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Abstract. Let (A,m) be a local hypersurface with an isolated singularity.

We show that Hochster’s theta pairing θA vanishes on elements that are nu-

merically equivalent to zero in the Grothendieck group of A under the mild

assumption that SpecA admits a resolution of singularities. This extends a

result by Celikbas-Walker. We also prove that when dimA = 3, Hochster’s

theta pairing is positive semi-definite. These results combine to show that

the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of

Serre’s intersection multiplicity exists for any three dimensional isolated hyper-

surface singularity that is not a UFD and has a desingularization. We also

show that, if A is three dimensional isolated hypersurface singularity that has

a desingularization, the divisor class group is finitely generated torsion-free.

Our method involves showing that θA gives a bivariant class for the morphism

Spec(A/m) → SpecA.

1. Introduction

Let A be a local hypersurface with an isolated singularity (so Ap is regular for

each non-maximal prime ideal p). For any pair of finitely generated A-modules M

and N , one has ℓ(TorAi (M,N)) < ∞ for i > dimA, where ℓ(−) denotes length.

The function θA(M,N) was introduced by Hochster ([16]) to be:

θA(M,N) = ℓ(TorA2e+2(M,N))− ℓ(TorA2e+1(M,N))

where e is any integer such that 2e ≥ dimA. The function θA(M,N) is additive

on short exact sequences and thus defines a pairing on the Grothendieck group of

finitely generated modules G0(A) or the reduced group G0(A) := G0(A)/⟨[A]⟩.
The theta pairing has attracted quite a bit of attention lately due to its recently

discovered connections to a number of diverse areas and problems ([2, 3, 5, 6, 29,
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31]). For a brief history of these recent developments and how they connect to our

work, we refer to Section 3.

The first main result of the present paper is the following:

Theorem 1.1. Assume that SpecA admits a resolution of singularities. Then θA

vanishes on all pairs (M,N) as long as one of the modules in the pair represents

an element in the Grothendieck group G0(A) that is numerically equivalent to zero.

The concept of numerical equivalence over local rings was introduced by the sec-

ond author in parallel with intersection theory on projective varieties. An element

[M ] of the Grothendieck group G0(A) is numerically equivalent to zero if for any

module N of finite length and finite projective dimension,

χA(M,N) :=
∑
i≥0

(−1)iℓ(TorAi (M,N)) = 0

(in general this should be defined using the category of perfect complexes with

finite length homologies but it makes no difference in our case, see Section 2).

Since numerical equivalence follows from algebraic equivalence even in our set-

ting (Remark 6.4), our main result recovers [3, Theorem 2.7] and [29, Theorem

3.2]. Several corollaries follow. It gives a new proof on the vanishing of θA when

dimA is even (Conjecture 3.1, part (1)) in the graded case (proved in [29]).

The proof of Theorem 1.1 contains some ingredients which we believe are of

independent interest. In Theorem 4.4, we give a criterion for a map from the

Grothendieck group G0(A) to Z to arise from a perfect complex with finite length

homologies. In addition, a key technical result, Theorem 5.2, shows that θA gives

a bivariant class on the Grothendieck groups (as well as the Chow groups). Recall

that a bivariant class for a morphism of schemes f : X → Y gives a homomorphism

for the Grothendieck groups G0(Y
′) → G0(X

′) for any fibre square that commutes

with pushforwards, pullbacks and intersection products (for a precise definition see

Section 4).

The second main result is that in dimension three, θA is positive semi-definite,

which confirms in this special case Conjecture 3.6 of [29].

Theorem 1.2. Let A be a local hypersurface with an isolated singularity of dimen-

sion three. Then θA(M,M) ≥ 0 for any module M . Furthermore, if M is reflexive

of rank one, then equality holds if and only if M is free.

By combining Theorems 1.1 and 1.2 one obtains (see Corollary 8.1) a vast

generalization of the famous original example by Dutta-Hochster-McLaughlin of

the non-vanishing of Serre’s intersection multiplicity, which was constructed for

A = k[[x, y, u, v]]/(xy − uv):



HOCHSTER’S THETA PAIRING AND NUMERICAL EQUIVALENCE 3

Corollary 1.3. Let A be a local hypersurface of dimension three with an isolated

singularity. Assume that SpecA admits a resolution of singularities. Then for any

torsion A-module M , the following are equivalent:

(1) There exists a module N of finite length and finite projective dimension

such that χA(M,N) ̸= 0.

(2) The divisor class of M is non-trivial (for example, if M = A/I for a

non-free reflexive ideal I).

As an added bonus, it also follows that in the situation above, the class group

of A is always finitely generated torsion-free (Corollary 8.2).

The paper is organized as follows. In Section 2 we recall basic definitions and

notations. Section 3 briefly recalls the recent history of Hochster’s theta pairing

as well as a group of motivating conjectures (see Conjectures 3.1, 3.2 and 3.4).

Section 4 gives the definition of a bivariant class for Grothendieck groups and

a criterion for a map from G0(A) to Z to arise from the Euler characteristic of

perfect complexes with finite length homologies. Theorem 5.2 proves that θA gives

a bivariant class on Grothendieck groups. The proof of Theorem 1.1 is contained in

Section 6. Section 7 contains the proofs of Theorem 1.2 as well as partial results in

small dimensions. Finally, Section 8 discusses some applications such as Corollary

1.3 and Corollary 8.2.

2. Notations and preliminaries

Unless otherwise noted, all schemes in this paper are of finite type over some

regular base scheme S and all morphisms are of finite type. When dealing with

Chow groups of schemes we always consider the relative dimension as in Chapter 20

in Fulton [11].

For a scheme X, G0(X) denotes the Grothendieck group of coherent sheaves

on X. For each i ≥ 0, Ai(X) denotes the Chow group of i-dimensional cycles

in X modulo rational equivalence. Let Cl(X) denote the divisor class group of

X. When X = SpecA is affine we shall write G0(A), Ai(A) and Cl(A). Let

G0(A) := G0(A)/Z[A] be the reduced Grothendieck group. For an additive group

G, GQ denotes the tensor product G⊗Z Q.

Let A be a local Noetherian ring. We recall the Riemann-Roch theory and the

concept of numerical equivalence for elements in Chow or Grothendieck groups. If

A is a homomorphic image of a regular local ring, then we have an isomorphism

of Q-vector spaces (see [11]):

τ : G0(A)Q → A∗(A)Q.
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We denote the i-th component of τ by τi, that is, the maps

τi : G0(A)Q −→ Ai(A)Q

for i = 0, 1, . . . , d satisfying τ = τd+ τd−1+ · · ·+ τ0. These are defined by localized

Chern characters. There is a map (see [4])

c1 : G0(A) → Ad−1(A)

which satisfies

• c1([A]) = 0,

• c1([A/P ]) = −c1([P ]) = [Spec(A/P )] for each prime ideal P with dimA/P =

d− 1,

• c1([M ]) = 0 if dimM ≤ d− 2.

When A is normal, c1([A/I]) is equal to [Spec(A/I)] in Ad−1(A) for each reflexive

ideal I of A. Furthermore, we obtain an isomorphism

Ad−1(A) → Cl(A)

sending −[Spec(A/I)] to the isomorphism class [I] of a reflexive ideal I of A. For

an A-module M , we have

(2.1) τd−1([M ]) = c1([M ])− rankAM

2
KA

in Ad−1(A)Q, where KA is the canonical divisor of A, that is, KA = c1([ωA]).

