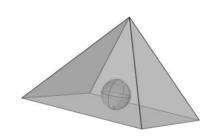
エネルギー密度位相変更法と応答曲面最適化法 による折紙輸送箱の最適設計



〇佐々木 淑恵(明治大学) 萩原 一郎(明治大学)

明治大学先端数理科学インスティテュート

発表者自己紹介

大学卒業後, 民間企業に勤務. 退職後, CQ出版社関連, 雑誌の執筆等. 2020年度より, 明治大学萩原研究室にて固有振動周波数解析, 最適化設 計について研究を行い、エネルギー密度位相変更法を開発した. 今後, 折 紙輸送箱への応用展開を考えている.

固有周波数の最適化について、基礎的な研究

研究の背景

壊れやすい振動周波数帯域(危険帯域)

苺

ips細胞 血液

酒やワイン

危険帯域を避けるよう輸送箱の固有振動数を移動

固有周波数の移動を高精度・高速度にするため エネルギー密度位相変更法の開発

応答曲面法を使い最適解を目指す

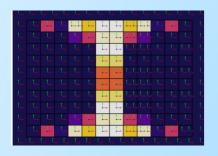
エネルギー密度位相変更法とは?

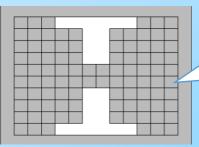
エネルギー密度に注目して, 下げたいときにはバネに穴, マスに補強 上げたいときにはマスに穴 バネに補強 を設けて固有周波数を移動する. 穴や補強の寸法の定量化を得るため 応答曲面法を用いる. 学習点を少なくするために最大確率 設計法 (MPOD法) を使う.

固有周波数制御の歴史

1988年 Bendsoe-Kikuchi 均質化法を使った位相最適法の開発

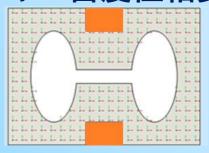
大金星. 振動問題への適用は困難であった.


1994年 Tenek-Hagiwara 均質化法位相最適化法.


初めて振動問題に適用

2021年 佐々木・萩原 エネルギー密度位相変更法の開発

位相最適化技術の大変革エネルギー密度位相変更法 目的周波数が簡単に得られる


従来のトポロジー最適化

0.2mm以下に穴 目的周波数が 得られない

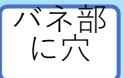
エネルギー密度位相変更法

- ●目標周波数の設定
- **②**トポロジー最適化の実施
- ❸最適な板厚分布
 4 しきい値以下に穴の設置 結果として収束値からはずれる
- ●目標周波数の設定
- ❷固有周波数モードのひずみ,運動エネ ルギー密度分布の表示 3穴の設定
- 4インタラクティブに解を得る.

エネルギー密度位相最適化の原理

固有角振動数は

$$\omega_n = \sqrt{\frac{k_n}{m_n}}$$


 $\omega_n = \sqrt{\frac{k_n}{m_n}}$ $\omega_n : n 番目の固有角周波数$ $m_n : n 番目の等価質量$

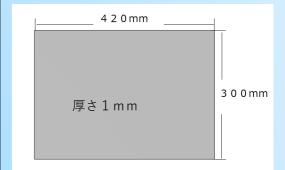
 k_{n} : n番目の等価剛性

バネ部:ひずみエネルギー密度が高い部分

マス部:運動エネルギー密度が高い部分

下げる

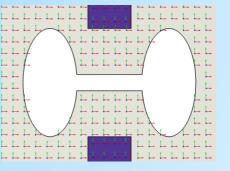
に補強

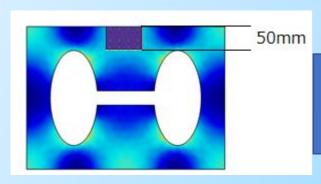

上げる

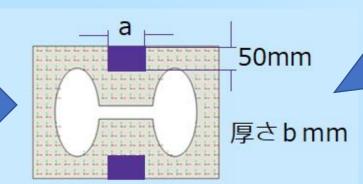
に補強

エネルギー密度位相最適化の考え方 全周単純支持 20Hz~40Hzを避ける

			1次	2次	3次	4次
目標			20Hz以下	20Hz以下	40Hz以上	40Hz以上
初期			12.99Hz	26.13Hz	38.71Hz	47.96Hz
モード						
1	1次2次を下げ るべくバネ部 に穴を設ける	バネ				0 0 0
		マス				• • •
			7.95Hz	9.02Hz	30.00Hz	35.24Hz
2	3次4次を上 げるべくマス 部を補強する	バネ				
		マス				
収束した固有周波数			8.00Hz	9.16Hz	40.66Hz	42.31Hz

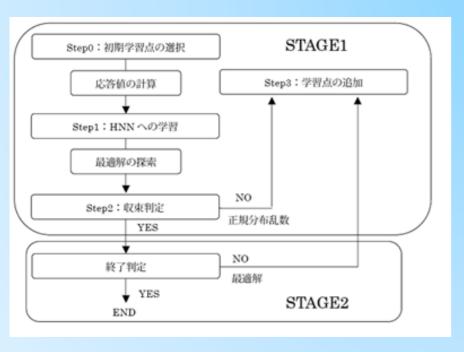

固有周波数制御に 使う平板モデル


材料 密度 256.9kg/m³ ヤング率 0.664GPa ポアソン比 0.34


最適化形状

紺色 補強3 mm 白 穴 重量 27.48g 補強部の寸法を応答曲面法を使って、定量的に求める

エネルギー密度 から補強. 縦は 50mmに固定



設計変数は, 横の長さ 補強の厚み

最適な補強の寸法を求めるには?

$$f_{x} = f_{0}^{*} + \left(\sum_{i=1}^{m} W_{i} (f_{i} - f_{0i})^{n} / \sum_{i=1}^{m} W_{i}\right)^{1/n}$$
 (1)

$$f_0^* = 0[H_Z]$$
 $n = \pm 1, \pm 2, \cdots$ $(n=2)$ m:目標周波数の数 $(m=4)$ W_i :重み $(W_i = 1) f_{0i}$:目標周波数

目的関数を決めてMPOD法を使い 最適値を求める

横	厚さ	1次	2次	3 次	4次	f_x
84.19	1.41	7.99	9.09	32.97	39.14	3.54
119.4	0.24	7.89	8.89	26.24	30.90	8.25
60.08	0.49	7.96	9.02	28.29	33.09	6.80
100.79	1.19	7.98	9.07	31.48	37.08	4.51
72.780	0.51	7.95	9.01	27.98	32.74	7.02
110.57	2.35	8.17	9.40	40.91	43.07	0.000

厚さ2.34 m m 横 109 m m 縦 50 m m のとき8.15Hz,9.39Hz,40.75Hz,42.98Hzに収束