\mathbb{Z}^n 次数付環の $\mathrm{chamber}$ 分解について

明治大学大学院理工学研究科基礎理工学専攻

越前谷彩香

指導教員 藏野和彦

目次

1	序	2
2	chamber 分解の存在	3
3	最短 chamber 分解の存在	8
4	補題 3.1 の証明	11
5	応用	16

1 序

この論文では、 \mathbb{Z}^n 次数付環 R の chamber 分解の存在について証明を与える. R の 0 でない元の次数を生成元とする錐体を C(R) と表す. このとき R の chamber 分解を次のように定義する.

定義 1.1 有限個の R の chamber $\sigma_1, \cdots, \sigma_l$ が存在し、 $C(R) = \bigcup_{i=1}^l \sigma_i$ かつ、 $i \neq j$ ならば $\sigma_i \cap \sigma_j \subset \partial \sigma_i \cap \partial \sigma_j$ となるとき、この C(R) の表し方を R の chamber 分解という.また chamber ideal が全て異なる chamber 分解を最短な chamber 分解という.

chamber とは、内点の取り方によらずにあるイデアルが定まる n 次元有限生成錐体のことである. 詳しくは第 2 章で定義をする.

n=2 のとき、chamber 分解が存在することは [高瀬, (2.6)] により示されている. R_0 上の R の斉次生成元の次数を座標平面上に点としてとり、その点を通り原点を端点とする半直線を考える. このとき隣り合う直線で囲まれた部分が chamber となり、それらによって R が chamber 分解されるのである.

次の定理が一般のnに対する結果であり、この論文における主定理である.

定理 1.2 $R = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} R_{\mathbf{a}}$ を \mathbb{Z}^n 次数付ネーター整域、 $R_{\mathbf{0}}$ を体、 $\{\mathbf{a} \in \mathbb{Z}^n \mid R_{\mathbf{a}} \neq 0\}$ は \mathbb{Q} ベクトル空間として \mathbb{Q}^n を生成するとする.このとき R は chamber 分解を持つ.また、最短な chamber 分解が一意的に存在する.

第 2 章で chamber 分解の存在について、第 3 章で最短な分解の存在性についての証明を与える。第 4 章で第 3 章に用いる補題の証明、第 5 章では、finite な環拡大における chamber 分解について述べる.

2 chamber 分解の存在

 $R = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} R_{\mathbf{a}}$ を \mathbb{Z}^n 次数付ネーター整域、 $R_{\mathbf{0}}$ を体、 $A = \{\mathbf{a} \in \mathbb{Z}^n \mid R_{\mathbf{a}} \neq 0\}$ とし、A は \mathbb{Q} ベクトル空間として \mathbb{Q}^n を生成するとする。また、 $C(R) = \sum_{\mathbf{a} \in A} \mathbb{R}_{\geq 0} \mathbf{a}$ とする。

注意 2.1 R は $R_{f 0}$ 上有限生成な環である. 従って

$$R = R_0[x_1, \cdots, x_s]$$

と表わせる。ただし x_i は斉次元とし、 $\deg x_i = \mathbf{a}_i$ ($1 \le i \le s$) とする。このとき、 $A = \{n_1\mathbf{a}_1 + \dots + n_s\mathbf{a}_s | 1 \le i \le s$ に対し $n_i \in \mathbb{N}_{\geq 0}\}$ であり、 $C(R) = \mathbb{R}_{\geq 0}\mathbf{a}_1 + \dots + \mathbb{R}_{\geq 0}\mathbf{a}_s$ である。よってC(R) はn 次元有限生成錐体である。

定義 2.2 有理数点 \mathbf{a} (つまり $\mathbf{a} \in \mathbb{Q}^n$) に対し

$$J_R(\mathbf{a}) = (R_\mathbf{c} \mid \mathbf{c} \in \mathbb{R}_{>0} \mathbf{a} \cap \mathbb{Z}^n) R$$

と定める. これはRのイデアルである.

定義 2.3 \mathbb{R}^n の部分集合 σ が次の 2 条件を満たすとき、 σ を R の chamber という.

- (1) σ は n 次元有限生成錐体.
- (2) $\operatorname{Int}(\sigma)$ の $\mathbf 0$ でない任意の有理数点 $\mathbf a, \mathbf b$ に対し、 $\sqrt{J_R(\mathbf a)} = \sqrt{J_R(\mathbf b)}$

ここで $\operatorname{Int}(\sigma)$ は \mathbb{R}^n の通常の位相での σ の内部である. また σ を chamber とするとき、 $J_{\sigma} = \sqrt{J_R(\mathbf{a})}$ (ただし \mathbf{a} は $\operatorname{Int}(\sigma)$ の $\mathbf{0}$ でない有理数点)と定め、 J_{σ} を σ の chamber ideal という.

 $\{H_1,\cdots,H_l\}=\{H\subset\mathbb{R}^n|H$ は $\mathbf{a}_1,\cdots,\mathbf{a}_s$ の中の一次独立な n-1 個のベクトルで張られる超平面 $\}$ とし、 $1\leq i\leq l$ に対し

$$H_i = \{ \mathbf{x} \in \mathbb{R}^n | f_i(\mathbf{x}) = 0 \}$$

を満たすように \mathbb{R} 線形写像 $f_i: \mathbb{R}^n \to \mathbb{R}$ を定める. また $\epsilon_i \in \{-1, +1\}$ に対し

$$C(\epsilon_1, \dots, \epsilon_l) = \{ \mathbf{x} \in \mathbb{R}^n |$$
任意の i に対し、 $\epsilon_i f_i(\mathbf{x}) > 0 \}$

と定義する.

命題 2.4 上記の記号のもと

$$C(R) = \bigcup_{C(R) \cap C(\epsilon_1, \dots, \epsilon_l) \neq \emptyset} C(\epsilon_1, \dots, \epsilon_l)^{\bar{}}$$
(2.1)

が成り立つ. ここで $C(\epsilon_1, \cdots, \epsilon_l)$ は $C(\epsilon_1, \cdots, \epsilon_l)$ の閉包である.

命題 2.4 を示すために次の補題を証明する.

- 補題 2.5 (1) \mathbf{x} の ϵ 近傍 $U_{\epsilon}(\mathbf{x})$ が C(R) に含まれるような C(R) の元 \mathbf{x} と正の実数 ϵ が存在する. つまり $\mathrm{Int}(C(R))$ は空でない.
- (2) g を n 変数多項式環 $\mathbb{R}[x_1,\cdots,x_n]$ の 0 でない多項式とすると、任意の点 \mathbf{z} と任意 の正の実数 ϵ に対し、 \mathbf{z} の ϵ 近傍 $U_{\epsilon}(\mathbf{z})$ は g の零点集合 V(g) に含まれない.

証明 (1) を示す. $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_n}$ が $\mathbb{R} \perp \mathbb{R}^n$ を張るとする. 一次変換により、 $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_n}$ を $\mathbf{e}_1, \dots, \mathbf{e}_n$ としてよい. このとき $\mathbf{e}_1 + \dots + \mathbf{e}_n$ は C(R) の元であり、十分小さい正の実数 ϵ に対し、 $U_{\epsilon}(\mathbf{e}_1 + \dots + \mathbf{e}_n)$ は $(\mathbb{R}_{\geq 0})^n$ に含まれる. 従って C(R) にも含まれるので、 \mathbf{x} として $\mathbf{e}_1 + \dots + \mathbf{e}_n$ をとればよい.

次に (2) を n に関する帰納法で示す。平行移動により、 $\mathbf{z} = \mathbf{0}$ とする。 $g(\mathbf{0}) \neq 0$ のときはよい。 $g(\mathbf{0}) = 0$ とする。 n = 1 のとき、V(g) は有限集合であり、任意の正の実数 ϵ に対し $U_{\epsilon}(\mathbf{0})$ は無限集合であるので、このときは成り立つ。 n > 1 のとき、 $g = f_0 + f_1x_n + f_2x_n^2 + \cdots + f_mx_n^m$ (ただし $f_m \neq 0$, $0 \leq i \leq m$ に対し $f_i \in \mathbb{R}[x_1, \cdots, x_{n-1}]$) とする。このとき任意の正の実数 ϵ に対し、帰納法の仮定から $U_{\frac{\epsilon}{2}}(\mathbf{0}) \subset \mathbb{R}^{n-1}$ は $V(f_m)$ に含まれない。よって $f_m(b_1, \cdots, b_{n-1}) \neq 0$ となる $U_{\frac{\epsilon}{2}}(\mathbf{0})$ (\mathbb{R}^{n-1}) の元 (b_1, \cdots, b_{n-1}) が存在する。すると

$$g(b_1, \dots, b_{n-1}, x_n) = f_0(b_1, \dots, b_{n-1}) + f_1(b_1, \dots, b_{n-1})x_n + \dots + f_m(b_1, \dots, b_{n-1})x_n^m$$

であり、これは x_n についての1変数多項式なので、帰納法の仮定から $g(b_1, \dots, b_{n-1}, b_n) \neq 0$ となる $U_{\S}(0)$ ($\subset \mathbb{R}$) の元 b_n が存在する. このとき

$$d(\mathbf{0}, (b_1, \dots, b_n)) \le d((b_1, \dots, b_{n-1}, 0), \mathbf{0}) + d((b_1, \dots, b_{n-1}, 0), (b_1, \dots, b_n))$$

$$\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

が成り立つ. ここで $d(\mathbf{x},\mathbf{y})$ は \mathbf{x},\mathbf{y} の二点間の距離である. よって (b_1,\cdots,b_n) は $U_{\epsilon}(\mathbf{0})$ の元である. 証明終

命題 2.4 を示す.