For a bounded finite A-free complex F. with finite length homologies, we define

χF. : G0(A) −→ Z

to be

χF.([M ]) =
∑
i

(−1)iℓ(Hi(F.⊗A M)).

We say that a cycle α in G0(A) is numerically equivalent to 0 if χF.(α) = 0 for

any bounded finite A-free complex F. with finite length homologies. In the same

way, we say that a cycle β in A∗(A) is numerically equivalent to 0 if ch(F.)(β) = 0

for any above F., where ch(F.) is the localized Chern character which appears in

Chapter 18 in [11].

Definition 2.1. One denotes by G0(A) and A∗(A) the groups modulo numerical

equivalence.
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By Theorem 3.1 and Remark 3.5 in [23], both of G0(A) and A∗(A) are finitely

generated torsion-free abelian group under a mild condition. It is proved in Propo-

sition 2.4 in [23] that numerical equivalence is consistent with the dimension of

cycles in A∗(A), so we have

A∗(A) = ⊕d
i=0Ai(A).

The Riemann-Roch map τ preserves numerical equivalence as in [23], that is, it

induces a map τ that makes the following diagram commutative:

(2.2)

G0(A)Q
τ−→ A∗(A)Q

↓ ↓
G0(A)Q

τ−→ A∗(A)Q

If A is Cohen-Macaulay, the Grothendieck group of bounded A-free complexes with

support in {m} is generated by finite free resolutions of modules of finite length

and finite projective dimension (see Proposition 2 in [34]). Therefore, in this case,

α in G0(A) is numerically equivalent to 0 if and only if χF.(α) = 0 for any free

resolution F. of a module of finite length and finite projective dimension.

3. A brief history of theta pairing and some motivating open

questions

In this section we briefly recall the (recent) history of the theta functions. Let

A be a local hypersurface with isolated singularity (so Ap is regular for each non-

maximal prime ideal p). Then, for any pair of finitely generated A-modules M

and N , one has ℓ(TorAi (M,N)) <∞ for i > dimA, where ℓ(−) denotes length.

The function θA(M,N) was introduced by Hochster ([16]) to be:

θA(M,N) = ℓ(TorA2e+2(M,N))− ℓ(TorA2e+1(M,N))

where e is any integer such that 2e ≥ dimA. It is well known (see [10]) that

the sequence of modules {TorAi (M,N)}i is periodic of period 2 for i > depthA−
depthM , so this function is well-defined. Note that if M or N is maximal Cohen-

Macaulay, one simply gets:

θA(M,N) = ℓ(TorA2 (M,N))− ℓ(TorA1 (M,N)).

A key point here is that the function θA(−,−) is additive on short exact se-

quences and thus defines a pairing on the Grothendieck group of finitely generated

modules G0(A) or the reduced group G0(A). This function was originally intro-

duced in [16] as a possible means to attack the Direct Summand Conjecture (where

it was necessary to study θA for some non-isolated singularity A). However it has
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gained independent interest recently. In particular, the behavior of θA over iso-

lated singularities has been linked to some interesting topics in algebraic geometry

and K-theory.

To be more specific, the main motivation of this note is the following group of

open questions:

Conjecture 3.1. Let A be a local hypersurface with an isolated singularity and

d = dimA. Then for any finitely generated modules M,N :

(1) If d is even, then θA(M,N) = 0.

(2) If dimM + dimN ≤ d, then θA(M,N) = 0.

(3) If dimM ≤ d/2, then θA(M,N) = 0.

(4) IfM,N are maximal Cohen-Macaulay, then θA(M,N)+(−1)
d+1
2 θA(M∗, N) =

0. Note that when d is even this implies (1).

(5) ([29, Conjecture 3.6])If d is odd, then (−1)
d+1
2 θA(M,M) ≥ 0. In other

words, (−1)
d+1
2 θA(−,−) defines a positive semi-definite form on G0(A)Q.

Most of the statements above have appeared or been hinted at in the literature in

one form or another. Conjecture 3.1 (1) was made and established in several cases

by the first author in [5, 8]. Since then, it has captured the attention of many

researchers and has now been established in characteristic 0 via three different

approaches: intersection theory on smooth hypersurfaces (for the graded case),

topological K-theory and Hochschild cohomology ([29], [2], [31]). These results

suggest much deeper facts about θA, namely that it should be thought of as a

Riemann-Roch form on the category of maximal Cohen-Macaulay modules (or

matrix factorizations) over A. Thus they motivate the rest of Conjecture 3.1, which

can be viewed as an analogue of the Lefschetz hyperplane theorem and properties of

Hodge-Riemann bilinear relations. We note that (2) is proved for the excellent and

equicharateristic case in [8]. The statement (4) can be viewed as a strengthening

of a result by Buchweitz which implies that θA(M,N) + (−1)dθA(M∗, N∗) = 0 in

any dimension, see [5, Proposition 4.3].

In view of the above conjecture and the main results of this work, it is reasonable

to make the following conjecture, which would explain some parts of Conjecture

3.1. Precisely speaking, by Theorem 1.1, we know that Conjecture 3.1 (1) follows

from Conjecture 3.2 (1) (a). Also Conjecture 3.1 (3) follows from Conjecture 3.2

(1) (b) or (2).

Conjecture 3.2. Let (A,m) be a d-dimensional local domain with an isolated

singularity.

(1) Assume that A is a complete intersection.
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(a) If d is even, then G0(A)Q = Q[A] and, equivalently, Ai(A)Q = 0 for

i < d.

(b) If d is odd, then Ai(A)Q = 0 for i ̸= d+1
2 , d.

(2) If i ≤ d/2, then Ai(A)Q = 0.

This conjecture is true in some special cases, as seen below.

Proposition 3.3. Assume that R is a homogeneous ring over a field k such that

ProjR is smooth over k. Put A = RR+, where R+ is the unique homogeneous

maximal ideal.

Then, Conjecture 3.2 (1) holds in this case. Furthermore, if Grothendieck’s

standard conjecture (see [22]) is true, then Conjecture 3.2 (2) holds.

Proof. Put X = ProjR. Suppose n = dimX and d = dimA. Note that d = n+1.

We may assume that k is algebraically closed (see Lemma 4.2 in [23]).

Suppose that the characteristic of k is 0. We may assume that k is the complex

number field C by the Lefschetz principle.

Assume that X is a complete intersection smooth projective variety over C.
Then, it is well known (e.g. see [24, Example 11.20]) that

Hj(X(C),Q) =


Q (0 ≤ j ≤ 2n, j ̸= n and j is even)

? (j = n)

0 (otherwise).

Then, we have

CHj(X)Q −→ CHj
hom(X)Q −→ CHj

num(X)Q

↘ ↓
H2j(X(C),Q)

where CHj
hom(X)Q (resp. CHj

num(X)Q) is the Chow group divided by homolog-

ical equivalence (resp. numerical equivalence). Here, the map CHj
hom(X)Q →

H2j(X(C),Q) is injective, and CHj
hom(X)Q → CHj

num(X)Q is surjective. Remem-

ber that CHj
num(X)Q ̸= 0 for j = 0, 1, . . . , n. Therefore, if n is odd, CHj

num(X)Q =

Q for j = 0, 1, . . . , n. If n is even, CHj
num(X)Q = Q for j = 0, 1, . . . , n except for

j = n/2. On the other hand, we have the natural surjections

CHj
num(X)Q/hCH

j−1
num(X)Q −→ Ad−j(A)Q

for j = 0, 1, . . . , n by (7.5) in [23], where h is the very ample divisor corresponding

to the embedding ProjR. Note that A0(A)Q = 0 if dimA > 0.

