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1. INTRODUCTION

We study the properties of F-rationality and F-regularity in multigraded rings
and their diagonal subalgebras. The main focus is on diagonal subalgebras of bi-
graded rings: these constitute an interesting class of rings since they arise naturally
as homogeneous coordinate rings of blow-ups of projective varieties.

Let X be a projective variety over a field K, with homogeneous coordinate ring A.
Let a C A be a homogeneous ideal, and V' C X the closed subvariety defined by a.
For g an integer, we use a4 to denote the K-vector space consisting of homogeneous
elements of a of degree g. If g > 0, then a, defines a very ample complete linear
system on the blow-up of X along V, and hence K[a,] is a homogeneous coordinate
ring for this blow-up. Since the ideals a” define the same subvariety V, the rings
K][(a"),] are homogeneous coordinate ring for the blow-up provided g > h > 0.

Suppose that A is a standard N-graded K-algebra, and consider the N2-grading
on the Rees algebra Alat], where degrt’ = (i,j) for r € A;. The connection with
diagonal subalgebras stems from the fact that if a® is generated by elements of

degree less than or equal to g, then

K[(a"),] = @A[at} (gk,hk) *
k>0
Using A = (g,h)Z to denote the (g, h)-diagonal in Z?, the diagonal subalgebra
Alat] 5 = @rAat] 4y, x) is a homogeneous coordinate ring for the blow-up of Proj A
along the subvariety defined by a, whenever g > h > 0.

The papers [GG, GGH, GGP, Tr| use diagonal subalgebras in studying blow-
ups of projective space at finite sets of points. For A a polynomial ring and a
a homogeneous ideal, the ring theoretic properties of K[a,] are studied by Simis,
Trung, and Valla in [STV] by realizing KJa,] as a diagonal subalgebra of the Rees
algebra Alat]. In particular, they determine when Kla,] is Cohen-Macaulay for a a

complete intersection ideal generated by forms of equal degree, and also for a the
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ideal of maximal minors of a generic matrix. Some of their results are extended by

Conca, Herzog, Trung, and Valla as in the following theorem:

Theorem 1.1. [CHTV, Theorem 4.6] Let K[z, ..., %] be a polynomial ring over

a field, and let a be a complete intersection ideal minimally generated by forms of

degrees dy, . ..,d,. Fiz positive integers g and h with g/h > d = max{dy,...,d,}.
Then K[(a®),] is Cohen-Macaulay if and only if g > (h —1)d —m + > i1 dj.

When A is a polynomial ring and a an ideal for which A[at] is Cohen-Macaulay,
Lavila-Vidal [Lv1, Theorem 4.5] proved that the diagonal subalgebras K[(a"),] are
Cohen-Macaulay for g > h > 0, thereby settling a conjecture from [CHTV]. In
[CH] Cutkosky and Herzog obtain affirmative answers regarding the existence of
a constant ¢ such that K[(a”),] is Cohen-Macaulay whenever g > ch. For more
work on the Cohen-Macaulay and Gorenstein properties of diagonal subalgebras,
see [HHR, Hy2, Lv2], and [LvZ].

As a motivating example for some of the results of this paper, consider a poly-
nomial ring A = K[z1,...,%,] and an ideal a = (z1,22) generated by relatively
prime forms z; and z5 of degree d. Setting A = (d+1,1)Z, the diagonal subalgebra
Alat]  is a homogeneous coordinate ring for the blow-up of Proj A = P! along
the subvariety defined by a. The Rees algebra A[at] has a presentation

R=K[x1,...,Tm,y1,Y2)/ (Y221 — y122)

where deg z; = (1,0) and degy; = (d,1), and consequently R is the subalgebra of
R generated by the elements x;y;. When K has characteristic zero and z; and 2
are general forms of degree d, the results of Section 3 imply that Ra has rational
singularities if and only if d < m, and that it is of F-regular type if and only
if d < m. As a consequence, we obtain large families of rings of the form Ra,
standard graded over a field, which have rational singularities, but which are not
of F-regular type.

It is worth pointing out that if R is an N2-graded ring over an infinite field
R0,0) = K, and A = (g, h)Z for coprime positive integers g and h, then R is the

ring of invariants of the torus K* acting on R via
i1 — N9y where A € K™ and 7 € Ry; j) -

Consequently there exist torus actions on hypersurfaces for which the rings of in-
variants have rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal
rings R, with isolated singularities, for which HZ(R), = 0 and Hz(R), # 0. If
S is the localization of such a ring R at its homogeneous maximal ideal, then,
by Danilov’s results, the divisor class group of S is a finitely generated abelian
group, though S does not have a discrete divisor class group. Such rings R are

also of interest in view of the results of [RSS], where it is proved that the image
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of HZ(R), in HZ(R™) is annihilated by elements of RT of arbitrarily small positive
degree; here R™ denoted the absolute integral closure of R. A corresponding result
for H2(R), is not known at this point, and the rings constructed in Section 4
constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and
modules. In Section 3 we carry out an analysis of diagonal subalgebras of bigraded
hypersurfaces; this uses results on rational singularities and F-regular rings proved
in Sections 5 and 6 respectively.