証明 \mathbf{x} を $C(R) \cap C(\epsilon_1, \dots, \epsilon_l)$ の元とする. C(R) は $\mathbf{a}_1, \dots, \mathbf{a}_s$ で生成される n 次元錐体なのでカラテオドリーの定理 ([石田, (1.3.1)]) から、 \mathbf{x} が $\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \dots + \mathbb{R}_{\geq 0}\mathbf{a}_{i_n}$ に含まれるような一次独立なベクトル $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_n}$ ($1 \leq i_1 < \dots < i_n \leq s$) が存在する. \mathbf{y} を $C(\epsilon_1, \dots, \epsilon_l)$ の元とすると、 $\mathbf{y} = r_1\mathbf{a}_{i_1} + \dots + r_n\mathbf{a}_{i_n}$ (ただし $1 \leq i \leq n$ に対し $r_i \in \mathbb{R}$) と表せる. このとき、 $r_j \leq 0$ となる j があるとする. $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_{j-1}}, \mathbf{a}_{i_{j+1}}, \dots, \mathbf{a}_{i_n}$ が張る 超平面を $H_k = \{\mathbf{x} \in \mathbb{R}^n \mid f_k(\mathbf{x}) = 0\}$ ($1 \leq k \leq l$) とすると

$$\epsilon_k f_k(\mathbf{y}) = \epsilon_k f_k(r_1 \mathbf{a}_{i_1} + \dots + r_n \mathbf{a}_{i_n}) = r_j \epsilon_k f_k(\mathbf{a}_{i_j})$$

であり、 $\epsilon_k f_k(\mathbf{y}) > 0, r_j \leq 0$ より $r_j < 0, \epsilon_k f_k(\mathbf{a}_{i_j}) < 0$ である.一方 $\mathbf{x} = r_1' \mathbf{a}_{i_1} + \cdots + r_n' \mathbf{a}_{i_n}$ (ただし $1 \leq i \leq n$ に対し $r_i' \in \mathbb{R}_{\geq 0}$) と書けるので

$$\epsilon_k f_k(\mathbf{x}) = r_i' \epsilon_k f_k(\mathbf{a}_{i_i}) < 0$$

であるが、これは \mathbf{x} が $C(\epsilon_1, \cdots, \epsilon_l)$ の元であることに矛盾する.従って $1 \leq i \leq n$ に対し $r_i > 0$ である.故に $C(\epsilon_1, \cdots, \epsilon_l)$ は $\mathbb{R}_{>0}\mathbf{a}_{i_1} + \cdots + \mathbb{R}_{>0}\mathbf{a}_{i_n}$ に含まれるので C(R) に含まれる.有限生成錐体 C(R) は閉集合 [石田, (1.3.3)] なので、 $C(\epsilon_1, \cdots, \epsilon_l)$ は C(R) に含まれる.

逆を示す. \mathbf{x} を C(R) の元とする. このとき $\epsilon_1, \cdots, \epsilon_l$ をうまく選んで、 \mathbf{x} に収束する $C(R) \cap C(\epsilon_1, \cdots, \epsilon_l)$ の点列 $\{\mathbf{y}_n\}$ が存在することを示せばよい.

 $B=\mathbb{R}^n\setminus \bigcup_{i=1}^r\{\mathbf{y}\in\mathbb{R}^n\mid f_i(\mathbf{y})=0\}$ とおく. $g=f_1\cdots f_l$ とすると $B^c=\{\mathbf{y}\in\mathbb{R}^n\mid g(\mathbf{y})=0\}=V(g)$ である.

 $\mathbf{x} \in B$ のとき、任意の n に対し $\mathbf{y}_n = \mathbf{x}$ とすればよい.

 $\mathbf{x} \notin B$ とする。補題 2.5(1) より \mathbf{z} の ϵ 近傍 $U_{\epsilon}(\mathbf{z})$ が C(R) に含まれるような C(R) の元 \mathbf{z} と正の実数 ϵ が存在する。もし C(R) が B^c に含まれるとすると、 $U_{\epsilon}(\mathbf{z})$ は $B^c = V(g)$ に含まれるが、これは補題 2.5 (2) に矛盾する。よって B^c に含まれない C(R) の元 \mathbf{y} が存在する。すると任意の i に対し $f_i(\mathbf{y}) \neq 0$ であるので、 $\mathbf{y} \in C(\epsilon_1, \cdots, \epsilon_l)$ となる $\epsilon_1, \cdots, \epsilon_l \in \{-1, +1\}$ が存在する。 $\mathbf{a} = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$ 、ただし 0 < t < 1 とおく。 $\mathbf{a} \in C(R)$ に注意する。すると $f_i(\mathbf{a}) = f_i(\mathbf{x}) + tf_i(\mathbf{y} - \mathbf{x})$ となり、これは t についての一次関数であるから、線分上の点において f_i は単調関数である。従って $f_i(\mathbf{x}) = 0$ のときは、 $\epsilon_i f_i(\mathbf{y}) > 0$ より $\epsilon_i f_i(\mathbf{a}) > 0$ である。 $f_i(\mathbf{x}) \neq 0$ のとき、 $\epsilon_i f_i(\mathbf{x}) > 0$ なら $\epsilon_i f_i(\mathbf{a}) > 0$ である。 $\epsilon_i f_i(\mathbf{x}) < 0$ なら、t を十分小さくとると $\epsilon_i f_i(\mathbf{a}) < 0$ である。従って $\epsilon'_i \in \{-1, +1\}$ をうまくとると、 \mathbf{x} に収束する $C(R) \cap C(\epsilon'_1, \cdots, \epsilon'_l)$ の点列 $\{\mathbf{y}_n\}$ が存在する。よって \mathbf{x} は $C(\epsilon'_1, \cdots, \epsilon'_l) \neq \emptyset$ である。

命題 2.4 の式 (2.1) が、R の chamber 分解であること (命題 2.8) を示そう.

補題 2.6 $C(\epsilon_1, \dots, \epsilon_l) \neq \emptyset$ であるとき、次が成り立つ.

- (1) $C(\epsilon_1, \dots, \epsilon_l) = \{ \mathbf{x} \in \mathbb{R}^n \mid 1 \le i \le l$ に対し $\epsilon_i f_i(\mathbf{x}) \ge 0 \}$
- (2) $\operatorname{Int}(C(\epsilon_1, \dots, \epsilon_l)) = C(\epsilon_1, \dots, \epsilon_l)$

証明 (1) を示す. $D(\epsilon_1, \dots, \epsilon_l) = \{\mathbf{x} \in \mathbb{R}^n \mid 1 \leq i \leq l \text{ に対し } \epsilon_i f_i(\mathbf{x}) \geq 0\}$ とおく. すると $D(\epsilon_1, \dots, \epsilon_l)$ は閉集合であるので、 $C(\epsilon_1, \dots, \epsilon_l)$ は $D(\epsilon_1, \dots, \epsilon_l)$ に含まれる. 逆を示す. \mathbf{x} を $D(\epsilon_1, \dots, \epsilon_l)$ の元とする. \mathbf{y} を $C(\epsilon_1, \dots, \epsilon_l)$ の元とするとき、 \mathbf{x} と \mathbf{y} を結ぶ線分上の任意の点 \mathbf{z} (ただし $\mathbf{z} \neq \mathbf{x}$) において、任意の i に対し $\epsilon_i f_i(\mathbf{x}) \geq 0$, $\epsilon_i f_i(\mathbf{y}) > 0$ であるので $\epsilon_i f_i(\mathbf{z}) > 0$ である。従って \mathbf{z} は $C(\epsilon_1, \dots, \epsilon_l)$ の元であるから、 \mathbf{x} に収束する $C(\epsilon_1, \dots, \epsilon_l)$ の点列が存在する.よって \mathbf{x} は $C(\epsilon_1, \dots, \epsilon_l)$ に含まれる.

(2) を示す. $C(\epsilon_1, \cdots, \epsilon_l)$ は開集合であるから、 $C(\epsilon_1, \cdots, \epsilon_l)$ は $\operatorname{Int}(D(\epsilon_1, \cdots, \epsilon_l))$ に含まれる. 逆を示す. $C(\epsilon_1, \cdots, \epsilon_l)$ に含まれない $\operatorname{Int}(D(\epsilon_1, \cdots, \epsilon_l))$ の元 $\mathbf x$ が存在したとする. すると $\mathbf x$ の ϵ 近傍 $U_\epsilon(\mathbf x)$ が $\operatorname{Int}(D(\epsilon_1, \cdots, \epsilon_l))$ に含まれるような正の実数 ϵ が存在する. このとき、 $C(\epsilon_1, \cdots, \epsilon_l)$ の元 $\mathbf y$ と $\mathbf x$ を結ぶ直線を考える. $\mathbf x$ は $C(\epsilon_1, \cdots, \epsilon_l)$ に含まれないので、 $\epsilon_i f_i(\mathbf x) \leq 0$ となる i が存在する. この直線上で f_i は単調関数なので、 $\epsilon_i f_i(\mathbf z) < 0$ かつ $U_\epsilon(\mathbf x)$ に含まれる点 $\mathbf z$ が直線上に存在する. しかしこれは $U_\epsilon(\mathbf x)$ が $D(\epsilon_1, \cdots, \epsilon_l)$ に含まれることに矛盾する.