• If n is odd, then Ai(A)Q = 0 for i < d. Conjecture 3.2 (1) (a) is proved.
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• If n is even, then Ai(A)Q = 0 for i ̸= (d+1)/2, d. Conjecture 3.2 (1) (b) is

proved.

Conjecture 3.2 (2) is true by Remark 7.12 in [23].

In the case where the characteristic of k is positive, we use the étale cohomology

instead of the Betti cohomology. The proof is the same as the case of characteristic

zero, so we omit it. □
The localized Chern characters induce a map θAch : A∗(A)Q × A∗(A)Q → Q.

Thus, we can also state the following conjecture for Chow groups.

Conjecture 3.4. For α ∈ A∗(A) a homogenous element, we have θAch(α, β) = 0 if

α /∈ A d+1
2
(A)(in particular, it is always 0 when d is even). Also, (−1)

d+1
2 θAch(−,−)

defines a positive semi-definite form on A d+1
2
(A).

4. A bivariant class on K-groups

We assume that all schemes in this paper are of finite type over some regular

base scheme S and all morphisms are of finite type. When dealing with Chow

groups of schemes we always consider the relative dimension as in Chapter 20 in

Fulton [11].

Definition 4.1. Let Y be a scheme and X a closed subscheme of Y . Consider the

following fibre square of schemes:

(4.1)

X ′ −→ Y ′

↓ □ ↓ g

X −→ Y

Suppose that

φg : G0(Y
′) −→ G0(X

′)

is a homomorphism between K-groups, where G0( ) denotes the Grothendieck

group of coherent sheaves.

We say that a collection of homomorphisms

{φg : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}

is a bivariant class on K-groups for X ↪→ Y if the following three conditions are

satisfied.
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(B1) If h : Y ′′ → Y ′ is proper, g : Y ′ → Y arbitrary, and one forms the fibre

diagram

(4.2)

X ′′ −→ Y ′′

h′ ↓ □ ↓ h

X ′ −→ Y ′

↓ □ ↓ g

X −→ Y

,

then the diagram

G0(Y
′′)

φgh−→ G0(X
′′)

h∗ ↓ ↓ h′
∗

G0(Y
′)

φg−→ G0(X
′)

is commutative, where h∗ is the push-forward map induced by the proper

morphism h (e.g. [11]).

(B2) If h : Y ′′ → Y ′ is flat, g : Y ′ → Y arbitrary, and one forms the fibre

diagram (4.2), then the diagram

G0(Y
′)

φg−→ G0(X
′)

h∗ ↓ ↓ h′∗

G0(Y
′′)

φgh−→ G0(X
′′)

is commutative, where h∗ is the pull-back map induced by the flat mor-

phism h (e.g. [11]).

(B3) Let Z ′ be a scheme and Z ′′ be a closed subscheme of Z ′. Let G. be a

bounded locally free complex on Z ′ which is exact on Z ′\Z ′′. If g : Y ′ → Y ,

h : Y ′ → Z ′ are morphisms, and one forms the fibre diagram

(4.3)

X ′′ −→ Y ′′ −→ Z ′′

i′′ ↓ □ ↓ i′ □ ↓ i

X ′ f−→ Y ′ h−→ Z ′

↓ □ ↓ g

X −→ Y

,

then the diagram

G0(Y
′)

φg−→ G0(X
′)

χh∗(G.) ↓ ↓ χ(hf)∗(G.)

G0(Y
′′)

φgi′−→ G0(X
′′)

is commutative, where χh∗(G.) is the map taking the alternating sum of the

homologies of the complex h∗(G.)⊗OY ′ F for a coherent OY ′-module F .
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Example 4.2. Let X be a closed subscheme of a scheme Y . Let F. be a bounded

locally free OX -complex which is exact on Y \ X. For a fibre square as in (4.1),

we define

χ(F.)g : G0(Y
′) −→ G0(X

′)

by

χ(F.)g([F ]) =
∑
i

(−1)i[Hi(g
∗(F.)⊗OY ′ F)].

Then,

{χ(F.)g : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}

is a bivariant class on K-groups for X ↪→ Y .

It is easy to check that (B2) and (B3) are satisfied. The condition (B1) is proved

using a spectral sequence. For a coherent OY ′′-module F , we show that both of

h′∗χ(F.)gh([F ]) and χ(F.)gh∗([F ]) coincide with∑
i

(−1)i[Rhi∗((gh)
∗(F.)⊗OY ′′ F)] ∈ G0(X

′).

For a local complete inersection morphism f : X → Y and the fibre square

(4.1), the map f ! : A∗(Y
′) → A∗(X

′) is defined as in 6.6 in [11]. A bivariant class

on Chow groups is a generalization of

{f ! : A∗(Y
′) → A∗(X

′) | g : Y ′ → Y is a morphism of schemes}.

In the same way, a bivariant class on Grothendieck groups is a generalization of

{χ(F.)g : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}.

Under a mild condition, we can naturally define a bivariant class on Chow groups

in the sense of Fulton ([11], Section 17) corresponding to a given bivariant class

on K-groups in Definition 4.1 (see Remark 4.3).

Remark 4.3. Let Y be a scheme and X a closed subscheme of Y . Assume that

there exists a proper surjective morphism Z → Y such that Z is a regular scheme.

If we consider Grothendieck groups and Chow groups with rational coefficients,

there exists the natural one-to-one corresponding between bivariant classes on K-

groups for X ↪→ Y and bivariant classes on Chow groups for X ↪→ Y as follows.

(1) Let

{φg : G0(Y
′)Q −→ G0(X

′)Q | g : Y ′ → Y is a morphism of schemes}

be a bivariant class on K-groups for X ↪→ Y as in Definition 4.1.
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We denote the composite map of

A∗(Y
′)Q

τ−1
Y ′−→ G0(Y

′)Q
φg−→ G0(X

′)Q
τX′−→ A∗(X

′)Q

by cg : A∗(Y
′)Q → A∗(X

′)Q, where τY ′ and τX′ are the isomorphisms

given by Riemann-Roch theorem (Chapter 18 and 20 in Fulton [11]) in the

category of S-schemes.

Then, the collection of homomorphisms

{cg : A∗(Y
′)Q → A∗(X

′)Q | g : Y ′ → Y is a morphism of schemes}

satisfies the conditions (C1), (C2) and (C3) in Definition 17.1 in Fulton [11],

i.e., it is a bivariant class on Chow groups for X ↪→ Y .

The condition (C1) is easily checked by definition. The condition (C3)

is proved using Theorem 17.1 in Fulton [11]. It is a troublesome task to

prove (C2), since the Riemann-Roch map τ can not commute with flat

pull-back maps. In order to prove (C2), we need the assumption that there

exists a proper surjective morphism π : Z → Y such that Z is a regular

scheme. We just give a sketch of a proof here. (We do not use this result

in this paper.) Suppose that F. is a bounded locally free OZ-complex

such that nφπ([OZ ]) = χ(F.)iZ ([OZ ]), where iZ : Z → Z is the identity

map and n is a positive integer. First, one show that, for any Z-scheme

h : Z ′ → Z, nφπh coincides with χ(F.)h using Lemma 4.5. Next, using the

fact that localized Chern characters are bivariant classes on Chow groups

(in particular, compatible with flat pull-back maps), we can prove (C2).

