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Abstract. We shall describe the divisor class group and the graded canonical
module of the multi-section ring T (X;D1, . . . , Ds) defined in (1.1) below for a
normal projective variety X and Weil divisors D1, . . . , Ds on X under a mild
condition. In the proof, we use the theory of Krull domain and the equivariant
twisted inverse functor due to Hashimoto [4].

1. Introduction

We shall describe the divisor class groups and the graded canonical modules of
multi-section rings associated with a normal projective variety.

Suppose that Z, N0 and N are the set of integers, non-negative integers and
positive integers, respectively.

Let X be a normal projective variety over a field k with the function field k(X).
We always assume dimX > 0. We denote by C1(X) the set of closed subvarieties
of X of codimension 1. For V ∈ C1(X) and a ∈ k(X)×, we define as

ordV (a) = ℓOX,V
(OX,V /αOX,V )− ℓOX,V

(OX,V /βOX,V )

divX(a) =
∑

V ∈C1(X)

ordV (a) · V ∈ Div(X) =
⊕

V ∈C1(X)

Z · V,

where α and β are elements in OX,V such that a = α/β, and ℓOX,V
( ) denotes the

length as an OX,V -module.
We call an element in Div(X) aWeil divisor onX. For a Weil divisorD =

∑
nV V ,

we say that D is effective, and write D ≥ 0, if nV ≥ 0 for any V ∈ C1(X). For a
Weil divisor D on X, we put

H0(X,OX(D)) = {a ∈ k(X)× | divX(a) +D ≥ 0} ∪ {0}.

Here we note that H0(X,OX(D)) is a k-vector subspace of k(X).
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LetD1, . . . ,Ds beWeil divisors onX. We define the multi-section rings T (X;D1, . . . , Ds)
and R(X;D1, . . . , Ds) associated with D1, . . . , Ds as follows:

T (X;D1, . . . , Ds)(1.1)

=
⊕

(n1,...,ns)∈N0
s

H0(X,OX(
∑
i

niDi))t
n1
1 · · · tns

s ⊂ k(X)[t1, . . . , ts]

R(X;D1, . . . , Ds)

=
⊕

(n1,...,ns)∈Zs

H0(X,OX(
∑
i

niDi))t
n1
1 · · · tns

s ⊂ k(X)[t±1
1 , . . . , t±1

s ]

We want to describe the divisor class groups and the graded canonical modules of
the above rings.

For a Weil divisor F on X, we set

MF =
⊕

(n1,...,ns)∈Zs

H0(X,OX(
∑
i

niDi + F ))tn1
1 · · · tns

s ⊂ k(X)[t±1
1 , . . . , t±1

s ],

that is, MF is a Zs-graded reflexive R(X;D1, . . . , Ds)-module with

[MF ](n1,...,ns) = H0(X,OX(
∑
i

niDi + F ))tn1
1 · · · tns

s .

We denote byMF the isomorphism class of the reflexive moduleMF in Cl(R(X;D1, . . . , Ds)).
For a normal variety X, we denote by Cl(X) the class group of X, and for a Weil

divisor F on X, we denote by F the residue class represented by the Weil divisor F
in Cl(X).

In the case where Cl(X) is freely generated byD1, . . . ,Ds, the ringR(X;D1, . . . , Ds)
is usually called the Cox ring of X and denoted by Cox(X).

Remark 1.1. Assume that D is an ample divisor on X. In this case, T (X;D)
coincides with R(X;D), and it is a Noetherian normal domain by a famous result of
Zariski (see Lemma 2.8 in [6]). It is well-known that Cl(T (X;D)) is isomorphic to
Cl(X)/ZD. Mori [8] constructed a lot of examples of non-Cohen Macaulay factorial
domains using this isomorphism.

It is well-known that the canonical module of T (X;D) is isomorphic to MKX
, and

the canonical sheaf ωX coincides with M̃KX
. Watanabe proved a more general result

in Theorem (2.8) in [12].

