THE DIVISOR CLASS GROUPS AND THE GRADED
CANONICAL MODULES OF MULTI-SECTION RINGS

KAZUHIKO KURANO

ABSTRACT. We shall describe the divisor class group and the graded canonical
module of the multi-section ring T'(X; D1,...,Ds) defined in (1.1) below for a
normal projective variety X and Weil divisors Dy, ..., Dy on X under a mild
condition. In the proof, we use the theory of Krull domain and the equivariant
twisted inverse functor due to Hashimoto [4].

1. INTRODUCTION

We shall describe the divisor class groups and the graded canonical modules of
multi-section rings associated with a normal projective variety.

Suppose that Z, Ny and N are the set of integers, non-negative integers and
positive integers, respectively.

Let X be a normal projective variety over a field k& with the function field k(X).
We always assume dim X > 0. We denote by C''(X) the set of closed subvarieties
of X of codimension 1. For V € C*(X) and a € k(X)*, we define as

ordy(a) = Loy, (Oxv/aOxyv) — Loy, (Oxv/BOxv)
divy(a) = Z ordy(a) -V € Div(X) = @ Z-V,
)

VeCl(X) vVeCl(X

where a and 8 are elements in Ox y such that a = /3, and {o, () denotes the
length as an Oy y-module.

We call an element in Div(X') a Weil divisor on X. For a Weil divisor D = > nyV,
we say that D is effective, and write D > 0, if ny, > 0 for any V € C*(X). For a
WEeil divisor D on X, we put

H(X,0x(D)) = {a € k(X)* | divx(a) + D > 0} U{0}.
Here we note that H°(X, Ox (D)) is a k-vector subspace of k(X).
2010 Mathematics Subject Classification. Primary: 14C20, Secondary: 13C20.

This work was supported by KAKENHI 21540050.
1



Let Dy, ..., Ds be Weil divisors on X. We define the multi-section rings T'(X; Dy, . .., Dy)
and R(X; Dy, ..., D) associated with D, ..., Dy as follows:

(1.1) T(X;Dy,...,D,)
= P HX OxO D))t tre CR(X)[t, ... L]

= P HXO0xO mD) -t CR(X)[E .t

We want to describe the divisor class groups and the graded canonical modules of
the above rings.
For a Weil divisor F' on X, we set

Mp= @ H(X,0x() miD;+ )t C k(X[ ... 1],

that is, M is a Z*-graded reflexive R(X; Dy, ..., Dy)-module with
[MF](nl 7777 ns) — HO(X7 OX(anDz‘i‘F))t?l t?s

We denote by M- the isomorphism class of the reflexive module M in CI(R(X; Dy, ..., Dy)).
For a normal variety X, we denote by C1(X) the class group of X, and for a Weil

divisor F on X, we denote by F the residue class represented by the Weil divisor F

in CI(X).
In the case where C1(X) is freely generated by Dy, ..., D;, thering R(X; Dy, ..., D,)

is usually called the Cox ring of X and denoted by Cox(X).

Remark 1.1. Assume that D is an ample divisor on X. In this case, T(X; D)
coincides with R(X; D), and it is a Noetherian normal domain by a famous result of
Zariski (see Lemma 2.8 in [6]). It is well-known that C1(T'(X; D)) is isomorphic to
CI(X)/ZD. Mori [8] constructed a lot of examples of non-Cohen Macaulay factorial
domains using this isomorphism.

It is well-known that the canonical module of T'(X; D) is isomorphic to M, , and

the canonical sheaf wx coincides with M\K/X Watanabe proved a more general result
in Theorem (2.8) in [12].

We want to establish the same type of the above results for multi-section rings.
For R(X; Dy,...,D;), we had already proven the following:

Theorem 1.2 (Elizondo-Kurano-Watanabe [2], Hashimoto-Kurano [5]). Let X be
a normal projective variety over a field such that dim X > 0. Assume that D, ...,
D, are Weil divisors on X such that ZDy + --- + ZD, contains an ample Cartier
divisor. Then, we have the following:

(1) R(X;Dy,...,Ds) is a Krull domain.

