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日本語ラップスタイル合成歌唱を対象とした
スウィングの統計分析

山本 泰我1,a) 森勢 将雅1,b)

概要：歌唱スタイルの多様性は，その登場から著しく発展を遂げている歌声合成において，未だ人間によ
る多彩な表現の実現が困難な要素の一つである．そこで本研究では，ラップスタイルに焦点を絞り，ラッ
プ特有の音響的要素であるスウィングに関する分析と再現を試みた．実音声と合成音声間において，表拍
と裏拍の持続時間の比率（以降，スウィング比率とする）に有意な差が得られた．主観評価実験の結果，
スウィング比率の調整によって相対的にラップらしさが有意に変化することが示された．また，アンケー
ト調査により，スウィング比率と歌声の自然性とがトレードオフの関係にあることが示唆された．

1. はじめに
機械学習の発展とともに歌声合成技術は著しい進化を遂

げており，その高い音質から，アマチュアによる音楽創作
からプロフェッショナルな音楽制作に至るまで幅広く活用
されている．品質が向上する一方で，歌唱スタイルの多様
性においては依然として人間の歌唱に及ばない点も多い．
人間の場合，練習や意識によって多様な歌唱スタイル及び
そのスタイル固有の表現技法を再現可能である．歌声合成
の場合，歌唱スタイル固有の表現技法の制御を目的とし
て，歌唱スタイルごとに細分化したアプローチが提案され
る [1][2]．これはラップスタイルにおいても同様であり [3]，
故にラップスタイル含め特定の歌唱スタイルに特化した歌
声合成研究は，歌声合成全般を対象とした研究と比較する
と希少である．
ラップに関する既存の研究としては，ラップバトルにお

けるバース（ラップバトルにおける返答フレーズ）生成を対
象とした自然言語処理的アプローチ [4]や，Text-to-Speech
(以降，TTS)技術を応用した対話型ロボットによるラップ
バトルの実現 [5]などが挙げられる．音響的アプローチの
先行研究としては，ラップスタイルに特化した記譜法の定
義と隠れマルコフモデル（Hidden Markov Model; HMM）
ベースの歌声合成を行った事例 [6]が存在する．これは，深
層学習ベースの手法が主流となった 2025年現在において
は改善の余地がある．また，大規模ラップ歌唱データセッ
トの作成から行い，入力伴奏に合わせたリズムのラップ歌
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唱の生成を可能にした研究 [7]も存在するが，スウィング
やフォールといったラップ特有の歌唱技法の制御は考慮さ
れておらず，より自由度の高いインターフェースへと設計
を改善する余地がある．
本研究では，ラップスタイル歌唱における特徴的な要素

であるスウィングに関する統計分析を試みた．具体的に
は，実音声及び合成音声におけるスウィング比率に関する
比較を行い，その後，スウィングとラップらしさの相関を
明らかにすることを目的に主観評価実験を行った．その結
果，スウィング比率の調整によって相対的にラップらしさ
が有意に変化することが示された．また，アンケート調査
により，スウィング比率と歌声の自然性とがトレードオフ
の関係にあることが示唆された．

2. 関連研究
2.1 歌声合成
歌声合成（Singing Voice Synthesis; SVS）とは，楽譜及

び歌詞を入力し，それに対応した歌声を生成する技術であ
る．2003年に発表され [8]，2004年にヤマハ株式会社より
発売された VOCALOID [9]は歌声合成を文化的に広めた
象徴的存在である [10]．当製品は単位選択型の合成方式が
採用された楽音合成に近い技術コンセプトであり，専用の
歌声コーパスに含まれる音声の素片サンプルを直接使用し
逐次的に合成することが特徴である [11]．この技術の発展
として，ブレッシー（breathy）やボーカルフライ（vocal

fly）といった非モーダルな歌声の合成を可能にした手法も
提案されており，単位選択型の合成方式を利用した高品質
な合成が実現されている [12]．
単位選択型とは異なり，統計モデルを活用するのが統計
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的パラメトリック手法である．当初，統計的パラメトリッ
ク歌声合成で採用されていた HMM [13][14]は，自然性向
上や柔軟性向上などの観点からディープニューラルネッ
トワーク（Deep Neural Network; DNN）へと置き換わっ
た [15][16]が，いずれも「歌詞と楽譜情報から歌声を一括
で生成する」という点は一貫している．この手法の利点と
しては，歌声モデルとして扱うことでダイナミクスや奏法
の指示といった柔軟な合成が可能になることや，波形を直
接管理しないためモデルサイズが小さくなることが挙げら
れる．一方で，生成時に使用するボコーダ起因の品質面で
の制約があるという欠点も存在する．
この問題に対処するため提案された手法が，WaveNet