We want to establish the same type of the above results for multi-section rings.
For R(X;D1, . . . , Ds), we had already proven the following:

Theorem 1.2 (Elizondo-Kurano-Watanabe [2], Hashimoto-Kurano [5]). Let X be
a normal projective variety over a field such that dimX > 0. Assume that D1, . . . ,
Ds are Weil divisors on X such that ZD1 + · · · + ZDs contains an ample Cartier
divisor. Then, we have the following:

(1) R(X;D1, . . . , Ds) is a Krull domain.
(2) The set {PV | V ∈ C1(X)} coincides with the set of homogeneous prime

ideals of R(X;D1, . . . , Ds) of height 1, where PV = M−V .
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(3) We have an exact sequence

0 −→
∑
i

ZDi −→ Cl(X)
p−→ Cl(R(X;D1, . . . , Ds)) −→ 0

such that p(F ) = MF .
(4) Assume that R(X;D1, . . . , Ds) is Noetherian. Then ωR(X;D1,...,Ds) is isomor-

phic toMKX
as a Zs-graded module. Therefore, ωR(X;D1,...,Ds) is R(X;D1, . . . , Ds)-

free if and only if KX ∈
∑

i ZDi in Cl(X).

Suppose that Cl(X) is finitely generated free Z-module generated by D1, . . . , Ds.
By the above theorem, the Cox ring Cox(X) is factorial and

ωCox(X) = MKX
= Cox(X)(KX),

where we regard Cox(X) as a Cl(X)-graded ring.
The main result of this paper is the following:

Theorem 1.3. Let X be a normal projective variety over a field k such that d =
dimX > 0. Assume that D1, . . . , Ds are Weil divisors on X such that ND1+ · · ·+
NDs contains an ample Cartier divisor. Put

U = {j | tr.degkT (X;D1, . . . , Dj−1, Dj+1, . . . , Ds) = d+ s− 1}.
Then, we have the following:

(1) T (X;D1, . . . , Ds) is a Krull domain.
(2) The set

{QV | V ∈ C1(X)} ∪ {Qj | j ∈ U}
coincides with the set of homogeneous prime ideals of T (X;D1, . . . , Ds) of
height 1, where

QV = PV ∩ T (X;D1, . . . , Ds)

and

Qj =
⊕

n1,...,ns∈N0
nj>0

T (X;D1, . . . , Ds)(n1,...,ns).

(3) We have an exact sequence

0 −→
∑
j ̸∈U

ZDj −→ Cl(X)
q−→ Cl(T (X;D1, . . . , Ds)) −→ 0

such that q(F ) = MF ∩ k(X)[t1, . . . , ts, {t−1
j | j ̸∈ U}].

(4) Assume that T (X;D1, . . . , Ds) is Noetherian. Then ωT (X;D1,...,Ds) is isomor-
phic to

MKX
∩ t1 · · · tsk(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}]
as a Zs-graded module. Further, we have

q(KX +
∑
i

Di) = ωT (X;D1,...,Ds).
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Therefore, ωT (X;D1,...,Ds) is T (X;D1, . . . , Ds)-free if and only if

KX +
∑
i

Di ∈
∑
j ̸∈U

ZDj

in Cl(X).

Here, tr.degkT denotes the transcendence degree of the fractional field of T over
a field k.

Remark 1.4. With notation as in the previous theorem, ht(Qj) = 1 if and only if
j ∈ U . This will be proven in Lemma 3.3. Since ND1+ · · ·+NDs contains an ample
Cartier divisor, Qj ̸= (0) for any j. Therefore, ht(Qj) ≥ 2 if and only if j ̸∈ U .

2. Examples

Example 2.1. Let X be a normal projective variety with dimX > 0. Assume that
all of Di’s are ample Cartier divisors on X. Then, T (X;D1, . . . , Ds) is Noetherian
by a famous result of Zariski (see Lemma 2.8 in [6]).