(2) The set {Py | V € CYX)} coincides with the set of homogeneous prime

ideals of R(X; D1, ..., Ds) of height 1, where Py, = M_y,.
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(8) We have an ezact sequence

0 — Y ZD; — CI(X) - CI(R(X; Dy, ..., D,)) — 0

such that p(F) = Mp.
(4) Assume that R(X; D1, ..., Ds) is Noetherian. Then wr(x.p,
phic to My as a Z°-graded module. Therefore, wr(x;p,

free if and only if Kx € >, ZD; in C1(X).

,,,,, D,) 1S 1somor-
Ds) 18 R(X, Dl, ey DS)-

.....

Suppose that CI(X) is finitely generated free Z-module generated by Dy, ..., D,.
By the above theorem, the Cox ring Cox(X) is factorial and

wCOX(X) = MKX = COX(X)(K_X),
where we regard Cox(X) as a Cl(X)-graded ring.

The main result of this paper is the following:

Theorem 1.3. Let X be a normal projective variety over a field k such that d =
dim X > 0. Assume that D, ..., D, are Weil divisors on X such that NDy +---+
ND, contains an ample Cartier divisor. Put

U={j|trdeg,T(X;D,....Dj_1,Dj41,...,Ds) =d+s—1}.
Then, we have the following:
(1) T(X; Dy,...,Ds) is a Krull domain.
(2) The set
{Qv Vel (X)}u{Q;|jeU}
coincides with the set of homogeneous prime ideals of T(X; D1,...,Ds) of
height 1, where

QV:PVmT<X;D1,...,Ds>

and

Q; = @ T(X; D1y, Ds)ny..ne)-

N1yeeny nsENp

(3) We have an exact sequence
0— > ZD; — CI(X) -5 CT(X; Dy,...,Dy)) — 0
Jgu
such that q(F) = Mp Ok(X)[t1,... .t {t;' | j € U}].

(4) Assume that T(X; Dy, ..., Ds) is Noetherian. Then wr(x.p,
phic to

Dy) 18 180mor-

.....

MKX mtltsk(X)[thatm{tj_l |j¢ U}]

as a Z°-graded module. Further, we have



Therefore, wr(x;p,.,...n,) 15 T(X; Dy, .., D)-free if and only if

Kx+Y Die> ZD;

Jeu

.....

in C1(X).

Here, tr.deg,T" denotes the transcendence degree of the fractional field of 7" over

a field k.

Remark 1.4. With notation as in the previous theorem, ht(Q);) = 1 if and only if
7 € U. This will be proven in Lemma 3.3. Since ND; + - - - +NJDy contains an ample
Cartier divisor, @); # (0) for any j. Therefore, ht(Q;) > 2 if and only if j ¢ U.

2. EXAMPLES

Example 2.1. Let X be a normal projective variety with dim X > 0. Assume that
all of D;’s are ample Cartier divisors on X. Then, T'(X; Dy,..., Ds) is Noetherian
by a famous result of Zariski (see Lemma 2.8 in [6]).

Assume that s = 1. By definition, U = () since dim X > 0. By Theorem 1.3
(3), CI(T(X; Dy)) is isomorphic to CI(X)/ZD,. By Theorem 1.3 (4), wr(x.p,) is
T(X; D;)-free module if and only if

Kx € ZD;

in CI(X) (see Remark 1.1).

Next, assume that s > 2. In this case, U = {1,2,...,s}. By Theorem 1.3 (3),
CI(X) is isomorphic to Cl(T(X; D1, ..., D;)). By Theorem 1.3 (4), wr(x;p,....n,) is
T(X; Dy, ..., D,)-free module if and only if

Kx=-Dy—--— D,

in ClI(X). When this is the case, — Ky is ample, that is, X is a Fano variety.

Example 2.2. Set X = P™ x P". Let p; (resp. p2) be the first (resp. second)
projection.
Let H; be a hyperplane of P, and H, a hyperplane of P". Put A; = p; ' (H;) for
i = 1,2. In this case, CI(X) = ZA, +ZA; ~ 7% and Kx = —(m+1)A; — (n+1)A,.
We have
COX(X) = R(X, Al, AQ) = k[xo,xl, e Ty Yo, Y1y - - - ;yn]

Cox(X) is a Z*-graded ring such that x;’s (resp. y;’s) are of degree (1,0) (resp.
(0,1)).

