機械要素設計

歯車の強度計算 締結・接合要素 ねじ締結

2014年度 13回

本資料は授業用pptファイルの抜粋版です.

上記授業の学習用途に関してのみ本資料は利用できます.

資料は以下にあります.

http://www.isc.meiji.ac.jp/~mcelab /yohso_sekkei/yohso_sekkei_j.htm

授業ppt資料の方が詳細ですので、 適宜メモ等を取って下さい.

機械要素設計

歯車の強度計算 締結・接合要素 ねじ締結

Technical terms

- Involute curve
- Gear tooth surface
- Rolling contact
- Backlash
- Module
- Height of a tooth
- Surface pressure strength
- Bending strength
- Stress
- Wearing
- Fatigue failure
- Pitching
- Scuffing

- Dynamic Load
- Carbon alloy steel
- Cast iron
- Brass alloy
- Aluminum alloy
- Stainless steel
- Durability
- Accuracy
- Poly-acetal resin
- Nylon resin
- Corrosion resistance
- Lubrication
- Surface roughness

(復習)歯車の基本形状

- インボリュート曲線
 - 歯車の歯面の曲線の基本(ピッチ円に巻きつけられた糸をほどいた曲線)
 - 理想的には噛み合ったときに接触面における相対 運動(滑り)が生じない(転がり接触のみ)
 - 直線の刃物で歯面を加工できる(ラック&ピニオンにおいてラックの歯型は直線)

実際には

- 1. 加工精度による形状の誤差, ばらつき
- 2. トルクによる歯の変形
- 3. 加工法による転移の必要性と形状変化
- 4. バックラッシの必要性と断続的接触

などの問題により、

理想的には噛み合ったときに接触面における相対運動(滑り)が生じない(転がり接触のみ)――が成り立たない.

理想的な歯車

- 1. 充分な精度
 - 1. 正確な歯面形状
 - 2. 正確な噛み合い状態
 - 3. 仕様を満たせる出来る限り小さい モジュール(細かい歯)の利用 —
- 2. 充分な強度の材料の選択

モジュール大		モジュール小
歯丈分, 大きくなる	歯元のモーメント	歯丈分、小さい
厚い	歯の厚さ	薄い
大きくなる傾向	転移量	小さくて済む
大きくなる傾向	バックラッシ	小さくてよい
大きくなる	振動, 騒音	小さい

歯車強度設計で考慮すべき要素

摩耗	長期間使用による通常摩耗過負荷や高温など異常環境下における異常摩耗摩耗による形状の変化により他の破壊要因を促進	歯の形状変化 ・ バックラッシ拡大 ・ 圧力角の変化 ・ 接触面同士の相 対運動
折損	寿命超過による疲労破壊衝撃など過負荷による歯元から破壊不適切な加工・処理による強度不足	材質の不良精度の悪い形状焼き入れやメッキのムラ
ピッチング	• 面圧の高さ,疲労による歯面 のくぼみ・破壊	仕様・設計不良潤滑不良
スカッフィング	• 歯面の焼き付きによる溶着, 剥離破壊	 潤滑不良 材料選定不良

歯車の設計法(選定法)

- 1. 目的,対象を明らかにする
 - 動力伝達,位置決めなど
- 2. 動力、伝達方法などを決定する
 - 負荷特性,負荷変動,回転方向
- 3. 使用環境の条件を明らかにする
 - 温度,潤滑,振動,組み合わせ
- 4. 歯車の形式を選定
 - 平歯車, はすば歯車・・・
- 5. 歯車強度を計算し歯車を選定

歯車の強度計算

- 1. 歯車の材料から検討
- 2. 歯車の曲げ強度(歯元応力)から検討
 - ルイスの式(1892年): 歯を二次曲線形状の片持ち 梁として近似して解析
 - 伝達トルクに対し歯の根元に加わる応力(曲げ モーメント)を検討
- 3. 歯車の面圧強度(疲れ強さ)から検討
 - ヘルツの式(1881年): 歯面を円筒形として近似し 弾性接触したときを解析
 - 伝達トルクによる歯面の面圧を検討

〇歯車発明は紀元前

Oインボリュート歯車 利用は1765年

1. 歯車の材料

何の為に選定するか?