Assume that s = 1. By definition, U = ∅ since dimX > 0. By Theorem 1.3
(3), Cl(T (X;D1)) is isomorphic to Cl(X)/ZD1. By Theorem 1.3 (4), ωT (X;D1) is
T (X;D1)-free module if and only if

KX ∈ ZD1

in Cl(X) (see Remark 1.1).
Next, assume that s ≥ 2. In this case, U = {1, 2, . . . , s}. By Theorem 1.3 (3),

Cl(X) is isomorphic to Cl(T (X;D1, . . . , Ds)). By Theorem 1.3 (4), ωT (X;D1,...,Ds) is
T (X;D1, . . . , Ds)-free module if and only if

KX = −D1 − · · · −Ds

in Cl(X). When this is the case, −KX is ample, that is, X is a Fano variety.

Example 2.2. Set X = Pm × Pn. Let p1 (resp. p2) be the first (resp. second)
projection.

Let H1 be a hyperplane of Pm, and H2 a hyperplane of Pn. Put Ai = p−1
i (Hi) for

i = 1, 2. In this case, Cl(X) = ZA1+ZA2 ≃ Z2, and KX = −(m+1)A1− (n+1)A2.
We have

Cox(X) = R(X;A1, A2) = k[x0, x1, . . . , xm, y0, y1, . . . , yn].

Cox(X) is a Z2-graded ring such that xi’s (resp. yj’s) are of degree (1, 0) (resp.
(0, 1)).

Let a, b, c, d be positive integers such that ad − bc ̸= 0. Put D1 = aA1 + bA2

and D2 = cA1 + dA2. Then, both D1 and D2 are ample divisors. Consider the
multi-section rings:

R(X;D1, D2) = ⊕p,q∈ZCox(X)p(a,b)+q(c,d)

T (X;D1, D2) = ⊕p,q≥0Cox(X)p(a,b)+q(c,d)

Here, both R(X;D1, D2) and T (X;D1, D2) are Cohen-Macaulay rings.
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By Theorem 1.2 (4), we know

R(X;D1, D2) is a Gorenstein ring ⇐⇒ KX ∈ ZD1 + ZD2 in Cl(X)

⇐⇒ (m+ 1, n+ 1) ∈ Z(a, b) + Z(c, d).

In this case, we have U = {1, 2} since all of a, b, c and d are positive. By
Theorem 1.3 (4), we have

T (X;D1, D2) is a Gorenstein ring ⇐⇒ KX +D1 +D2 = 0 in Cl(X)

⇐⇒ m+ 1 = a+ c and n+ 1 = b+ d.

Example 2.3. Let a, b, c be pairwise coprime positive integers. Let p be the kernel
of the k-algebra map S = k[x, y, z] → k[T ] given by x 7→ T a, y 7→ T b, z 7→ T c.

Let π : X → P = Proj(k[x, y, z]) be the blow-up at V+(p), where a = deg(x),
b = deg(y), c = deg(z). Put E = π−1(V+(p)). Let A be a Weil divisor on X
satisfying π∗OP(1) = OX(A). In this case, we have Cl(X) = ZE + ZA ≃ Z2, and
KX = E − (a+ b+ c)A.

Then, we have

Cox(X) = R(X;−E,A) = R′
s(p) := S[t−1, pt, p(2)t2, p(3)t3, . . .] ⊂ S[t±1],

T (X;−E,A) = Rs(p) := S[pt, p(2)t2, p(3)t3, . . .] ⊂ S[t].

By Theorem 1.2 (4), we have

ωR′
s(p) = MKX

= R′
s(p)(KX) = R′

s(p)(−1,−a− b− c).

In this case, U = {1}. By Theorem 1.3 (4),

ωRs(p) = MKX
∩ t1t2k(X)[t1, t

±1
2 ]

= ωR′
s(p) ∩ t1t2k(X)[t1, t

±1
2 ]

= R′
s(p)(−1,−a− b− c) ∩ t1t2k(X)[t1, t

±1
2 ]

= Rs(p)(−1,−a− b− c).

Therefore, both of R′
s(p) and Rs(p) are quasi-Gorenstein rings, that were first proven

by Simis-Trung (Corollary 3.4 in [11]). Cohen-Macaulayness of such rings are deeply
studied by Goto-Nishida-Shimoda [3].

