Magnetic and Dielectric Properties of One-Dimensional Array of S=1/2 Linear Trimer System Na₂Cu₃Ge₄O₁₂

Yukio Yasui^{1,2}, Yuji Kawamura², Yoshiaki Kobayashi², Masatoshi Sato^{2,3} ¹Department of Physics, Meiji University, Kawasaki 214-8571, Japan ²Department of Physics, Nagoya University, Nagoya 464-8602, Japan ³Comprehensive Research Organization for Sci. and Soc., Tokai 319-1106, Japan

Magnetic and dielectric properties have been studied for quantum spin linear trimer system $Na_2Cu_3Ge_4O_{12}$ which has the one-dimensional array of Cu_3O_8 trimers formed of edge-sharing three CuO_4 square planes. Figure 1shows the schematic structure of Na₂Cu₃Ge₄O₁₂ cut in a cross section parallel to three CuO₄ square planes [1]. The shaded area and circles represent the Cu₃O₈ trimes and Ge⁴⁺ ions, respectively. Measurements of the magnetic susceptibility χ , the specific heat C, the dielectric constant ε , and ²³Na-NMR have been carried out on polycrystalline samples of Na₂Cu₃Ge₄O₁₂. Figure 2 shows the temperature (T) dependence of χ of Na₂Cu₃Ge₄O₁₂, and the inset of Fig.2 shows the data at magnified scales. We analyzed the χ data to clarify the interactions between the Cu²⁺ (S=1/2) spins, and were able to understand the magnetic behavior by employing the following model. The exchange couplings J_1 , J_2 , and J_3 are defined in Fig. 1. At first, two spins of the edge in the Cu₃O₈ clusters form a nonmagnetic dimer by strong antiferromagnetic interaction J_2 (~400 K). The spin left in the center of the Cu₃O₈ clusters forms one-dimensional chains by the antiferromagnetic interaction J_3 (~20 K) between the clusters. Anomalous behavior has been found in the T-dependence of χ , C, and ε at $T_N=2$ K of Na₂Cu₃Ge₄O₁₂, indicating that the spin system exhibits antiferromagnetic and ferroelectric transitions, simultaneously (called multiferroic). ²³Na NMR spectra have characteristics of the modulated magnetic structure below $T_{\rm N}$, which is considered to induce the ferroelectric transition.

[1] X. Mo et al., Inorg. Chem. 45 (2006) 3478-3480.

Figure captions

Fig.1 :Schematic structure of Na₂Cu₃Ge₄O₁₂ cut in a cross section parallel to three CuO₄ square planes. The exchange couplings J_1 , J_2 , and J_3 are defined.

Fig. 2. Temperature dependence of the magnetic susceptibility of $Na_2Cu_3Ge_4O_{12}$. The inset shows the data at magnified scales.