補題 2.7 $C(R) \cap C(\epsilon_1, \dots, \epsilon_l) \neq \emptyset$ であるとき、 $C(\epsilon_1, \dots, \epsilon_l)$ は R の chamber である.

証明 任意のiに対し $\{\mathbf{x} \in \mathbb{R}^n \mid \epsilon_i f_i(\mathbf{x}) \geq 0\}$ が有限生成錐体であれば、[石田、(1.1.2)] によって $C(\epsilon_1, \cdots, \epsilon_l)^{\bar{}} = \bigcap_{i=1}^{l} \{\mathbf{x} \in \mathbb{R}^n \mid \epsilon_i f_i(\mathbf{x}) \geq 0\}$ は有限生成錐体であることがわかる.以下で $\{\mathbf{x} \in \mathbb{R}^n \mid \epsilon_i f_i(\mathbf{x}) \geq 0\}$ が有限生成錐体であることを示そう. $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_{n-1}}$ を超平面 H_i を張るベクトルとする.このとき、 $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_{n-1}}, \mathbf{a}_{i_n}$ が一次独立かつ $\epsilon_i f_i(\mathbf{a}_{i_n}) > 0$ となるよう \mathbf{a}_{i_n} をとる. $(C(R) \cap C(\epsilon_1, \cdots, \epsilon_l) \neq \emptyset$ と仮定しているので、このような \mathbf{a}_{i_n} は存在する.) すると

$$\{\mathbf{x} \in \mathbb{R}^n \mid \epsilon_i f_i(\mathbf{x}) \ge 0\} = \sum_{j=1}^{n-1} \mathbb{R}_{\ge 0} \mathbf{a}_{i_j} + \sum_{j=1}^{n-1} \mathbb{R}_{\ge 0} (-\mathbf{a}_{i_j}) + \mathbb{R}_{\ge 0} \mathbf{a}_{i_n}$$

である. 実際、 $1 \le j \le n-1$ に対し $f_i(\mathbf{a}_{i_j}) = 0$ かつ $f_i(\mathbf{a}_{i_n}) > 0$ であるから右辺が左辺 に含まれることはよい. 逆に $\epsilon_i f_i(\mathbf{x}) \ge 0$ すると、 $\mathbf{x} = r_1 \mathbf{a}_{i_1} + \dots + r_n \mathbf{a}_{i_n} (r_1, \dots, r_n \in \mathbb{R})$

と表したとき、 $0 \le \epsilon_i f_i(\mathbf{x}) = r_n \epsilon_i f_i(\mathbf{a}_{i_n})$ かつ $\epsilon_i f_i(\mathbf{a}_{i_n}) > 0$ より $r_n \ge 0$ である.

次に $C(\epsilon_1, \dots, \epsilon_l)$ が n 次元であることを示す。 \mathbf{x} を $C(\epsilon_1, \dots, \epsilon_l)$ の元とすると、 \mathbf{x} の ある δ 近傍 $U_{\delta}(\mathbf{x})$ が $C(\epsilon_1, \dots, \epsilon_l)$ に含まれる。 $\mathbf{x}_1, \dots, \mathbf{x}_n$ を \mathbb{R}^n の有理基底とするとき、任意の i と十分小さい正の実数 ξ に対し、 $\mathbf{x} + \xi \mathbf{x}_i$ は $U_{\delta}(\mathbf{x})$ に含まれる。よって $\xi \mathbf{x}_i$ が $C(\epsilon_1, \dots, \epsilon_l) - C(\epsilon_1, \dots, \epsilon_l)$ に含まれるので、 $\dim C(\epsilon_1, \dots, \epsilon_l) = n$ である。

次に定義 2.3 の条件 (2) を示す. \mathbf{a}, \mathbf{b} を $\operatorname{Int}(C(\epsilon_1, \cdots, \epsilon_l)) = C(\epsilon_1, \cdots, \epsilon_l)$ の $\mathbf{0}$ でない有理数点とする (補題 2.6(2) に注意). このとき $\sqrt{J_R(\mathbf{a})} = \sqrt{J_R(\mathbf{b})}$ を示す. f を $R_{\mathbf{c}}$ に含まれる単項式(ただし $\mathbf{c} \in \mathbb{R}_{>0}\mathbf{a} \cap \mathbb{Z}^n$)とし、 $f = x_1^{\alpha_1} \cdots x_s^{\alpha_s}$ とする $(R_{\mathbf{c}})$ の元は、このような単項式の $R_{\mathbf{0}}$ 線形結合であることに注意). $f \in \sqrt{J_R(\mathbf{b})}$ を示したい、 $\deg f = \mathbf{c}$ なので、 $\mathbf{c} \in \sum_{\alpha_i > 0} \mathbb{R}_{\geq 0}\mathbf{a}_i$ である. カラテオドリーの定理より $\{\mathbf{a}_i \mid \alpha_i > 0\}$

の中から、 $\mathbf{c} \in \sum_{j=1}^n \mathbb{R}_{\geq 0} \mathbf{a}_{i_j}$ を満たす一次独立なベクトル $\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_n}$ をとることができる. $(\mathbf{c} \in C(\epsilon_1, \cdots, \epsilon_l))$ なので、 \mathbf{c} は $\{\mathbf{a}_i \mid \alpha_i > 0\}$ の中の n-1 個以下のベクトルで張られる錐体には入らないことに注意する.) よって番号を付け替えて、 $\mathbf{a}_1, \cdots, \mathbf{a}_n$ は一次独立かつ、 $\alpha_1, \cdots, \alpha_n > 0$ としてよい. このとき命題 2.4 の証明から、 $C(\epsilon_1, \cdots, \epsilon_l) \subset \mathbb{R}_{>0} \mathbf{a}_1 + \cdots + \mathbb{R}_{>0} \mathbf{a}_n$ である. \mathbf{b} は有理数点なので

$$\mathbf{b} = \frac{q_1}{p_1} \mathbf{a}_1 + \dots + \frac{q_n}{p_n} \mathbf{a}_n$$

と表せる。ここで $\frac{q_1}{p_1},\cdots,\frac{q_n}{p_n}$ は正の有理数である。このとき $p=p_1\cdots p_n$ 、各 i に対し $r_i=q_i\prod_{i\neq i}p_j$ とおくと

$$p\mathbf{b} = r_1\mathbf{a}_1 + \dots + r_n\mathbf{a}_n$$

である. 任意の i に対し $m\alpha_i \geq r_i$ を満たす整数 m をとる (ここで $\alpha_1, \cdots, \alpha_n > 0$ に注意) と

$$f^{m} = x_{1}^{m\alpha_{1}} \cdots x_{s}^{m\alpha_{s}}$$

$$= (x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}) x_{1}^{m\alpha_{1}-r_{1}} \cdots x_{n}^{m\alpha_{n}-r_{n}} x_{n+1}^{m\alpha_{n+1}} \cdots x_{s}^{m\alpha_{s}}$$

であり、 $\deg x_1^{r_1}\cdots x_n^{r_n}=r_1\mathbf{a}_1+\cdots+r_n\mathbf{a}_n=p\mathbf{b}$ なので $x_1^{r_1}\cdots x_n^{r_n}$ は $J_R(\mathbf{b})$ に含まれる. 従って f^m が $J_R(\mathbf{b})$ の元なので、f は $\sqrt{J_R(\mathbf{b})}$ に含まれる. 以上により $J_R(\mathbf{a})\subset \sqrt{J_R(\mathbf{b})}$ となることがわかった. 立場を入れかえると $J_R(\mathbf{b})\subset \sqrt{J_R(\mathbf{a})}$ となり、これにより $\sqrt{J_R(\mathbf{a})}=\sqrt{J_R(\mathbf{b})}$ が成り立つ. 証明終

命題 2.8

$$C(R) = \bigcup_{C(R) \cap C(\epsilon_1, \dots, \epsilon_l) \neq \emptyset} C(\epsilon_1, \dots, \epsilon_l)^{-}$$

は R の chamber 分解である.

証明 $(\epsilon_1, \dots, \epsilon_l) \neq (\epsilon'_1, \dots, \epsilon'_l)$ に対し、 \mathbf{x} を $C(\epsilon_1, \dots, \epsilon_l) \cap C(\epsilon'_1, \dots, \epsilon'_l)$ の元とする。 すると $\epsilon_i \neq \epsilon'_i$ となる i に対し $f_i(\mathbf{x}) = 0$ である。 $\partial C(\epsilon_1, \dots, \epsilon_l) = C(\epsilon_1, \dots, \epsilon_l) \setminus \operatorname{Int}(C(\epsilon_1, \dots, \epsilon_l))$ であるから、 \mathbf{x} は $\partial C(\epsilon_1, \dots, \epsilon_l) \cap \partial C(\epsilon'_1, \dots, \epsilon'_l)$ の元である。 証明終

3 最短 chamber 分解の存在

次の補題を用いる.