The authors would like to thank Shiro Goto and Ken-ichi Yoshida for their
valuable comments.

2. PRELIMINARIES

In this section, we provide a brief treatment of multigraded rings and modules;
see [GW1, GW2, HHR], and [HIO] for further details.

By an N"-graded ring we mean a ring

R= P Rn,
nenNr

which is finitely generated over the subring Rg. If (Ro,m) is a local ring, then R
has a unique homogeneous maximal ideal 9 = mR + R, where Ry = ®n2oRn.-

Form = (mq,...,m,) and n = (n1,...,n,) in Z", we say n > m (resp. n > m)
if n; > m; (resp. n; > m;) for each i.

Let M be a Z"-graded R-module. For m € Z", we set

M}m: @ My,

n>m
which is a Z"-graded submodule of M. One writes M(m) for the Z"-graded R-
module with shifted grading [M(m)],, = M4y for each n € Z7.

Let M and N be Z"-graded R-modules. Then Homg (M, N) is the Z"-graded
module with [Homy (M, N)],, being the abelian group consisting of degree preserv-
ing R-linear homomorphisms from M to N(n).

The functor Extk (M, —) is the i-th derived functor of Homg (M, —) in the cat-
egory of Z"-graded R-modules. When M is finitely generated, M%(M ,N) and
Ext%(M , N) agree as underlying R-modules. For a homogeneous ideal a of R, the
local cohomology modules of M with support in a are the Z"-graded modules

HE(M) = lim Exthy (R/a", M)

Let ¢: Z" — 7Z*° be a homomorphism of abelian groups satisfying ¢(N") C N*.

We write R¥ for the ring R with the N°-grading where

R?,= P Rm.
p(m)=n
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If M is a Z"-graded R-module, then M¥ is the Z*-graded R¥-module with
(M?],= B Mn.
o(m)=n

The change of grading functor (—)? is exact; by [HHR, Lemma 1.1] one has

Hyy(M)? = Hiyo (M?).
Consider the projections p;: Z" — Z with @;(mq,...,m;) = m;, and set

a(R¥") = max {a €7 [ngitmR(R)‘“]a * 0} ;
this is the a-invariant of the N-graded ring R¥* in the sense of Goto and Watanabe
[GW1]. As in [HHR], the multigraded a-invariant of R is
a(R) = (a(R“"l), .. .,a(R"’T)) .

Let R be a Z2-graded ring and let g,h be positive integers. The subgroup
A = (g,h)Z is a diagonal in Z?, and the corresponding diagonal subalgebra of R is
Ra = @R(gk,hk) .

kEZ
Similarly, if M is a Z2-graded R-module, we set
Ma = @M(gk,hk) .
kEZ

which is a Z-graded module over the Z-graded ring Ra.

Lemma 2.1. Let A and B be N-graded normal rings, finitely generated over a
field Ag = K = By. SetT = A®k B. Let g and h be positive integers and set
A = (g,h)Z. Leta, b, and m denote the homogeneous mazximal ideals of A, B, and
T respectively. Then, for each ¢ > 0 and i, j,k € Z, one has

HY (T(i’j)A)k = (Ai+yk ® Hg(B)j+hk) ® (Hg(A)i+gk ® Bj+hk) ®
D (HE )y © HEB), ) -
q1+q2=q+1
Proof. Let AW and B denote the respective Veronese subrings of A and B. Set
A9) =P Aiyge and B =P B,
kEZ kez
which are graded A9 and B"™ modules respectively. Using # for the Segre product,
T(i,)p = EP Airgr ®K Bjinr = A9 4 BP9
keZ

)

The ideal Aﬂ?)A is a-primary; likewise, Bs_h B is b-primary. The Kiinneth formula

for local cohomology, [GW1, Theorem 4.1.5], now gives the desired result. O

Notation 2.2. We use bold letters to denote lists of elements, e.g., z = z1,..., 2,

and’y:’ylw"a’}/s-
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3. DIAGONAL SUBALGEBRAS OF BIGRADED HYPERSURFACES

We prove the following theorem about diagonal subalgebras of N2-graded hyper-

surfaces. The proof uses results proved later in Sections 5 and 6.
Theorem 3.1. Let K be a field, let m,n be integers with m,n > 2, and let

