup{n ∈ Z | a ⊆ mn}. We are
interested in the question of when R is an almost Gorenstein graded ring. Our answer is
the following. Notice that the implication (1) ⇒ (2) follows from the definition.

Theorem 4.1. With the same notation as above assume that Q ̸= m. Then the following
conditions are equivalent.

(1) R is an almost Gorenstein graded ring.
(2) RM is an almost Gorenstein local ring
(3) o(Q) ≤ 2.

Proof of the implication (3) ⇒ (1). If o(Q) = 1, then Q = (x, yq) (q ≥ 2) for some regular
system x, y of parameters of R. Hence I = (x, yq−1) and R is a Gorenstein ring. Suppose
that o(Q) = 2. Then o(I) = o(Q) = 2 since I2 = QI ([22]). Because µR(I) = 3 = o(I)+1,
there exists an element x ∈ m \m2 such that I : x = I : m (cf. [10], [23, App. 5]). We set
R = R/(x). Then QR = IR, since Q is a reduction of I and R is a DVR. We may assume
aR = IR, whence I ⊆ (a, x). Let us write b = af + xg with f, g ∈ R. Then Q = (a, xg).
Therefore Im = Qm = (gm)x+am (remember that Im = Qm; see, e.g. [22]). Notice that
gm ⊆ I, because g ∈ Q : x ⊆ I : x = I : m. Therefore Im = Ix + am, whence R is an
almost Gorenstein graded ring by Theorem 2.3. □
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To prove the implication (2) ⇒ (3) we need Theorem 4.2 below. From now we write
m = (x, y) and let Q = (a, b) be a parameter ideal of R such that o(Q) ≥ 2. Hence
I2 = QI with µR(I) = 3. Let I = (a, b, c). Then since xc, yc ∈ Q, we get equations

f1a+ f2b+ xc = 0 and g1a+ g2b+ yc = 0

with fi, gi ∈ m (i = 1, 2).

Theorem 4.2. With the notation above, if (f1, f2, g1, g2) ⊆ m2, then RM is not an almost
Gorenstein local ring.

We divide the proof of Theorem 4.2 into three steps. Let us begin with the following.

Lemma 4.3. Let M =

(
f1 f2 x
g1 g2 y

)
. Then R/I has a minimal free resolution

0 → R⊕2
tM−−→ R⊕3 [ a b c ]−−−−→ R → R/I → 0.

Proof. Let f =

f1f2
x

 and g =

g1g2
y

. Then f ,g ∈ m·R⊕3. As f ,g mod m2·R⊕3 are

linearly independent over R/m, the complex

0 → R⊕2
tM−−→ R⊕3 [ a b c ]−−−−→ −→R → R/I → 0

is exact and gives rise to a minimal free resolution of R/I. □

Let S = R[X,Y, Z] be the polynomial ring and let φ : S → R = R[It] (t an indeter-
minate) be the R-algebra map defined by φ(X) = at, φ(Y ) = bt, and φ(Z) = ct. Let
K = Kerφ. Since c2 ∈ QI, we have a relation of the form

c2 = a2f + b2g + abh+ bci+ caj

with f, g, h, i, j ∈ R. We set

F = Z2 −
(
fX2 + gY 2 + hXY + iY Z + jZX

)
,

G = f1X + f2Y + xZ,

H = g1X + g2Y + yZ.

Notice that F ∈ S2 and G,H ∈ S1.

Proposition 4.4. R has a minimal graded free resolution of the form

0 → S(−2)⊕ S(−2)
tN−−→ S(−2)⊕ S(−1)⊕ S(−1)

[F G H ]−−−−−→ S → R → 0,

so that the graded canonical module KR of R has a presentation

S(−1)⊕ S(−2)⊕ S(−2)
N−−→ S(−1)⊕ S(−1) → KR → 0.

Proof. We have K = SK1 + (F ) (cf., e.g. [15, Theorem 4.1]; use the fact that I2 = QI
and c2 ∈ QI). Hence R has a minimal graded free resolution of the form

(∗) 0 → S(−m)⊕ S(−ℓ)
tN−−→ S(−2)⊕ S(−1)⊕ S(−1)

[F G H ]−−−−−→ S → R → 0
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with m, ℓ ≥ 1. We take the S(−3)-dual of the resolution (∗). Then as KS = S(−3), we
get the presentation

S(−1)⊕ S(−2)⊕ S(−2)
N−−→ S(m− 3)⊕ S(ℓ− 3) → KR → 0

of the canonical module KR of R. Hence m, ℓ ≤ 2 because a(R) = −1. Assume that

m = 1. Then the matrix tN has the form tN =

 0 β1
α2 β2
α3 β3

 with α2, α3 ∈ R. We have

α2G + α3H = 0, or equivalently α2

f1f2
x

 + α3

g1g2
y

 = 0, whence α2 = α3 = 0 by

Lemma 4.3. This is impossible, whence m = 2. We similarly have ℓ = 2 and the assertion
follows. □

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let N be the matrix given by Proposition 4.4 and write N =(
α F1 F2

β G1 G2

)
. Then Proposition 4.4 shows that Fi, Gi ∈ S1 (i = 1, 2) and α, β ∈ m.

We write Fi = αi1X + αi2Y + αi3Z and Gi = βi1X + βi2Y + βi3Z with αij, βij ∈ R. Let
∆j denote the determinant of the matrix obtained by deleting the j-th column from N.
Then by the theorem of Hilbert-Burch we have G = −ε∆2 and H = ε∆3 for some unit ε
of R, so thatf1f2

x

 = (εβ)

α21

α22

α23

− (εα)

β21β22
β23

 and

g1g2
y

 = (εα)

β11β12
β13

− (εβ)

α11

α12

α13

 .

Hence

x = (εβ)α23 − (εα)β23 and y = (εα)β13 − (εβ)α13,

which shows (x, y) = (εα, εβ) = m because (x, y) ⊆ (εα, εβ) ⊆ m.
Since f1 = (εβ)α21 − (εα)β21 and εα, εβ is a regular system of parameters of R, we

get α21, β21 ∈ m if f1 ∈ m2. Therefore if (f1, f2, g1, g2) ⊆ m2, then αij, βij ∈ m for all
i, j = 1, 2, whence

N ≡
(
α α13Z α23Z
β β13Z β23Z

)
mod N2

where N = mS + S+ denotes the graded maximal ideal of S. We set B = SN. Then it is
clear that after any elementary row and column operations the matrix N over the regular
local ring B of dimension 5 is not equivalent to a matrix of the form(

α1 α2 α3

β1 β2 β3

)
with α1, α2, α3 a part of a regular system of parameters of B. Hence by [6, Theorem 7.8]
RM cannot be an almost Gorenstein local ring. □

We are now in a position to finish the proof of Theorem 4.1.
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Proof of the implication (2) ⇒ (3) in Theorem 4.1. It suffices to show that RM is not an

almost Gorenstein local ring if o(Q) ≥ 3. We write

(
a
b

)
=

(
f11 f12
f21 f22

)(
x
y

)
with fij ∈

m2 (i, j = 1, 2) and set c = det

(
f11 f12
f21 f22

)
. Then Q : c = m and Q : m = Q + (c). We

have

(−f22)a+ f12b+ cx = 0 and f21a+ (−f11)b+ cy = 0.

Hence by Theorem 4.2 RM is not an almost Gorenstein local ring, which completes the
proof of Theorem 4.1. □
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