Let a, b, ¢, d be positive integers such that ad — bc # 0. Put D; = aA; 4+ bAy
and Dy = cA; + dAy. Then, both D; and Dy are ample divisors. Consider the
multi-section rings:

R(X; D1, Dy) = @pgenCox(X)p(an)+qtca
T(X; D1, Da) = @pg20C0X(X)p(a,b)+q(c.d)

Here, both R(X; Dy, D) and T'(X; Dy, Ds) are Cohen-Macaulay rings.
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By Theorem 1.2 (4), we know

R(X; Dy, Ds) is a Gorenstein ring <= Kx € ZD; + ZD, in C1(X)
<~ (m+1,n+1)¢€Z(a,b)+ Z(c,d).

In this case, we have U = {1,2} since all of a, b, ¢ and d are positive. By
Theorem 1.3 (4), we have

T(X; Dy, Ds) is a Gorenstein ring <= Ky + Dy + Dy =0 in CI(X)
< m+l=a+candn+1=0>0+d.

Example 2.3. Let a, b, ¢ be pairwise coprime positive integers. Let p be the kernel
of the k-algebra map S = k[z,vy, 2] — k[T] given by z + T y+s T®, 2+ T¢.

Let 7 : X — P = Proj(k[z,y, z]) be the blow-up at V. (p), where a = deg(z),
b = deg(y), ¢ = deg(z). Put E = 7" (V,(p)). Let A be a Weil divisor on X
satisfying 7*Op(1) = Ox(A). In this case, we have CI(X) = ZF + ZA ~ Z?, and
KX =F - (a+b+c)A

Then, we have

Cox(X) = R(X;—E,A) = Ri(p):=S[t™",pt,p?* p@t*, .. ] C 5[],
T(X;—E,A) = Ry(p):= Spt,pPt?,p®¢ .. c S[t.
By Theorem 1.2 (4), we have
wrym) = My = Ri(p)(Kx) = Ri(p)(=1,—a —b— o).
In this case, U = {1}. By Theorem 1.3 (4),

Wryp = My, Ntitak(X)[t, 657]
= wrip) Nhitak(X)[t, 157
= R.(p)(—1,—a—b—c)Ntitok(X)[t1, 157
= Rs(p)(—1,—a—b—rc).

Therefore, both of R.(p) and R,(p) are quasi-Gorenstein rings, that were first proven
by Simis-Trung (Corollary 3.4 in [11]). Cohen-Macaulayness of such rings are deeply
studied by Goto-Nishida-Shimoda [3].

Divisor class groups of ordinary and symbolic Rees rings were studied by Shi-
moda [10], Simis-Trung [11], etc.

3. PROOF OF THEOREM 1.3

In this section, we shall prove Theorem 1.3.

Throughout this section, we assume that X is a normal projective variety over a
field £ such that d = dim X > 0, and D1, ..., D, are Weil divisors on X such that
ND; 4+ -+ + ND; contains an ample Cartier divisor.

We need the following lemmta. They are well-known, but the author could not

find a reference.
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Lemma 3.1. Let G be an integral domain containing a field k. Let P be a prime
ideal of G. Assume that both tr.deg,G and tr.deg, G /P are finite.
Then, the height of P is less than or equal to

tr.deg, G — tr.deg, G/ P.

Proof. Assume the contrary. Then there exists a ring G’ which satisfies the following
five conditions:
e kC G CQG.
G’ is finitely generated (as a ring) over k.
tr.deg, G = tr.deg,G".
tr.deg,G/P = tr.deg,G'/(G' N P).
tr.deg, G — tr.deg,G/P < ht(G' N P).

However, using the dimension formula (e.g. 119p in [7]), we have

ht(G' N P) = tr.deg,G' — tr.deg,G'/(G' N P) = tr.deg,G — tr.deg, G/ P.

It is a contradiction. q.e.d.

Lemma 3.2. Let r be a positive integer. Let FY, ..., F,. be Weil divisors on X. Let
S be the set of all non-zero homogeneous elements of T(X; Fy,...,F.). Then the
following conditions are equivalent:

(1) There exist non-negative integers qi, ..., ¢, such that > ., q;F; is linearly
equivalent to a sum of an ample Cartier divisor and an effective Weil divisor.

(2) There exist positive integers q, ..., g such that >"._, ¢;F; is linearly equiv-
alent to a sum of an ample Cartier divisor and an effective Weil divisor.