72,::}{[x1,~~c71Hn»y17"'7yn}/(f)

be a mormal N2-graded hypersurface where degx; = (1,0), degy; = (0,1), and
deg f = (d,e) > (0,0). For positive integers g and h, set A = (g,h)Z. Then:
(1) The ring Ra is Cohen-Macaulay if and only if [(d — m)/g| < e/h and
[(e =n)/h] < d/g. In particular, if d < m and e < n, then Ra is Cohen-
Macaulay for each diagonal A.
(2) The graded canonical module of Ra is R(d—m,e—n),. Hence Ra is
Gorenstein if and only if (d —m)/g = (e —n)/h, and this is an integer.
If K has characteristic zero, and f is a generic polynomial of degree (d,e), then:
(3) The ring Ra has rational singularities if and only if it is Cohen-Macaulay
and d < m ore <n.
(4) The ring Ra is of F-regular type if and only if d < m and e < n.

For m,n >3 and A = (1,1

are summarized in Figure 1.

Z, the properties of Ra, as determined by m,n, d, e,
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FIGURE 1. Properties of Ra for A = (1,1)Z.
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Remark 3.2. Let m,n > 2. A generic hypersurface of degree (d,e) > (0,0) in

m,n variables is normal precisely when
m > min(2, d) and n > min(2,e).

Suppose that m = 2 = n, and that f is nonzero. Then dimRa = 2; since Ra is
generated over a field by elements of equal degree, Ra is of F-regular type if and
only if it has rational singularities; see [Wa2]. This is the case precisely if
d=1,e<h+1, or
e=1,d<g+1.
Following a suggestion of Hara, the case n = 2 and e = 1 was used in [Si, Exam-
ple 7.3] to construct examples of standard graded rings with rational singularities
which are not of F-regular type.

Proof of Theorem 3.1. Set A= Klz], B= K[y],and T = A®x B. By Lemma 2.1,
HE(TA) = 0 for ¢ #m +n — 1. The local cohomology exact sequence induced by

0 —— T(—d,—e)A % N Ra 0
therefore gives HL '(Ra) = H&(T(—d, —¢),) for ¢ < m +n — 2, and also shows

that H?t"=2(Ra) and H?T"~1(R ) are, respectively, the kernel and cokernel of

m+n— / m4-n—
H = (T(=d,—e)y)  ——  Hyt"H(Ta)

[H(A(~d)) ® HP(B(—e€))]y —— [H(A) ® H}(B)), -

The horizontal map above is surjective since its graded dual

[A(d —m) ® Ble —n)]y —— [A(=m) ® B(~n)],

| H

T(d—m,e—n)s P - T(—m,—n)a

is injective. In particular, dimRA =m +n — 2.

It follows from the above discussion that Ra is Cohen-Macaulay if and only if
HL(T(—d,—e),) = 0 for each ¢ < m 4+ n — 2. By Lemma 2.1, this is the case if
and only if, for each integer k, one has

A-aigr © Hy(B) oy = 0= Hg"(A) g1 g @ Bcink -
Hence R is Cohen-Macaulay if and only if there is no integer k satisfying
dlg<k<(e—n)/h or e/h<k<(d—m)/g,

which completes the proof of (1).
For (2), note that the graded canonical module of Ra is the graded dual of
H™M™n=2(RA), and hence that it equals

coker (T'(—m, —n) 5 <, T(d—m,e—n),) =R(d—m,e—n),.
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This module is principal if and only if R(d — m, e — n) , = Ra(a) for some integer a,
i.e., d—m = ga and e — n = ha.

When f is a general polynomial of degree (d,e), the ring Ra has an isolated
singularity. Also, Ra is normal since it is a direct summand of the normal ring
R. By Theorem 5.1, R has rational singularities precisely if it is Cohen-Macaulay
and a(Ra) < 0; this proves (3).

It remains to prove (4). If d < m and e < n, then Theorem 5.2 implies that R
has rational singularities. By Theorem 6.2, it follows that for almost all primes p,
the characteristic p models R, of R are F-rational hypersurfaces which, therefore,
are F-regular. Alternatively, R, is a generic hypersurface of degree (d,e) < (m,n),
so Theorem 6.5 implies that R, is F-regular. Since (R,), is a direct summand of
R, it follows that (R)) . is F-regular. The rings (R,), are characteristic p models
of Ra, so we conclude that R is of F-regular type.