- 開発する装置の機能実現のため、使用状態・使用環境を考慮し、適した材料を選定

選定のポイント

- 利用条件と材料固有の特性を考える

例) 高温・低温, 真空, 動作時間, 低騒音, 低振動, 潤滑油利用の可否, 負荷変動(イナーシャの 大きさ), メインテナンス頻度, 信頼性(不具合 の深刻さ)・・・.

参考)潤滑剤利用不可の環境

- ・ 清浄性が要求される, 衛生面を考慮
- ・ 半導体生成,薬品,食料品 製造など
- 水分の接触がある可能性 の環境もある

- 油分の飛散,油分の蒸発を避ける
- 材料の飛散を避ける
- 歯車を極力密封する設計
- ・ 自己潤滑性を持った材料
- ・ 毒性のない材料

極限環境(真空・高圧・水・酸)

宇宙空間や水中など高温, 低温, 真空, 高圧環境下で油分は利用できない

炭素など固体潤滑 材を軸受に利用

1. 歯車の材料

分類	分類	主な材料	大まかな特徴
金属	鉄鋼系	炭素鋼, 鋳鉄, 合金鋼(ステンレス)	大動力を伝達する機器向 けの高強度 長時間動作を要求される 機器向けの高耐久性
	非鉄鋼系	黄銅、アルミ合金	動作を重視した機器向け の高精度 慣性力低減を重視した機 器向けの軽量
非金属	樹脂	ポリアセタール, ナイロン	小型,軽量,安価,静音, 使用環境への影響低減 (非潤滑)など上記以外の 目的

1. 歯車に使われる材料の例

_								
材料名	JIS 材料記号	引 張 強 さ N/mm²	伸び% 以 上	絞り% 以上	硬さ HB	特徴、焼入れ及び用途例など		
操护排火口户 李 四	S15CK					低炭素鋼。浸炭焼入れで高硬度。		
機械構造用炭素鋼	S45C					最も一般的な中炭素鋼。調質/高周波焼入れ。		
	SCM435					中炭素合金鋼 (C含有量 0.3 ~ 0.7%)		
	SCM440					調質及び高周波焼入れ		
	SNCM439		4	鄙		高強度(曲げ強さ/歯面強さ)		
操扑 排	SCr415		<u></u>	川川				
機械構造用合金鋼	SCM415					低炭素合金鋼 (C含有量 0.3%以下)。		
	SNC815				335	表面硬化処理(浸炭、窒化、浸炭窒化など)。 高強度(曲げ強さ大/歯面強さ大)。		
	SNCM220					ウォームホイール以外の各種歯車に使用。		
	SNCM420							
一般構造用圧延鋼材	SS400		鋳鉄			低強度/安価。		
ねずみ鋳鉄	FC200					鋼に比べれば低強度。大量生産歯車向き。		
球状黒鉛鋳鉄	FCD500-7					高強度なダクタイル鋳鉄。大型鋳造歯車。		
	SUS303					SUS304 より被削性(快削)、耐焼付性向上。		
	SUS304		Section 2			最も広く使われるステンレス鋼。食品機械など。		
ステンレス鋼	SUS316		スナ.	ンレス		海水などに対して SUS304 より優れた耐食性。		
	SUS420J2					焼入れ可能なマルテンサイト系。		
	SUS440C					焼入れして最高硬度を実現。歯面強さ大。		
	C3604		昔	甸		快削黄銅。各種小型歯車。		
非鉄金属	CAC502		アルミ合金			りん青銅鋳物。ウォームホイールに最適。		
	CAC702					アルミニウム青銅鋳物。ウォームホイールなど。		
MC901						機械加工歯車。軽量化。錆びない。		
エンジニヤリング プラスチック	MC602ST		植	樹脂 ————————————————————————————————————				
, , , , , , ,	M90					射出成形歯車。安価に大量生産。軽負荷用途。		

樹脂歯車の特徴

主な特徴

- 1. 小型•軽量
 - 比重が軽い
- 2. 低騒音
 - 振動吸収性に優れる
- 3. 耐食性
 - 薬品に強い
- 4. 自己潤滑性
 - 潤滑油不要
- 5. 生産性がよく安価
 - 金型の利用, 射出成型

考慮すべき点

- 1. 発熱(低熱伝導率)
 - 金属歯車との組み合わせ, 潤滑 剤の利用
- 2. 熱膨張 吸湿性
 - バックラッシと軸間距離で調整
- 3. 締まりばめ時の破損
 - 変形可能だが形状に注意
- 4. 潤滑
 - 負荷が大きい場合樹脂を侵さな い潤滑剤利用の必要性
- 5. 冷却時の変形
 - 変形を防ぐ形状の工夫,成形後 の破面加工
- 6.一体成型
 - 樹脂歯車の大きな利点
- 7. 精度
 - 機械加工と併用

2. 歯車の曲げ強度(歯元応力)

何の為に計算するか?