Divisor class groups of ordinary and symbolic Rees rings were studied by Shi-
moda [10], Simis-Trung [11], etc.

3. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3.
Throughout this section, we assume that X is a normal projective variety over a

field k such that d = dimX > 0, and D1, . . . , Ds are Weil divisors on X such that
ND1 + · · ·+ NDs contains an ample Cartier divisor.

We need the following lemmta. They are well-known, but the author could not
find a reference.
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Lemma 3.1. Let G be an integral domain containing a field k. Let P be a prime
ideal of G. Assume that both tr.degkG and tr.degkG/P are finite.

Then, the height of P is less than or equal to

tr.degkG− tr.degkG/P.

Proof. Assume the contrary. Then there exists a ring G′ which satisfies the following
five conditions:

• k ⊂ G′ ⊂ G.
• G′ is finitely generated (as a ring) over k.
• tr.degkG = tr.degkG

′.
• tr.degkG/P = tr.degkG

′/(G′ ∩ P ).
• tr.degkG− tr.degkG/P < ht(G′ ∩ P ).

However, using the dimension formula (e.g. 119p in [7]), we have

ht(G′ ∩ P ) = tr.degkG
′ − tr.degkG

′/(G′ ∩ P ) = tr.degkG− tr.degkG/P.

It is a contradiction. q.e.d.

Lemma 3.2. Let r be a positive integer. Let F1, . . . , Fr be Weil divisors on X. Let
S be the set of all non-zero homogeneous elements of T (X;F1, . . . , Fr). Then the
following conditions are equivalent:

(1) There exist non-negative integers q1, . . . , qr such that
∑r

i=1 qiFi is linearly
equivalent to a sum of an ample Cartier divisor and an effective Weil divisor.

(2) There exist positive integers q1, . . . , qr such that
∑r

i=1 qiFi is linearly equiv-
alent to a sum of an ample Cartier divisor and an effective Weil divisor.

(3) S−1(T (X;F1, . . . , Fr)) = k(X)[t±1
1 , . . . , t±1

r ].
(4) Q(T (X;F1, . . . , Fr)) = k(X)(t1, . . . , tr), where Q( ) denotes the field of frac-

tions.
(5) tr.degkT (X;F1, . . . , Fr) = dimX + r.

Using Theorem 1.5.5 in [1], it is easy to see that T (X;F1, . . . , Fr) is Noetherian if
and only if T (X;F1, . . . , Fr) is finitely generated (as a ring) over the fieldH0(X,OX).
Therefore, if T (X;F1, . . . , Fr) is Noetherian, then the condition (5) is equivalent to
that the Krull dimension of T (X;F1, . . . , Fr) is dimX + r.

Proof. (2) ⇒ (1), and (3) ⇒ (4) ⇒ (5) are trivial.
First we shall prove (1) ⇒ (3). Suppose

r∑
i=1

qiFi ∼ D + F,

where qi’s are non-negative integers, D is a very ample Cartier divisor and F is an
effective divisor. We put

C =
⊕
m∈Z

⊕
(n1,...,nr)∈N0

r

H0(X,OX(
∑
i

niFi +mD))tn1
1 · · · tnr

r tmr+1(3.1)

⊂ k(X)[t1, . . . , tr, t
±1
r+1].
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We regard C as a Zr+1-graded ring with

C(n1,...,nr,m) = H0(X,OX(
∑
i

niFi +mD))tn1
1 · · · tnr

r tmr+1.

Then, we have

T (X;F1, . . . , Fr) =
⊕

(n1,...,nr)∈N0
r

C(n1,...,nr,0),

so T (X;F1, . . . , Fr) is a subring of C. Thus, S−1C is a Zr+1-graded ring such that

S−1T (X;F1, . . . , Fr) =
⊕

(n1,...,nr)∈N0
r

(S−1C)(n1,...,nr,0).

Since
∑r

i=1 qiFi − D is linearly equivalent to an effective divisor F , there exists a
non-zero element a in

H0(X,OX(
∑
i

qiFi −D)).