Suppose Ra has F-regular type, and let (R,) , be a characteristic p model which
is F-regular. Fix an integer k > d/g. Then Proposition 6.3 implies that there exists
an integer ¢ = p°© such that

rank g ((RP)A)k < rankg [H&n+n_2(w(q))]k )
where w is the graded canonical module of (R,),. Using (2), we see that
Hi =2 (@) = B2 (Ry(qd — qm, ge — qn) 5)

Let T, be a characteristic p model for T such that T,,/fT, = R,. Multiplication

by f on T, induces a local cohomology exact sequence

< — Hit " 2(Ty(qd — gm, ge — qn) ) — HZF" (R (qd — gm, ge — qn) )
— Hg:”_l(Tp(qd —qm—d,qge —qn —e),) — - .

Since H&”p*"”(Tp(qd —qm, qe — qn) o) vanishes by Lemma 2.1, we conclude that

vankic (Ry),), < ranki [H241(Ty(qd — gm — d,ge — qn — ¢) 1)

=rankg Hap (Ap)qd,qm,dJrgk ® Hbq(Bp)qefqnfeJrhk ’

k

Hence gd— gm —d+gk < 0; as d— gk < 0, we conclude d < m. Similarly, e <n. 0O

We conclude this section with an example where a local cohomology module of a
standard graded ring is not rigid in the sense that HZ(R), = 0 while H2(R), # 0.

Further such examples are constructed in Section 4.
Proposition 3.3. Let K be a field and let

R = Klz1,22,23,y1,Y2)/(f)

where degx; = (1,0), degy; = (0,1), and deg f = (d,e) for d >4 and e > 1. Let
g and h be positive integers such that g < d —3 and h > e, and set A = (g,h)Z.
Then HZ(Ra)y =0 and HE(Ra), # 0.
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Proof. Using the resolution of R over the polynomial ring 7" as in the proof of

Theorem 3.1, we have an exact sequence
Hy(Ta) — Hiy(Ra) — Hy(T(=d, —e)a) — Hy(Ta)-
Lemma 2.1 implies that H2(Ta) = 0 = H3 (Ta). Hence, again by Lemma 2.1,

Hi(Ra)y=H*(A)_4©@B_.=0 and HZ(Ra),=H*(A), 0By #0. 0

4. NON-RIGID LOCAL COHOMOLOGY MODULES

We construct examples of standard graded normal rings R over C, with only
isolated singularities, for which H2(R), = 0 and H2Z(R), # 0. Let S be the
localization of such a ring R at its homogeneous maximal ideal. By results of
Danilov [Dal, Da2], Theorem 4.1 below, it follows that the divisor class group of
S is finitely generated, though S does not have a discrete divisor class group, i.e.,
the natural map CI1(S) — CI(S[[¢]]) is not bijective. Here, remember that if A is

a Noetherian normal domain, then so is A[[t]].

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated
as an algebra over Ry = C. Assume, moreover, that X = Proj R is smooth. Set
(S, m) to be the local ring of R at its homogeneous mazimal ideal, and S to be the

m-adic completion of S. Then

(1) the group C1(S) is finitely generated if and only if H*(X,Ox) = 0;

(2) the map CL(S) — CI(S) is bijective if and only if H(X,O0x(i)) = 0 for
each integer ¢ > 1; and

(3) the map CI(S) — CI(S[[t]]) is bijective if and only if H*(X,Ox(i)) = 0

for each integer i > 0.
The essential point in our construction is in the following proposition:

Theorem 4.2. Let A be a Cohen-Macaulay ring of dimension d > 2, which is a
standard graded algebra over a field K. Fors > 2, let zq,. .., zs be a reqular sequence
in A, consisting of homogeneous elements of equal degree, say k. Consider the Rees
ring R = Alzit, . .., zst] with the Z*-grading where degx = (n,0) for x € A, and
deg z;t = (0,1).

Let A = (g, h)Z where g, h are positive integers, and let m denote the homoge-

neous mazimal ideal of Ra. Then:

(1) HY(Ra)=0ifq#d—s+1,d; and
(2) HE T (RA), # 0 if and only if 1 < i < (a+ ks — k)/g, where a is the

a-tmvariant of A.

In particular, Ra is Cohen-Macaulay if and only if g > a + ks — k.
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Example 4.3. For d > 3, let A = Clxy,...,z4]/(f) be a standard graded hyper-
surface such that Proj A is smooth over C. Take general k-forms 21,...,24-1 € A,

and consider the Rees ring R = A[z1t,...,24-1t]. Since (z) C A is a radical ideal,

gr((2), 4) = A/(2)ly1, - -, ya-1]

is a reduced ring, and therefore R = A[z1t, ..., z4—1t] is integrally closed in A[t].
Since A is normal, so is R. Note that ProjRa is the blow-up of Proj A at the
subvariety defined by (2), i.e., at k% ~!(deg f) points. It follows that ProjRa is
smooth over C. Hence Ra is a standard graded C-algebra, which is normal and
has an isolated singularity.