(3) STHT(X; Fy,...,F)) = k(X[ ...t

(4) QT(X; Fy,..., F.)) = k(X)(t1,...,t.), where Q( ) denotes the field of frac-
tions.

(5) tr.deg, T(X; Fy, ..., F.) =dim X + 7.

Using Theorem 1.5.5 in [1], it is easy to see that T'(X; FY, ..., F,) is Noetherian if
and only if T'(X; F}, ..., F,) is finitely generated (as a ring) over the field H°(X, Ox).
Therefore, if T'(X; Fy, ..., F,) is Noetherian, then the condition (5) is equivalent to
that the Krull dimension of T'(X; Fi,..., F,) is dim X + r.

Proof. (2) = (1), and (3) = (4) = (5) are trivial.
First we shall prove (1) = (3). Suppose

iQiFiND+F7

i=1
where ¢;’s are non-negative integers, D is a very ample Cartier divisor and F' is an
effective divisor. We put

31) C =€ G HX O0xO nF +mD)t- -ty

- k(XMtl’ s 7t7“7t;t—‘,}1]'



We regard C' as a Z"-graded ring with

Then, we have
T(X;Fl,...,FT) = @ C(nl ..... ny,0)s

so T(X; Fy,...,F,)is asubring of C. Thus, S~'C is a Z""'-graded ring such that
STTX R, F) = P (ST )

Since Y, ¢;F; — D is linearly equivalent to an effective divisor F, there exists a
non-zero element a in

H'(X,0x(3_ aFi = D).

For any 0 # b € H*(X, Ox(D)),
(a8t (o)
is contained in S. Therefore, S™*C' contains (bt, 1)~ *. Hence, k(X) is contained in

S~1C. Since k(X) = (S7'C)o,..0), k(X) is contained in S™'T(X; Fy, ..., F,).

.....

and

Then, it is easy to see that t; € S~'C. Therefore, S~'C contains k(X)[t{, ..., .
Hence S™'T(X; F},. .., F,) coincides with k(X)[t5, ..., tF].
Next, we shall prove (5) = (2). Let D be a very ample divisor. Consider the ring

R(X;F,...,F. D).

First, assume that

H(X,0x() uiF; —vD)) #0

for some integers uy, ..., u,, v such that v > 0. By the assumption (5), there exists
positive integers u}, ..., ul. such that

HO(X, Ox(3_wiF)) #0.

Therefore we may assume that there exists positive integers uy, ..., u, and v such
that

H(X,0x() _u;F; —vD)) #0.

Here, we have
Z%‘Fz‘ =vD + (Z w; F; —vD).
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Therefore ), u; F; is the sum of an ample divisor vD and the divisor ), w;F; — vD
which is linearly equivalent to an effective divisor.

Next, assume that for any integers uq, ..., u, and v,
(3.2) H(X,0x() uiF; —vD)) =0
if v > 0. We put
P = @ R(XvFla 7F7”7D)(n1 ,,,,, np,m)
(n1,e.c,np,m)eZ+1
m>0

By the assumption (5), P is a prime ideal of R(X; F},..., F,, D) of height 1 by
Lemma 3.1. (Here, since D is an ample divisor, tr.deg,R(X;Fi,...,F,,D) =
dim X + r + 1. Note that P is an ideal of R(X; Fi,...,F,., D) by (3.2) above.
By (5), tr.deg, R(X; Fi,...,F,,D)/P = dim X + r.) However R(X; Fy,...,F,, D)
has no homogeneous prime ideal of height 1 that contains

HO(X7 OX(D))tT+1
by Theorem 1.2 (2). This is a contradiction. q.e.d.

Put A = k(X)[t{', ..., t5]) and B = k(X)[t1,...,t,]. Recall that Dy, ..., D, are
WEeil divisors on a normal projective variety X such that ND; +--- 4+ ND, contains
an ample Cartier divisor. We denote T'(X; Dy, ..., Dy) and R(X; Dy, ..., Ds) simply
by T and R, respectively.

Since

T =RNB,

T is a Krull domain. We have proven Theorem 1.3 (1).
By Theorem 1.2 (2), we have

R = (1 Re | NnA
VeCl(X)

A= () B&p
PENHP!(R)

where NHP'(R) is the set of non-homogeneous prime ideals of R of height 1.
It is easy to see Rp = Tpnr for P € NHP'(R). Therefore, we have

A = ﬂ Tme .