歯が曲げモーメントによって折れない強度を持たせるため (折損防止)

計算の考え方

- 一枚の歯を片持梁と考え、歯 先に作用する力によって歯元 に発生する曲げ応力を計算 (ルイスの式)
- ・ 噛み合って回転すること自体 が繰り返し荷重と考える

ルイスの式

• オリジナルの式(静荷重)

$$F = \sigma_b b \pi m y$$

・ 歯先に働く力は,
 歯元応力×歯幅×ピッチ円(π×モジュール)×
 歯型係数

これに対し使用条件(動的要素, 歯車固有の 状態, 材料の効果)を加味したものを計算

動的荷重を加味した計算(基礎)

- YFS 複合歯形係数
- Yε かみあい率係数
- Yβ ねじれ角係数
- KA 使用係数
- Kv 動荷重係数

Hofer 30deg法

使用係数

)	30000000000000000000000000000000000000			
馬	区 動 機 械	被駆動機械の運転特性 * 4				
運転特性	駆動機械の例	均一負荷 U	中程度の衝撃 M	かなりの衝撃 MH	激しい衝撃 H	
均一荷重 U	電動機, 蒸気タービン, ガスタービン (発生する起動トルクが小さくて稀なもの)	1.00	1.25	1.50	1.75	
軽度の衝撃 UM	蒸気タービン, ガスタービン, 油圧モータおよび電動機 (発生する起動トルクがより大きく, しばしばあるもの)	1.10	1.35	1.60	1.85	
中程度の衝撃 M	多気筒内燃機関	1.25	1.50	1.75	2.0	
激しい衝撃 H	単気筒内燃機関	1.50	1.70	2.0	≥ 2.25	

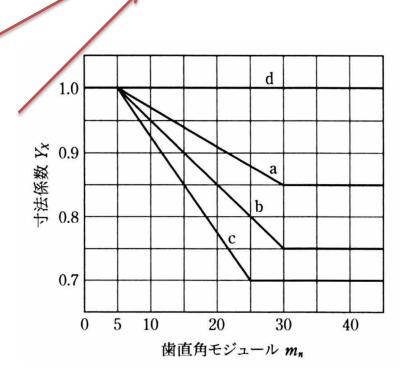
$$K_V = 1 + \left(\frac{K_1}{P \cdot K_A/b} + K_2\right) \frac{z_1 v}{100} \sqrt{\frac{u^2}{1 + u^2}}$$

				K_1						K_2	
歯車	巨の種	重類		歯車の精度等級(JGMA 111 - 03)				すべての			
			5	6	7	8	9	10	11	12	精度等級
平	歯	車	7.5	15	27	39	53	77	103	146	0.0193

負荷変動(衝撃)の度合いと 歯車の精度(等級)を勘案

細かい要素を加味した計算

$$F_{t \text{lim}} = \sigma_{F \text{lim}} \frac{m_n b}{Y_F Y_{\varepsilon} Y_{\beta}} \left(\frac{K_L K_{FX}}{K_V K_O} \right) \frac{1}{S_F}$$


- YF: 歯形係数(30°接線法による)
- Yε: 荷重分配係数(正面かみ合い率εの逆数)
- Yβ: ねじれ角係数(はすば歯車の場合)
- KL:寿命係数(負荷を受けてかみ合う回数10E4~10E7で決まる 係数)
- KFX: 歯元応力に対する寸法係数(=1.0)
- Kv: 動荷重係数(歯車の精度と周速度によって決まる係数)
- Ko:過負荷係数(=実際円周力/呼び円周力)
- SF: 歯元曲げ破損に対する安全率(1.2以上)

その他考慮する要素

使用状態だけではない

- ・ 選定した材質の特性を考慮 すべき
 - 表面状態: 表面粗さ, 精度 (等級), 焼き入れ状態, 歯の 馴染みやすさに依存 ———
 - 切欠き感度: 応力集中に対 する感度, 表面状態にも依存
- 選定した歯車のモジュール も考慮すべき
 - 材質に依存してモジュールの 増加により疲れ強さが低下

通常の設計ではあまり 気にしなくてもよい (1.0を選択)

3. 歯車の面圧強度(疲れ強さ)

何の為に計算するか?