For any 0 ̸= b ∈ H0(X,OX(D)),

(atq11 · · · tqrr t−1
r+1)(btr+1)

is contained in S. Therefore, S−1C contains (btr+1)
−1. Hence, k(X) is contained in

S−1C. Since k(X) = (S−1C)(0,...,0), k(X) is contained in S−1T (X;F1, . . . , Fr).
By the assumption of (1), there exists a positive integer ℓ such that

(S−1C)(ℓq1,...,ℓqr,0) ̸= 0

and
(S−1C)(ℓq1+1,ℓq2,...,ℓqr,0) ̸= 0.

Then, it is easy to see that t1 ∈ S−1C. Therefore, S−1C contains k(X)[t±1
1 , . . . , t±1

r ].
Hence S−1T (X;F1, . . . , Fr) coincides with k(X)[t±1 , . . . , t

±
r ].

Next, we shall prove (5) ⇒ (2). Let D be a very ample divisor. Consider the ring

R(X;F1, . . . , Fr, D).

First, assume that

H0(X,OX(
∑
i

uiFi − vD)) ̸= 0

for some integers u1, . . . , ur, v such that v > 0. By the assumption (5), there exists
positive integers u′

1, . . . , u
′
r such that

H0(X,OX(
∑
i

u′
iFi)) ̸= 0.

Therefore we may assume that there exists positive integers u1, . . . , ur and v such
that

H0(X,OX(
∑
i

uiFi − vD)) ̸= 0.

Here, we have ∑
i

uiFi = vD + (
∑
i

uiFi − vD).
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Therefore
∑

i uiFi is the sum of an ample divisor vD and the divisor
∑

i uiFi − vD
which is linearly equivalent to an effective divisor.

Next, assume that for any integers u1, . . . , ur and v,

(3.2) H0(X,OX(
∑
i

uiFi − vD)) = 0

if v > 0. We put

P =
⊕

(n1,...,nr,m)∈Zr+1

m>0

R(X;F1, . . . , Fr, D)(n1,...,nr,m).

By the assumption (5), P is a prime ideal of R(X;F1, . . . , Fr, D) of height 1 by
Lemma 3.1. (Here, since D is an ample divisor, tr.degkR(X;F1, . . . , Fr, D) =
dimX + r + 1. Note that P is an ideal of R(X;F1, . . . , Fr, D) by (3.2) above.
By (5), tr.degkR(X;F1, . . . , Fr, D)/P = dimX + r.) However R(X;F1, . . . , Fr, D)
has no homogeneous prime ideal of height 1 that contains

H0(X,OX(D))tr+1

by Theorem 1.2 (2). This is a contradiction. q.e.d.

Put A = k(X)[t±1
1 , . . . , t±1

s ] and B = k(X)[t1, . . . , ts]. Recall that D1, . . . , Ds are
Weil divisors on a normal projective variety X such that ND1 + · · ·+NDs contains
an ample Cartier divisor. We denote T (X;D1, . . . , Ds) and R(X;D1, . . . , Ds) simply
by T and R, respectively.

Since

T = R ∩B,

T is a Krull domain. We have proven Theorem 1.3 (1).
By Theorem 1.2 (2), we have

R =

 ∩
V ∈C1(X)

RPV

 ∩ A

A =
∩

P∈NHP1(R)

RP ,

where NHP1(R) is the set of non-homogeneous prime ideals of R of height 1.
It is easy to see RP = TP∩T for P ∈ NHP1(R). Therefore, we have

A =
∩

P∈NHP1(R)

TP∩T .

Since TP∩T is a discrete valuation ring, P ∩ T is a non-homogeneous prime ideal of
T of height 1.

For V ∈ C1(X), put QV = PV ∩ T . Then, RPV
= TQV

, since
∑

i NDi contains an
ample divisor. Therefore QV is a homogeneous prime ideal of T of height 1.
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On the other hand, we have Qi = T ∩ tiB(ti) and TQi
⊂ B(ti). Note that

B = A ∩ (
s∩

j=1

B(tj)).