(2) Conversely, let

{cg : A∗(Y
′)Q → A∗(X

′)Q | g : Y ′ → Y is a morphism of schemes}

be a bivariant class on Chow groups for X ↪→ Y .

We denote the composite map of

G0(Y
′)Q

τY ′−→ A∗(Y
′)Q

cg−→ A∗(X
′)Q

τ−1
X′−→ G0(X

′)Q

by φg : G0(Y
′)Q → G0(X

′)Q.

Then, the collection of homomorphisms

{φg : G0(Y
′)Q −→ G0(X

′)Q | g : Y ′ → Y is a morphism of schemes}

is a bivariant class on K-groups for X ↪→ Y .

The condition (B1) is easily checked by definition. The condition (B3)

is proved using the fact that a localized Chern character is commutative

with any bivariant class on Chow groups as in Roberts [33]. It is a delicate
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task to prove (B2), since the Riemann-Roch map τ can not commute with

flat pull-back maps. In order to prove (B2), we need the assumption that

there exists a proper surjective morphism Z → Y such that Z is a regular

scheme. Then one can prove (B2) in the same way as (C2) in (1).

In the rest of this section, we give a sufficient condition for a bivariant class of

K-groups to coincide with {χ(F.)g} for some bounded finite A-free complex F..

Theorem 4.4. Let A be a Noetherian local domain that is a homomorphic image

of a regular local ring. Assume that dimA > 0. Let I be a non-zero ideal of A.

Put Y = SpecA and X = Spec(A/I).

We assume that there exists a resolution of singularity of Y , i.e., a proper

birational morphism π : Z → Y such that Z is regular. Put W = π−1(Spec(A/I))

and U = Z \W . Assume that U is isomorphic to Y \ X. Let i : W → Z be the

closed immersion. Let i∗ : G0(W ) → G0(Z) be the induced map by i.

Let

{φg : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}

be a bivariant class on K-groups for X ↪→ Y .

If i∗φπ([OZ ]) = 0 in G0(Z), then there exists a bounded A-free complex F.
satisfing the following conditions:

(1) The complex F. is exact on Y \X.

(2) For any morphism of schemes g : Y ′ → Y , the map

φg ⊗ 1 : G0(Y
′)Q −→ G0(X

′)Q

coincides with

χ(F.)g ⊗ 1 : G0(Y
′)Q −→ G0(X

′)Q.

Remark that, if A is an excellent local domain containing Q, and regular on

SpecA\Spec(A/I), then there exists a resolution of singularity of SpecA satisfying

the condition in Theorem 4.4. For an excellent local domain of any characteristic,

it is expected such a resolution of singularities exists.

Proof. By Thomason-Trobaugh [35], we have the following commutative diagram

G0(W )
i∗−→ G0(Z)

∥η ∥
K1(U) −→ KW

0 (Z) −→ K0(Z)

∥ ↑ π∗ ↑
K1(U) −→ KI

0 (A) −→ K0(A)

,
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where KI
0 (A) is the Grothendieck group of perfect A-complexes which are exact

outside of X = Spec(A/I). The map η takes the alternating sum of homologies of

complexes.

Since I ̸= 0, the homomorphism KI
0 (A) → K0(A) is zero.

Therefore, we have an exact sequence

(4.4) KI
0 (A)

ηπ∗
−→ G0(W )

i∗−→ G0(Z).

Consider the cycle φπ([OZ ]) ∈ G0(W ). By assumption, we have

i∗φπ([OZ ]) = 0

in G0(Z). By the exact sequence (4.4), we have a bounded A-free complex F.
which is exact on Y \X such that

(4.5) φπ([OZ ]) = ηπ∗([F.]) = χ(F.)π([OZ ])

in G0(W ). Here, remark that, for a complex G., −[G.] coincides with the shifted

complex [G.(−1)] in the Grothendieck group of complexes since the mapping cone

C(G. 1→ G.) is exact, and the sequence of complexes

0 −→ G. −→ C(G. 1→ G.) −→ G.(−1) −→ 0

is exact. Therefore, we can choose a complex F. satisfying (4.5).

We shall show that the map φg ⊗ 1 coincides with χ(F.)g ⊗ 1 for any g.

Remark that

{φg − χ(F.)g : G0(Y
′) → G0(X

′) | g : Y ′ → Y is a morphism of schemes}

is also a bivariant class on K-groups for X ↪→ Y . By (4.5), one has that

(φπ − χ(F.)π)([OZ ]) = 0 ∈ G0(W ).

We have only to prove the following lemma.

Lemma 4.5. Let Y be a scheme and X be a closed subscheme of Y . Let π : Z → Y

be a proper surjective morphism such that Z is a regular scheme. Let

{ϕg : G0(Y
′) → G0(X

′) | g : Y ′ → Y is a morphism of schemes}

be a bivariant class on K-groups for X ↪→ Y . Let W = π−1(X).

If ϕπ([OZ ]) = 0 in G0(W ), then

ϕg ⊗ 1 : G0(Y
′)Q −→ G0(X

′)Q

is zero for any morphism g : Y ′ → Y .
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Proof. We shall prove it in two steps.

Step 1. Let f : Z ′ → Z be a morphism such that Z ′ is an integral scheme. We

shall prove that ϕπf ([OZ′ ]) = 0.

We shall prove it by induction on dimZ ′. Suppose that the assertion is true if the

dimension is less than dimZ ′. By Nagata’s compactification ([26, 30]) and (B2),

we may assume that f is a proper morphism. By Chow’s lemma ([14, Exercise

4.10 in p107]), there exists a proper birational morphism h : Z ′′ → Z ′ such that

fh : Z ′′ → Z is projective. By (B1) and induction on dimension, it is enough to

show that ϕπfh([OZ′′ ]) = 0. So, we may assume that f is projective. Then f can

be factored as

Z ′ i
↪→ V

p−→ Z

where p : V → Z is a smooth morphism and i is a closed immersion. By (B2),

ϕπp([OV ]) = 0. Let G. be a bounded locally free OV -resolution of OZ′ . Then, by

(B3), we have

ϕπf ([OZ′ ]) = ϕπfχG.([OV ]) = χG.⊗OV ′ϕπp([OV ]) = 0,

where V ′ = V ×Y X.

Step 2. Let g : Y ′ → Y be a morphism such that Y ′ is an integral scheme. We

shall prove that ϕg([OY ′ ]) is a torsion element of G0(X
′) by induction on dimY ′.

Suppose that the assertion is true if the dimension is less than dimY ′. Consider

the following fibre square:

Z ′ g′−→ Z

π′ ↓ □ ↓ π

Y ′ g−→ Y

Let i : Z ′′ → Z ′ be a closed immersion such that Z ′′ is integral and π′i : Z ′′ → Y ′ is

generically finite and surjective. Then, by Step 1 and (B1), ϕg((π
′i)∗([OZ′′ ])) = 0.