歯面に加わる接触圧(面圧) によって歯面が破壊されない強度を持たせるため(ピッチング、スポーリング防止)

歯面の接触面積は思いの外, 小さい

計算のポイント

- ・ 歯面を円筒面と考え, 噛み 合った線接触部における弾 性変形と面圧を計算(ヘル ツの式)
- ・ 圧力角20°分だけ傾いた状態での接触を考える

ヘルツの式

・ 基本の式

$$P_H = 0.418 \sqrt{\frac{P_n}{b} \left(\frac{1}{\rho_1} + \frac{1}{\rho_2}\right) \frac{2E_1 E_2}{E_1 + E_2}}$$

- ・歯面法線方向の力,歯幅,曲率半径,ヤング 率から計算.
- ・これに様々な使用条件を加味して計算.

$$F_{t \text{lim}} = \sigma_{H \text{lim}}^{2} d_{01} b_{H} \frac{i}{i \pm 1} \left(\frac{K_{HL} Z_{L} Z_{R} Z_{V} Z_{W} K_{HX}}{Z_{H} Z_{W} Z_{\varepsilon} Z_{\beta}} \right)^{2} \frac{1}{K_{H\beta} K_{V} K_{O}} \frac{1}{S_{H}^{2}}$$

$$\sigma_{H} = \sqrt{\frac{F_{t}}{d_{01} b_{H}}} \frac{i \pm 1}{i} \left(\frac{Z_{H} Z_{M} Z_{\varepsilon} Z_{\beta}}{K_{HL} Z_{L} Z_{R} Z_{V} Z_{W} K_{HX}} \right) \sqrt{K_{H\beta} K_{V} K_{O}} S_{H}$$

細かい要素を加味した計算

- ・ bH: 歯面強さに対する有効歯幅(狭い方の歯幅)
- do1:小歯車ピッチ円直径
- ZH:領域係数(転位係数, 歯数, ねじれ角をもとに計算する)
- ZM: 材料定数係数(ポアソン比v1, v2, 縦弾性係数E1, E2)
- Zε:かみ合い率係数(平歯車=1.0,はすば歯車の場合は正面かみ合い率と 重なりかみ合い率から求める係数)
- Zβ:歯面強さに対するねじれ角係数(=1.0)
- KHL: 歯面強さに対する寿命係数(繰り返し回数によって決まる係数)
- ZL:潤滑油係数(使用する潤滑油の50℃における動粘度から求める)
- ZR: 粗さ係数(歯面の平均粗さRmaxm(μm)に基づいて図から求める)
- Zv: 潤滑速度係数(基準ピッチ円上の周速度に基づいて図から求める)
- Zw:硬さ比係数(焼入れ研削した小歯車とかみあう大歯車のみに適用し、式により求める)
- KHX: 歯面強さに対する寸法係数(=1.0)
- ・ *KH*β:歯面強さに対する歯すじ荷重分布係数(歯車の支持方法,歯幅b,小 歯車ピッチ円直径d01)
- Kv: 動荷重係数(歯車の精度と周速度によって決まる係数)
- Ko:過負荷係数(=実際円周力/呼び円周力)
- SF: 歯面損傷(ピッチング)に対する安全率(1.15以上)

特徴的な要素

幾何学的形状、弾性材料力学観点だけでなく

- ・ 歯面の接線方向の滑り速度
- ・ 歯面の粗さ, 精度, 表面処理
- 潤滑状態(動粘度)

についても数多くの係数を考慮

4. 歯車の焼き付きへの強さ

2つの歯面

- 潤滑油膜を介し、滑り転がり接触
- 1. 金属同士の直接接触の問題
 - 接触圧力、滑り速度等の運転条件がある限界を超えると、油膜または境界層が破断
- 2. 表面破壊
 - 接触により2面が融着し、剥離