PeNHP!(R)

Since Tpqr is a discrete valuation ring, P N7 is a non-homogeneous prime ideal of
T of height 1.
For V € CY(X), put Qv = Py NT. Then, Rp, = Ty, , since y_,ND; contains an
ample divisor. Therefore )y is a homogeneous prime ideal of T" of height 1.
8



On the other hand, we have Q; = T'Nt;B(;,) and T, C By,). Note that

B=An(()Bu)):

j=1
Then, we have
T = RNB
(3.3) = (1 Bn |NANB
VeCl(X)
- m TQV N ﬂ TPOT N (m B(t])> .
VeCl(X) PeNHP!(R) Jj=1
Put
T, = @ XOX an Nt ?Jllt;lfll"'t?s-
(nl,...,nj_l,nj+1 ..... TLS)GNOS 2753

We need the following lemma.

Lemma 3.3. With notation as above, the following conditions are equivalent:

(1) To; = By,).-

(2) The height of Q; is 1.

(3) The height of Q; is less than 2.

(4) j € U, that is, tr.deg,T; =d+ s — 1.

Proof. By Lemma 3.2, we have Q(T) = Q(B). It is easy to see that B, is a
discrete valuation ring. Since (); is a non-zero prime ideal of a Krull domain 7', the
equivalence of (1), (2) and (3) are easy.

Here, we shall prove (1) = (4). Note that 7'/Q; = T;. Then, we have

Q(T)) = To;/QiTa; = By /(L) By = K(X)(tr, - tia, L, -5 L)
The implication (4) = (3) immediately follows from
ht(Q;) < tr.deg, T’ — tr.deg,(T;) = 1.
This inequality follows from Lemma 3.1 and the fact T; = 7/Q);. q.e.d.
By (3.3), Lemma 3.3 and Theorem 12.3 in [7], we know that
{QvVed(X)pu{Q;|jeU}
is the set of homogeneous prime ideals of T" of height 1, and
{PNT|PeNHP(R)}

is the set of non-homogeneous prime ideals of T" of height 1. Further we obtain

T=| () To | N (| Teor m(ﬂTQ]).

VeCl(X) PENHP! (R) Jjeu
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The proof of Theorem 1.3 (2) is completed.

Let
DiviX)= @ z-Vv
Vecl(x)
be the set of Weil divisors on X. Let

HDiv(T) = [ €D Z-Spec(T/Qv) @<@Z-Spec<T/Qj))

VeCi(X) jeu
be the set of homogeneous Weil divisors of Spec(7').
Here, we define
¢ : Div(X) — HDiv(T)

by ¢(V) = Spec(T/Qy) for each V € C'(X). Then, it satisfies the following:

e For cach a € k(X)*, we have

¢(divx(a)) = divy(a) € €D Z-Spec(T/Qv) C HDiv(T).
Veol(X)
o If j € U, then
divy(t;) = Spec(T'/Q;) + ¢(D;).
o If j £ U, then
divr(t;) = ¢(D;).
They are proven essentially in the same way as in pp631-632 in [2]. Then, we have
an exact sequence
0 — Y ZD; — CI(X) — CIT) — 0
JEU

such that ¢(F) = ¢(F) in CI(T). Here, remember that C1(7T') coincides with HDiv(T)
divided by the group of homogeneous principal divisors (e.g., Proposition 7.1 in
Samuel [9]). B

It is easy to see that the class of the Weil divisor ¢(F') corresponds to the isomor-
phism class of the reflexive module

Mg N (ﬂ TQj> =MpN AN (ﬂ TQ].)
jeu jeu
= MpOk(X)[t,. ..t {t;" | j € U}
The proof of Theorem 1.3 (3) is completed.

Remark 3.4. It is easy to see
t 4% Mpys a,p; = Mr
for any integers dy, ..., ds;. Therefore, we have
Mp O tf -tk (X)[t, .. b, {671 | ¢ U}

= ¢t (Mpos ap, VRt b {5 15 € U
10



Hence,
Mg (8-t k(X)) [ty e, {57 | 5 ¢ UY]

is isomorphic to

(3.4) Mpis,ap, VEX)[t -t {51 [ 5 € U}
as a T-module. Note that this is not an isomorphism as Z°-graded modules. The
isomorphism class which the module (3.4) belongs to coincides with ¢(F' + ). d; D;).