If A =(g,h)Z is a diagonal with 1 < g < degf+k(d—2)—(d+1) and h > 1,
then Theorem 4.2 implies that

HZ(Ra)y=0 and HZ(Ra), #0.

The rest of this section is devoted to proving Theorem 4.2. We may assume that
the base field K is infinite. Then one can find linear forms xq,...,x4_s in A such
that z1,...,24_s, 21,-.., 25 is @ maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let a be the homogeneous mazimal ideal of A. Set I = (z1,...,25)A.
Let v be a positive integer.
(1) HI(I")=0ifq#d—s+1,d.
(2) Assume d > s. Then, HI=*TY(I"); # 0 if and only if i < a+ ks +rk — k.
(3) Assumed = s. Then, HI5t1(I"); # 0 if and only if 0 < i < a+ks+rk—k.

Proof. Recall that A and A/I" are Cohen-Macaulay rings of dimension d and d — s,
respectively. By the exact sequence

0—I"—A— A/I" —0

we obtain
Hff(A) ifg=d
H{(I") =< HI=S(A/I") ifq=d—s+1
0 ifg#d—-—s+1,d,

which proves (1).

Next we prove (2) and (3). Since A/I" is a standard graded Cohen-Macaulay
ring of dimension d — s, it is enough to show that the a-invariant of this ring equals
a + ks + rk — k. This is straightforward if » = 1, and we proceed by induction.

Consider the exact sequence
0— IT/IT'H — A/IT'H — A/I" — 0.

Since 21, ..., 2, is a regular sequence of k-forms, I"/I"*! is isomorphic to
571+7')

(A (=rk)
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Thus, we have the following exact sequence:
s—1+47r
0— Hffs((A/I)(—Tk))( T B AT — HE(AJT) — 0.

The a-invariant of (A/I)(—rk) equals a+ks+rk, and that of A/I" is a+ks+rk—k
by the inductive hypothesis. Thus, A/I"*! has a-invariant a + ks + rk. ([

Proof of Theorem 4.2. Let B = K[yi,...,ys] be a polynomial ring, and set
T=A®x B=Ay,...,ys.

Consider the Z?-grading on T where degz = (n,0) for x € A,,, and degy; = (0, 1)

for each 7. One has a surjective homomorphism of graded rings
T — R =A[xnt,..., 2zt where y; — z;t,
and this induces an isomorphism
RET/I(y 0 y0) -
The minimal free resolution of R over T is given by the Eagon-Northcott complex
0—F 6D _Lp-6=2_,. .., 9,
where F* = T(0,0), and F~% for 1 <i < s — 1 is the direct sum of (Zjl) copies of
T(=k,—i) & T(-2k,—(i—1)) - - &T(—ik,—1).
Let n be the homogeneous maximal ideal of TA. One has the spectral sequence:
EpY = HP(H(FR)) = HEF(Ra).

Let G be the set of (n,m) such that T(n,m) appears in the Eagon-Northcott

complex above, i.e., the elements of G are
(0,0),
(_k7 _1)7
(=k,—2), (—2k,-1),
(_ka _3)7 (_2ka _2)7 (_Bka _1) 5

(=k,—(s—1)), cer (=(s=1)k,-1).
Let a and b be the homogeneous maximal ideal of A and B respectively. For

integers n and m, the Kiinneth formula gives

HY(T(n,m))

Hi(A(n) ®k B(m))

(Hi(A(n)) ® B(m)) & (A(n) © Hi(B(m))) & € Hi(A(n)) ® H)(B(m))

i+j=q+1
HY(T(n,m)) & HY(T(n,m)) & P Hi(A(n) @x H{(B(m)).
1+j=q+1
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As A and B are Cohen-Macaulay of dimension d and s respectively, it follows that
HI(F*)=0 ifg#s,dd+s—1.
In the case where d > s, one has
H(F®) = H{(F*) and H{(F®) = H{(F*),
and if d = s, then
HY(F*) = H{(F®) ® Hy(F*).
We claim Hg(F*®), = 0. If not, there exists (n,m) € G and ¢ € Z such that
H{(T(n,m)) g0,ne) #0-
This implies that
H{(T(n,m)) g0 ney = An) g @k Hg(B(m)) y = Anvge O Hi(B),, 11

is nonzero, so
n+gl>0 and m+hl < —s,

and hence
n << _stm
g h
But (n,m) € G, son <0 and m > —(s — 1), implying that
1
Oggg R
h

which is not possible. This proves that H{(F*), = 0. Thus, we have

HI(F*) — Od . %fq;éd,d—&—s—l,
H{(F*), ifqg=d.
It follows that
By = HP(HY(FY)) = B2
for each p and ¢. Therefore,
Hiy(Ra) = By = HUHI(FR)) = HTUH(F?)5) = Hy(R) o
ford—s+1<i<d—1, and
H.(RA)=0 fori<d—s+1.
We next study HE(R). Since
R=Ac Ik o ’Ck)e--- oI (rk)® -,
we have
Hy(R) = Hy(A) & Ho(I)(k) & Ho(I*)(2k) @ -+ & Ho(I")(rk) @ - - - .

