MULTIGRADED RINGS, DIAGONAL SUBALGEBRAS, AND RATIONAL SINGULARITIES

KAZUHIKO KURANO, EI-ICHI SATO, ANURAG K. SINGH, AND KEI-ICHI WATANABE

To Paul Roberts

1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings and their diagonal subalgebras. The main focus is on diagonal subalgebras of bigraded rings: these constitute an interesting class of rings since they arise naturally as homogeneous coordinate rings of blow-ups of projective varieties.

Let X be a projective variety over a field K, with homogeneous coordinate ring A. Let $\mathfrak{a} \subset A$ be a homogeneous ideal, and $V \subset X$ the closed subvariety defined by \mathfrak{a} . For g an integer, we use \mathfrak{a}_g to denote the K-vector space consisting of homogeneous elements of \mathfrak{a} of degree g. If $g \gg 0$, then \mathfrak{a}_g defines a very ample complete linear system on the blow-up of X along V, and hence $K[\mathfrak{a}_g]$ is a homogeneous coordinate ring for this blow-up. Since the ideals \mathfrak{a}^h define the same subvariety V, the rings $K[(\mathfrak{a}^h)_g]$ are homogeneous coordinate ring for the blow-up provided $g \gg h > 0$.

Suppose that A is a standard \mathbb{N} -graded K-algebra, and consider the \mathbb{N}^2 -grading on the Rees algebra $A[\mathfrak{a}t]$, where $\deg rt^j = (i,j)$ for $r \in A_i$. The connection with diagonal subalgebras stems from the fact that if \mathfrak{a}^h is generated by elements of degree less than or equal to g, then

$$K[(\mathfrak{a}^h)_g] \cong \bigoplus_{k\geqslant 0} A[\mathfrak{a}t]_{(gk,hk)}$$
.

Using $\Delta = (g,h)\mathbb{Z}$ to denote the (g,h)-diagonal in \mathbb{Z}^2 , the diagonal subalgebra $A[\mathfrak{a}t]_{\Delta} = \bigoplus_k A[\mathfrak{a}t]_{(gk,hk)}$ is a homogeneous coordinate ring for the blow-up of Proj A along the subvariety defined by \mathfrak{a} , whenever $g \gg h > 0$.

The papers [GG, GGH, GGP, Tr] use diagonal subalgebras in studying blowups of projective space at finite sets of points. For A a polynomial ring and \mathfrak{a} a homogeneous ideal, the ring theoretic properties of $K[\mathfrak{a}_g]$ are studied by Simis, Trung, and Valla in [STV] by realizing $K[\mathfrak{a}_g]$ as a diagonal subalgebra of the Rees algebra $A[\mathfrak{a}t]$. In particular, they determine when $K[\mathfrak{a}_g]$ is Cohen-Macaulay for \mathfrak{a} complete intersection ideal generated by forms of equal degree, and also for \mathfrak{a} the

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 13A02; Secondary 13A35, 13H10, 14B15. A.K.S. was supported by NSF grants DMS 0300600 and DMS 0600819.

ideal of maximal minors of a generic matrix. Some of their results are extended by Conca, Herzog, Trung, and Valla as in the following theorem:

Theorem 1.1. [CHTV, Theorem 4.6] Let $K[x_1, ..., x_m]$ be a polynomial ring over a field, and let \mathfrak{a} be a complete intersection ideal minimally generated by forms of degrees $d_1, ..., d_r$. Fix positive integers g and h with $g/h > d = \max\{d_1, ..., d_r\}$. Then $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay if and only if $g > (h-1)d-m+\sum_{i=1}^r d_i$.

When A is a polynomial ring and \mathfrak{a} an ideal for which $A[\mathfrak{a}t]$ is Cohen-Macaulay, Lavila-Vidal [Lv1, Theorem 4.5] proved that the diagonal subalgebras $K[(\mathfrak{a}^h)_g]$ are Cohen-Macaulay for $g\gg h\gg 0$, thereby settling a conjecture from [CHTV]. In [CH] Cutkosky and Herzog obtain affirmative answers regarding the existence of a constant c such that $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay whenever $g\geqslant ch$. For more work on the Cohen-Macaulay and Gorenstein properties of diagonal subalgebras, see [HHR, Hy2, Lv2], and [LvZ].