In the rest, we assume that 7" is Noetherian. We shall prove that wy is isomorphic
to

MKX Nty tsk:(X)[tly - atsv{tj_l | j g U}]
as a Z°-graded module. (Suppose that it is true. If we forget the grading, it is
isomorphic to

My is,p, VE(X)[tr, ...t {7 | 5 € U}

by Remark 3.4, that is corresponding to ¢(Kx + >, D;) in CI(T'). Therefore, we
know that wy is T-free if and only if

Kx+Y D;e> ZD;
i JgU
in C1(X).)
Put X’ = X \ Sing(X). We choose positive integers ai, ..., as and sections

f17 ce ft S HO(X, Zz azDz) such that

e > .a;D; is an ample Cartier divisor,

o X'=U;D(fk), and

e all of the D;’s are principal Cartier divisors on D, (fy) for k=1,... t.

Put W={neZ|n >0ifiecU}. Put D} = D;|x for i = 1,...,s. Consider
the morphism

Y = Specy. @ (’)X/(Z n D)t -t | T X

neWw 7
Further, we have the natural map
€:Y — Spec(T).
The group G?, naturally acts on Spec(7') and Y, and trivially acts on X’. Both 7

and & are equivariant morphisms.

Claim 3.5. There exists an equivariant open subscheme Z of both Y and Spec(T')
such that

e the codimension of Y\ Z in'Y is bigger than or equal to 2, and

e the codimension of Spec(T') \ Z in Spec(T) is bigger than or equal to 2.

Proof. For u € U, there exist integers ¢y, ..., ¢s such that
o H'(X,0x(%; ciuDi)) #0,
® C,, = —ay, and

e ¢, >0ifi#u.
11



In fact, if u € U, there exist positive integers q1, ..., qu—1, Qus1, - - -, qs such that
> @D

is a sum of an ample divisor D and a Weil divisor F' which is linearly equivalent to

an effective divisor by Lemma 3.2. Then,

H(X,0x(q(Y_ q:Di) — auD,) = H(X,Ox(q(D + F) — a,Dy) # 0
for ¢ > 0.
For each u € U, we set
(D1ay -+, bsu) = (Cruy - -+ Csu) + (a1, ..., ay).

Here, note that b,, = 0 and b;, > 0 if 7 # w.
We choose

0# gu € H'(X,0x () D))
for each u € U.
Consider the closed set of Spec(T") defined by the ideal J generated by

{fity -t | k=1,...,t}
and
(ot -t [k =1, b5 we U}

By Theorem 1.3 (2), we know that the height of J is bigger than or equal to 2
since there is no prime ideal of T" of height one which contains J.

We choose dy; € k(X)* satisfying

H(Di(fi), Ox(Dy)) = di H*(D+(fi), Ox)

for each k and 1. Then

(3.5) Y = U7r (D4 (fr)) and 7 (Do (fi)) = Spec(Cy),

where
Cr = H(Dy(fi), Ox)duats, .., dists, {(disty) ™ | 5 ¢ UYL
We put
Z = Spec(T)\ V(J).
Then we have

(3.6) Z = U Spec (T[(fut{" -~ -t2)~ {U Spec (T [(gufrti - - -tﬁsu)—l])}] .

k=1 uelU
Here, we have

(37) Tty t2) 7] = H(D4(fo), Ox)(diata) ™, (dists)™]

= Ck[(HWkﬂj)) J-

Jjeu
12



On the other hand,
T((gufut? - £2) 7]

(n)€zs
Ny >0

= @ R[(fkttlll T t(;s)_la (gufktllnu T tgsu)_l](nl ..... ns)

(n)ezs
Ny >0

= Ci[{(disty) ™" [ 5 # ubs (gufuty™ - 12) 7).
Let (i, be an element in H°(D(fi), Ox) such that

gufktlilu e tl;su = ﬁku(dkltl)blu e (dksts)bsu
for k=1,...,t and u € U. Then,

-1

(3.8)  Ckl{(dist;) ™" |5 # ub, (gufitt™ -~ t2) ™ = Cil| Bru H(dkjtj) J-
i

By (3.5), (3.6), (3.7) and (3.8), we know that Z is an open subscheme of Y. The
ideal of C} generated by

H(dkjtj) and Bku H(dm%) uelU
jeu jeU
i#u
is the unit ideal or of height two. (If U = (), then Z = Y by the construction. If
U = {u} and if By, is a unit element, then this ideal is the unit. In other cases,
this ideal is of height 2.) Therefore, the codimension of Y \ Z in Y is bigger than
or equal to two. q.e.d.