Then, we have

T = R ∩B

=

 ∩
V ∈C1(X)

RPV

 ∩ A ∩B(3.3)

=

 ∩
V ∈C1(X)

TQV

 ∩

 ∩
P∈NHP1(R)

TP∩T

 ∩

(
s∩

j=1

B(tj)

)
.

Put

Tj =
⊕

(n1,...,nj−1,nj+1,...,ns)∈N0
s−1

H0(X,OX(
∑
i̸=j

niDi))t
n1
1 · · · tnj−1

j−1 t
nj+1

j+1 · · · tns
s .

We need the following lemma.

Lemma 3.3. With notation as above, the following conditions are equivalent:

(1) TQj
= B(tj).

(2) The height of Qj is 1.
(3) The height of Qj is less than 2.
(4) j ∈ U , that is, tr.degkTj = d+ s− 1.

Proof. By Lemma 3.2, we have Q(T ) = Q(B). It is easy to see that B(tj) is a
discrete valuation ring. Since Qj is a non-zero prime ideal of a Krull domain T , the
equivalence of (1), (2) and (3) are easy.

Here, we shall prove (1) ⇒ (4). Note that T/Qj = Tj. Then, we have

Q(Tj) = TQj
/QjTQj

= B(ti)/(ti)B(ti) = k(X)(t1, . . . , tj−1, tj+1, . . . , ts).

The implication (4) ⇒ (3) immediately follows from

ht(Qj) ≤ tr.degkT − tr.degk(Tj) = 1.

This inequality follows from Lemma 3.1 and the fact Tj = T/Qj. q.e.d.

By (3.3), Lemma 3.3 and Theorem 12.3 in [7], we know that

{QV | V ∈ C1(X)} ∪ {Qj | j ∈ U}
is the set of homogeneous prime ideals of T of height 1, and

{P ∩ T | P ∈ NHP1(R)}
is the set of non-homogeneous prime ideals of T of height 1. Further we obtain

T =

 ∩
V ∈C1(X)

TQV

 ∩

 ∩
P∈NHP1(R)

TP∩T

 ∩

(∩
j∈U

TQj

)
.
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The proof of Theorem 1.3 (2) is completed.
Let

Div(X) =
⊕

V ∈C1(X)

Z · V

be the set of Weil divisors on X. Let

HDiv(T ) =

 ⊕
V ∈C1(X)

Z · Spec(T/QV )

⊕

(⊕
j∈U

Z · Spec(T/Qj)

)
be the set of homogeneous Weil divisors of Spec(T ).

Here, we define
ϕ : Div(X) −→ HDiv(T )

by ϕ(V ) = Spec(T/QV ) for each V ∈ C1(X). Then, it satisfies the following:

• For each a ∈ k(X)×, we have

ϕ(divX(a)) = divT (a) ∈
⊕

V ∈C1(X)

Z · Spec(T/QV ) ⊂ HDiv(T ).

• If j ∈ U , then

divT (tj) = Spec(T/Qj) + ϕ(Dj).

• If j ̸∈ U , then
divT (tj) = ϕ(Dj).

They are proven essentially in the same way as in pp631–632 in [2]. Then, we have
an exact sequence

0 −→
∑
j ̸∈U

ZDj −→ Cl(X)
q−→ Cl(T ) −→ 0

such that q(F ) = ϕ(F ) in Cl(T ). Here, remember that Cl(T ) coincides with HDiv(T )
divided by the group of homogeneous principal divisors (e.g., Proposition 7.1 in
Samuel [9]).

It is easy to see that the class of the Weil divisor q(F ) corresponds to the isomor-
phism class of the reflexive module

MF ∩

(∩
j∈U

TQj

)
= MF ∩ A ∩

(∩
j∈U

TQj

)
= MF ∩ k(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}].
The proof of Theorem 1.3 (3) is completed.

Remark 3.4. It is easy to see

td11 · · · tdss MF+
∑

i diDi
= MF

for any integers d1, . . . , ds. Therefore, we have

MF ∩ td11 · · · tdss k(X)[t1, . . . , ts, {t−1
j | j ̸∈ U}]

= td11 · · · tdss
(
MF+

∑
i diDi

∩ k(X)[t1, . . . , ts, {t−1
j | j ̸∈ U}]

)
.
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Hence,
MF ∩ td11 · · · tdss k(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}]
is isomorphic to

(3.4) MF+
∑

i diDi
∩ k(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}]
as a T -module. Note that this is not an isomorphism as Zs-graded modules. The
isomorphism class which the module (3.4) belongs to coincides with q(F +

∑
i diDi).