Theorem 4.2 (1) now follow using Lemma 4.4 (1).
Assume that d > s. Then, by Lemma 4.4 (2), HI=*+*1(I"(rk)); # 0 if and only
fi<a+ks—k.
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Assume that d = s. Then, by Lemma 4.4 (3), HI=*+*1(I"(rk)); # 0 if and only
if —rk<i<a+ks—k.
In each case, HI™*T1(R) 4 niy # 0 if and only if

1@-<w. O
g

5. RATIONAL SINGULARITIES

Let R be a normal domain, essentially of finite type over a field of characteristic
zero, and consider a desingularization f: Z — Spec R, i.e., a proper birational
morphism with Z a nonsingular variety. One says R has rational singularities if
R'f.0z = 0 for each i > 1; this does not depend on the choice of the desingular-
ization f. For N-graded rings, one has the following criterion due to Flenner [Fl]
and Watanabe [Wal].

Theorem 5.1. Let R be a normal N-graded ring which is finitely generated over
a field Ry of characteristic zero. Then R has rational singularities if and only if it
is Cohen-Macaulay, a(R) < 0, and the localization Ry has rational singularities for
each p € Spec R~ {R4}.

When R has an isolated singularity, the above theorem gives an effective criterion
for determining if R has rational singularities. However, a multigraded hypersurface
typically does not have an isolated singularity, and the following variation turns out
to be useful:

Theorem 5.2. Let R be a normal N"-graded ring such that Ro is a local ring
essentially of finite type over a field of characteristic zero, and R is generated over
Ro by elements

$117$127.--,x1t1, x217x227'-')$2t27 ey $T17x7‘27"'7m7“t,,')

where deg z;; is a positive integer multiple of the i-th unit vector e; € N". Then R

has rational singularities if and only if

(1) R is Cohen-Macaulay,

(2) Ry has rational singularities for each p belonging to
Spec R\ (V(mu,xu, cony 1y ) U UV (21, g, - ,xrtT)), and
(3) a(R) <0, i.e., a(R¥) <0 for each coordinate projection @;: N — N.
Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let R be an N-graded ring. We use R to denote the Rees algebra
with respect to the filtration Fj, = R>,, i.e.,

R=FoRTeRTd .
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When considering Proj R, we use the N-grading on R! where [Rh]n = F,T". The

inclusion R = [R%], — R’ gives a map
Proj R* 7, Spec R.

Also, the inclusions R, <— F,, give rise to an injective homomorphism of graded
rings R — R, which induces a surjection

Proj R* - ProjR.

Lemma 5.4. Let R be an N-graded ring which is finitely generated over Ry, and
assume that Ry is essentially of finite type over a field of characteristic zero.

If R, has rational singularities for all primes p € Spec R\ V(R), then Proj Rf
has rational singularities.

Proof. Note that Proj R? is covered by affine open sets D, (rT™) for integers n > 1
and homogeneous elements r € R>,,. Consequently, it suffices to check that [RiTn]O
has rational singularities. Next, note that
1 1
[Rign]o= Rt —[Rlo + 5lRlsp, + -
In the case degr > n, the ring above is simply R,., which has rational singularities
by the hypothesis of the lemma. If degr = n, then

[Rign]y = [Re]5,-
The Z-graded ring R, has rational singularities and so, by [Wal, Lemma 2.5], the

ring [R,]5, has rational singularities as well. O

Lemma 5.5. [Hy2, Lemma 2.3] Let R be an N-graded ring which is finitely gener-

ated over a local ring (Rg, m). Suppose [H&+R+ (R)] 0= 0 for alli > 0. Then, for

>
all ideals a of Ry, one has

[Hi\ g, (R)] =0 foralli>0.

We are now in a position to prove the following theorem, which is a variation of
[F1, Satz 3.1], [Wal, Theorem 2.2], and [Hyl, Theorem 1.5].

Theorem 5.6. Let R be an N-graded mormal ring which is finitely generated
over Ry, and assume that Ry is a local ring essentially of finite type over a field of
characteristic zero. Then R has rational singularities if and only if

(1) R is Cohen-Macaulay,

(2) Ry has rational singularities for all p € Spec R\ V(Ry), and

(3) a(R) < 0.