補題 3.1 \mathbf{a}, \mathbf{b} を $\mathbf{0}$ でない C(R) の有理数点とする. このとき $\sqrt{J_R(\mathbf{a})}$ が $\sqrt{J_R(\mathbf{b})}$ に含まれるならば、 \mathbf{a} と \mathbf{b} を結ぶ線分上の \mathbf{b} でない任意の有理数点 \mathbf{c} に対し、 $\sqrt{J_R(\mathbf{a})} = \sqrt{J_R(\mathbf{c})}$ が成り立つ.

この補題の証明は次の章で行う. これを認めて、最短な分解の存在と一意性を証明する. $C(R) = \bigcup_{i=1}^l \sigma_i \ \& \ R \ \text{のある chamber} \ \text{分解とする} \ (in 章で、 R \ は少なくとも一つ \ chamber$ 分解を持つことを示した). このとき R のイデアル I に対し、 $C(I) = \bigcup_{J_{\sigma_i} = I} \sigma_i \ \&$ 定義する.

注意 3.2 $J_{\sigma_1}, \cdots, J_{\sigma_l}$ には、同じイデアルが出てくることはあるかもしれないが、真の包含関係はない.

実際、ある $i\neq j$ に対し J_{σ_i} が J_{σ_j} に真に含まれるとすると、 $\mathrm{Int}(\sigma_i)$ の有理数点 $\mathbf x$ と $\mathrm{Int}(\sigma_j)$ の有理数点 $\mathbf y$ を結ぶ線分上の有理数点 $\mathbf z$ に対し、補題 3.1 から

$$\mathbf{z} \neq \mathbf{y}$$
 ならば $\sqrt{J_R(\mathbf{z})} = J_{\sigma_i}$

が成り立つ. 一方、 \mathbf{y} のある ϵ 近傍 $U_{\epsilon}(\mathbf{y})$ は $\operatorname{Int}(\sigma_{j})$ に含まれるから、 $U_{\epsilon}(\mathbf{y})$ の点かつ線 分上の \mathbf{y} と異なる有理数点 \mathbf{z} に対し、 $J_{\sigma_{i}} = \sqrt{J_{R}(\mathbf{z})} = J_{\sigma_{j}}$ となり、 $J_{\sigma_{i}}$ が $J_{\sigma_{j}}$ に真に含まれることに矛盾する. 注意 3.3 各 i に対して、[石田、(1.2.14)] より $\sigma_i = (\operatorname{Int}(\sigma_i))$ である. 従って、 \mathbf{x} が σ_i に含まれることと、 \mathbf{x} の任意の ϵ 近傍 $U_{\epsilon}(\mathbf{x})$ と $\operatorname{Int}(\sigma_i)$ が共通部分を持つことが同値である.

補題 3.4 I を R のイデアルとする. C(R) の元 \mathbf{x} (\mathbf{x} は有理数点とは仮定しない) に対し 「 \mathbf{x} の ϵ 近傍 $U_{\epsilon}(\mathbf{x})$ の任意の有理数点 \mathbf{a} において $\sqrt{J_R(\mathbf{a})} = I$ 」を満たす正の数 ϵ が存在するならば、 \mathbf{x} は C(I) の元である.

証明 \mathbf{x} が C(R) の元なので、 \mathbf{x} はある σ_i に含まれる.このとき注意 3.3 より $U_{\epsilon}(\mathbf{x})$ と $\operatorname{Int}(\sigma_i)$ は共通部分を持つので、 $U_{\epsilon}(\mathbf{x}) \cap \operatorname{Int}(\sigma_i)$ の有理数点 \mathbf{a} において $I = \sqrt{J_R(\mathbf{a})} = J_{\sigma_i}$ である.よって σ_i は C(I) に含まれる. 証明終

命題 3.5 I を R のイデアル、 $C(I) \neq \emptyset$ と仮定すると次が成り立つ.

- (1) C(I) は錐体である.
- (2) $\operatorname{Int}(C(I))$ の $\mathbf{0}$ でない有理数点 \mathbf{x} に対し、 $\sqrt{J_R(\mathbf{x})} = I$ である.

証明 (1) を示す. \mathbf{x}, \mathbf{y} を C(I) の元で \mathbf{x} は σ_i 、 \mathbf{y} は σ_j に含まれるとする. このとき、 \mathbf{x} と \mathbf{y} を結ぶ線分上の任意の点 \mathbf{z} が C(I) に含まれることを示せばよい. $i \neq j$ と仮定する. 任意の正の実数 ϵ に対し、次を示せばよい.

 $U_{\delta}(\mathbf{z}_{\epsilon})$ の $\mathbf{0}$ でない任意の有理数点 \mathbf{a} に対し $\sqrt{J_R(\mathbf{a})} = I$ となるような、 $U_{\epsilon}(\mathbf{z}) \cap C(R)$ の元 \mathbf{z}_{ϵ} と正の実数 δ が存在する.

これが示せたら、補題 3.4 より \mathbf{z}_{ϵ} は C(I) の元であり、従って \mathbf{z} に収束する C(I) の点列が存在する. よって \mathbf{z} は $C(I)^{\bar{}}=C(I)$ に含まれることがわかる.

正の実数 ϵ に対し、 \mathbf{x} に十分近い $\operatorname{Int}(\sigma_i)$ の有理点 \mathbf{x}' 、 \mathbf{y} に十分近い $\operatorname{Int}(\sigma_j)$ の点 \mathbf{y}' を、 \mathbf{x}' と \mathbf{y}' を結ぶ線分と \mathbf{z} の ϵ 近傍 $U_{\epsilon}(\mathbf{z})$ が共通部分を持つようにとる.このとき \mathbf{z}_{ϵ} を \mathbf{x}' と \mathbf{y}' を結ぶ線分上の $U_{\epsilon}(\mathbf{z})$ のある点とすると、次の 2 条件を満たすような正の実数 δ, δ' がとれる.

- $U_{\delta'}(\mathbf{y}')$ は $\operatorname{Int}(\sigma_i)$ に含まれる.
- $U_{\delta}(\mathbf{z}_{\epsilon})$ の任意の有理数点 \mathbf{a} に対し、 \mathbf{x}' と \mathbf{a} を結ぶ直線と $U_{\delta'}(\mathbf{y}')$ は共通部分をもつ.

 \mathbf{a} を $U_{\delta}(\mathbf{z}_{\epsilon})$ 内の任意の有理数点とする. \mathbf{x}' と \mathbf{a} を結ぶ直線上にある $U_{\delta'}(\mathbf{y}')$ 内の有理数点 \mathbf{b} をとると、 \mathbf{b} は $\mathrm{Int}(\sigma_j)$ の有理数点なので $\sqrt{J_R(\mathbf{b})} = I$ である. また \mathbf{x}' は $\mathrm{Int}(\sigma_i)$ の有理数点なので $\sqrt{J_R(\mathbf{x}')} = I$ であるので、補題 3.1 より $\sqrt{J_R(\mathbf{a})} = I$ である.

(2) を示す. $\operatorname{Int}(C(I))$ の $\mathbf 0$ でない有理数点 $\mathbf x$ に対し、 $\mathbf x$ の ϵ 近傍 $U_{\epsilon}(\mathbf x)$ が $\operatorname{Int}(C(I))$ に含まれるような正の実数 ϵ が存在する. また $\mathbf x$ は C(I) の元なので、 $\mathbf x$ は σ_{j_1} (ただし $J_{\sigma_{j_1}}=I$) に含まれるとする. このとき注意 3.3 より、 $U_{\epsilon}(\mathbf x)$ と $\operatorname{Int}(\sigma_{j_1})$ は共通部分を持つので、 $U_{\epsilon}(\mathbf x)\cap\operatorname{Int}(\sigma_{j_1})$ に含まれる有理数点 $\mathbf b_1$ をとり、 $\mathbf b_1$ の δ 近傍 $U_{\delta}(\mathbf b_1)$ が $U_{\epsilon}(\mathbf x)\cap\operatorname{Int}(\sigma_{j_1})$ に含まれるよう正の実数 δ をとる. ここで $\mathbf x=\frac{1}{2}(\mathbf b_1+\mathbf b_2)$ となるように $U_{\epsilon}(\mathbf x)$ の元 $\mathbf b_2$ をとる. $\mathbf b_2$ も C(I) の元であるので、 $\mathbf b_2$ は σ_{j_2} (ただし $J_{\sigma_{j_2}}=I$) に含まれるとする. すると $\mathbf b_2$ の δ 近傍 $U_{\delta}(\mathbf b_2)$ は $U_{\epsilon}(\mathbf x)$ に含まれて、かつ注意 3.3 より $U_{\delta}(\mathbf b_2)$ と $\operatorname{Int}(\sigma_{j_2})$ は共通部分を持つ. $\mathbf b_2'$ をこの共通部分のある有理数点とすると $\sqrt{J_R(\mathbf b_2')}=I$ である. $\mathbf c=\mathbf b_2-\mathbf b_2'$ 、 $\mathbf b_1'=\mathbf b_1+\mathbf c$ とおくと $\mathbf b_1'$ は $U_{\delta}(\mathbf b_1)$ の元であり、

$$\mathbf{x} = \frac{1}{2}\mathbf{b}_1 + \frac{1}{2}\mathbf{b}_2 = \frac{1}{2}\mathbf{b}_1' + \frac{1}{2}\mathbf{b}_2'$$

である. $\mathbf{b}_1'=2\mathbf{x}-\mathbf{b}_2'$ より、 \mathbf{b}_1' は $U_\delta(\mathbf{b}_1)$ の有理数点なので $\mathrm{Int}(\sigma_{j_1})$ の有理数点であるから $\sqrt{J_R(\mathbf{b}_1')}=I$ となり、補題 3.1 より $\sqrt{J_R(\mathbf{x})}=I$ である. 証明終

 $C(I)=igcup_{i=1}^m\sigma_i,\sigma_i=\sum_{j=1}^{m_i}\mathbb{R}_{\geq 0}\mathbf{b}_{ij}$ とすると、C(I) は $\{\mathbf{b}_{ij}\mid 1\leq i\leq m,1\leq j\leq m_i\}$ を生成系とする有限生成錐体である.また各 σ_i は n 次元なので C(I) も n 次元である.従って C(I) は chamber である.