As a motivating example for some of the results of this paper, consider a polynomial ring $A = K[x_1, \ldots, x_m]$ and an ideal $\mathfrak{a} = (z_1, z_2)$ generated by relatively prime forms z_1 and z_2 of degree d. Setting $\Delta = (d+1,1)\mathbb{Z}$, the diagonal subalgebra $A[\mathfrak{a}t]_{\Delta}$ is a homogeneous coordinate ring for the blow-up of Proj $A = \mathbb{P}^{m-1}$ along the subvariety defined by \mathfrak{a} . The Rees algebra $A[\mathfrak{a}t]$ has a presentation

$$\mathcal{R} = K[x_1, \dots, x_m, y_1, y_2]/(y_2z_1 - y_1z_2),$$

where $\deg x_i = (1,0)$ and $\deg y_j = (d,1)$, and consequently \mathcal{R}_{Δ} is the subalgebra of \mathcal{R} generated by the elements $x_i y_j$. When K has characteristic zero and z_1 and z_2 are general forms of degree d, the results of Section 3 imply that \mathcal{R}_{Δ} has rational singularities if and only if $d \leq m$, and that it is of F-regular type if and only if d < m. As a consequence, we obtain large families of rings of the form \mathcal{R}_{Δ} , standard graded over a field, which have rational singularities, but which are not of F-regular type.

It is worth pointing out that if \mathcal{R} is an \mathbb{N}^2 -graded ring over an infinite field $\mathcal{R}_{(0,0)} = K$, and $\Delta = (g,h)\mathbb{Z}$ for coprime positive integers g and h, then \mathcal{R}_{Δ} is the ring of invariants of the torus K^* acting on \mathcal{R} via

$$\lambda \colon r \longmapsto \lambda^{hi-gj}r$$
 where $\lambda \in K^*$ and $r \in \mathcal{R}_{(i,j)}$.

Consequently there exist torus actions on hypersurfaces for which the rings of invariants have rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal rings R, with isolated singularities, for which $H^2_{\mathfrak{m}}(R)_0 = 0$ and $H^2_{\mathfrak{m}}(R)_1 \neq 0$. If S is the localization of such a ring R at its homogeneous maximal ideal, then, by Danilov's results, the divisor class group of S is a finitely generated abelian group, though S does not have a discrete divisor class group. Such rings R are also of interest in view of the results of [RSS], where it is proved that the image

of $H^2_{\mathfrak{m}}(R)_0$ in $H^2_{\mathfrak{m}}(R^+)$ is annihilated by elements of R^+ of arbitrarily small positive degree; here R^+ denoted the absolute integral closure of R. A corresponding result for $H^2_{\mathfrak{m}}(R)_1$ is not known at this point, and the rings constructed in Section 4 constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and modules. In Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses results on rational singularities and F-regular rings proved in Sections 5 and 6 respectively.

The authors would like to thank Shiro Goto and Ken-ichi Yoshida for their valuable comments.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1, GW2, HHR], and [HIO] for further details.

By an \mathbb{N}^r -graded ring we mean a ring

$$\mathcal{R} = \bigoplus_{n \in \mathbb{N}^r} \mathcal{R}_n \,,$$

which is finitely generated over the subring \mathcal{R}_0 . If $(\mathcal{R}_0, \mathfrak{m})$ is a local ring, then \mathcal{R} has a unique homogeneous maximal ideal $\mathfrak{M} = \mathfrak{m}\mathcal{R} + \mathcal{R}_+$, where $\mathcal{R}_+ = \bigoplus_{n \neq 0} \mathcal{R}_n$.

For $\mathbf{m} = (m_1, \dots, m_r)$ and $\mathbf{n} = (n_1, \dots, n_r)$ in \mathbb{Z}^r , we say $\mathbf{n} > \mathbf{m}$ (resp. $\mathbf{n} \ge \mathbf{m}$) if $n_i > m_i$ (resp. $n_i \ge m_i$) for each i.