[17]や HiFi-GAN [18]といった波形を直接生成する技術を
利用したニューラルボコーダ及び End-to-End方式の歌声
合成である [19][20]．これら手法は，従来の音響特徴量に
基づく波形合成を行うボコーダとは異なり，音響モデルに
よって生成されたメルスペクトログラム（もしくは楽譜や
テキスト情報）から歌声波形を生成可能である．主観評価
実験では，自然音声とほぼ同等の品質であることが報告さ
れている [21]．ただし，End-to-End方式で扱う潜在空間
は高次元であるため，ユーザの細かな表現の意図をモデル
内部の音響パラメータ及び出力生成波形に直感的に反映さ
せることは困難である．したがって，表現の制御性や扱い
やすさにおいては統計的パラメトリックな手法が優れてい
るとされている [22]．

2.2 歌唱技法を制御可能な歌声合成
歌声合成分野は品質向上という観点においては実音声に

匹敵する水準を達成している [23]．その後は歌声表現技法
の制御 [24]や通常歌唱とは異なる歌唱スタイルの再現 [7]，
ゼロショット学習を利用した異なる話者性の適用 [25]など
が試みられている．このような歌声の表現性に関する要素
は，未だ実音声と比較して合成音声が向上の余地のある部
分であると同時に，歌声が聴き手に与える印象の重要な要
素である [26][27]．
Sinsy [28]は最も基本的な歌声表現技法の一つであるビ

ブラートの付与を可能にした手法である．当研究では基本
周波数（以降 f0）とは別にビブラートを DNNでモデル化
することで，HMMベースのシステムに比べ高い主観評価
結果が得られたことが報告されている．SinTechSVS [24]

はより広範囲な歌唱技法の制御に焦点を当てた手法であ
る．当研究では，ピッチや音素，持続時間といった基本的
な音響特徴量に加え，ピッチや音色に関する歌唱技法ラベ
ルを同時に学習することで，Diffusionベースの音響モデル
における歌唱技法の制御性向上が実現されている．また，
入力楽譜から歌唱技法列を生成する推薦システムも提案さ
れており，歌唱技法ラベル作成の簡素化を狙っていること
も特徴である．

2.3 ラップスタイル歌声合成
ラップスタイル歌声合成は歌声合成（SVS）分野に属する
研究区分の一つであり，これまでも様々なアプローチで研
究が行われてきた．HMMベースの歌声合成が主流であっ
た 2010年代の研究 [6]では，グリッサンドやアクセントと
いったラップスタイル歌唱特有の歌唱技法に対応した記譜
法が提案されている．これら技法は HMMによってモデル
化されており，f0軌跡の視覚上では再現が確認されている
ものの，その楽譜を基に HMM歌声合成で得られた歌声を
使用した主観評価実験ではその有効性が示されなかった．
明確なメロディを持たない場合もあるというラップの特

性から，SVSではなく TTSでのアプローチが行われた研
究 [5]も存在する．当研究は人間のラッパーとラップバト
ルが可能なロボットを開発した点が革新的だが，その最終
的な出力に相当する音声合成部は Googleが提供する TTS

がベースである．同じくラップバトルを想定したものとし
て，バースの生成に焦点を当てた研究 [4]があるが，これは
テキストベースの研究であり歌声の合成には至っていない．
2025年に発表された Freestyler [7]は，条件付きフロー

マッチング [29]を利用した音楽性と品質の両立が実現して
いるラップスタイル歌声合成研究である．Transformerの
言語モデルでの意味トークンの予測の際に，歌詞に加えて
伴奏情報を入力することで伴奏のリズムに対応した歌声の
合成が実現されている．ゼロショットでの話者性の付与も
可能であり，主観評価実験では実音声に匹敵する品質であ
ることが報告されている．一方で，スウィングやフォール，
アクセントといったラップスタイル特有の表現技法の制御
性については言及されていない．また，入力情報は歌詞と
伴奏に限られており，楽譜を入力とするような意図した音
高のラップフレーズの生成には対応していない．
SynthesizerV [30]は，ラップスタイルの歌声の生成が可

