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Turbulent vortical structures in a round free jet of water were experimentally visualized by using
stereo particle image velocimetrysPIVd. A laser light sheet illuminated a cross-sectional plane
normal to the axis of the jet, and two charge-coupled device cameras captured particle images in the
same region of interest but from different directions. The stereo-PIV algorithm had been applied to
obtain two-dimensional, three-components2D-3Cd velocity distributions on various cross-sectional
planes along the axis downstream. All nine components of the velocity gradient tensor were
reconstructed from time-dependent 2D-3C velocity data by locally assuming Taylor’s frozen field
hypothesis based on the convective velocity evaluated from the mean flow profile. Isosurfaces of the
swirling strengthli revealed that the existence of a group of hairpinlike vortex structures was quite
evident around the rim of the shear layer of the jet. The center of curvature of the head of the hairpin
was typically observed aroundr /b=1.5, and the azimuthal spacing between the legs of the hairpin
was roughly 0.9b. A similar hairpin structure was estimated by linear stochastic estimation. The
typical spacing between the legs of the estimated hairpin was 0.65b, which is generally constant
over the range of Re=1500–5000. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1840869g

I. INTRODUCTION

The present research is concerned with the spatial struc-
ture in the far-fieldsor self-preservingd region of an incom-
pressible turbulent round jet. A round free jet has been well
investigated both analytically and experimentally.1,2 Al-
though the existence of large-scale structures in this region
has been recognized by flow visualization such as laser-
induced fluorescencesLIFd,3 there have still been many dif-
ficulties in extracting the geometrical detail of the coherent
structure due to the temporal and spatial uncertainty of its
occurrence.

The organized structure in the far-field region is much
less axisymmetric, while that in the near-field region is ex-
plained as an apparently axisymmetric mixing layer domi-
nated by vortex rings generated by the Kelvin-Helmholtz
instability.4,5 It is supposed that a vortex ring in the near-field
grows disturbed as the flow goes downstream and is trans-
formed to a gathering of many pieces of a particular vortex
structure, which consists of a pair of radial flows outward
and inward with respect to the jet.6 The scale of these partial
structures is comparable to the local width of the jet.7

Tso and Hussain8 measured the velocity field in the far-
field region of a round jet by employing an array of several
hot-wire probes. They tried to determine the chief spatial
modes of the vortex structure from the velocity correlation.
They found three major modes—axisymmetric, helical, and
double helical—and concluded the helical mode was the
most dominant. A LIF visualization by Dimotakiset al.3 also
led to a hypothesis that indicated the existence of axisym-
metric and helical structures and their transitional structure.

On the contrary, Yoda7 disagreed with the large-scale
helical structure and instead suggested a sinusoidal structure
from her LIF experiments. The helical structure was also
doubted by Ninomiya,9 who extracted the organized struc-
ture by applying linear stochastic estimation to the velocity
field, which was obtained by three-dimensional PTVspar-
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FIG. 2. Statistical quantities of the jet. —, Re=1500; —·—, Re=3000; —··—, Re=5000;s, n, h, ---, Wygnanski and Fiedlers1969d; ,, Ninomiyas1992d.
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ticle tracking velocimetryd. A recent numerical study sug-
gests the existence of a group of hairpin-shaped vortices in-
clined downstream,10 which might explain the characteristics
of the statistical properties reported in earlier research.

Our interest was to learn the actual instantaneous vortex
distribution and the organized structure extracted from the
velocity field around the jet. Using stereo PIV, we first mea-
sured the velocity fields over the axial cross section of the
far-field region of a round free jet of water at several Rey-
nolds numbers, on the order of 103 based on the nozzle di-
ameter, and visualized a quasi-three-dimensional velocity
field, assuming Taylor’s frozen field hypothesis. Next, we
performed a linear stochastic estimation to extract the typical
geometrical distribution of the structure.

II. EXPERIMENTAL EQUIPMENT AND PROCEDURE

The flow was a round turbulent water jet emerging from
a nozzle sdiameterD=5 mmd with Reynolds numbers of
1500–5000. Water was driven from a reservoir tank out the
nozzle at a steady velocity with a top-hat profile into a cy-
lindrical Plexiglas tanks1040 mm high; 780 mm diameterd.
The water was seeded homogeneously with polyamide-12

tracer particlessDaicel-Degussa, DAIAMID: 1.02–1.03 sp
gr, 40 µm average diameterd. The nozzle was placed in the
center of the bottom of the cylindrical tank, followed by a
section with a flow straightener and a perforated plate below
the exit sFig. 1d.