命題 3.6

$$C(R) = \bigcup_{C(I) \neq \emptyset} C(I)$$

は R の chamber 分解である.

証明 I,J をイデアルとし、 $I \neq J$ ならば $C(I) \cap C(J)$ は $\partial C(I) \cap \partial C(J)$ に含まれることを示す。 $\partial C(I) \cap \partial C(J)$ に含まれない $C(I) \cap C(J)$ の元 $\mathbf x$ があるとすると、 $\mathbf x$ は $\mathrm{Int}(C(I))$ または $\mathrm{Int}(C(J))$ の元である。 $\mathbf x$ が $\mathrm{Int}(C(I))$ の元とすると、 $\mathbf x$ のある ϵ 近傍 $U_{\epsilon}(\mathbf x)$ は $\mathrm{Int}(C(I))$ に含まれる。よって $U_{\epsilon}(\mathbf x)$ の $\mathbf 0$ でない任意の有理数点 $\mathbf a$ において $\sqrt{J_R(\mathbf a)} = I$ である。また $\mathbf x$ は C(J) に含まれるので、 $U_{\epsilon}(\mathbf x)$ と $\mathrm{Int}(C(J))$ は共通部分を持ち、この共通部分の有理数点 $\mathbf a$ において、 $\sqrt{J_R(\mathbf a)} = J$ となり、I と J が異なることに矛盾する。

以上により、R には chamber ideal が全て異なる分解が少なくとも一つ存在することがわかった。また次の一意性が成り立つ。

定理 3.7 chamber ideal が全て異なる分解は一意的に存在する.

証明 存在性は命題 3.6 でわかっている. 2 通りの分解があったとする. $C(R) = \bigcup C(I) = \bigcup C'(I)$ とし、C(I) と C'(I) は chamber ideal が I である chamber とする. まず Int(C(I)) が C'(I) に含まれることを示す. \mathbf{x} を Int(C(I)) の元とすると、 \mathbf{x} のある ϵ 近傍 $U_{\epsilon}(\mathbf{x})$ が Int(C(I)) に含まれる. よって $U_{\epsilon}(\mathbf{x})$ の $\mathbf{0}$ でない任意の有理数点 \mathbf{a} に対し、 $\sqrt{J_R(\mathbf{a})} = I$ である. \mathbf{x} は $C(R) = \bigcup C'(I)$ の元であるので、補題 $\mathbf{3}.4$ より \mathbf{x} は C'(I) の元である. C'(I) は閉集合より、C(I) = (IntC(I)) は C'(I) に含まれる. 同様にして $C(I) \subset C'(I)$ が示され、C(I) = C'(I) がわかった.

命題 3.6 と定理 3.7 により、任意の chamber 分解に対して、chamber ideal が同じである chamber を一つにまとめると、chamber ideal が全て異なる唯一の chamber 分解が得られることがわかった。これを最短 chamber 分解と呼ぶことにする。つまり、任意の chamber 分解は最短 chamber 分解の各 chamber を分割して得られるわけである。

4 補題 3.1 の証明

この章では、前章で用いた補題 3.1 の証明を行う. 次に注意する.

注意 4.1 $R = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} R_{\mathbf{a}}$ を \mathbb{Z}^n 次数付環とするとき、次が成り立つことは、証明なしに使う.

- (1) T を \mathbb{Z}^n の部分群とするとき、R がネーター環ならば $\bigoplus_{\mathbf{a}\in T} R_{\mathbf{a}}$ も次数付ネーター環である.
- (2) n=2、 \mathbf{b} を $\mathbf{0}$ でない \mathbb{Z}^2 のベクトルとするとき、R がネーター環ならば $\bigoplus_{(\mathbf{a},\mathbf{b})\geq 0} R_{\mathbf{a}}$ も次数付ネーター環である.
- (3) 次は同値である.
 - (i) R はネーター環である.
 - (ii) R_0 はネーター環かつ、R は R_0 上有限生成な環である.

補題 3.1 の証明をはじめる. \mathbf{a}, \mathbf{b} は補題 3.1 の条件を満たすものとする. $\mathbf{a} = \mathbf{c}$ なら明らかなので、 $\mathbf{a} \neq \mathbf{c}$ とする. $\mathbf{c} = s\mathbf{a} + t\mathbf{b}$ (ただし s, t は有理数で 0 < s < 1, 0 < t < 1, s + t = 1) としてよい. \mathbf{a} と \mathbf{b} が一次独立でないときは、補題 3.1 は簡単に示すことができる. 以下、 \mathbf{a} と \mathbf{b} は一次独立とする. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ を自然数倍して、 \mathbf{a}, \mathbf{b} は整数点、 $S = \mathbb{Z}\mathbf{a} + \mathbb{Z}\mathbf{b}$ としたとき $\mathbf{c} \in S$ としてよい. このとき \mathbf{c} は \mathbf{a} と \mathbf{b} を結ぶ線分上にはな

く、 $\mathbf{c} = s\mathbf{a} + t\mathbf{b}(s,t)$ は自然数) を満たす. $R' = \bigoplus_{\mathbf{d} \in S} R_{\mathbf{d}}$ とおくと、 $\mathbb{Z}^2 \cong S \subset \mathbb{Z}^n$ なので注意 4.1 より、R' はネーター環であり $R_{\mathbf{0}}$ 上有限生成な環である.

主張 4.2 R' において補題 3.1 が成り立つならば、R においても補題 3.1 が成り立つ.

証明 まず \mathbf{d}, \mathbf{e} を S の元とするとき、 $\sqrt{J_{R'}(\mathbf{d})}$ が $\sqrt{J_{R'}(\mathbf{e})}$ に含まれることと、 $\sqrt{J_{R}(\mathbf{d})}$ が $\sqrt{J_{R}(\mathbf{e})}$ が含まれることが同値であることを示そう.

 $\sqrt{J_{R'}(\mathbf{d})}$ が $\sqrt{J_{R'}(\mathbf{e})}$ に含まれるとする. x を $R_{\mathbf{f}}$ の元(ただし \mathbf{f} は $\mathbb{R}_{>0}\mathbf{d}$ \cap \mathbb{Z}^n の元)とする. $\mathbf{f} = a\mathbf{d}$ と表すと、 \mathbf{d} , \mathbf{f} が整数点であるから a は正の有理数である. よって $m\mathbf{f} = ma\mathbf{d}$ が S の元となるような整数 m が存在する. 従って、 x^m は $J_{R'}(\mathbf{d})$ の元であり、仮定から $\sqrt{J_{R'}(\mathbf{e})}$ に含まれる. 故に x は $\sqrt{J_{R}(\mathbf{e})}$ に含まれる.

逆を示す. $\sqrt{J_R(\mathbf{d})} \cap R' = \sqrt{J_{R'}(\mathbf{d})}$ となることを示せばよい. 右辺が左辺に含まれることはよい. $J_R(\mathbf{d}) = (\alpha_1, \cdots, \alpha_h)R$ とし、 α_i は $\deg \alpha_i = a_i\mathbf{d}$ $(1 \le i \le h)$ を満たす斉次元とする. \mathbf{d} は整数点なので a_i は有理数である. よって $\deg \alpha_i^m$ が $\mathbb{R}_{>0}\mathbf{d} \cap S$ に含まれるような整数 m が存在する. このとき α_i^m は R' の元である. ここで x を $\sqrt{J_R(\mathbf{d})} \cap R'$ の斉次元とすると、ある整数 n が存在して、 x^n が $(\alpha_1^m, \cdots, \alpha_h^m)R$ に含まれるので、 $x^n = \sum_{i=1}^h \alpha_i^m x_i$ (ただし x_i は斉次元) と表せる. $\deg x^n, \deg \alpha_i^m$ は S の元なので x_i は R' の元としてよい. 従って x^n は $J_{R'}(\mathbf{d})$ に含まれるから、x は $\sqrt{J_{R'}(\mathbf{d})}$ の元である.

よって $\sqrt{J_{R'}(\mathbf{a})} = \sqrt{J_{R'}(\mathbf{c})}$ ならば $\sqrt{J_R(\mathbf{a})} = \sqrt{J_R(\mathbf{c})}$ となるので、R' において補題 3.1 が成り立つならば、R においても補題 3.1 が成り立つ. 証明終

従って、R を \mathbb{Z}^2 次数付ネーター環としてよい. 基底を取り替えて、 $\mathbb{R}_{\geq 0}\mathbf{a}$ と $\mathbb{R}_{\geq 0}\mathbf{b}$ のなす角を 90° 未満とし、 $\mathbf{a}=(0,y_1),\mathbf{b}=(x_2,y_2)$ (ただし $y_1,x_2,y_2>0$) とする.