We can define the graded canonical module as in Definition 3.1 in [5] using the
theory of the equivariant twisted inverse functor [4].

By Claim 3.5 above and Remark 3.2 in [5], we have wr = HY(Y,wy). On the
other hand, we have

wy = /\QY/X’ ®7T*OX’<KX’)
— W*OX’(ZD:,)(_177_1) ®OY 7T*OX’<KX’)
= 70x()_ Dj+Kx)(-1,...,-1),

where (—1,...,—1) denotes the shift of degree (Theorem 28.11 in [4]).
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Then, we have

H(Y,wy) = H'(X', 77" Ox/ (Y D} + Kx/)(—1,...,-1)).
By the projection formula (Lemma 26.4 in [4]),
W*W*OX/(Z D; + KX’)(_L ce —1)
= (Ox (> Di+Ky) ®7r*oy> (—1,...,-1)

= |0x O _Di+Ex)o [ O0x(d_mD)| | (-1,...,-1)

new 7

= @OX/(Z(ni+1)D§+KX/) (=1,...,—1)

new 7
neW+(1,...,1) i

Therefore, we have

H(Y,wy) = H(X, @ 0x(_ nDj+Kx))

neW+(1,...,1)
= @ HO(X/,OX/(ZTLZD;+KX/))
neW+(1,...,1) i
neW+(1,...,1) 7

- MKX N Zfl o tsk(Xﬂtlu s 7t87 {t;l ‘ .] ¢ U}]
We have completed the proof of Theorem 1.3.

REFERENCES

[1] W. BRUNs AND J. HERZOG, Cohen-Macaulay rings, Cambridge Studies in Advanced Math-
ematics 39, Cambridge University Press, 1993.

[2] E. J. ELizoNDO, K. KURANO AND K.-1. WATANABE, The total coordinate ring of a normal
projective variety, J. Algebra 276 (2004), 625-637.

[3] S. GoTo, K. NISHIDA AND Y. SHIMODA, The Gorensteinness of symbolic Rees algebras for
space curves, J. Math. Soc. Japan 43 (1991), 465—-481.

[4] M. HASHIMOTO, Equivariant Twisted Inverses, in Foundations of Grothendieck Duality for
Diagrams of Schemes (J. Lipman, M. Hashimoto, eds.), Lecture Notes in Math. 1960, Springer
(2009), pp. 261-478.

[5] M. HasHIMOTO AND K. KURANO, The canonical module of a Coz ring, Kyoto J. Math. 51
(2011), 855-874.

[6] Y. Hu AND S. KEEL, Mori dream spaces and GIT, Michigan Math J. 48 (2000), 331-348.

[7] H. MATSUMURA, Commutative ring theory, Cambridge University Press, 1990.

14



[8] S. MORI, On affine cones associated with polarized varieties, Japan J. Math. 1 (1975), 301—
309.
[9] P. SAMUEL, Lectures on unique factorization domains, Tata Inst. Fund. Res., Bombay, 1964.
[10] Y. SHIMODA, The class group of the Rees algebras over polynomial rings, Tokyo J. Math. 2
(1979), 129-132.
[11] A. Smvmis AND N. V. TRUNG, The diwisor class group of ordinary and symbolic blow-ups,
Math. Z. 198 (1988), 479-491.
[12] K.-1. WATANABE, Some remarks concerning Demazure’s construction of normal graded rings,
Nagoya Math. J. 83 (1981), 203-211.
Department of Mathematics
School of Science and Technology
Meiji University
Higashimita 1-1-1, Tama-ku
Kawasaki 214-8571, Japan

kurano@isc.meiji.ac.jp
http://www.math.meiji.ac.jp/ kurano

15