That ϕg([OY ′ ]) is a torsion element now follows by induction on dimension. □

5. Theta pairing as a bivariant class on K-groups

Definition 5.1. Let (A,m) be a hypersurface. Let N be a finitely generated A-

module, and F. be an A-free resolution of N . Let I be an ideal of A. Assume that

NP is an AP -module of finite projective dimension for P ∈ SpecA \ V (I). Put

Y = SpecA and X = Spec(A/I).

For a fibre square (4.1), consider the homomorphism

θ(N)g : G0(Y
′) −→ G0(X

′)
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defined by

θ(N)g([F ]) = [H2k(g
∗(F.)⊗OY ′ F)]− [H2k−1(g

∗(F.)⊗OY ′ F)],

for a sufficiently large k, where F is a coherent OY ′-module. It is easy to check

that θ(N)g is well-defined.

We obtain a collection of homomorphisms

{θ(N)g : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}.

Theorem 5.2. With notation as in Definition 5.1, the collection of homomor-

phisms

{θ(N)g : G0(Y
′) −→ G0(X

′) | g : Y ′ → Y is a morphism of schemes}

is a bivariant class on K-groups for X ↪→ Y .

Proof. Let F. be an A-free resolution of N .

First we prove (B1). Consider the diagram (4.2). For a coherent OY ′′-module

F , we shall prove

h′∗θ(N)gh([F ]) = θ(N)gh∗([F ])

in G0(X
′). It is enough to show that the both sides are equal to

[H2k(Rh∗((gh)
∗(F.)⊗OY ′′ F))]− [H2k−1(Rh∗((gh)

∗(F.)⊗OY ′′ F))]

for a sufficiently large k.

Let

0 → F → I·

be an injective resolution of F . Consider the double complex

h∗((gh)
∗(F.)⊗OY ′′ I·) = g∗(F.)⊗OY ′ h∗(I·).

Since (gh)∗(F.) ⊗OY ′′ I· is an injective resolution of (gh)∗(F.) ⊗OY ′′ F , the kth

homology of the total complex of the above double complex is

Hk(Rh∗((gh)
∗(F.)⊗OY ′′ F)).

Consider the spectral sequence

Ep,q
2 = Hp(g

∗(F.)⊗OY ′ R
−qh∗(F)) =⇒ Hp+q(Rh∗((gh)

∗(F.)⊗OY ′′ F)).

Then,

θ(N)gh∗([F ]) =
∑
q

(−1)q[E2k,q
2 ]−

∑
q

(−1)q[E2k−1,q
2 ]
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for a sufficiently large k. Here, the E3-terms of the spectral sequence are the

homologies of the complex

· · · −→ Ep+2,q−1
2 −→ Ep,q

2 −→ Ep−2,q+1
2 −→ · · · .

If p is big enough, then the above complex coincides with

· · · −→ Ep,q−1
2 −→ Ep,q

2 −→ Ep,q+1
2 −→ · · · .

Therefore, we have∑
q

(−1)q[E2k,q
2 ]−

∑
q

(−1)q[E2k−1,q
2 ] =

∑
q

(−1)q[E2k,q
3 ]−

∑
q

(−1)q[E2k−1,q
3 ]

for a sufficiently large k. Next, the E4-terms of the spectral sequence are the

homologies of the complex

· · · −→ Ep+3,q−2
3 −→ Ep,q

3 −→ Ep−3,q+2
3 −→ · · · .

Suppose that p is big enough. Then the above complex coincides with

· · · −→ E2k−1,q−4
3 −→ E2k,q−2

3 −→ E2k−1,q
3 −→ E2k,q+2

3 −→ E2k−1,q+4
3 −→ · · ·

if p = 2k − 1, and

· · · −→ E2k,q−4
3 −→ E2k−1,q−2

3 −→ E2k,q
3 −→ E2k−1,q+2

3 −→ E2k,q+4
3 −→ · · ·

if p = 2k. Therefore, we have∑
q

(−1)q[E2k,q
3 ]−

∑
q

(−1)q[E2k−1,q
3 ] =

∑
q

(−1)q[E2k,q
4 ]−

∑
q

(−1)q[E2k−1,q
4 ]

for a sufficiently large k. Repeating this argument, we obtain

θ(N)gh∗([F ])

=
∑
q

(−1)q[E2k,q
2 ]−

∑
q

(−1)q[E2k−1,q
2 ]

=
∑
q

(−1)q[E2k,q
∞ ]−

∑
q

(−1)q[E2k−1,q
∞ ]

=
∑
q

[E2k−q,q
∞ ]−

∑
q

[E2k−1−q,q
∞ ]

= [H2k(Rh∗((gh)
∗(F.)⊗OY ′′ F))]− [H2k−1(Rh∗((gh)

∗(F.)⊗OY ′′ F))]

in G0(X
′) for a sufficiently large k.

We choose another injective resolution of the complex (gh)∗(F.) ⊗OY ′′ F . We

take a double complex H.. of OY ′′-modules such that

• the total complex of H.. is an injective resolution of (gh)∗(F.)⊗OY ′′ F ,
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• 0 → Hp(H.0) → Hp(H.−1) → Hp(H.−2) → · · · is an injective resolution of

Hp((gh)
∗(F.)⊗OY ′′ F) for each p,

• h∗(Hp(H.q)) = Hp(h∗(H.q)) for each p and q.

Consider the following spectral sequence.

′Ep,q
2 = HqHp(h∗(H..)) = R−qh′∗(Hp((gh)

∗(F.)⊗OY ′′F)) =⇒ Hp+q(Rh∗((gh)
∗(F.)⊗OY ′′F)).

Then,

h′∗θ(N)gh([F ]) =
∑
q

(−1)q[′E2k,q
2 ]−

∑
q

(−1)q[′E2k−1,q
2 ]

for a sufficiently large k. Here, it is proved that∑
q

(−1)q[′E2k,q
2 ]−

∑
q

(−1)q[′E2k−1,q
2 ]

=
∑
q

(−1)q[′E2k,q
∞ ]−

∑
q

(−1)q[′E2k−1,q
∞ ]

=
∑
q

[′E2k−q,q
∞ ]−

∑
q

[′E2k−1−q,q
∞ ]

= [H2k(Rh∗((gh)
∗(F.)⊗OY ′′ F))]− [H2k−1(Rh∗((gh)

∗(F.)⊗OY ′′ F))]

in G0(X
′) for a sufficiently large k by the same argument as in the case Ep,q

· . The

condition (B1) is proved.

Condition (B2) follows immediately from the flatness assumption.

Now we prove (B3). Consider the diagram (4.3). For a coherent OY ′-module F ,

we shall prove

χ(hf)∗(G.)θ(N)g([F ]) = θ(N)gi′χh∗(G.)([F ]).

It is enough to show that the both sides are equal to

[H2k(g
∗(F.)⊗OY ′ h

∗(G.)⊗OY ′ F)]− [H2k−1(g
∗(F.)⊗OY ′ h

∗(G.)⊗OY ′ F)]

for a sufficiently large k. The proof will be done in the same way as in (B1), so we

omit it. □

6. Theta pairing for hypersurface with isolated singularity

Let (A,m) be a hypersurface with an isolated singularity. Then, the theta

pairing induces a map

θA : G0(A)⊗G0(A) −→ Z

by θA(
∑

i±[Mi] ⊗ [Ni]) =
∑

i±θA(Mi, Ni). We sometimes denote θA(α ⊗ β) by

θA(α, β).