Let M be a \mathbb{Z}^r -graded \mathcal{R} -module. For $\boldsymbol{m} \in \mathbb{Z}^r$, we set

$$M_{\geqslant m} = \bigoplus_{n \geqslant m} M_n \,,$$

which is a \mathbb{Z}^r -graded submodule of M. One writes $M(\mathbf{m})$ for the \mathbb{Z}^r -graded \mathcal{R} -module with shifted grading $[M(\mathbf{m})]_{\mathbf{n}} = M_{\mathbf{m}+\mathbf{n}}$ for each $\mathbf{n} \in \mathbb{Z}^r$.

Let M and N be \mathbb{Z}^r -graded \mathcal{R} -modules. Then $\underline{\mathrm{Hom}}_{\mathcal{R}}(M,N)$ is the \mathbb{Z}^r -graded module with $[\underline{\mathrm{Hom}}_{\mathcal{R}}(M,N)]_{\boldsymbol{n}}$ being the abelian group consisting of degree preserving \mathcal{R} -linear homomorphisms from M to $N(\boldsymbol{n})$.

The functor $\underline{\operatorname{Ext}}_{\mathcal{R}}^i(M,-)$ is the *i*-th derived functor of $\underline{\operatorname{Hom}}_{\mathcal{R}}(M,-)$ in the category of \mathbb{Z}^r -graded \mathcal{R} -modules. When M is finitely generated, $\underline{\operatorname{Ext}}_{\mathcal{R}}^i(M,N)$ and $\underline{\operatorname{Ext}}_{\mathcal{R}}^i(M,N)$ agree as underlying \mathcal{R} -modules. For a homogeneous ideal \mathfrak{a} of \mathcal{R} , the local cohomology modules of M with support in \mathfrak{a} are the \mathbb{Z}^r -graded modules

$$H^i_{\mathfrak{a}}(M) = \underset{n}{\underline{\lim}} \ \underline{\underline{\mathrm{Ext}}}^i_{\mathcal{R}}(\mathcal{R}/\mathfrak{a}^n, M) \,.$$

Let $\varphi \colon \mathbb{Z}^r \longrightarrow \mathbb{Z}^s$ be a homomorphism of abelian groups satisfying $\varphi(\mathbb{N}^r) \subseteq \mathbb{N}^s$. We write \mathcal{R}^{φ} for the ring \mathcal{R} with the \mathbb{N}^s -grading where

$$\left[\mathcal{R}^{arphi}
ight]_{m{n}} = igoplus_{arphi(m{m})=m{n}} \mathcal{R}_{m{m}} \,.$$

If M is a \mathbb{Z}^r -graded \mathcal{R} -module, then M^{φ} is the \mathbb{Z}^s -graded \mathcal{R}^{φ} -module with

$$[M^{\varphi}]_{\boldsymbol{n}} = \bigoplus_{\varphi(\boldsymbol{m})=\boldsymbol{n}} M_{\boldsymbol{m}}.$$

The change of grading functor $(-)^{\varphi}$ is exact; by [HHR, Lemma 1.1] one has

$$H^i_{\mathfrak{M}}(M)^{\varphi} = H^i_{\mathfrak{M}^{\varphi}}(M^{\varphi}).$$

Consider the projections $\varphi_i \colon \mathbb{Z}^r \longrightarrow \mathbb{Z}$ with $\varphi_i(m_1, \dots, m_r) = m_i$, and set

$$a(\mathcal{R}^{\varphi_i}) = \max \left\{ a \in \mathbb{Z} \mid \left[H_{\mathfrak{M}}^{\dim \mathcal{R}}(\mathcal{R})^{\varphi_i} \right]_a \neq 0 \right\};$$

this is the a-invariant of the N-graded ring \mathcal{R}^{φ_i} in the sense of Goto and Watanabe [GW1]. As in [HHR], the multigraded a-invariant of \mathcal{R} is

$$\mathbf{a}(\mathcal{R}) = (a(\mathcal{R}^{\varphi_1}), \dots, a(\mathcal{R}^{\varphi_r})).$$