We employed a stereoscopic PIV that is capable of re-
solving time-dependent, three-component velocity in the
planes 20D–50D downstream of the nozzle. These regions
of interest were well beyond the minimum far-field criterion4

of x/Dù20. A laser light sheet of 2 mm in thickness was
produced by a Nd:YAG lasersNew Wave Research,
Minilase-II /30 Hzd through a cylindrical lens illuminated
planes normal to the streamwise direction, and two charge-
coupled devicesCCDd camerassKodak, Megaplus ES1.0d
were positioned to view the tracer particles at the same re-
gion of interest in the light sheet plane. The angle between
the axes of the two cameras was set to about 90°, and their
lenses were mounted to satisfy the Scheimpflug condition.
The images captured by the CCD cameras were stored in the
host memory of a PC through image grabberssImaging
Technology, IC/PCId with a frame rate of 30 fps. Our PIV
system could typically capture 450 successive time-
dependent pairs of images for both cameras. Since a velocity
field could be measured based on the double images, 225
instantaneous three-component velocity maps with 1/15 s
intervals were obtained for every run of the experiment.

The time interval separating the two PIV single expo-
sures was set in order to adjust the mean displacement of the

FIG. 3. Convective velocity atx=30D sad and ratio of convective velocity to
local mean velocitysbd. —, mean velocity profile at Re=3000;s, Re
=1500;n, Re=3000;h, Re=5000.

FIG. 4. Intensity distributions ofli across the jet at two different instances
sad and sbd.
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particle at the center line of the jet to<10 pixels. Since the
error in measuring the displacement of the tracers was within
0.2 pixels, the error of the instantaneous velocity was esti-
mated to be 2% of the maximum mean velocity.

The spatial resolution of the velocity measurement was
limited by the size of the interrogation spot. Consider a sinu-
soidal velocity with spatial wavelengthL and sizeN of the
interrogation spot of the PIV. GainG of the measured veloc-

FIG. 5. sColord. Vortex strings and their involved flow atx=20D, Re=3000, displayed as isosurfaces ofli =0.6b/Um. The tick interval of thex* , y, andz axes
is b. The yellow dotted lines onsad indicate the appearance of vortex strings.sbd is overlayed with the isosurface ofṽr =0.1Um sgreend andṽr =−0.1Um sblued,
and sbd also shows a closeup of the hairpin vortex.scd is overlayed with the isosurface ofuvr =0.015Um

2.
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ity compared with the true velocity was derived according to
the following equation used by Hart:11

G = UsinspN/Ld
pN/L

U .

In the present measurements, the dimensions of the interro-
gation spot were approximatelyNz=2.6 mm s28 pixelsd in

thez direction andNy=1.9 mms28 pixelsd in they direction.
Thus, the wavelength at which the gain dropped 50%sG
=0.5d was computed as 4.3 mm and 3.2 mm in thez and y
directions, respectively. This wavelength was<17% –29%
of the local jet half-width, and 30–120 times larger than the
Kolmogorov scale of the present flow. Obviously, the results
shown in this paper will be focused on large-scale structures
without resolving small dissipative eddies.

We employed a rectangular Cartesian coordinate system
sx,y,zd, wherex is the verticalsstreamwised distance from
the nozzle exit, andy andz are the axes of the plane normal
to x. In addition, this coordinate system must be transformed
into a three-dimensional polar coordinate systemsx,r ,ud for
subsequent processes. We employed the least-squares
method on the two-dimensional profile of the streamwise
component of the velocity to detect the point where the jet
axis penetrates the measurement plane, which was set at the
origin, r =0. The mean velocities for the streamwise, radial
and azimuthal components areU, Vr, and Vu, respectively,
andu, vr, andvu are the velocity fluctuations of each com-
ponent.

To visualize sor to reconstructd the three-dimensional
vortex from the continuous sets of velocity fields obtained,
the following assumption was needed. Our stereo-PIV sys-
tem could resolve the velocity distribution only on a two-
dimensional plane; nevertheless, the axis normal to the plane
could be locally defined asx* =−Uct if we assumed Taylor’s
frozen field hypothesis, which states that the flow structure
remains unchanged as it passes downstream, or, formally,
that ] /]t=−U] /]x for a homogeneous flow. HereUc is the
convective velocity of a spatial structure andU is the local
mean velocity. Although a round turbulent jet is not rigor-
ously homogeneous in thex direction, this hypothesis is still
valid as long as it is used with a convective velocity of ap-
propriate scale.2

The distribution of vortices was visualized by employing

FIG. 6. Isosurfaces ofli at Re=1500, 3000, 5000,x=30D. The tick interval
is b.