原因

運転条件、歯車幾何、材料、潤滑油等、歯車の 運転に関わるすべての因子その関係は複雑、 難解で解析困難、解析モデルはない

破壊的摩耗

- アブレーシブ摩耗: ごみや摩耗粉などが歯面間にはさまり損傷。
- 2)スコーリング: 高圧面,すべり温度上 昇などにより油膜が切れ,金属面が溶 着して引きさかれる損傷
- 3) 干渉: 相手の歯先が歯元に強く当たり, ひどくえぐりとられる損傷。歯形,修整な どの狂いが原因
- 4) 腐食摩耗: 潤滑油中の酸,水分,不純物の化学作用による損傷
- 5) 剥離: 歯の表面がフレーク状になって はがれる損傷。歯面の疲れによる降伏 が原因。
- 6) 摩擦焼け: 過大な荷重, 速度, 潤滑不足による異常摩擦が進んで, 高温のために変色, 硬度低下
- 7)変色: 硬度低下しない程度の変色

歯車の疲労

- 8) 初期ピッチング: 使用後まもなく歯元面に発生
- 9) 破壊性ピッチング: 初期運転期間を過ぎても進行. 歯面に発生.
- 10)スポーリング: 重荷重で表面下が疲労し, かなりの大きさの金属片が脱落

歯車の様々な 不具合・破損

塑性流れ

- 11)圧延降伏: 過度の荷重によるすべり, 不適切なかみ合いのための衝撃によっ て発生
- 12)りん降伏: 潤滑不足によるスティック スリップ,振動,重荷重が原因.
- 13)条痕摩耗: 特殊の塑性流れ, 過大荷重や潤滑不足が原因.

歯の折損

- 14) <mark>疲労破損</mark>: 初めに小さい亀裂が生じ, くり返し荷重のために進行して破壊.
- 15) 過負荷破損: 予期しない過大衝撃荷 重による破損
- 16) 焼割れ: 不適当な熱処理または鋭角 によって起きる.
- 17) 摩耗進行に起因する折れ: ピッチング, スポーリング, アブレシーブ摩耗進行により歯が弱くなって折れる.
- 18)不適当な加工研削による割れ: 加工 条件が不適当な研削, 焼入応力不適 応により発生

歯車強度設計で考慮すべき要素

1. 摩耗	•	通常の摩耗でも,幾何的条件(形状) が大きく変化 形状の変化により他の破壊要因を促 進
2. 折損	•	強度条件のほか,加工法,材料の状態,運用状態に依存 想定外の負荷・環境も原因
3. ピッチング	•	上記同様
4. 焼き付き・ スカッフィング	•	各要素に起因する不具合, 最終的に は熱により破壊

変形

曲げ応力

面圧

熱

その他の工夫

実際の使用状態に対応した歯面調整

- 1. 歯形修正(歯厚を僅かに追加)
- 2. クラウニング(歯面を僅かに樽型)
- 3. エンドレリーフ(歯面両端面取り)

- 歯先ほど摩耗しや すい傾向
- 歯先の強度確保
- 摩耗時の形状誤差 抑制
- 軸間のねじれ誤差 対策
- 歯面端部の応力集 中緩和

機械要素設計

歯車の強度計算

締結・接合要素 ねじ締結

一体成型品と接合部品と分割部品

一体成型は理想形態か?

- ・ 飛行機などでは複合材を利用し、一体成型もしく はそれに近い構造を持った部位が極めて多い.
- 応力を分散でき、形状や構造を最適化したものを 利用出来る可能性が大きい。

性能に大きく寄与する軽量化, 運用コスト(メインテナンス)を 低減する高信頼性化,など大 きなメリット

機械の設計を大きく変える可能 性があるだろうか?

2→6年の重整備で済むようになった

飛行機と自動車

	中大型旅客機	小型~ビジネス ジェット	自動車
部品点数	300万点	10~100万点	3万点
年産(世界)	1,000機	2,000機	78,000,000台
価格(新品)	7,500,000,000~ 30,000,000,000円	300,000,000~ 3,000,000,000円	1,000,000~ 30,000,000円
運用状態	恒常的な万全の整備 を要す 規定運行時間まで中 古機体でも運用可能	恒常的な整備を要す 規定運行時間まで中 古機体でも運用可能	定期的な点検整備を 受ける車体から相当 雑な運用の車体もあ る
事故後の扱い	小事故は修理, それ 以上は廃棄	小事故は修理, それ 以上は廃棄	かなりの事故でも修 理される車体もある

一体成型

加工法	対象の材料	特徴など
鋳造	金属, 樹脂	溶融した材料を 金型に注入成形
鍛造	金属(一部)	高温で軟化した 材料を金型で成 形
プレス加工	金属(一部)	常温の材料を金 型で成形
射出成型	樹脂	軟化した材料を 金型で成形
ハイドロ・ フォーミング	金属(鋼やアルミ合 金など)	常温の材料を水 圧と金型で成形
プリプレグとオートクレーブ	CFRP(カーボン繊維) FRP(ガラス繊維)	形状や数量の条 件により成形法 が多数存在
3Dプリンタ	樹脂	一部を除き試用, 限定された用途