The following theorem shows that θA(M,N) = 0 if eitherM or N is numerically

equivalent to 0. See Corollary 6.2.
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Theorem 6.1. Let (A,m) be a hypersurface with an isolated singularity. Assume

dimA > 0. Let N be a finitely generated A-module.

Assume that there exists a resolution of singularity of SpecA, i.e., a proper bira-

tional morphism π : Z → SpecA such that Z is regular. PutW = π−1(Spec(A/m))

and U = Z \W . Assume that U is isomorphic to SpecA \ Spec(A/m).

Then, there exist A-modules N1 and N2 such that

• ℓA(N1) = ℓA(N2) <∞
• pdA(N1) = pdA(N2) = dimA

• θA(N,M) = χA(N1,M)− χA(N2,M) for any finitely generated A-module

M .

Proof. First, we shall prove

i∗θ(N)π([OZ ]) = 0

in G0(Z), where i :W → Z is the closed immersion. Consider the minimal A-free

resolution F. of N . Then, it is written as

· · · α−→ F2k+1
β−→ F2k

α−→ F2k−1
β−→ · · ·

for k ≫ 0. Here, Fn’s are A-free modules of the same rank for n ≫ 0. Here,

consider the complex π∗(F.)

· · · π∗α−→ π∗F2k+1
π∗β−→ π∗F2k

π∗α−→ π∗F2k−1
π∗β−→ · · · .

Then,

θ(N)π([OZ ]) = [H2k(π
∗(F.))]− [H2k−1(π

∗(F.))] ∈ G0(W )

for k ≫ 0. Let Kα (resp. Iα) be the kernel (resp. image) of the map π∗α. Let Kβ

(resp. Iβ) be the kernel (resp. image) of the map π∗β. Then, we have the following

exact sequences

0 −→ Kα −→ π∗F2k −→ Iα −→ 0

0 −→ Kβ −→ π∗F2k−1 −→ Iβ −→ 0

0 −→ Iβ −→ Kα −→ H2k(π
∗(F.)) −→ 0

0 −→ Iα −→ Kβ −→ H2k−1(π
∗(F.)) −→ 0.

Therefore, we obtain

i∗θ(N)π([OZ ]) = [H2k(π
∗(F.))]− [H2k−1(π

∗(F.))]

= ([Kα]− [Iβ])− ([Kβ]− [Iα])

= [π∗F2k]− [π∗F2k−1] = 0

in G0(Z).
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Since A is Cohen-Macaulay, the Grothendieck group of bounded A-free com-

plexes with support in {m} is generated by finite free resolutions of modules of

finite length and finite projective dimension by Proposition 2 in [34]. Therefore,

by Theorem 6.1, there exist A-modules N1 and N2 of finite length and of finite

projective dimension such that, letting A. (resp. B.) be a finite A-free resolution

of N1 (resp. N2), we have

θ(N)g ⊗ 1 = χ(A.⊕ B.(−1))g ⊗ 1 = χ(A.)g ⊗ 1− χ(B.)g ⊗ 1

for any g : Y ′ → SpecA.

In particular, we have

χ(A.)idSpecA
− χ(B.)idSpecA

= χ(A.⊕ B.(−1))idSpecA
= θ(N)idSpecA

since G0(Spec(A/m)) ≃ Z. Hence, for any finitely generated A-module M , we

have

θA(N,M) = θ(N)idSpecA
([M ])

= χ(A.)idSpecA
([M ])− χ(B.)idSpecA

([M ])

= χA.([M ])− χB.([M ])

= χA(N1,M)− χA(N2,M).

Here, note that

0 = θA(N,A) = χA(N1, A)− χA(N2, A) = ℓ(N1)− ℓ(N2).

□
In [3] and [29], it is proved that the theta pairing vanishes on cycles which are

algebraic equivalent to 0. The following corollary recovers this fact since algebraic

equivalence implies numerical equivalence. It will be discussed in Remark 6.4 in

detail.

The following corollary contains Theorem 1.1.

Corollary 6.2. Let (A,m) be a d-dimensional hypersurface with isolated sin-

gularity. Assume d > 0. Assume that there exists a resolution of singularity

π : Z → SpecA such that Z\π−1(Spec(A/m)) is isomorphic to SpecA\Spec(A/m).

(1) Suppose that α, β ∈ G0(A). If one of α and β is numerically equivalent to

0 in the sense of [23], then θA(α, β) = 0.

(2) If G0(A)Q = Q[A] (or equivalently Ai(A)Q = 0 for i < d), then θA(M,N) =

0 for any finitely generated A-modules M and N .
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Proof. First, we shall prove (1). We assume that α is numerically equivalent to 0

in the sense of [23]. We shall prove that θA(N,α) = 0 for any finitely generated

A-module N . By Theorem 6.1, there exist bounded finite A-free complexes A. and
B. with finite length homologies such that

θA(N,α) = θ(N)idSpecA
(α)

= χ(A.)idSpecA
(α)− χ(B.)idSpecA

(α)

= χA.(α)− χB.(α).

It is equal to 0 since α is numerically equivalent to 0.

Next, we shall prove (2). Recall that, for a Noetherian local domain (A,m),

G0(A)Q = Q[A] if and only if χG.([T ]) = 0 for any finitely generated A-module T

with dimT < dimA and any bounded finite free A-complex G. with finite length

homologies. For a given A-module M , letting r be the rank of M , we have an

exact sequence of the form

0 −→ Ar −→M −→ T −→ 0,

where T is an A-module with dimT < dimA. Then, we have

θA(N,M) = θA(N,Ar) + θA(N,T ) = χA.([T ])− χB.([T ]) = 0.

For Chow groups of local rings divided by numerical equivalence, see the following

remark. □

Remark 6.3. For a Noetherian local ring (A,m), Ai(A)Q = 0 for i = 0, 1, . . . , s if

and only if χG.([M ]) = 0 for any finitely generated A-module M with dimM ≤ s

and any bounded A-free complex G. with support in {m}, see [23] for details.

Remark 6.4. For cycles of a local ring A, algebraic equivalence in Definition 3.2

in [3] implies numerical equivalence as follows.

Let A be a local ring which is essentially of finite type over an algebraically

closed field k. Assume that k is isomorphic to the residue class field of A. Let B

be an integral domain that is smooth of finite type over k. Let mℓ be a maximal

ideal of B and

iℓ : Spec(B/mℓ) −→ SpecB

be the closed immersion for ℓ = 1, 2. We define

i∗ℓ : G0(A⊗k B) −→ G0(A)

by

i∗ℓ([M ]) =
∑
j

(−1)j [TorBj (M,B/mℓ)].
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Cycles of the form

i∗1(γ)− i∗2(γ)

generates algebraic equivalence, where γ ∈ G0(A⊗k B).

We shall prove that the above cycle is numerically equivalent to 0. Let F. be a

bounded finite A-free complex with finite length homologies. We have

χF.(i
∗
1(γ)− i∗2(γ)) = i∗1χF.⊗kB(γ)− i∗2χF.⊗kB(γ)

where i∗ℓ : G0(B) → G0(k) in the right-hand side is defined by

i∗ℓ([L]) =
∑
j

(−1)j [TorBj (L,B/mℓ)].