FIG. 7. Vortex strings from the viewpoint on the jet axis, displayed as
isosurfaces ofli at x=30D, Re=3000. White dotted lines indicate the ap-
pearance of vortex strings. The tick interval isb.
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the swirling strengthli, which is a more appropriate index
than vorticity, sinceli represents only the intensity of the
rotating fluid motion and does not involve the contribution of
shearing transformation.12,13 li corresponds physically to the
angular velocity of the local swirling motion and mathemati-
cally to the imaginary part of the complex eigenvalue pair of
the local velocity gradient tensor. The local velocity field
around a particular point at radiusr is expressed as

usr + dr d = usr d + Adr + Ofsdr d2g, s2.1d

whereA is the velocity gradient tensor. Then, we getli as
the imaginary part of the eigenvaluel by solving the char-
acteristic equation,

detsA − lI d = 0 ⇔ l3 + Pl2 + Ql + R= 0, s2.2d

where the constantQ is known to be an index often em-
ployed in the identification of vortices. A comparison be-
tween the structures visualized by vorticity andli is given in
Appendix A.

III. SINGLE-POINT STATISTICS

The mean and rms velocity profiles are shown in Fig. 2.
The radius is normalized byb, which is the local half-value
width of U, and the velocities are normalized byUm, which
is the maximum value ofU. These profiles are obtained by
an ensemble average over 450 stereo-PIV realizations for
each condition. Most of these statistical quantities show good
agreement with previous research, such as Wygnanski and
Fiedler2 or Ninomiya.9

The data for the streamwise mean velocity, shown in Fig.
2sad, collapses nicely into the plots of Wygnanski and
Fiedler.2 The radial velocity in Fig. 2sbd also shows reason-
able agreement with Ninomiya’s PTV study,9 althoughVr is
fairly low in magnitude, such as 2% of the mean streamwise
velocity. The negative values ofVr observed on the outer
side of the jet appear to be the entrainment; the flow inward
from the surrounding fluid. The mean azimuthal velocity for
the Re=3000 and Re=5000 cases, shown in Fig. 2scd, devi-
ates 0.014Um from zero at the maximum, while that for the
Re=1500 case shows a slightly larger deviations0.032Umd.
The flow in the tank might have some large-scale rotation
around the jet axis, although care was taken to ensure the
fluid in the tank was quiescent before the experiment. The
intensity of the velocity fluctuation in Figs. 2sdd–2sfd also
agrees well with previous work.

Figure 2sgd shows the Reynolds shear stresskuvrl nor-
malized byUm

2, where k l denotes the streamwise average
and the ensemble average. The greatest exchange of momen-
tum, which is supposed to involve large-scale vortices, is
found to occur atr ø2b.

IV. VISUALIZATION OF VORTICES

Although it is important to estimate the convective ve-
locity of turbulenceUc when we assume Taylor’s frozen field
hypothesis to reconstruct an imaginary three-dimensional ve-
locity field, the assumption thatUc is constant for the entire
measurement plane across the jet is hardly valid.2 The con-
vective velocity in the present jet was measured in the fol-
lowing way. Two-dimensional, two-component velocity
maps on the plane including the jet axis were first measured
by regular two-component PIV. Then the cross correlation of
the streamwise component of the velocity at two points sepa-
rated by dx in the streamwise direction and separated by
constant timeDt in the temporal direction was calculated.
The convective velocity Uc was determined byUc

=dxmax/Dt, wheredxmax is thedx giving the maximum cross
correlation. The profile of measured convective velocityUc

is shown in Fig. 3. The convective velocity is slightly lower
thanU on the jet axis but increases with radiusr to become
more thanU. The Uc at a higher Reynolds number tends to
be lower.

Nevertheless, it is still worth using the limited frozen
hypothesis to transform temporal quantities to spatial quan-
tities in a range ofDr such that the convective velocity can
be considered nearly constant. This statement might sound
paradoxical, but it is reasonable as long as we only observe
the characteristic organized structure located around a certain
radius. In order to ascertain where the large-scale vortices are

FIG. 8. Joint probability density function of the angle of the velocity fluc-
tuation vectors weighted byuvr for Re=3000 measured at all possible azi-
muthal locations centered atsx,rd=s30D ,1.0bd.