能な歌声合成ソフトウェア製品の一つである．この製品
は，深層学習に基づく音響モデルにより実音声に匹敵する
自然な歌声が生成可能であり，2023年にはラップスタイル
歌唱の生成にも対応した [31]．しかしながら，ラップスタ
イルとは多岐に渡るものであり [32][33]，本製品において
も何を以てラップらしい歌声とするかはユーザに任せられ
ている．

2.4 本研究の位置付け
2.3節にあるように，ラップスタイルの歌声合成に関連

した研究はいくつか存在する．しかしながら，ラップらし
さに影響を与える要素について分析を行った事例は少な
い．本研究では，DNNをベースとした歌声合成フレーム
ワークであるNNSVS（Neural network based singing voice

synthesis library）[34]を一部改良し，任意のスウィング比
率に設定した音源を生成した．それら音源と実音声を比較
し，NNSVSによる合成歌唱におけるスウィングの再現性
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を検証した．また，スウィングとラップらしさとの相関調
査を通し，スウィングのラップスタイル歌声合成パラメー
タとしての妥当性の考察を行った．

3. 実験準備
3.1 ラップスタイル歌唱データセット
本研究では，クリプトン・フューチャー・メディア株式

会社より提供されたラップスタイル歌唱データベースを使
用した．当該データベースは，ラップ歌唱に精通した日本
語話者の女性 1名により収録された 231のラップフレーズ
（48 kHz/24 bit）及び，各フレーズに対応するモノフォン
ラベルから構成されている．これら音源とラベルを基に，
Harvest [35]を用いてピッチ推定された f0 系列から XML

形式の楽譜を作成した．なお，楽譜は BPM・歌詞・音符
情報のみを含み，それ以外にスウィングやフォールといっ
た表現記号は含まれていない．以上 3点（音源・ラベル・
楽譜）を統合しラップデータセットを構築した．

3.2 ラップスタイル歌唱モデル作成
ラップスタイル合成音声の学習・生成には，既存の歌声合

成フレームワークであるNNSVS [34]を使用した．NNSVS

の学習部は順にタイムラグモデル，持続時間モデル，音響
モデルの 3つのモジュールから成り，各モジュール詳細は
付録 A·1～ A·4 に記載の通りである（記載外の学習パラ
メータは NNSVSのデフォルト設定に準拠）．生成時には
WORLD [34]ボコーダを使用した．
3.1節に述べたデータセットのうち，24フレーズを検証
用，3フレーズをテスト用，204フレーズを学習用とした．

4. スウィング比較実験
スウィング感は，演奏されるリズムのタイミング変動に

起因するものである．特に標準的な 2分割形式の記譜（4

分音符・8分音符・16分音符等）と三連符的分割の対比が
その代表例であり [37]，ラップ音楽においても用いられる
（図 1）．本研究では，合成音声のスウィングの再現度を検
証するため，実音声と合成音声間のスウィング比率の比較
を行った．
歌声の生成には 3.2節で作成した歌唱モデルを使用し，

3.1節で作成した歌唱データセット内の楽譜を入力として
得られた音声を実験に使用した．すなわち，歌唱データ
セットの 231の歌詞フレーズに対し，実音声と合成音声が
それぞれ存在する．

4.1 スウィング定義・算出
本研究では，表拍と裏拍で対を成すペアの 8分音符を対
象とし，その持続時間の比を「スウィング比率」と定義し
た．音素ごとの持続時間を Julius [38]による自動音素ラベ
リングによって取得し，それを基に各拍の長さを算出した．

すべてのフレーズは 12の 8分音符を含むため，1フレーズ
あたり 6つのスウィング比率が存在する（図 2）．

4.2 実験結果
実音声と合成音声の対応箇所におけるスウィング比率を

比較するため，ウェルチの t検定を実施した．算出した全
てのスウィング比率のうち，表拍・裏拍のいずれかの持続
時間が 16 分音符未満であるものは検定の対象外とした．
12あるスウィング比率の集合のうち，検定の対象が最も
少なかった集合の標本数は 196であり，いずれの集合も等
分散性はなかった．検定の結果を図 3 に示す．横軸は各
表・裏拍ペア，縦軸はスウィング比率を示し，エラーバー
は 95%信頼区間を示す．検定の結果，すべてのペアの 8分
音符において統計的に有意な差（p < 0.05）が認められた．
一般に，学習データを推論時の入力とすると，モデル本

来の性能に比べ楽観的な結果が得られることが知られてお
り [39][40]，これは歌声合成においても同様である．本実
験において，使用した音源の生成に学習セット内の楽譜が
使用されている事実は，楽観的な結果が期待できることを
示す．したがって，この結果は，NNSVSによる合成音声
が実音声に比べ，スウィングリズムを適切に再現できてい
ない可能性を示唆している．