Let \mathcal{R} be a \mathbb{Z}^2 -graded ring and let g,h be positive integers. The subgroup $\Delta = (g,h)\mathbb{Z}$ is a diagonal in \mathbb{Z}^2 , and the corresponding diagonal subalgebra of \mathcal{R} is

$$\mathcal{R}_{\Delta} = \bigoplus_{k \in \mathbb{Z}} \mathcal{R}_{(gk,hk)}$$
.

Similarly, if M is a \mathbb{Z}^2 -graded \mathcal{R} -module, we set

$$M_{\Delta} = \bigoplus_{k \in \mathbb{Z}} M_{(gk,hk)} \,,$$

which is a \mathbb{Z} -graded module over the \mathbb{Z} -graded ring \mathcal{R}_{Δ} .

Lemma 2.1. Let A and B be \mathbb{N} -graded normal rings, finitely generated over a field $A_0 = K = B_0$. Set $T = A \otimes_K B$. Let g and h be positive integers and set $\Delta = (g,h)\mathbb{Z}$. Let \mathfrak{a} , \mathfrak{b} , and \mathfrak{m} denote the homogeneous maximal ideals of A, B, and T_{Δ} respectively. Then, for each $q \geqslant 0$ and $i,j,k \in \mathbb{Z}$, one has

$$\begin{split} H^q_{\mathfrak{m}}\big(T(i,j)_{\Delta}\big)_k &= \left(A_{i+gk} \otimes H^q_{\mathfrak{b}}(B)_{j+hk}\right) \oplus \left(H^q_{\mathfrak{a}}(A)_{i+gk} \otimes B_{j+hk}\right) \oplus \\ \bigoplus_{q_1+q_2=q+1} \left(H^{q_1}_{\mathfrak{a}}(A)_{i+gk} \otimes H^{q_2}_{\mathfrak{b}}(B)_{j+hk}\right). \end{split}$$

Proof. Let $A^{(g)}$ and $B^{(h)}$ denote the respective Veronese subrings of A and B. Set

$$A^{(g,i)} = \bigoplus_{k \in \mathbb{Z}} A_{i+gk}$$
 and $B^{(h,j)} = \bigoplus_{k \in \mathbb{Z}} B_{j+hk}$,

which are graded $A^{(g)}$ and $B^{(h)}$ modules respectively. Using # for the Segre product,

$$T(i,j)_{\Delta} = \bigoplus_{k \in \mathbb{Z}} A_{i+gk} \otimes_K B_{j+hk} = A^{(g,i)} \# B^{(h,j)}.$$

The ideal $A_+^{(g)}A$ is \mathfrak{a} -primary; likewise, $B_+^{(h)}B$ is \mathfrak{b} -primary. The Künneth formula for local cohomology, [GW1, Theorem 4.1.5], now gives the desired result.

Notation 2.2. We use bold letters to denote lists of elements, e.g., $z = z_1, \ldots, z_s$ and $\gamma = \gamma_1, \ldots, \gamma_s$.

3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of \mathbb{N}^2 -graded hypersurfaces. The proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let K be a field, let m, n be integers with $m, n \ge 2$, and let

$$\mathcal{R} = K[x_1, \dots, x_m, y_1, \dots, y_n]/(f)$$

be a normal \mathbb{N}^2 -graded hypersurface where $\deg x_i = (1,0)$, $\deg y_j = (0,1)$, and $\deg f = (d,e) > (0,0)$. For positive integers g and h, set $\Delta = (g,h)\mathbb{Z}$. Then:

- (1) The ring \mathcal{R}_{Δ} is Cohen-Macaulay if and only if $\lfloor (d-m)/g \rfloor < e/h$ and $\lfloor (e-n)/h \rfloor < d/g$. In particular, if d < m and e < n, then \mathcal{R}_{Δ} is Cohen-Macaulay for each diagonal Δ .
- (2) The graded canonical module of \mathcal{R}_{Δ} is $\mathcal{R}(d-m,e-n)_{\Delta}$. Hence \mathcal{R}_{Δ} is Gorenstein if and only if (d-m)/g = (e-n)/h, and this is an integer.