FIG. 9. Definition of angle of velocity vectorsf andc. Unit vectorsex, er,
andeu are in thex8, r, andu directions, respectively.
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located on the normal cross section of the jet, we tentatively
tried ali visualization with a certainUc. Figure 4 shows two
examples of the intensity distribution ofli with Uc=0.3Um

in a section normal to the jet axis. The shaded gauges on the
right side of the diagrams represent the intensity ofli using
an arbitrary unit of measurement. The white contour indi-
cates the half value of the axial mean velocityU, which has
a mean radius ofb. Although it still needs to be confirmed
whether these diagrams can rigorously be called the spatial
distribution of swirling intensity, since the calculation itself
is based on the assumption of uniform convective velocity,
we can still observe the uneven distribution ofli, which

forms structures comparable in size to the jet width.
In Fig. 4, some large “lumps” ofli appear beyondb and

near the outer rim of the jet. Near widthb, the radial gradient
of Uc is significant and causes difficulty in visualizing the
structure striding overb without any distortion. On the other
hand, near the outer region of the jet, where the gradient of
Uc is relatively small, vortex structures could show their re-
constructed spatial characteristics, no matter how partially.

Based on the discussion above, we visualized isosurfaces
of li over the imaginary three-dimensional space trans-
formed from the successive time-dependent sets of the two-
dimensional velocity fields obtained by stereo PIV. In this

FIG. 10. Estimated conditional velocity vectors and those isosurfaces ofli =1.1uusxdub−1 at x=30D, Re=3000. The tick interval is 1.0b. The thick arrows
represent the event vectorusxd. The reference points aresad 0.7b, sbd 1.0b, andscd 1.5b, respectively. Three different views for each case are shown from left
to right.
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case, the convective velocityUc was assumed to beUc

=aUm with a constant coefficienta=0.3. The value of the
coefficient as=0.3d is determined empiricallysor expedi-
entlyd in the process of attemptingli visualization, but it is
also reasonable to represent the convective velocity withr
<1.5b–2.0b, according to the profile ofUc. Note that the
effect of the choice ofa on the visualized structures is given
in Appendix B.

Figure 5sad shows isosurfaces ofli at x=20D, Re
=3000, where the streamwise coordinatesx* coordinated
is defined by the measurement timet as x*

=−Uct. At first glance, the hairpin structures, emphasized by
the yellow dotted lines, are observed hanging upstream or
twining around the entire jet. Theli spots found in Fig. 4 are
assumed to be cross sections of these hairpin structures. In
order to know the physical size of the hairpin, we traced the
vortex strings, which resemble the hairpins empiricallysby
visual inspectiond, and measured the width and streamwise
distance between successive hairpins. The width, which was
defined as the distance between hairpin legs at a relative
streamwise location 0.8b downstream from the head of the
hairpin, was 0.9b, and the streamwise distance was 1.8b on
average, although this value may depend strongly on the
method of identification of the hairpin. Note that structures
similar to the present hairpin were also observed in the LES
studies of the round free jet performed by Sutoet al.10 Al-
though it is difficult to abstract a particular structure from the
visualization at this moment, we can barely discover helical
structures or vortex rings comparable in size to the jet width
from any visualization we made. Figure 5sbd shows isosur-
faces of the radial component of velocityṽr together with
that ofli, where the green and blue surfaces indicate positive
and negative values, respectively. It is obvious thatli can
represent the swirling intensity with the radial flows injecting

outwardse.g., labelBd through the inside of the hairpinfe.g.,
labelA of Fig. 5sadg and entrained to the rim of the structures
se.g., labelCd. As shown in Fig. 5scd, such an injecting flow
induced by the hairpin vortex transfers the streamwise mo-
mentum outward, which indicates isosurfaces of the instan-
taneous Reynolds shear stressuvr. Many of the isosurfaces
of uvr are located inside the hairpin loopse.g., labelDd,
where the flow induced by the hairpin vortices transfers the
high streamwise momentum in the core region of the jet
toward the outer region. The probability density function of
the direction of the velocity fluctuation vector weighted by
the Reynolds stress will be discussed in Sec. V.