主張 4.3 $J_R(\mathbf{a})J_R(\mathbf{b})$ は $\sqrt{J_R(\mathbf{c})}$ に含まれる.

証明 $x \in J_R(\mathbf{a})$ の斉次元、 $y \in J_R(\mathbf{b})$ の斉次元、 $\deg x = r_1 \mathbf{a}$ 、 $\deg y = r_2 \mathbf{b}$ (ただし r_1, r_2 は自然数) とする. $\mathbf{c} = s\mathbf{a} + t\mathbf{b}$ であったので

$$\deg(x^{sr_2}y^{tr_1}) = r_1r_2(s\mathbf{a} + t\mathbf{b}) = r_1r_2\mathbf{c}$$

より、 $x^{sr_2}y^{tr_1}$ は $J_R(\mathbf{c})$ に含まれる. よって $m = \max(sr_2, tr_1)$ とすると $(xy)^m$ は $J_R(\mathbf{c})$ に含まれるので xy は $\sqrt{J_R(\mathbf{c})}$ の元である. 証明終

主張 4.3 より、 $\sqrt{J_R(\mathbf{a})}$ は $\sqrt{J_R(\mathbf{c})}$ に含まれる.

逆に $\sqrt{J_R(\mathbf{c})}$ が $\sqrt{J_R(\mathbf{a})}$ に含まれることを示したい. $J_R(\mathbf{a})=R$ のときはよい.

 $J_R(\mathbf{a}) \neq R$ のときを考える. R の R_0 上の斉次生成元の次数を $\mathbf{a}_1, \cdots, \mathbf{a}_s$ とする. \mathbf{a} がある半直線 $\mathbb{R}_{\geq 0}\mathbf{a}_i$ 上にあるとき、 $J_R(\mathbf{a}) \neq R$ より $\mathbb{R}_{\geq 0}(-\mathbf{a}_i)$ は C(R) に含まれない. 従って $\mathbf{a}_1, \cdots, \mathbf{a}_s$ は \mathbb{R}^2 のある半平面上に存在する. まず $\mathbb{R}\mathbf{a}_{i_1} \neq \mathbb{R}\mathbf{a}_{i_2}$ かつ、 $1 \leq k \leq s$ に対し \mathbf{a}_k は $\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2}$ の内点ではないとき、 $\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2}$ は chamber になる ([高瀬]) ことに注意する. この方法で C(R) を chamber 分解する. \mathbf{a} が chamber の内点でないとする. このとき \mathbf{d} を、 \mathbf{a} のすぐ右の chamber の内点であり、 $\mathbb{R}\mathbf{d}$ は $\mathbb{R}\mathbf{c}$ より傾きが大きい有理数点とする. $\mathbf{a}_k = (p_k, q_k)$ ($1 \leq k \leq s$) とするとき、R のイデアル I_1, I_2, I_3 を次のように定義する.

- I_1 は、 $p_k \leq 0$ を満たす \mathbf{a}_k を次数に持つ生成元で生成されるイデアル.
- I_2 は、 $p_k \ge 0$ を満たす \mathbf{a}_k を次数に持つ生成元で生成されるイデアル.
- I_3 は、 $p_k > 0$ を満たす \mathbf{a}_k を次数に持つ生成元で生成されるイデアル.

すると、[高瀬, (2.6)] より $\sqrt{I_1 \cap I_2} = \sqrt{J_R(\mathbf{a})}$ 、 $\sqrt{I_1 \cap I_3} = \sqrt{J_R(\mathbf{d})}$ である。よって $\sqrt{J_R(\mathbf{d})}$ は $\sqrt{J_R(\mathbf{a})}$ に含まれる。また主張 4.3 より $\sqrt{J_R(\mathbf{a})J_R(\mathbf{c})} \subset \sqrt{J_R(\mathbf{d})}$ であるので、 $\sqrt{J_R(\mathbf{a})} = \sqrt{J_R(\mathbf{d})}$ が成り立つ。従って \mathbf{a} を \mathbf{d} だと思うことにより、 \mathbf{a} は chamber $\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2}$ の内点(ただし $\mathbf{a}_1, \cdots, \mathbf{a}_s$ は $\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2}$ の内点でない)としてよい。

改めて、 $\mathbf{a} = (0, y_1)$ 、 $\mathbf{b} = (x_2, y_2)$ (ただし $y_1, x_2, y_2 > 0$)、 $\mathbf{c} = s\mathbf{a} + t\mathbf{b}(s, t)$ は自然数)、 \mathbf{a} は chamber $\mathbb{R}\mathbf{a}_{i_1} + \mathbb{R}\mathbf{a}_{i_2}$ の内点と仮定して証明を進める. R を直線 $\mathbb{R}\mathbf{c}$ 上に制限した環は依然として \mathbb{Z}^2 次数付ネーター環なので R_0 上有限生成である. この R_0 上の斉次生成元を x_1, \dots, x_q とし、次を満たすものとする.

- 1 < i < q に対し $\deg x_i$ は直線 $\mathbb{R}_{>0}\mathbf{c}$ 上の整数点.
- $0 < |\deg x_1| \le \cdots \le |\deg x_a|$

ここで $|\deg x_i|$ は原点と $\deg x_i$ の距離である. このとき、任意の i に対し x_i が $\sqrt{J_R(\mathbf{a})}$ に含まれることを示す.

 $J_R(\mathbf{b})$ が斉次元 b_1, \dots, b_h (ただし $\deg b_1, \dots, \deg b_h \in \mathbb{R}_{>0} \mathbf{b} \cap \mathbb{Z}^2$) で生成されるとする. \mathbf{b} は整数点なので $\deg b_i = c_i \mathbf{b}(c_i)$ は有理数)と表せる. よって $\deg b_1^{p_1} = \dots = \deg b_h^{p_h}$ となる自然数 p_1, \dots, p_h が存在し、 $\sqrt{J_R(\mathbf{b})} = \sqrt{(b_1^{p_1}, \dots, b_h^{p_h})}$ となる. 従って、各 b_i をべきで取り替えることにより、次を満たすとしてよい.

- $\sqrt{J_R(\mathbf{b})} = \sqrt{(b_1, \cdots, b_h)}$
- $\deg b_1 = \cdots = \deg b_h = c\mathbf{b}$ (ただし c はある正の有理数)

• $\deg b_i$ の x 座標を d_1 、 $\deg x_q$ の x 座標を d_2 としたとき、 $d_2 < d_1$ となる.

 $\mathbf{f}=(1,0)$ とすると、仮定より内積 $(\mathbf{a}_{i_1},\mathbf{f})$ と $(\mathbf{a}_{i_2},\mathbf{f})$ のうち片方は正、もう片方は負である。以下 $(\mathbf{a}_{i_1},\mathbf{f})>0$ とし、 $\mathbf{a}_{i_1}=(\alpha,\beta)$ とする $(\alpha,\beta>0$ としてよい). ここで $\bigoplus_{(\mathbf{e},\mathbf{f})\geq 0} R_{\mathbf{e}}$ を考える.これは注意 4.1 より $R_{\mathbf{0}}$ 上有限生成なので、その斉次生成元を $c_1,\cdots,c_k,d_1,\cdots,d_{k'}$ とし、 $\deg c_i=(\alpha_i,\beta_i),\deg d_j=(\alpha'_j,\beta'_j)$ は次を満たすものとする.

- $1 \leq i \leq k$ に対し、 $\beta_i > \frac{\beta}{\alpha}\alpha_i$
- $1 \le j \le k'$ に対し、 $\beta'_j \le \frac{\beta}{\alpha} \alpha'_j$

すると $\deg c_1, \cdots, \deg c_k$ は $\operatorname{Int}(\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2})$ に含まれることに注意する. $\sqrt{J_R(\mathbf{a})}$ は $\sqrt{J_R(\mathbf{b})}$ に含まれるので、 \mathbf{a} を含む chamber の内点 $\operatorname{Int}(\mathbb{R}_{\geq 0}\mathbf{a}_{i_1} + \mathbb{R}_{\geq 0}\mathbf{a}_{i_2})$ の整数点を 次数にもつ斉次元は $R/(b_1, \cdots, b_h)$ のべキ零元である. よって $c_1^m, \cdots, c_k^m \in (b_1, \cdots, b_h)$ となる自然数 m が存在する. $\max\{\beta_i - \frac{\beta}{\alpha}\alpha_i \mid 1 \leq i \leq k\} = \beta_u - \frac{\beta}{\alpha}\alpha_u$ とおき、 $N = \{(x,y) \mid x \geq 0, y \geq \frac{\beta}{\alpha}x + km(\beta_u - \frac{\beta}{\alpha}\alpha_u)\}$ とおく.

主張 4.4 $\mathbf{e} \in N$ ならば、 $R_{\mathbf{e}} \subset (b_1, \dots, b_h)$ である.