一体成型が最適解ではない場合

以下のような場合、一体成型、一体構造が適さない

- 消耗品の定期的な交換
- 不具合による修理・部品交換
- 故障 事故後も修理 使用継続
- 追加部品による調整 機能追加
- 既存機器・設備への置換, 増設

締結手段を講じることを前提とした設計を行う必要性

締結を必要とする主な応用分野

機械・乗り物

- 自動車
- 鉄道
- 船舶
- 航空機
- 宇宙
- 建設機械
- 産業機械
- 生産設備

メカトロ機器

ロボット

エレクトロニクス

- 情報家電
- 計測•測定器

<u>その他</u>

- ・ 建物・プラント等の構造物
- 医療機器
- 医療検査機

Technical terms

- Single piece
- Fastener element
- Assembling
- Part replacement
- High reliability
- disassembling
- Bonding
- Adhession
- Welding

- Relative motion
- Added value
- Looseness

部材締結技術

構成する各部品及び構造物の各部材を結合

締結の特徴

- 組立て・分解が可能
 - リベットによる接合の場合を除く
 - 接着、溶着、溶接などは締結には含まれない

リベットでも分解,再組み立ては可能だが容易ではない. これを繰り返すことも基本的に想定されていない.

リベットの材質劣化を検査するには電流を流し、その応答で判定.

部材締結技術

部品と部品、部分と部分の被締結部を、

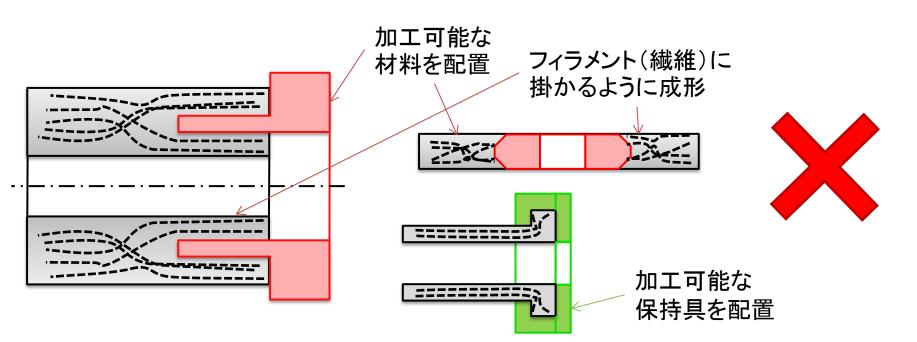
- ・ボルト
- ナット
- 小ねじ
- ・タッピンねじ
- ・リベット
- ・ピン

等の部品を用いて締結する技術

締結機能を有する部品を総称して締結用部品

英語表記(基礎編)

- Bolt
- Screw / Screw thread
- Nut / Screw nut _____
- Vise
- Tapping screw
- Rivet
- Pin-


部材締結技術の現状と問題

	現状	課題
ア. 軽量化	機械製品は一様に軽量 化が進む傾向	大量の締結用部品が使用されている 輸送機械等では、強度維持,軽量化
イ. 新素材 部材締結	セラミックスや炭素繊維 等新素材の多用	軽量化や高機能化、高感性化 新素材は締結が難しい
ウ. 製品信 頼性	日本製品に対する高い 信頼性を今後も維持	強度設計と緩み機構、 <mark>緩み防止</mark> 設計 品質とメンテナンス性の向上 トレーサビリティ向上
工. 環境負荷低減	環境への責任 リサイクル性に配慮	ねじ部品は分解可能な締結方法 製品, 部品, 部材のリサイクル
才. 生産性 向上	新興国のメーカーのコスト競争力,世界的に市場拡大	高い労働コストの競争力を維持 限られた労働力で高い付加価値 締結作業効率化は生産性向上
力. 高強度化	高付加価値	耐久性の向上及び軽量化、コスト削減 に繋がる部材の高強度化

参考)締結性の悪い新素材

例) CFRP(カーボン繊維)

- カーボン繊維をエポキシ樹脂で固める成形
- 締結のための部材を成形前に組み込む必要性
- 成形後の加工は繊維を切るため著しく強度低下

トレーサビリティ(traceability)

・装置に問題があった場合,事故や不具合から<mark>遡って原因追及ができるよう</mark>,原料精製から,製造,計測・検査,検品,流通までの一貫して管理され,その精度が保障される仕組み

締結要素がどのように関与するか?