Figure 6 shows the visualized isosurface ofli at x
=30D. The scale of the radius is 1.0b. Let us observe the
visualizations according to the Reynolds number. The vorti-
ces look shrunken at the low Reynolds numbers1500d and
extended at the high Reynolds numbers5000d in the axial
direction. This shows thatUc was estimated as larger at the
high Reynolds number and smaller at the low Reynolds num-
ber. The fall of Uc/Um with the increase in the Reynolds
number, which we could also ascertain in Fig. 3, supports
this fact. Therefore, it is difficult to impartially discuss the
distribution of vortices, but still the visual azimuthal wave-
length of the isosurface does not look very different at any
Reynolds number. Note that because the visual azimuthal
wavelengths<0.9bd is much larger than the spatial resolu-
tion s,0.29bd mentioned previously, the observation is not
limited by the spatial resolution of the measurement. A more
objective measure of the size of the hairpin vortices will be
discussed in the following section.

Figure 7 shows vortices from the viewpoint on the jet
axis atx=30D, Re=3000. Here, the center of curvature of
the head of hairpin is found to appear roughly atr =1.5b, and
the azimuthal range of the angle occupied by a hairpin leg
seems less than 90°.

V. LINEAR STOCHASTIC ESTIMATION

In order to extract the geometrical characteristics of the
vortex structure more objectively, we applied linear stochas-
tic estimation14 to the velocity field. The quantity of interest
is the linear estimate of the conditional average of the veloc-

FIG. 11. Contours ofli of the estimated conditional velocity vectors in the
x8-z8 plane aty8=1.0b for the reference pointy8=1.5b. The Reynolds num-
ber is Re=3000, and the streamwise location where the raw velocity data
was taken isx=30D.

FIG. 12. SpacingD of the legs of the hairpin defined as the distance be-
tween two maximums ofli in the x8-z8 plane aty8=1.0b. The reference
point wasy8=1.5b. ., x/D=20; P, x/D=30; m, x/D=40.
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ity field based on an event consisting of the velocity at a
single point. The conditional average of theith component of
the velocity vector at positionx8 based on thej th component
of the event velocity vector at reference positionx is written
as kuisx8d uujsxdl. The equations for linear stochastic estima-
tions of theith component ofkuisx8d uujsxdl are

ûisx8,xd = linear estimate ofkuisx8duujsxdl

= o
j=1

3

Lijsx8,xdujsxd.

The manipulation for minimizing the mean square error of
the estimate leads to linear algebraic equations for the esti-
mation coefficientsLij :

o
j=1

3

kujsxduksxdlLijsx8,xd = kuksxduisx8dl, j ,k = 1,2,3.

OnceLij is obtained, the flow fieldûi, called “conditional
eddies,”14 is given by the event vector. In the present study,
the event vector corresponding to the value that contributes
the largest amount of the mean Reynolds shear stress was
chosen, as previously performed by Ninomiya.9 A joint prob-
ability density function of the angle of the velocity fluctua-
tion vectors weighted byuvr, referred to as WPDF, measured
at all possible azimuthal locations centered atsx,rd
=s30D ,1.0bd is shown in Fig. 8. Here, the angles of the
vectors are defined as

c = tan−1su/uvuudandf = tan−1uvr/su2 + vu
2d1/2u,

which are illustrated in Fig. 9 in conjunction with a rotating
rectangular coordinatesx8 ,y8 ,z8d. The Reynolds number for
this case was Re=3000. There are two distinct peaks at
sf ,cd=s−0.48p ,−0.18pd ands0.50p ,0.18pd, and each cor-
responds to inwardsvr ,0d and outwardsvr .0d motions,
respectively. Since these peaks represent the fluctuating ve-
locity vector which makes the most contribution to the Rey-
nolds shear stress, we defined the event vector as the unit
vector, which has the anglesf ,cd where the positive peak is
located in the WPDF. Here, only the event vector corre-
sponding to the peak inf.0, which represents outward mo-
tion, was used in the following.

The estimated conditional velocity vectors and isosur-
faces ofli =1.1uusxdub−1 at x=30D, Re=3000 are shown in
Fig. 10. Here, results for three different reference points are
indicated, and a thick arrow represents the event vector. The
surfaces for the reference point aty8=0.7b, where the mean
Reynolds stress reaches a maximum, exhibit aC-shaped vor-
tex inclined with respect to they8 axis, as shown in Fig.
10sad. While the region inside the reference pointsy8
,0.7bd has a thick surface ofli extending around the refer-
ence point, theli isosurface outside the reference pointsz8
=0 andy8.0.7bd is discontinued. In the case of the refer-
ence pointy8=1.0b shown in Fig. 10sbd, the surface ofli

outside the reference pointsy8.1.0bd is connected, but is
thinner than the other part, and forms a ringlike shape. Such
a structure was also found in the linear stochastic estimation
performed by Ninomiya.9