5. スウィングとラップらしさの相関調査
本研究では，スウィング比率がラップらしさに与える影

響を評価するため，主観評価実験を実施した．本実験では，
被験者は異なるスウィング比率で作成した複数の音源を聴
取し，そのラップらしさを評価した．

5.1 実験概要
実験に使用する音源は，NNSVSの持続時間モデルの直
後にスウィングポストフィルタモジュールを新たに追加し

図 1: スウィングの概略図．

図 2: 各フレーズに存在する 6つのスウィング比率例．
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図 3: 各表・裏拍ペアにおけるスウィング比率．

表 1: 実験使用音源詳細
項目 詳細
音源数 243 音源

- フレーズ数：9 種類
- スウィング比率：9 段階（1.0～3.0, 0.25 間隔）
- BPM：3 段階（160, 200, 240）

サンプリングレート 96 kHz

量子化ビット数 16 bit

フレーズ長 2 小節
ファイル形式 WAV

表 2: 実験環境詳細
被験者 日本語話者男女 20 名
再生環境 騒音レベル 20-30 dB の防音室
ヘッドフォン HD 660S (Sennheiser)

Audio I/O ADI-2 Pro FS R (RME)

A/D 変換 96kHz/16bit

作成した．スウィングポストフィルタモジュールは，設定
したスウィング比率に基づき表拍と裏拍の持続時間を調整
することで，任意のスウィング比率に対応した音源を生成
可能にするモジュールである．スウィング比率は 1.0（最
小）から 3.0（最大）まで，0.25刻みの 9段階で設定した．
実験に使用した音源の詳細については，表 1 に示す．な
お，歌詞は極力韻を踏まないように作成し，入力楽譜のメ
ロディの音高はすべて C3に固定することで，メロディの
影響を排除した．
被験者は日本語話者の男女 20名で，各音源に対してラッ

プらしさを 1から 5の 5段階（Mean Opinion Score; MOS）
で評価した．評価に際しては，メロディとリズムのみに着
目するよう指示し，歌詞や韻に起因する影響が出ないよう
配慮した．また，聴取開始前に，評価の軸となるリファレン
ス音源を提示することで，被験者間でラップらしさの共通
認識を形成し，評価軸のずれを防ぐ工夫を行った．リファ
レンス音源は，歌唱データセットのうちテスト用に該当す
る 3つの実音声である．実験環境の詳細は表 2に示す．

5.2 実験結果
本実験の結果を図 4に示す．横軸は音源生成時の指定ス
ウィング比率，縦軸は評価値を示し，エラーバーは 95%信
頼区間を示す．スウィング比率 1.0から 1.75の範囲にお

いて，各比率間（0.25刻み）で統計的に有意な差が確認さ
れた．一方で，最も高い評価を得た音源はスウィング比率
2.25のものであったが，スウィング比率 2.0以降の比率間
において有意な差は確認されなかった．
被験者を属性別に分類し，評価値の平均を比較した結果

を図 5に示す．属性グループは，2年以上の音楽経験があ
る（N=11），音楽経験がない（N=7），日頃のラップ聴取
習慣がある（N=6），ラップ聴取習慣がない（N=12）の 4

つである．各属性グループに該当する全ての回答に関して
マンホイットニーの U検定を行った結果は以下の通りで
ある．
2 音楽経験の有無：何らかの音楽経験があるグループ
（最短経験期間は 2年）と比較して，音楽経験がない
グループの平均MOS評価値は 0.63ポイント高く，有
意な差が確認された．

2 ラップ聴取習慣の有無：日頃からラップを聴く習慣が
あるグループは，そうでないグループに比べ平均MOS

評価値が 0.15ポイント高く，有意な差が確認された．
これらの結果は，ラップらしさの知覚が被験者の音楽的な
背景や日常的な聴取習慣によって影響を受けることを示唆
している。

5.3 事後アンケートによる定性的意見
実験後に実施したアンケート結果に基づき，定性的分析

を行った．その結果，特に「語尾がフォールしている（下
降している）音源がラップらしく感じられた」という意見
が多く確認された．これは，スウィング比率以外の音響的
特徴もラップらしさの認知に寄与している可能性を示唆す
る．その他の具体的な意見については，表 3 にまとめて
示す．

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
Swing Ratio

1

2

3

4

5

Sc
or

e

**
**

**

* : p<0.05
* * : p<0.01

図 4: 各スウィング比率で生成した音源の評価結果．
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図 5: 属性別結果（左：音楽経験，右：ラップ聴取習慣）．
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表 3: 主観評価実験で得られた定性的意見.