If K has characteristic zero, and f is a generic polynomial of degree (d, e), then:

- (3) The ring \mathcal{R}_{Δ} has rational singularities if and only if it is Cohen-Macaulay and d < m or e < n.
- (4) The ring \mathcal{R}_{Δ} is of F-regular type if and only if d < m and e < n.

For $m, n \ge 3$ and $\Delta = (1, 1)\mathbb{Z}$, the properties of \mathcal{R}_{Δ} , as determined by m, n, d, e, are summarized in Figure 1.

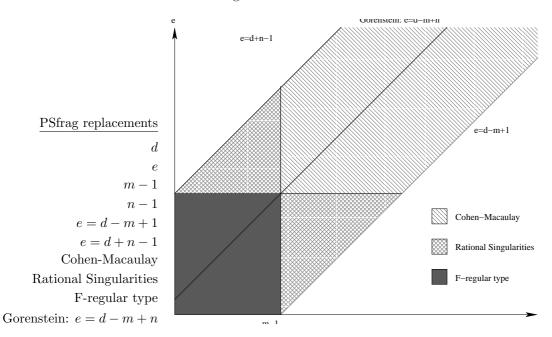


FIGURE 1. Properties of \mathcal{R}_{Δ} for $\Delta = (1,1)\mathbb{Z}$.

Remark 3.2. Let $m, n \ge 2$. A generic hypersurface of degree (d, e) > (0, 0) in m, n variables is normal precisely when

$$m > \min(2, d)$$
 and $n > \min(2, e)$.

Suppose that m=2=n, and that f is nonzero. Then $\dim \mathcal{R}_{\Delta}=2$; since \mathcal{R}_{Δ} is generated over a field by elements of equal degree, \mathcal{R}_{Δ} is of F-regular type if and only if it has rational singularities; see [Wa2]. This is the case precisely if

$$d = 1, e \le h + 1, \text{ or } e = 1, d \le g + 1.$$

Following a suggestion of Hara, the case n=2 and e=1 was used in [Si, Example 7.3] to construct examples of standard graded rings with rational singularities which are not of F-regular type.

Proof of Theorem 3.1. Set A = K[x], B = K[y], and $T = A \otimes_K B$. By Lemma 2.1, $H_{\mathfrak{m}}^q(T_{\Delta}) = 0$ for $q \neq m + n - 1$. The local cohomology exact sequence induced by

$$0 \longrightarrow T(-d,-e)_{\Delta} \stackrel{f}{\longrightarrow} T_{\Delta} \longrightarrow \mathcal{R}_{\Delta} \longrightarrow 0$$

therefore gives $H^{q-1}_{\mathfrak{m}}(\mathcal{R}_{\Delta}) = H^{q}_{\mathfrak{m}}(T(-d,-e)_{\Delta})$ for $q \leq m+n-2$, and also shows that $H^{m+n-2}_{\mathfrak{m}}(\mathcal{R}_{\Delta})$ and $H^{m+n-1}_{\mathfrak{m}}(\mathcal{R}_{\Delta})$ are, respectively, the kernel and cokernel of

$$\begin{array}{cccc} H^{m+n-1}_{\mathfrak{m}}(T(-d,-e)_{\Delta}) & \stackrel{f}{\longrightarrow} & H^{m+n-1}_{\mathfrak{m}}(T_{\Delta}) \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ [H^{m}_{\mathfrak{a}}(A(-d)) \otimes H^{n}_{\mathfrak{b}}(B(-e))]_{\Delta} & \stackrel{f}{\longrightarrow} & [H^{m}_{\mathfrak{a}}(A) \otimes H^{n}_{\mathfrak{b}}(B)]_{\Delta} \,. \end{array}$$

The horizontal map above is surjective since its graded dual

$$[A(d-m)\otimes B(e-n)]_{\Delta} \xleftarrow{f} [A(-m)\otimes B(-n)]_{\Delta}$$

$$\parallel \qquad \qquad \parallel$$

$$T(d-m,e-n)_{\Delta} \xleftarrow{f} T(-m,-n)_{\Delta}$$

is injective. In particular, dim $\mathcal{R}_{\Delta} = m + n - 2$.