The structure estimated for the reference point aty8
=1.5b, shown in Fig. 10scd, exhibits a more pronounced fea-
ture: the inside of the reference pointsz8=0 andy8,1.5bd is
completely disconnected and the outside of the reference
point sz8=0 andy8.1.5bd is connected by a thick surface,
and forms aU-shaped hairpinlike vortex. Since the reference
point sy8=1.5bd is located at the typical center of curvature
of the hairpin’s head visualized in the preceding section, the
structure estimated here stochastically supports the existence
of the hairpin vortices.

The spacingD of the legs of the hairpin is defined as the
distance between the two maximums ofli in thex8-z8 plane
at y8=1.0b. The contour map ofli in the x8-z8 plane aty8
=1.0b for the reference pointy8=1.5b is shown in Fig. 11.
There are two distinct peaks, which correspond to the legs of
the hairpin shown in Fig. 10scd. The distance between these
peaksD was measured for each case and plotted in Fig. 12.
For all cases in the range of Re=1500–5000, theD is
<0.65b. Note that Nickels and Marusic15 proposed a simple
structural model of the round jet, which consists of the
hairpin-type vortices arranged to extend the head toward the
radial direction and the legs toward the center line. The azi-
muthal spacing of their proposed hairpin was<0.51b at the
leg and 0.17b at the head.

VI. CONCLUDING REMARKS

Stereo-PIV measurement was applied to the self-
preserving region of a round free water jet at Re
=1500–5000. The statistical properties of turbulence ob-
tained in this measurement agreed well with previous ana-
lytical and experimental research. Assuming thatUc is lo-
cally uniform near the vortex structure around the outer rim
of a jet, we reconstructed the quasi-instantaneous three-
dimensional velocity field from the successive time-
dependent data of three components of the velocity field on
the axial cross section of a jet obtained by stereo PIV. The

FIG. 13. Visualized vortices, displayed as isosurfaces of vorticitysad andli

sbd at x=30D, Re=3000.
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vortex structures in the far-field region of the round jet were
visualized as isosurfaces of swirling strengthli. Here,
groups of hairpin vortex structures were observed in most
experimental conditions. The center of curvature of the hair-
pin’s head was typically located atr =1.5b.

Linear stochastic estimation revealed a hairpin vortex
similar to the one observed in the quasi-instantaneous field.
A typical spacing between the legs of the hairpin was 0.65b,
which was independent of the Reynolds number in the range
of 1500–5000.
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APPENDIX A: VORTEX IDENTIFICATION

For vortex identification, we employed the swirling
strengthli, which is supposed to be a better indicator than
vorticity, since the latter necessarily includes the local shear-
ing transformation of fluid while the former does not. We
thought the use ofli to be more reliable for a flow such as
that of the round jet, which has a thick shear layer, and we
were successful in identifying the swirling motion. Figure 13
shows a comparison between the visualizations of vorticity
andli. At a glance, both are fairly similar. But, in detail, they
are not so similar; for example, in the white dotted circles in
Fig. 13, the vortices look warped and sometimes combine
when visualized by vorticity.

APPENDIX B: CONVECTIVE VELOCITY

Throughout this paper, the convective velocityUc was
determined to beUc=aUm with a=0.3. Although the value
of a is reasonable in representing the convective velocity of

r <1.5b–2.0b according to the profile ofUc, it is worthwhile
to compare the structures visualized using other values ofa.
Figure 14 shows isosurfaces ofli at x=20D, Re=3000, with
the same data and viewpoint as that of Fig. 5, except thea
for computing the velocity gradient tensor is different. Note
that the axial coordinatesx* =−Uctd for displaying isosur-
faces was calculated using a fixed value ofa=0.3; otherwise,
the structures might be stretched or shrunk by varying thea
and comparison would be more difficult. The difference be-
tweena=0.2sad anda=0.5sbd is not obvious and both cases
show very similar structures, such as the hairpin, as in the
case ofa=0.3 fshown in Fig. 5sadg. Some heads of the hair-
pin vortices are slightly larger fora=0.2 than fora=0.5,
where the contribution of the streamwise gradient of velocity
se.g.,]v /]x*d to theli is more significant than for other parts
such as the quasistreamwise hairpin legs, although our con-
clusion is not affected by this fact.
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