評価項目 ラップらしさを感じる要因 ラップらしくなさを感じる要因
速度・リズム 早すぎない，跳ねるリズム 遅すぎる/早すぎる
音高・抑揚 抑揚がある，アクセントがついている 抑揚がない，単調なメロディ
発音・明瞭度 流暢な発音，語尾が伸びている 発話内容が聞き取れない，声にノイズがある
歌詞・音韻 語尾が「よ」で終わる，裏拍が「ん」の歌詞 （記述なし）

6. 考察
本章では，前章で示した主観評価実験の結果に基づき，

スウィング比率がラップらしさに与える影響，及び被験者
の属性が評価に与える影響について考察する．

6.1 スウィング比率とラップらしさの関連性
スウィング比率 1.0～1.75間において有意な差が確認で

きたことから，スウィング比率が 1.75以上の音源は 1.75

未満の音源に比べ，相対的に「よりラップらしい」と認識
される傾向にあると考えられる．一方で，スウィング比率
1.75以降では評価値に有意な差が見られなかった．この結
果と，実験後のアンケート調査で「スウィング比率が大き
くなると，裏拍のモーラが極端に短くなり，自然性が損な
われる」という意見が多く寄せられた点を総合的に考慮す
ると，スウィング比率の増加と音源の自然性の保持との間
にトレードオフの関係が存在する可能性が示唆される．す
なわち，過度にスウィング比率を大きくすると，ラップら
しさは向上しても自然性が低下し，その結果，評価値の上
昇が抑制されたと考えられる．この仮定に基づけば，今回
の上限値である 3.0を超えたさらに大きなスウィング比率
の比率間では，自然性の極端な低下によって評価値が再び
低下し，相対的にラップらしいと感じられるスウィング比
率の上限が存在することが示される可能性がある．

6.2 被験者の属性が評価に与える影響
被験者グループ別の分析結果から，ラップらしさの知覚

に対する被験者属性の影響を考察する．
2 音楽経験の有無：音楽経験がないグループが，経験が
あるグループに比べてラップらしいと高く評価する傾
向が確認された．これは，音楽経験を持つ人が，詳細
なリズムのズレや表現の差異により敏感になることに
よる批判的聴取を行った可能性を示唆している．彼ら
はより厳格な基準で音源を評価した結果，相対的に低
い評価になったことが考えられる．

2 ラップ聴取習慣の有無：ラップ聴取習慣があるグルー
プは，ないグループに比べラップらしいと高く評価す
る傾向が見られた．この結果は，ラップらしさの許容
範囲の違いを示唆している．習慣的にラップを聴いて
いる人は，ラップミュージック特有のリズムやグルー

ヴの多様性に慣れ親しんでいるため，本実験で作成し
た様々なスウィング比率の音源をより広くラップらし
い表現として受け入れやすかったことが考えられる．

これら属性別分析より，「ラップらしさ」の知覚は被験者個
人の音楽的背景に影響されることが示唆される．本実験の
被験者数が十分ではないことから，これ以上の詳細な分析
は困難である．しかしながら，「音楽経験はないがラップ
聴取習慣はある」といった，より詳細な属性別のグループ
に被験者を分類し，その評価傾向を分析することで，属性
ごとの更なる認知特性が明らかになる可能性がある．

6.3 今後の検討課題
アンケート調査において，被験者から「語尾がフォール

（f0 が滑らかに下がる表現技法）している音源は特にラッ
プらしく感じられた」という意見が多く寄せられた．この
定性的な意見は，ラップらしさに影響を与えるパラメータ
として，スウィング比率だけでなく，ピッチの表現技法（f0

フォールなど）が重要であることを示唆しており，今後の
研究で注目すべき要素である．なお，今回実験に使用した
音源はすべて合成音声であり，人間が歌唱した実音声は含
まれていない．合成音声と実音声を比較した場合に，ラッ
プらしさの認知がどのように変化するかについては，今後
のさらなる議論と検証が必要である．

7. おわりに
本稿では，実音声と合成音声のスウィング比率を比較し，

合成音声がスウィングを十分に再現できていない可能性を
示した．主観評価実験の結果から，スウィング比率とラッ
プらしさの知覚に一定の相関が示された．また，属性別分
析により，音楽的な背景といった被験者の属性によって評
価結果に統計的に有意な差があることが示された．
次の試みとして，各音源の該当箇所に新たにフォール記