- 1. 締結要素や周辺の部材の破壊状態からどのよう な不具合が発生したか判別できる設計
- 2. 締結要素の品質を的確に管理することで、締結要素以外の要因で不具合が発生したことを保証できる設計
- 3. 仕組みを考慮したことを保証する設計プロセス

部材締結技術の背景

- 1. 締結用部品の高付加価値化、信頼性の付与
 - 1. 締結体の合理的で安全な設計
 - 2. 部材締結技術の高度化
- 2. 製品の高速化、高強度化、軽量化、信頼性の向上
- 3. 新素材の利用を促進
 - 1. 難加工を克服する生産技術
 - 2. 締結用部品の高強度化・小型・軽量化技術
 - 3. 締結体の安全性・信頼性向上

4. 多様な被締結材

- 1. 確実に締結、締結機能を長寿命化させる高い信頼性を有する締結用部品の開発
- 2. 締結技術•締結方法の開発
- 5. 技術開発の促進
 - 1. 使用環境は多様化、極限化
 - 2. 疲労破壊、遅れ破壊、緩み等に起因する締結部の破断を防止

部材締結技術の背景をまとめると

製品の高性能化, 高機能化, 高付加価値化, 優れた意匠

扱いの難しい新素材 の利用,多種多様・ 複合した材料の利用

締結材自体の高機 能化, 高付加価値化

締結部品に求められること(1)

- 機械の高性能化に寄与
 - 軽量化, 部品点数減少
 - 扱いの難しい新素材の締結
 - 高耐久性, 高信頼性による事故防止
- 生産性向上
 - 容易で効率的な組み立て性, 工程改善
 - 高付加価値, 多品種生産, 短納期
- 環境
 - 環境負荷物質を削減
 - 解体性を容易にしてリサイクル
 - メインテナンス性を向上して廃棄部品の低減
 - 生産時の省エネルギー化

締結部品に求められること(2)

- ・トレーサビリティ
 - 使用履歴情報を把握して保守、改善に利用
 - 生産時の履歴により改善に利用
 - 締結部品の状態からこれらの情報を再現可能

高付加価値につながる 優れた品質である証

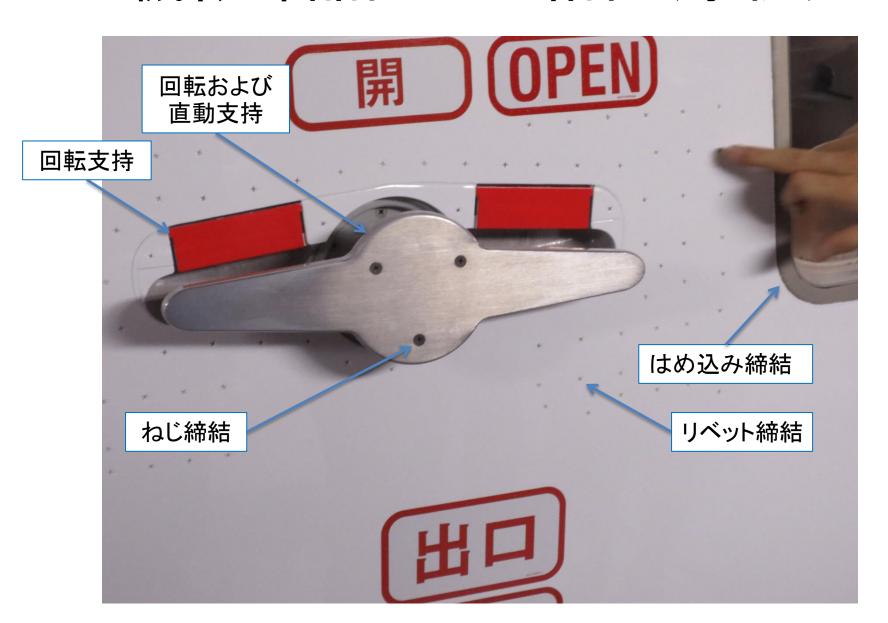
- 製品そのものの状態を確認する仕組み
- 製造時の情報の伝達・蓄積する仕組み 製造から使用,廃棄まで情報を第3者が追跡可能