Proof. Tt is straightforward to see that conditions (1)—(3) hold when R has rational

singularities, and we focus on the converse. Consider the morphism

Y = Proj R? 7, Spec R
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as in Remark 5.3. Let g: Z — Y be a desingularization of Y’; the composition
79y L. SpecR

is then a desingularization of Spec R. Note that Y = Proj R" has rational singular-

ities by Lemma 5.4, so
g0z =0y and Ri,0z=0 forallg>1.
Consequently the Leray spectral sequence
EY? = HP(Y,R%g.0yz) = H"11(Z,0z)

degenerates, and we get HP(Z,0z) = HP(Y,Oy) for all p > 1. Since Spec R is
affine, we also have RP(g o f).Oz = HP(Z,Oz). To prove that R has rational
singularities, it now suffices to show that HP(Y,Oy) = 0 for all p > 1. Consider
the map 7: Y — X = Proj R. We have

HP(Y,Oy) = H(X,7.0x) = (P HP (X, Ox (n)) = [H} ' (R)]

20"
n>=0
By condition (1), we have [waR+ (R)]>O = 0 for all p > 0, and so Lemma 5.5
implies that [H£+ (R)]>O =0 for all p > 0 as desired. O

Proof of theorem 5.2. If R has rational singularities, it is easily seen that condi-
tions (1)—(3) must hold. For the converse, we proceed by induction on r. The case
r = 1 is Theorem 5.6 established above, so assume r > 2. It suffices to show that

Ry has rational singularities where 91 is the homogeneous maximal ideal of R. Set
m=9MnN R,

and consider the N-graded ring S obtained by inverting the multiplicative set
[R?r], ~m in R?r. Since Rgy is a localization of S, it suffices to show that S
has rational singularities. Note that a(S) = a(R¥"), which is a negative integer
by (1). Using Theorem 5.6, it is therefore enough to show that Ry has rational
singularities for all ¢ € Spec R\ V (21, Zr2, ..., 2, ). Fix such a prime B, and let

2T — 7!

be the projection to the first 7 — 1 coordinates. Note that RY is the ring R regraded

such that deg x,; = 0, and the degrees of x;; for i < r are unchanged. Set
p=Pn[R"],,

and let T' be the ring obtained by inverting the multiplicative set [R¢]O ~pin RY.
It suffices to show that T has rational singularities. Note that T is an N"~!-graded
ring defined over a local ring (Tp,p), and that it has homogeneous maximal ideal
p + b7 where

bz(Rw)+:(xij |i<r)R.
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Using the inductive hypothesis, it remains to verify that a(7) < 0. By condi-

tion (1), for all integers 1 < j < r — 1, we have
[Hy(R)?"] ;=0  foralli>0,
and using Lemma 5.5 it follows that
[Hypo(R)?] =0 foralli>0.

Consequently a(T%3) < 0 for 1 < j < r — 1, which completes the proof. O

6. F-REGULARITY

For the theory of tight closure, we refer to the papers [HH1, HH2] and [HH3].
We summarize results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

(1) Regular rings are F-regular.

(2) Direct summands of F-reqular rings are F-regular.

(3) F-rational rings are normal; an F-rational ring which is a homomorphic
image of a Cohen-Macaulay ring is Cohen-Macaulay.

(4) F-rational Gorenstein rings are F-regular.

(5) Let R be an N-graded ring which is finitely generated over a field Ry. If R
18 weakly F-reqular, then it is F-reqular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] re-
spectively; (3) is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7],
Lastly, (5) is [LS, Corollary 4.4]. O

The characteristic zero aspects of tight closure are developed in [HH4]. Let K be
a field of characteristic zero. A finitely generated K-algebra R = K|x1,...,2m,]/a
is of F-regular type if there exists a finitely generated Z-algebra A C K, and a
finitely generated free A-algebra

RA:A[scl,...,a:m]/aA,

such that R 2 R4 ® 4 K and, for all maximal ideals p in a Zariski dense subset
of Spec A, the fiber rings Ry ® 4 A/p are F-regular rings of characteristic p > 0.
Similarly, R is of F-rational type if for a dense subset of y, the fiber rings Ra®4 A/
are F-rational. Combining results from [Ha, HW, MS, Sm]| one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of character-
istic zero. Then R has rational singularities if and only if it is of F-rational type.
If R is Q-Gorenstein, then it has log terminal singularities if and only if it is of

F-regular type.
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Proposition 6.3. Let K be a field of characteristic p > 0, and R an N-graded
normal ring which is finitely generated over Ry = K. Let w denote the graded
canonical module of R, and set d = dim R.

Suppose R is F-regular. Then, for each integer k, there exists ¢ = p® such that
ranky Ry < rankg [H,‘i(w(q))]k .