It is easy to see

i∗ℓχF.⊗kB(γ) = rankB χF.⊗kB(γ)

for ℓ = 1, 2. Thus, i∗1χF.⊗kB(γ) = i2χF.⊗kB(γ).

7. Various cases of Conjecture 3.1

In this Section we prove various cases of Conjecture 3.1. Some of these results

are already known but we provide an alternate proof. Some, such as the positive

semi-definiteness of θA in dimension 3 (Theorem 7.9) are new.

Remark 7.1. By Theorem 6.1 and Proposition 3.3, Conjecture 3.1, part (1), (2)

and (3) are true in the quasi-homogeneous case. This recovers a result of Moore-

Piepmeyer-Spiroff-Walker [29]. We just need to note that the blow-up of SpecA

at the maximal ideal gives a resolution of singularity in this case.

Let (A,m) be a d-dimensional hypersurface with an isolated singularity. Assume

that there exists a resolution of a singularity π : Z → SpecA such that Z \
π−1(Spec(A/m)) is isomorphic to SpecA \ Spec(A/m). Assume that d is even. If

Conjecture 3.2 (1) (a) is true, then θ(M,N) = 0 by Theorem 6.1 for any finitely

generated A-modulesM and N , that is, Conjecture 3.1(1) is true. We remark that

Conjecture 3.1(1) is true in the case of characteristic zero by Buchweitz-Straten

[2].

Lemma 7.2. Let A be a local ring and N be a finitely generated module and l ≥ 0

be an integer. Then in G0(A) one has

(−1)l[Ωl(N)∗] =

l∑
i=0

(−1)i[ExtiA(N,A)].

Proof. This is an easy induction on l. □
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For an element α ∈ G0(A), let dim(α) be the smallest integer c such that α

has a representation by formal sum (with coefficients) of modules of dimensions at

most c.

Lemma 7.3. Suppose that A is Gorenstein of dimension d and N is of codimen-

sion a and codepth b. Then:

dim((−1)b[Ωb(N)∗]− (−1)a[N ]) < d− a

Proof. For each minimal prime ideal p of N with dimA/p = d− a, we have

ℓAp(Np) = ℓAp(Ext
a
A(N,A)p)

which shows dim([N ]−[ExtaA(N,A)]) < d−a. Here, remark that b ≥ a. Lemma 7.2

applies to get the desired conclusion, since the support of ExtiA(N,A) evidently

has dimension less than d− a for i ̸= a. □

Proposition 7.4. Let dimA = 6. Then the statements (1), (3) of Conjecture 3.1

are equivalent.

Proof. Clearly (1) implies (3). Clearly, it is enough to show (1) for non-free MCM

modules. Let M be such a module. Then take a Bourbaki sequence ([1]):

0 → F →M → I → 0

Since d = 6, we know that A is a UFD by [13, Lemmata 3.16, 3.17]. We may

assume that height I ≥ 2 and dimA/I ≤ 4. But counting depths shows that

depth I ≥ 5, and thus depthA/I = dimA/I = 4. Hence it will be enough to

prove θA(A/I,A/J) = 0 for any height two ideals I, J whose quotients are Cohen-

Macaulay.

Now let M = Ω2(A/I) and N = Ω2(A/J). By [5, 4.2, 4.3] we know:

θA(M,N) + θA(M∗, N∗) = 0

By Lemma 7.3 we know that [M∗] = [A/I] +α and [N∗] = [A/J ] + β in G0(A),

with dimα and dimβ at most three. Evidently, we also know [M ] = [A/I] and

[N ] = [A/J ] in G0(A). Since θ
A vanishes when one of the arguments has dimension

at most three, it then follows that:

θA(A/I,A/J) + θA(A/I,A/J) = 0

as we wanted. □

Corollary 7.5. Let A be an excellent local hypersurface with an isolated singularity

containing a field of characteristic 0 and suppose dimA ≤ 6. Then Conjecture

3.1(3) holds.
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Conjecture 3.1(5) is known in the standard graded case over a field of charac-

teristic 0, see [29]. We shall establish it for d = dimA ≤ 3.

Proposition 7.6. If d = 1, Conjecture 3.1(5) is true.

Proof. Let p1, p2, ..., pn be the minimal prime ideals of A. Then G0(A)Q has a basis

consisting of the classes [A/p1], ..., [A/pn]. In particular, since A has dimension 1

and is reduced, [A] =
∑n

1 [A/pi]. Let αij = θA(A/pi, A/pj). For i ̸= j, pi + pj is

m-primary, and it is not hard (using the resolution of A/pi, noting that each pi is

a principal ideal) to see that αij = ℓ(A/(pi + pj)) > 0. Since θA(A,A/pi) = 0, we

must have αii = −
∑

j ̸=i αij . Now, for a module M , [M ] =
∑
ai[A/pi], here ai is

the rank of Mpi . Then

θA(M,M) =
∑
i,j

αijaiaj = −
∑
i<j

αij(ai − aj)
2 ≤ 0.

Clearly, the equality happens iff a1 = a2 = · · · = an. Then [M ] = a1[A], so it is

zero in G0(A)Q. In this case, −θA is a positive definite form on G0(A)Q. □

Next, we look at dimension 3. The proof here follows and improves the main

result of [7]. The divisor class map as described in Section 2 will play an important

role. We start with a more general result:

Theorem 7.7. Let (A,m) be an abstract local hypersurface of dimension 3. Let

M,N be reflexive A-modules which are locally free on UA = SpecA − {m}, the

punctured spectrum of A. Suppose HomA(M,N) is a maximal Cohen-Macaulay

A-module. Then θA(M∗, N) ≤ 0. Furthermore, equality happens if and only if M

or N is free.

Proof. First, there is no loss of generality by passing to the completion, so we will

assume A is complete. So A ∼= S/(f), where S is a regular local ring of dimension

4.

Suppose that HomA(M,N) is maximal Cohen-Macaulay. Then by [6, Lemma

2.3] we have Ext1A(M,N) = 0. One has the following short exact sequence (see

[15, 3.6] or [21], [20]):

(7.1) TorA2 (M1, N) → Ext1A(M,A)⊗A N → Ext1A(M,N) → TorA1 (M1, N) → 0

Here M1 is the cokernel of F ∗
1 → F ∗

2 , where · · · → F2 → F1 → F0 → M →
0 is the minimal free resolution of M . Since Ext1A(M,N) = 0, it follows that

TorA1 (M1, N) = 0.

The change of rings long exact sequence for Tor ([17]) yields a surjection

TorS3 (M1, N) ↠ TorA3 (M1, N).
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We claim that TorSi (M1, N) = 0 for i ≥ 3. As N is reflexive we have depthN ≥ 2.

It follows that as an S-module, the depth of N is also at least 2, so pdS N ≤
4− 2 = 2 and our assertion follows.

It follows that TorA3 (M1, N) = 0. Also, TorAi (M1, N) becomes periodic of period

2 after i ≥ 2. So θA(M1, N) = ℓ(TorA2 (M1, N)) ≥ 0.

Finally, we have by definition a complex:

(7.2) 0 →M∗ → F ∗
0 → F ∗

1 → F ∗
2 →M1 → 0

Since Ext1A(M,A) is of finite length, we have [M∗] = −[M1] in G0(A)Q, and as N

is locally free on UA it follows that θA(M∗, N) = −θA(M1, N) ≤ 0.