In the rest, we assume that T is Noetherian. We shall prove that ωT is isomorphic
to

MKX
∩ t1 · · · tsk(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}]
as a Zs-graded module. (Suppose that it is true. If we forget the grading, it is
isomorphic to

MKX+
∑

i Di
∩ k(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}]
by Remark 3.4, that is corresponding to q(KX +

∑
iDi) in Cl(T ). Therefore, we

know that ωT is T -free if and only if

KX +
∑
i

Di ∈
∑
j ̸∈U

ZDj

in Cl(X).)
Put X ′ = X \ Sing(X). We choose positive integers a1, . . . , as and sections

f1, . . . , ft ∈ H0(X,
∑

i aiDi) such that

•
∑

i aiDi is an ample Cartier divisor,
• X ′ = ∪kD+(fk), and
• all of the Di’s are principal Cartier divisors on D+(fk) for k = 1, . . . , t.

Put W = {n ∈ Zs | ni ≥ 0 if i ∈ U}. Put D′
i = Di|X′ for i = 1, . . . , s. Consider

the morphism

Y = SpecX′

⊕
n∈W

OX′(
∑
i

niD
′
i)t

n1
1 · · · tns

s

 π−→ X ′.

Further, we have the natural map

ξ : Y −→ Spec(T ).

The group Gs
m naturally acts on Spec(T ) and Y , and trivially acts on X ′. Both π

and ξ are equivariant morphisms.

Claim 3.5. There exists an equivariant open subscheme Z of both Y and Spec(T )
such that

• the codimension of Y \ Z in Y is bigger than or equal to 2, and
• the codimension of Spec(T ) \ Z in Spec(T ) is bigger than or equal to 2.

Proof. For u ∈ U , there exist integers c1u, . . . , csu such that

• H0(X,OX(
∑

i ciuDi)) ̸= 0,
• cuu = −au, and
• ciu > 0 if i ̸= u.

11



In fact, if u ∈ U , there exist positive integers q1, . . . , qu−1, qu+1, . . . , qs such that∑
i ̸=u

qiDi

is a sum of an ample divisor D and a Weil divisor F which is linearly equivalent to
an effective divisor by Lemma 3.2. Then,

H0(X,OX(q(
∑
i ̸=u

qiDi)− auDu) = H0(X,OX(q(D + F )− auDu) ̸= 0

for q ≫ 0.
For each u ∈ U , we set

(b1u, . . . , bsu) = (c1u, . . . , csu) + (a1, . . . , as).

Here, note that buu = 0 and biu > 0 if i ̸= u.
We choose

0 ̸= gu ∈ H0(X,OX(
∑
i

ciuDi))

for each u ∈ U .
Consider the closed set of Spec(T ) defined by the ideal J generated by

{fkta11 · · · tass | k = 1, . . . , t}
and {

gufkt
b1u
1 · · · tbsus

∣∣ k = 1, . . . , t; u ∈ U
}
.

By Theorem 1.3 (2), we know that the height of J is bigger than or equal to 2
since there is no prime ideal of T of height one which contains J .

We choose dki ∈ k(X)× satisfying

H0(D+(fk),OX(Di)) = dkiH
0(D+(fk),OX)

for each k and i. Then

(3.5) Y =
t∪

k=1

π−1(D+(fk)) and π−1(D+(fk)) = Spec(Ck),

where
Ck = H0(D+(fk),OX)[dk1t1, . . . , dksts, {(dkjtj)−1 | j ̸∈ U}].

We put
Z = Spec(T ) \ V (J).

Then we have

(3.6) Z =
t∪

k=1

[
Spec

(
T [(fkt

a1
1 · · · tass )−1]

)
∪

{∪
u∈U

Spec
(
T [(gufkt

b1u
1 · · · tbsus )−1]

)}]
.