証明 $\mathbf{e} = (x,y) \in N$ とする. $\xi = c_1^{s_1} \cdots c_k^{s_k} d_1^{t_1} \cdots d_{k'}^{t_{k'}}$ を $R_{\mathbf{e}}$ に含まれる単項式とする. もし $\xi \notin (b_1, \cdots, b_h)$ なら、任意の i に対し $s_i < m$ である.

$$x = s_1 \alpha_1 + \dots + s_k \alpha_k + t_1 \alpha'_1 + \dots + t_{k'} \alpha'_{k'}$$
$$y = s_1 \beta_1 + \dots + s_k \beta_k + t_1 \beta'_1 + \dots + t_{k'} \beta'_{k'}$$

であるので

$$y - \frac{\beta}{\alpha}x = s_1\beta_1 + \dots + t_{k'}\beta'_{k'} - \frac{\beta}{\alpha}(s_1\alpha_1 + \dots + t_{k'}\alpha'_{k'})$$

$$= s_1(\beta_1 - \frac{\beta}{\alpha}\alpha_1) + \dots + s_k(\beta_k - \frac{\beta}{\alpha}\alpha_k) + t_1(\beta'_1 - \frac{\beta}{\alpha}\alpha'_1) + \dots + t_{k'}(\beta'_{k'} - \frac{\beta}{\alpha}\alpha'_{k'})$$

$$\leq s_1(\beta_1 - \frac{\beta}{\alpha}\alpha_1) + \dots + s_k(\beta_k - \frac{\beta}{\alpha}\alpha_k)$$

$$< m\Big\{(\beta_1 - \frac{\beta}{\alpha}\alpha_1) + \dots + (\beta_k - \frac{\beta}{\alpha}\alpha_k)\Big\}$$

$$\leq mk(\beta_u - \frac{\beta}{\alpha}\alpha_u)$$

となり、 $\mathbf{e}\in N$ であることに矛盾する. よって $s_i\geq m$ となる i が存在するので、 $\xi\in (b_1,\cdots,b_h)$ である.従って $R_{\mathbf{e}}\subset (b_1,\cdots,b_h)$ である. 証明終

R を直線 $\mathbb{R}\mathbf{a}$ 上に制限した環はネーター次数付環であるので、この環の R_0 上の斉次生成元 a_1,\cdots,a_p がとれる.このとき次を満たす自然数 k_1,\cdots,k_p がとれる.

- $\deg a_1^{k_1} = \dots = \deg a_p^{k_p}$
- $1 \le i \le q, 1 \le j \le p$ に対し、 $\deg x_i a_j^{k_j}$ が N に含まれる.

主張 4.4 より $x_ia_j^{k_j}$ が (b_1,\cdots,b_h) に含まれるので、 $x_ia_j^{k_j}=\sum_{u=1}^h b_u c_{iju}$ (ただし c_{iju} は 0 または $\deg(x_ia_j^{k_j})=\deg(b_u c_{iju})$ を満たす斉次元とする)と表せる。 $c_{iju}\neq 0$ としよう。すると $\deg c_{iju}=\deg x_i+\deg a_j^{k_j}-\deg b_u$ である。 $\deg x_ia_j^{k_j}$ と $\deg c_{iju}$ を結ぶ線分の長さを η (= $|\deg b_u|$) とおく。またこの線分と直線 $\mathbb{R}\mathbf{a}$ との交点を \mathbf{e} ($\in \mathbb{Q}^2$) とおき、 \mathbf{e} と $\deg c_{iju}$ を結ぶ線分の長さを $\delta_i\eta$ とおく。すると $d_2 < d_1$ より $0 < \delta_i < 1$ であり、 $\deg c_{iju}$ 、 $\deg x_ia_j^{k_j}\in \mathbb{Z}^2$ かつ $\mathbf{e}\in \mathbb{Q}^2$ より δ_i は有理数である。さらに \mathbf{e} と $\deg a_j^{k_j}$ を結ぶ線分の長さを φ_i とおくと、次を満たす自然数 v_i がとれる。

- $v_i\delta_i$ は自然数.
- $|\deg(a_1^{k_1} \cdots a_p^{k_p})| < v_i \varphi_i$

このとき、 $(x_ia_j^{k_j})^{v_i}=(\sum_{u=1}^h b_uc_{iju})^{v_i}=\sum MC_M$ (ただし M は b_1,\cdots,b_h についての v_i 次斉次単項式)とおく、 $M=M_1M_2$ とおく、ただし M_1 は b_1,\cdots,b_h についての $v_i\delta_i$ 次、 M_2 は $v_i(1-\delta_i)$ 次単項式とする。すると $(x_ia_j^{k_j})^{v_i}=\sum M_2(M_1C_M)$ であり、 $\deg M_1C_M$ は直線 \mathbb{R} **a** 上の点である。よって M_1C_M は $a_1^{m_1}\cdots a_p^{m_p}$ の形の単項式の R_0 線型結合として表せる。ここで m_1,\cdots,m_p は非負整数である。 $1\leq i\leq p$ に対し $m_i=w_ik_i+q_i,0\leq q_i< k_i$ とすると、 $|\deg(a_1^{q_1}\cdots a_p^{q_p})|<|\deg(a_1^{k_1}\cdots a_p^{k_p})|< v_i\varphi_i$ である。また

 $|\deg M_1C_M| = |\deg(a_1^{m_1}\cdots a_p^{m_p})| = |\deg(a_1^{w_1k_1}\cdots a_p^{w_pk_p})| + |\deg(a_1^{q_1}\cdots a_p^{q_p})|$ かつ $|\deg M_1C_M| = |\deg a_j^{k_jv_i}| + v_i\varphi_i$ であるので、 $|\deg(a_1^{w_1k_1}\cdots a_p^{w_pk_p})| > |\deg a_j^{k_jv_i}|$ である。よって $w_1+\cdots+w_p>v_i$ である。故に M_1C_M は $(a_1^{k_1},\cdots,a_p^{k_p})^{v_i+1}$ の元なので、 $(x_ia_j^{k_j})^{v_i} = \sum M_2(M_1C_M)$ も $(a_1^{k_1},\cdots,a_p^{k_p})^{v_i+1}$ の元である。ここで V は R を含む DVR、v をその正規化された加法付値とし、 $\epsilon = \min\{v(a_1^{k_1}),\cdots,v(a_p^{k_p})\}$ とおく。 $\epsilon = v(a_j^{k_j})$ とすると $v((x_ia_j^{k_j})^{v_i}) \geq \epsilon(v_i+1)$ であるから $v(x_i^{v_i}) \geq \epsilon$ である。よって $x_i^{v_i}$ は $(a_1^{k_1},\cdots,a_p^{k_p})V$ の元である。これは R を含む任意の DVR に対して成り立つので、 $x_i^{v_i}$ は $(a_1^{k_1},\cdots,a_p^{k_p})$ の整閉包に含まれる [SH、(6.8.2)]。よって $x_i^{v_i}$ は $\sqrt{(a_1^{k_1},\cdots,a_p^{k_p})}$ の元である。

ここで証明の最後に用いた事実 [SH, (6.8.2)] の証明を記す.

定理 4.5 R をネーター整域、I を R のイデアルとすると

$$\bar{I} = \left(\bigcap_{V} IV\right) \cap R$$

が成り立つ. ただし \bar{I} はイデアル I の整閉包であり、上の共通部分の V は R と R の商体 Q(R) の間の DVR を全てわたるものである.

証明 $IV=\bar{I}V=I\bar{V}$ であるので、 \bar{I} が右辺に含まれることはよい.逆を示す.r を 0 でない $(\cap IV)\cap R$ の元とする. $S=R[\frac{I}{r}]$ とおくと、S の商体 Q(S) は Q(R) と等しい.K=Q(S)=Q(R) とおく. $S\subset V\subset K$ となる任意の V (V は DVR) に対し、r は IV に含まれるから $\frac{I}{r}V=V$ である.もし S が $\frac{I}{r}S$ を真に含んでいるとすると、 $\frac{I}{r}S$ は S のある極大イデアルに含まれる.その極大イデアルを m とすると、 $S\subset V\subset K$ となる DVR で $m_V\cap S=m$ を満たす V が存在する.ここで m_V は V の極大イデアルである.このとき $\frac{I}{r}S\subset m$ を V に拡大すると $\frac{I}{r}V\subset mV\subset m_V$ となり、 $\frac{I}{r}V=V$ であることに矛盾する.よって $\frac{I}{r}S=S$ である.従って $1\in \frac{I}{r}S$ より

$$\begin{split} 1 &= \frac{b}{r}(r_0 + r_1 \frac{b_1}{r} + \dots + r_{n-1} \frac{b_{n-1}}{r^{n-1}}) \quad (\text{for } b \in I, b_i \in I^i, r_i \in R) \\ &= \frac{br_0}{r} + \frac{r_1 b_1 b}{r^2} + \dots + \frac{r_{n-1} b_{n-1} b}{r^n} \\ &= \sum_{i=1}^n \frac{a_i}{r^i} \end{split}$$

ただし $a_1=br_0\in I, a_2=r_1b_1b\in I^2, \cdots, a_n=r_{n-1}b_{n-1}b\in I^n$ である. よって $r^n-r^{n-1}a_1-\cdots-ra_{n-1}-a_n=0$ となるから、r は I 上整である. 証明終

5 応用

 $R = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} R_{\mathbf{a}}, S = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} S_{\mathbf{a}}$ を \mathbb{Z}^n 次数付ネーター整域、 $R_{\mathbf{0}}, S_{\mathbf{0}}$ を体、 $\{\mathbf{a} \in \mathbb{Z}^n \mid S_{\mathbf{a}} \neq 0\}$ は \mathbb{Q} ベクトル空間として \mathbb{Q}^n を生成するとする.また $R \subset S$ であり、R から S への自然な射が finite 射であるとする.