機械部品同士の結合(事例)

シュパンリング

ヒンジ

リベット


溶接

スプライン

カヌークリップ

プラスティリベット

機械部品同士の結合(事例)

機械部品同士の結合(相対運動の可否)

- 1. 相対運動可能な結合
 - 回転や並進など常に運動する部分
 - 軸受, スライダ(摺動)機構など
 - 開閉, 脱着する部分
 - ・ヒンジ,ツメ, 閂など
- 2. 相対運動が不可能で分解可能な結合
 - ・ ネジ, キー, スプライン, ピン, 楔(シュパンリング)など
- 3. 相対運動が不可能で分解を想定しない結合
 - リベット、溶接、接着、溶着、はめあいなど

機械部品同士の結合(分解の可否)

• 永久結合

- 一度結合したら、再度分解することを前提としない
 - はめあい、焼きばめなど部品構造部材の変形を利用
 - 接着, リベットなどを介在させて結合
 - 溶接, 溶着など構造物同士を結合(不可逆)

• 非永久結合

- 点検, 整備, 補修のため, 組み立て後も分解することを前提とする
 - 摩擦による締結力を利用して結合
 - 幾何的な形状を利用して結合—

方向により抜け落 ちてしまう危険性

(トルク)に限界

分解を想定する締結要素

求められる機能

- ・ 確実な締結
 - 決められた締結力を決められた期間発揮
 - 緩みなど自己分解を起こさない
- 必要な時に分解可能
 - 工具等を利用することで分解, 着脱が可能
- 再度運用が可能
 - 再組み立て, 再使用が可能

締結要素を扱う汎用ハンドツール

Spanner

Hexagon wrench

Ratcheted box wrench

Phillips screwdriver

Offset wrench

Box wrench

Electric screwdriver

Air impact wrench

工具を確実に操作できる部品形状を考慮した設計は極めて重要

締結要素を扱うハンドツール

- 汎用的な工具・設備を利用できれば基本的に はよい
- 高付加価値のために工具を限定したり、専用工具を前提にする設計も場合により有効

参考)

- 汎用的な工具の中には上のような締結部品を劣化させるもの も少なからず存在(不具合対処の整備時など応急的に利用)
- 設計時の工夫でこれらの利用を避ける形状も可能(ざぐりなどでボックスレンチやアーレンキーの利用を促す)

演習1

本日の授業を参考に,

- A) 関心のある製品, 部品の例を挙げ
- B) 締結要素を具体的に3種類(箇所)挙げ
- c) それぞれについて
 - 1. 役割(機能)
 - 2. 使われかた
- 3. その要素を利用・設計する上で留意すること 説明せよ. 配布した用紙に回答のこと.

但し、websiteの解答例およびスマートフォン等は対象としない回答が望ましい.

解答例

- A) ある家電製品の筐体を 例に挙げる.
- B) 以下の3点を挙げる.
 - 1. タッピングネジ
 - 2. O
 - 3. O
- C) 1については,
 - 1. 部品を固定し、相互には 相対運動しない目的で 利用される.
 - 2. 一旦固定されたらあまり 分解・組み立ては行わない. 修理等の時に分解 を行う程度の利用

 通常のねじのように正確 な理論ができているとは 言い難く、また材料の特性 に大きく依存する.

従って、強度を要する部位への利用は避けるべきであるが、組み立て上の利便性から利用するにあたり、試作時の試験、評価を行うことで、強度、耐久性、安全性を検証しておくことが必要となる。

また、再組み立て時は新たにねじ山が創生されないよう、合わせて回すなどの注意を払う必要がある.

演習2(歯車強度)

問)以下の条件の時,動荷重係数を算出せよ.

仕様と使用条件

伝達動力100[W], 回転数2000[rpm]の単気筒の内燃機関を利用, 負荷はあまり変動しないが多少の衝撃は伴う.

使用する歯車

モジュール2, 圧力角20[deg], 歯幅10[mm], 一次側歯数15枚, 二次側歯数40枚

関連する数式メモ

伝達動力P[W], ピッチ円周速v[m/s], 歯幅b[mm], 歯数比u=Z2/Z1[1], 歯元の断面係数z1, 断面係数z1=bs^2/6[m^3], 歯厚s=(π/2+2tanα)m, モジュールm[1], 歯車圧力角α[deg]