Here, we have

T [(fkt
a1
1 · · · tass )−1] = H0(D+(fk),OX)[(dk1t1)

±1, . . . , (dksts)
±1](3.7)

= Ck[

(∏
j∈U

(dkjtj)

)−1

].
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On the other hand,

T [(gufkt
b1u
1 · · · tbsus )−1]

=
⊕

(n)∈Zs

T [(gufkt
b1u
1 · · · tbsus )−1](n1,...,ns)

=
⊕

(n)∈Zs

nu≥0

R[(gufkt
b1u
1 · · · tbsus )−1](n1,...,ns)

=
⊕

(n)∈Zs

nu≥0

R[(fkt
a1
1 · · · tass )−1, (gufkt

b1u
1 · · · tbsus )−1](n1,...,ns)

= Ck[{(dkjtj)−1 | j ̸= u}, (gufktb1u1 · · · tbsus )−1].

Let βku be an element in H0(D+(fk),OX) such that

gufkt
b1u
1 · · · tbsus = βku(dk1t1)

b1u · · · (dksts)bsu

for k = 1, . . . , t and u ∈ U . Then,

(3.8) Ck[{(dkjtj)−1 | j ̸= u}, (gufktb1u1 · · · tbsus )−1] = Ck[

βku

∏
j∈U
j ̸=u

(dkjtj)


−1

].

By (3.5), (3.6), (3.7) and (3.8), we know that Z is an open subscheme of Y . The
ideal of Ck generated by

∏
j∈U

(dkjtj) and

βku

∏
j∈U
j ̸=u

(dkjtj)

∣∣∣∣∣∣∣∣u ∈ U


is the unit ideal or of height two. (If U = ∅, then Z = Y by the construction. If
U = {u} and if βku is a unit element, then this ideal is the unit. In other cases,
this ideal is of height 2.) Therefore, the codimension of Y \ Z in Y is bigger than
or equal to two. q.e.d.

We can define the graded canonical module as in Definition 3.1 in [5] using the
theory of the equivariant twisted inverse functor [4].

By Claim 3.5 above and Remark 3.2 in [5], we have ωT = H0(Y, ωY ). On the
other hand, we have

ωY =
s∧
ΩY/X′ ⊗ π∗OX′(KX′)

= π∗OX′(
∑
i

D′
i)(−1, . . . ,−1)⊗OY

π∗OX′(KX′)

= π∗OX′(
∑
i

D′
i +KX′)(−1, . . . ,−1),

where (−1, . . . ,−1) denotes the shift of degree (Theorem 28.11 in [4]).
13



Then, we have

H0(Y, ωY ) = H0(X ′, π∗π
∗OX′(

∑
i

D′
i +KX′)(−1, . . . ,−1)).

By the projection formula (Lemma 26.4 in [4]),

π∗π
∗OX′(

∑
i

D′
i +KX′)(−1, . . . ,−1)

=

(
OX′(

∑
i

D′
i +KX′)⊗ π∗OY

)
(−1, . . . ,−1)

=

OX′(
∑
i

D′
i +KX′)⊗

⊕
n∈W

OX′(
∑
i

niD
′
i)

 (−1, . . . ,−1)

=

⊕
n∈W

OX′(
∑
i

(ni + 1)D′
i +KX′)

 (−1, . . . ,−1)

=
⊕

n∈W+(1,...,1)

OX′(
∑
i

niD
′
i +KX′).

Therefore, we have

H0(Y, ωY ) = H0(X ′,
⊕

n∈W+(1,...,1)

OX′(
∑
i

niD
′
i +KX′))

=
⊕

n∈W+(1,...,1)

H0(X ′,OX′(
∑
i

niD
′
i +KX′))

=
⊕

n∈W+(1,...,1)

H0(X,OX(
∑
i

niDi +KX))

= MKX
∩ t1 · · · tsk(X)[t1, . . . , ts, {t−1

j | j ̸∈ U}].

We have completed the proof of Theorem 1.3.
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