It follows from the above discussion that \mathcal{R}_{Δ} is Cohen-Macaulay if and only if $H^q_{\mathfrak{m}}(T(-d,-e)_{\Delta})=0$ for each $q\leqslant m+n-2$. By Lemma 2.1, this is the case if and only if, for each integer k, one has

$$A_{-d+gk} \otimes H^n_{\mathfrak{b}}(B)_{-e+hk} = 0 = H^m_{\mathfrak{a}}(A)_{-d+gk} \otimes B_{-e+hk}.$$

Hence \mathcal{R}_{Δ} is Cohen-Macaulay if and only if there is no integer k satisfying

$$d/g \leqslant k \leqslant (e-n)/h$$
 or $e/h \leqslant k \leqslant (d-m)/g$,

which completes the proof of (1).

For (2), note that the graded canonical module of \mathcal{R}_{Δ} is the graded dual of $H_{\mathfrak{m}}^{m+n-2}(\mathcal{R}_{\Delta})$, and hence that it equals

$$\operatorname{coker}\left(T(-m,-n)_{\Delta} \xrightarrow{f} T(d-m,e-n)_{\Delta}\right) = \mathcal{R}(d-m,e-n)_{\Delta}.$$

This module is principal if and only if $\mathcal{R}(d-m,e-n)_{\Delta} = \mathcal{R}_{\Delta}(a)$ for some integer a, i.e., d-m=ga and e-n=ha.

When f is a general polynomial of degree (d, e), the ring \mathcal{R}_{Δ} has an isolated singularity. Also, \mathcal{R}_{Δ} is normal since it is a direct summand of the normal ring \mathcal{R} . By Theorem 5.1, \mathcal{R}_{Δ} has rational singularities precisely if it is Cohen-Macaulay and $a(\mathcal{R}_{\Delta}) < 0$; this proves (3).

It remains to prove (4). If d < m and e < n, then Theorem 5.2 implies that \mathcal{R} has rational singularities. By Theorem 6.2, it follows that for almost all primes p, the characteristic p models \mathcal{R}_p of \mathcal{R} are F-rational hypersurfaces which, therefore, are F-regular. Alternatively, \mathcal{R}_p is a generic hypersurface of degree (d, e) < (m, n), so Theorem 6.5 implies that \mathcal{R}_p is F-regular. Since $(\mathcal{R}_p)_{\Delta}$ is a direct summand of \mathcal{R}_p , it follows that $(\mathcal{R}_p)_{\Delta}$ is F-regular. The rings $(\mathcal{R}_p)_{\Delta}$ are characteristic p models of \mathcal{R}_{Δ} , so we conclude that \mathcal{R}_{Δ} is of F-regular type.

Suppose \mathcal{R}_{Δ} has F-regular type, and let $(\mathcal{R}_p)_{\Delta}$ be a characteristic p model which is F-regular. Fix an integer k > d/g. Then Proposition 6.3 implies that there exists an integer $q = p^e$ such that

$$\operatorname{rank}_{K}((\mathcal{R}_{p})_{\Delta})_{k} \leqslant \operatorname{rank}_{K}[H_{\mathfrak{m}}^{m+n-2}(\omega^{(q)})]_{k},$$

where ω is the graded canonical module of $(\mathcal{R}_p)_{\Lambda}$. Using (2), we see that

$$H_{\mathfrak{m}}^{m+n-2}(\omega^{(q)}) = H_{\mathfrak{m}}^{m+n-2}(\mathcal{R}_p(qd-qm,qe-qn)_{\Delta}).$$