Proof. If d < 1, then R is regular and the assertion is elementary. Assume d > 2.
Let ¢ € [HZ(w)]o be an element which generates the socle of H¢ (w). Since the map
wld — (@ is an isomorphism in codimension one, F¢ () may be viewed as an
element of HZ(w(9)) as in [Wa2].

Fix an integer k. For each e € N, set V. to be the kernel of the vector space

homomorphism
(6.3.1) Ry — [HE (w®))]
If cFet1(€) = 0, then F(cF°(€)) = P FeT1(€) = 0; since R is F-pure, it follows that

cF¢(€) = 0. Consequently the vector spaces V, form a descending sequence

Lo where ¢ — cF°(€).

Vi2Ve 2 V3 2---.

The hypothesis that R is F-regular implies (), Ve = 0. Since each V, has finite rank,
V. =0 for e > 0. Hence the homomorphism (6.3.1) is injective for e > 0. O

We next record tight closure properties of general N-graded hypersurfaces. The
results for F-purity are essentially worked out in [HR].

Theorem 6.4. Let A = Klz1,...,2y] be a polynomial ring over a field K of
positive characteristic. Let d be a nonnegative integer, and set M = (d'Hg_l) — 1.
Consider the affine space AY parameterizing the degree d forms in A in which ¢
occurs with coefficient 1.

Let U be the subset of AY corresponding to the forms f for which A/ fA F-pure.
Then U is a Zariski open set, and it is nonempty if and only if d < m.

Let V' be the set corresponding to forms f for which A/fA is F-reqular. Then V

contains a nonempty Zariski open set if d < m, and is empty otherwise.

Proof. The set U is Zariski open by [HR, page 156] and it is empty if d > m by [HR,
Proposition 5.18]. If d < m, the square-free monomial x; - - - 24 defines an F-pure
hypersurface A/(x1 ---xq). A linear change of variables yields the polynomial

f=ai(z1+22) - (1 + 24q)

in which 2¢ occurs with coefficient 1. Hence U is nonempty for d < m.

If d > m, then A/fA has a-invariant d —m > 0 so A/fA is not F-regular.
Suppose d < m. Consider the set W C A parameterizing the forms f for which
A/fA is F-pure and (A/fA)z, is regular; W is a nonempty open subset of AM.
Let f correspond to a point of W. The element T € A/fA has a power which
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is a test element; since A/fA is F-pure, it follows that Z; is a test element. Note

that Za, ..., Ty, is a homogeneous system of parameters for A/fA and that f‘fﬂ
generates the socle modulo (Za, ..., T,,). Hence the ring A/fA is F-regular if and

only if there exists a power ¢ of the prime characteristic p such that
d—1)g+1
ATV ¢ (2, A

The set of such f corresponds to an open subset of W; it remains to verify that

this subset is nonempty. For this, consider
f=al+aswas,
which corresponds to a point of W, and note that A/fA is F-regular since

xgd_l)p"rl ¢ (ah,...,2b [A. O

These ideas carry over to multi-graded hypersurfaces; we restrict below to the
bigraded case. The set of forms in K[z1,...,Zm,¥1,-..,Yn] of degree (d,e) in
which z{y§ occurs with coefficient 1 is parametrized by the affine space AY where

N = () () -

Theorem 6.5. Let B= K|x1,...,Zm,Y1,---,Yn] be a polynomial ring over a field
K of positive characteristic. Consider the N*-grading on B with degz; = (1,0) and
degy; = (0,1). Let d,e be nonnegative integers, and consider the affine space AX
parameterizing forms of degree (d,e) in which x{y§ occurs with coefficient 1.
Let U be the subset of AX corresponding to forms f for which B/fB is F-pure.
Then U is a Zariski open set, and it is nonempty if and only if d < m and e < n.
Let V' be the set corresponding to forms f for which B/ fB is F-reqular. Then V

contains a nonempty Zariski open set if d < m and e < n, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if d < m
and e < n, then the polynomial x1 - - - x4y; - - - ye defines an F-pure hypersurface.

If B/fB is F-regular, then a(B/fB) < 0 implies d < m and e < n. Conversely,
if d < m and e < n, then there is a nonempty open set W corresponding to
forms f for which the hypersurface B/ fB is F-pure and (B/fB)z,y, is regular. In
this case, 13y, € B/fB is a test element. The socle modulo the parameter ideal
(1= Y1,y -+, Tmy Y2y - - - » Yn) B/ [ B is generated by ¢! so B/fB is F-regular
if and only if there exists a power ¢ = p° such that

(d+e—1)q+1 q q .9 q
Ty ¢(ml_y17‘/132""7xgn7y2a"'7y$wf)B'

The subset of W corresponding to such f is open; it remains to verify that it is

nonempty. For this, use f = 2¢y§ + 2o Tar1Y2 Yer1- O
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