号を定義・付与した楽譜を作成し，再学習を行った．図 6

は，同一楽譜を入力とした 3つの異なる歌唱モデルによる
各生成音源の f0 軌跡である．横軸は時間，縦軸は基本周
波数（f0）を示す．時刻 2.0 s辺りに着目すると，フォール
付与モデルでは，フォール表現の再現性が向上しているこ
とが確認できる（図 6点線）．このモデルでは，ラベルを
one-hotベクトル化するための質問ファイルにおいて，音
素位置に関する質問を削除した．これにより，音素位置に
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図 6: 同一楽譜より各モデルで生成した音源の f0 軌跡．
（実線：実音声，破線：質問ファイルの編集なしの合成音
声，点線：質問ファイルの編集ありの合成音声）

基づく f0 バイアスを軽減し，フォール記号による f0 制御
の学習精度を高めた．質問ファイルの編集を行わなかった
場合には，記号を与えてもフォールが再現されないことが
確認された (図 6破線)．今後は，このフォール付与モデル
の性能評価を行い，複数の表現技法を組み合わせることで，
ラップスタイル歌声合成の更なる表現力向上を目指す．
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付 録
A.1 各モジュール使用モデル
表 A·1: NNSVSの 3モジュールにおける使用モデル

Time-lag Module

Time-lag Model Variance Predictor

Duration Module

Duration Model Variance Predictor

Acoustic Module

lf0 Model Bidirection LSTM Residual F0 Non-

Attentive Decoder

Shared Encoder LSTM Encoder

MGC Decoder Fast Fourier Convolution LSTM

VUV Decoder Fast Fourier Convolution LSTM

Bap Decoder Fast Fourier Convolution LSTM

A.2 タイムラグモデル詳細
表 A·2: タイムラグモデル　ハイパーパラメータ

Hyperparameter Value

Input Dimension 82

Output Dimension 1

Hidden Dimension 32

Num Layers 3

Kernel Size 3

Dropout 0.5

Batch Size 8

Using MDN(Mixture Density Network) True

Num Gaussians Distribution 4

Initialize Type Kaiming Normal

Num Total Parameters 0.013 milion

A.3 持続時間モデル詳細
表 A·3: 持続時間モデル　ハイパーパラメータ

Hyperparameter Value

Input Dimension 82

Output Dimension 1

Hidden Dimension 256

Num Layers 5

Kernel Size 5

Dropout 0.5

Batch Size 8

Using MDN(Mixture Density Network) True

Num Gaussians Distribution 4

Initialize Type Kaiming Normal

Num Total Parameters 1.403 milion

A.4 音響モデル詳細
表 A·4: 音響モデル　ハイパーパラメータ
Hyperparameter Value

Input Dimension 86

Output Dimension 67

lf0 Model

Input Dimension 86

Output Dimension 1

Embedding Dimension 256

FF Hidden Dimension 256

Conv Hidden Dimension 128

LSTM Hidden Dimension 64

Num LSTM Layers 2

Decoder Layers 1

Decoder Hidden Dimension 256

Pre-net Layers 0

Pre-net Hidden Dimension 16

Pre-net Dropout 0.5

Zoneout 0.0

Reduction Fuctor 4

Input lf0 Index 51

Output lf0 Index 0

Shared Encoder

Input Dimension 86

Output Dimension 1024

Embedding Dimension 256

Hidden Dimension 512

Num Layers 3

Dropout 0.0

Initialize Type Kaming Normal

MGC Decoder

Input Dimension 1024

Output Dimension 60

FF Hidden Dimension 1024

Conv Hidden Dimension 512

LSTM Hidden Dimension 256

Num LSTM Layers 2

Dropout 0.1

VUV Decoder

Input Dimension 1026

Output Dimension 1

FF Hidden Dimension 256

Conv Hidden Dimension 128

LSTM Hidden Dimension 64

Num LSTM Layers 2

Dropout 0.1

Bap Decoder

Input Dimension 1026

Output Dimension 5

FF Hidden Dimension 256

Conv Hidden Dimension 128

LSTM Hidden Dimension 62

Num LSTM Layers 2

Dropout 0.0

8ⓒ2025 Information Processing Society of Japan

Vol.2025-NL-266 No.23
Vol.2025-SLP-158 No.23

2025/12/17