Now we prove the last claim. Looking at the proof, we see that equality

holds if and only if TorA2 (M1, N) = 0. As TorA1 (M1, N) = 0, it now follows

that TorAi (M1, N) = 0 for all i > 0. The long exact sequence (7.1) implies

Ext1A(M,A) = 0, thus M is MCM. Since (7.2) is exact, M∗ is third syzygy of

M1, so TorAi (M
∗, N) = 0 for all i > 0. By the depth formula (Proposition 2.5 in

[17]) one has

depthM∗ + depthN = depthA+ depthM∗ ⊗A N

Thus depthM∗ ⊗A N = depthN ≥ 2. But the canonical map M∗ ⊗A N →
HomA(M,N) has finite length kernel and cokernel, so it must be an isomorphism.

We conclude that depthN = 3, i.e., N is also MCM.

As shown above, TorAi (M
∗, N) = 0 for all i > 0, so either M∗ or N has finite

projective dimension by [18, Theorem 1.9] or [28, 1.1]. But since they are both

MCM, one of them must be free. □

Lemma 7.8. Let A be a local hypersurface of dimension 3 with an isolated singu-

larity andM , N be reflexive A-modules. Let [I], [J ] ∈ Cl(A) represent c1([M ]), c1([N ]) ∈
A2(A) respectively. Then, we have θ

A(M,N) = θA(I, J). Furthermore θA(M,N) =

−θA(M,N∗).

Proof. It is not hard to see that in G0(A)Q, the reduced Grothendieck group with

rational coefficients, we have an equality [N ] − [J ] =
∑
ai[A/Pi] such that each

Pi ∈ SpecA has height at least 2 (see the proof of 3.1 in [7] ).

The first half will be proved by showing that θA(M,A/P ) = 0 for each P ∈
SpecA such that heightP = 2.

By [19, Theorem 1.4] one can construct a Bourbaki sequence for M :

0 → F →M → I → 0
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such that I ̸⊆ P . Obviously θA(M,A/P ) = θA(I,A/P ). But A/I ⊗A A/P has

finite length, and dimA/I + dimA/P ≤ 3 = dimA. By [16], θA(A/I,A/P ) = 0.

Since θA(I, A/P ) = −θA(A/I,A/P ), we have θA(M,A/P ) = 0.

The last statement follows from [N∗]−[J∗] =
∑
bi[A/Pi], [J ]+[J∗] =

∑
ci[A/Pi]

in G0(A), where each Pi ∈ SpecA has height at least 2. □

The following contains Theorem 1.2 in the introduction.

Theorem 7.9. Let A be a local hypersurface with an isolated singularity and

dimA = 3. LetM be a finitely generated A-module. Then θA(M,M) ≥ 0. Equality

holds if and only if c1([M ]) = 0 in A2(A).

Proof. By taking a high syzygy we can assume thatM is maximal Cohen-Macaulay.

Let [I] ∈ Cl(A) represent c1([M ]) ∈ A2(A). Then [I∗] represents c1([M
∗]). Since

HomA(I, I) ∼= A we know by Theorem 7.7 and Lemma 7.8 that θA(M,M) ≥ 0,

with equality if and only if I is free. This condition implies c1([M ]) = 0. □

8. Some corollaries of Theorem 7.9

In this section, we give some corollaries of Theorem 7.9. The following contains

Corollary 1.3 in the introduction.

Corollary 8.1. Let A be a local hypersurface with an isolated singularity and

dimA = 3. Assume that the assumptions of Theorem 6.1 hold. Let M be a finitely

generated, torsion A-module. The following are equivalent:

(1) [M ] is numerically equivalent to 0 in G0(A).

(2) θA(M,M) = 0.

(3) c1([M ]) = 0 in A2(A).

Proof. The equivalence between (2) and (3) follows from Theorem 7.9. The con-

dition (1) implies (2) by Corollary 6.2.

We shall prove (3) ⇒ (1). Consider

τ([M ]) = τ3([M ]) + τ2([M ]) + τ1([M ]) + τ0([M ]),

where τi([M ]) ∈ Ai(A)Q. (See Section 2.) By [23, Proposition 3.7], we know

τi([M ]) = 0 in Ai(A)Q for i = 0, 1. By the equation (2.1) and the assumption, we

have

τ2([M ]) = c1([M ]) = 0

in A2(A)Q. Since M is a torsion module, τ3([M ]) = 0. Therefore, [M ] is 0 in

G0(A)Q by the commutativity of the diagram (2.2). Since G0(A) is torsion-free,

[M ] itself is numerically equivalent to 0. □
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It is worth pointing out that one can now compute the Grothendieck group mod-

ulo numerical equivalence for most isolated hypersurface singularities in dimension

three.

Corollary 8.2. Let A be a local hypersurface with an isolated singularity and

dimA = 3. Assume that the assumptions of Theorem 6.1 hold. Then the following

hold:

(1) The natural map A2(A) → A2(A) is an isomorphism.

(2) The class group of A is finitely generated and torsion free.

(3) G0(A) ≃ Z⊕A2(A).

Proof. First, we shall prove (1). Let I be a reflexive ideal of A. Assume that the

cycle [Spec(A/I)] in A2(A) is numerically equivalent to 0, that is, [Spec(A/I)] = 0

in A2(A). Consider

τ([A/I]) = [Spec(A/I)] + τ1([A/I]) + τ0([A/I]).

By [23, Proposition 3.7], we know τi([A/I]) = 0 in Ai(A)Q for i = 0, 1. Then, by

the commutativity of the diagram (2.2), [A/I] in G0(A) is numerically equivalent

to 0. Then, by Corollary 8.1, we have

[Spec(A/I)] = c1([A/I]) = 0

in A2(A).

Statement (2) follows from (1) since A2(A) is torsion-free.

Next, we shall prove (3). At first, we shall construct a map

G0(A) −→ Z⊕A2(A).

The map

rank : G0(A) −→ Z

which is taking the rank of a module induces

rank : G0(A) −→ Z.

(To see this, consider the Koszul complex of a system of parameters of A. Then,

we know that any cycle of positive rank in G0(A) is never numerically equivalent

to 0.) Since the canonical module ωA is isomorphic to A in this case, the map

c1 ⊗ 1 : G0(A)Q → A2(A)Q
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coincides with τ2 by the equation (2.2). Then, we have the following commutative

diagram:

G0(A)
c1−→ A2(A)

↓ ↓
G0(A)Q

τ2−→ A2(A)Q

↓ ↓
G0(A)Q

τ2−→ A2(A)Q

Since G0(A) is torsion-free, we have the induced map c1 that makes the following

diagram commutative:

G0(A)
c1−→ A2(A)

↓ ↓
G0(A)

c1−→ A2(A)

We define a map

ψ : G0(A) −→ Z⊕A2(A)

by ψ([M ]) = (rank([M ]), c1([M ])). Since ψ([A]) = (1, 0) and ψ([A/I]) = (0, [Spec(A/I)])

for each reflexive ideal I of A, the map ψ is surjective. Since ψ ⊗ 1 concides with

the isomorphism

τ : G0(A)Q −→ A∗(A)Q

and G0(A) is torsion-free, ψ is injective. □

By Theorem 7.9 and Corollary 8.2, if A is three dimensional isolated hypersur-

face singularity with desingularization, θA is a positive definite form onG0(A)Q/Q[A] =

Cl(A)Q.
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