命題 5.1 C(R) = C(S) が成り立つ.

証明 $R_{\mathbf{a}}\subset S_{\mathbf{a}}$ より左辺が右辺に含まれることはよい. 逆を示す. x を S の $\deg x=\mathbf{a}$ の 斉次元 $(x\neq 0)$ とする. x は R 上整なので

$$x^m + a_1 x^{m-1} + \dots + a_m = 0$$

を満たす R の元 a_1, \dots, a_m が存在する.この式の両辺の $m\mathbf{a}$ 次を取り出すことで、 $a_i \neq 0$ となる a_i は $\deg a_i = i\mathbf{a}$ の斉次元としてよい. $x \neq 0$ なので a_1, \dots, a_m の中に少なくとも 0 でないものがある. $a_i \neq 0$ とすると $i\mathbf{a} \in C(R)$ なので、 $C(S) \subset C(R)$ である.

命題 5.2 $\mathbf{a} \in \mathbb{Q}^n$ とするとき、次が成り立つ.

- (1) $\sqrt{J_R(\mathbf{a})S} = \sqrt{J_S(\mathbf{a})}$
- (2) $\sqrt{J_S(\mathbf{a})} \cap R = \sqrt{J_R(\mathbf{a})}$

証明 (1) を示す. $J_R(\mathbf{a})S \subset J_S(\mathbf{a})$ なので左辺が右辺に含まれることはよい. 逆を示す. $x \in J_S(\mathbf{a})$ の \mathbf{d} 次斉次元 ($\mathbf{d} \in \mathbb{R}_{>0}\mathbf{a} \cap \mathbb{Z}^n$) とする. S は R 上整なので

$$x^m + a_1 x^{m-1} + \dots + a_m = 0$$

を満たす R の斉次元 a_1, \dots, a_m が存在する。 ただし $a_i \neq 0$ なら $\deg a_i = i\mathbf{d}$ としてよい。 よって $\deg a_i = i\mathbf{d} \in \mathbb{R}_{>0}\mathbf{a} \cap \mathbb{Z}^n$ なので $a_i \in J_R(\mathbf{a})$ である。 故に $x^m = -(a_1x^{m-1} + \dots + a_m) \in J_R(\mathbf{a})S$ より $x \in \sqrt{J_R(\mathbf{a})S}$ である。

(2) を示す. $J_R(\mathbf{a}) \subset J_S(\mathbf{a})$ なので右辺が左辺に含まれることはよい. 逆を示す. $J_R(\mathbf{a})$ の任意の極小素イデアル P に対し、 $\sqrt{J_S(\mathbf{a})} \cap R \subset P$ となることを示せばよい. $J_R(\mathbf{a})$ の極小素イデアル P に対し $R \subset S$ は整拡大なので、 $Q \cap R = P$ を満たす S の素イデアル Q が存在する. x を $J_S(\mathbf{a})$ の元とすると、(1) の証明より $x^m + a_1 x^{m-1} + \cdots + a_m = 0$ としたとき $a_i \in J_R(\mathbf{a})$ であったから、 $a_i \in P \subset Q$ である. よって x^m が Q に含まれるから、 $J_S(\mathbf{a}) \subset Q$ である. 故に $\sqrt{J_S(\mathbf{a})} \cap R \subset Q \cap R = P$ となる.

この命題5.2から、次が成り立つ.

系 5.3 **0** でない有理数点 \mathbf{a}, \mathbf{b} に対し、 $\sqrt{J_R(\mathbf{a})} = \sqrt{J_R(\mathbf{b})}$ であることと $\sqrt{J_S(\mathbf{a})} = \sqrt{J_S(\mathbf{b})}$ であることは同値である.

以上より次が成り立つ.

命題 5.4 R の chamber は S の chamber である. 逆も正しい.

証明 系 5.3 より明らかである.

証明終

従って、 $R \subset S$ の間の包含射が finite 射であるなら、R と S は同じ chamber 分解を持つことがわかった.

このことから、S が $K[x_1, \dots, x_d]$ 上有限生成な加群 (ただし $K = S_0$) となるような代数的独立な S の元 x_1, \dots, x_d が、斉次元でとれるとは限らないということが示せる.

例 5.5 K を体とし、S=K[X,Y,Z,W]/(XW-YZ) とおく、 $\deg X=(3,0),\deg Y=(2,1),\deg Z=(1,2),\deg W=(0,3)$ として S を \mathbb{Z}^2 次数付環とする. このとき、 $\dim K[X,Y,Z,W]=4$, $\operatorname{ht}(XW-YZ)=1$ なので、 $\dim S=3$ である. ネーターの正規化定理より、S が $K[t_1,t_2,t_3]$ 上有限生成となるような代数的独立な S の元 t_1,t_2,t_3 が存在する.このとき、 t_1,t_2,t_3 のうち少なくとも 1 つは非斉次である.

証明 $\mathbf{a}_1=(3,0), \mathbf{a}_2=(2,1), \mathbf{a}_3=(1,2), \mathbf{a}_4=(0,3)$ とし、 $\sigma_1=\mathbb{R}_{\geq 0}\mathbf{a}_1+\mathbb{R}_{\geq 0}\mathbf{a}_2, \sigma_2=\mathbb{R}_{\geq 0}\mathbf{a}_2+\mathbb{R}_{\geq 0}\mathbf{a}_3+\mathbb{R}_{\geq 0}\mathbf{a}_3+\mathbb{R}_{\geq 0}\mathbf{a}_4$ とおく、このとき $C(S)=\cup_{i=1}^3\sigma_i$ が S の最短 chamber 分解になることを示す、chamber 分解になることはよい、chamber ideal が全て異なることを示せばよい、 $J_{\sigma_1}=J_{\sigma_2}$ と仮定する、 $J_{\sigma_1}=\sqrt{(X)\cap(Y,Z,W)}$ であり、 $(X)\cap(Y,Z,W)\subset(X,Z)$ である、 $S/(X,Z)\cong K[Y,W]$ より (X,Z) は素イデアルなので、 $J_{\sigma_1}\subset(X,Z)$ である、よって $J_{\sigma_2}\subset(X,Z)$ となる。しかし $YW\in\sqrt{(X,Y)\cap(Z,W)}=J_{\sigma_2}$ であるが、 $YW\notin(X,Z)$ なので $J_{\sigma_1}=J_{\sigma_2}$ であることに矛盾する。故に $J_{\sigma_1}\neq J_{\sigma_2}$ となり、同様に $J_{\sigma_2}\neq J_{\sigma_3}$ である。また補題 3.1 より $J_{\sigma_1}\neq J_{\sigma_3}$ も成り立つ。よって chamber ideal が全て異なるから、S は $\sigma_1,\sigma_2,\sigma_3$ による chamber 分解が最短である。 t_1,t_2,t_3 を斉次元とすると、 $K[t_1,t_2,t_3]$ は \mathbb{Z}^2 次数付き環になり、命題 5.4 より $K[t_1,t_2,t_3]$ もこの 3 つの chamber による chamber 分解が最短である。しかし $K[t_1,t_2,t_3]$ は 2 つの chamber による chamber 分解を持つから、 $K[t_1,t_2,t_3]$ と S の chamber 分解が一致することに矛盾する.

次の環は、様々な研究者によって深く研究されているが、これらは斉次なネーターの正 規化を持つ例になっている.

例 5.6 K を体、S=K[X,Y,Z] を多項式環、 n_1,n_2,n_3 をどの二つも互いに素な自然数とし

$$\begin{array}{cccc} \varphi \colon S & \longrightarrow & K[T] \\ & & & & \\ X & \longmapsto & T^{n_1} \\ Y & \longmapsto & T^{n_2} \\ Z & \longmapsto & T^{n_3} \end{array}$$

とするとき $P=\mathrm{Ker}(\varphi)$ とする.このとき、 $R_S'(P)=\bigoplus_{n\in\mathbb{Z}}P^{(n)}t^n$ と定義する.ここで $P^{(n)}$ は P の n 階シンボリック冪であり、n<0 のとき $P^{(n)}=S$ とする.このとき次が 成り立つ.([和田,(3.5)])

 $R_S'(P)$ をネーター、 $f \in P^{(k)}, g \in P^{(l)}$ を Huneke の判定法を満たす斉次多項式とする. このとき $T = K[X, t^{-1}, ft^k, gt^l]$ とおくと、 $T \subset R_S'(P)$ かつ $R_S'(P)$ は有限生成 T 加群であり、T は 4 変数多項式環と同型である.

謝辞

本論文を作成するにあたり、指導教官の藏野和彦教授から、丁寧かつ熱心なご指導を賜りました。ここに感謝の意を表します。また多くのご協力、ご指摘を下さいました諸先輩方や同期、後輩の皆様に感謝いたします。

参考文献

- [高瀬] 高瀬友樹 『多重次数付環の様々なイデアルとその局所コホモロジーについて』 明治大学大学院理工学研究科修士論文, 2014
- [石田] 石田正典 『トーリック多様体入門-扇の代数幾何-』 朝倉書店, 2000
- [SH] I.Swanson and C.Huneke. *Integral Closure of Ideals, Rings, and Modules*. Cambridge University Press, 2006
- [和田] 和田昂之 『スペースモノミアル曲線の定義イデアルのシンボリック冪のグレブナー基底』 明治大学大学院理工学研究科修士論文, 2014