Magnetic Behavior and Crystal Structure of One-Dimensional Quantum Spin System Li₂ZrCuO₄

Yukio Yasui¹, Naoki Igawa², Kazuhisa Kakurai², Akinori Hoshikawa³, and Toru Ishigaki³

¹Department of Physics, Meiji University, Kawasaki 214-8571, Japan

²Quantum Beam Science Directorate, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan

³Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki, 319-1106, Japan

Magnetic properties and crystal structure have been studied for quasi one-dimensional spin 1/2 system Li_2ZrCuO_4 with CuO₂ ribbon chains which are formed of edge-sharing CuO₄ square planes. Due to the geometrical characteristic of the crystal structure of CuO₂ ribbon chains, the nearest-neighbor exchange interaction J_1 between spins is ferromagnetic, and the second neighbor interaction J_2 is antiferromagnetic. Under these situations, if the spin system exhibits the magnetic transition, the system has often helical magnetic structure, and is often accompanied with ferroelectricity called multiferroic. We have found that $LiVCuO_4$ and PbCuSO₄(OH)₂ with the CuO₂ ribbon chains have the helical magnetic structure and multiferroic behavior [1,2]. On the other hand, Li_2ZrCuO_4 is not accompanied with ferroelectricity at magnetic transition temperature [3]. Here, the powder neutron diffraction measurements have been carried out for Li_2ZrCuO_4 using the neutron diffraction device (iMATERIA) installed at MLF in J-PARC and the high resolution powder diffractometer (HRPD) installed at JRR-3 in Tokai. The analyzed results of the magnetic structure and detailed crystal structure of Li_2ZrCuO_4 are presented. On the bases of the obtained data, reasons of no appearance of ferroelectricity are discussed.

[1] Y. Naito *et al.*: J. Phys. Soc. Jpn. **76** (2007) 023708.
[2] Y. Yasui *et al.*: J. Phys. Soc. Jpn. **80** (2011) 033707.
[3] Y. Tarui *et al.*: J. Phys. Soc. Jpn. **77** (2008) 043703.