Let T_p be a characteristic p model for T such that $T_p/fT_p = \mathcal{R}_p$. Multiplication by f on T_p induces a local cohomology exact sequence

$$\cdots \longrightarrow H_{\mathfrak{m}_p}^{m+n-2}(T_p(qd-qm,qe-qn)_{\Delta}) \longrightarrow H_{\mathfrak{m}_p}^{m+n-2}(\mathcal{R}_p(qd-qm,qe-qn)_{\Delta})$$
$$\longrightarrow H_{\mathfrak{m}_p}^{m+n-1}(T_p(qd-qm-d,qe-qn-e)_{\Delta}) \longrightarrow \cdots.$$

Since $H_{\mathfrak{m}_p}^{m+n-2}(T_p(qd-qm,qe-qn)_{\Delta})$ vanishes by Lemma 2.1, we conclude that

$$\begin{aligned} \operatorname{rank}_{K}\left(\left(\mathcal{R}_{p}\right)_{\Delta}\right)_{k} &\leqslant \operatorname{rank}_{K}\left[H_{\mathfrak{m}_{p}}^{m+n-1}(T_{p}(qd-qm-d,qe-qn-e)_{\Delta})\right]_{k} \\ &= \operatorname{rank}_{K}H_{\mathfrak{a}_{p}}^{m}(A_{p})_{ad-am-d+ak} \otimes H_{\mathfrak{b}_{q}}^{n}(B_{p})_{ae-an-e+hk} \,. \end{aligned}$$

Hence qd - qm - d + gk < 0; as d - gk < 0, we conclude d < m. Similarly, e < n. \square

We conclude this section with an example where a local cohomology module of a standard graded ring is not rigid in the sense that $H^2_{\mathfrak{m}}(R)_0=0$ while $H^2_{\mathfrak{m}}(R)_1\neq 0$. Further such examples are constructed in Section 4.

Proposition 3.3. Let K be a field and let

$$\mathcal{R} = K[x_1, x_2, x_3, y_1, y_2]/(f)$$

where $\deg x_i = (1,0)$, $\deg y_j = (0,1)$, and $\deg f = (d,e)$ for $d \geqslant 4$ and $e \geqslant 1$. Let g and h be positive integers such that $g \leqslant d-3$ and $h \geqslant e$, and set $\Delta = (g,h)\mathbb{Z}$. Then $H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_0 = 0$ and $H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_1 \neq 0$.

Proof. Using the resolution of \mathcal{R} over the polynomial ring T as in the proof of Theorem 3.1, we have an exact sequence

$$H^2_{\mathfrak{m}}(T_{\Delta}) \longrightarrow H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta}) \longrightarrow H^3_{\mathfrak{m}}(T(-d,-e)_{\Delta}) \longrightarrow H^3_{\mathfrak{m}}(T_{\Delta}).$$

Lemma 2.1 implies that $H^2_{\mathfrak{m}}(T_{\Delta}) = 0 = H^3_{\mathfrak{m}}(T_{\Delta})$. Hence, again by Lemma 2.1,

$$H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_0 = H^3(A)_{-d} \otimes B_{-e} = 0$$
 and $H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_1 = H^3(A)_{q-d} \otimes B_{h-e} \neq 0$. \square

4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over \mathbb{C} , with only isolated singularities, for which $H^2_{\mathfrak{m}}(R)_0 = 0$ and $H^2_{\mathfrak{m}}(R)_1 \neq 0$. Let S be the localization of such a ring R at its homogeneous maximal ideal. By results of Danilov [Da1, Da2], Theorem 4.1 below, it follows that the divisor class group of S is finitely generated, though S does not have a discrete divisor class group, i.e., the natural map $\mathrm{Cl}(S) \longrightarrow \mathrm{Cl}(S[[t]])$ is not bijective. Here, remember that if A is a Noetherian normal domain, then so is A[[t]].

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra over $R_0 = \mathbb{C}$. Assume, moreover, that $X = \operatorname{Proj} R$ is smooth. Set (S, \mathfrak{m}) to be the local ring of R at its homogeneous maximal ideal, and \widehat{S} to be the \mathfrak{m} -adic completion of S. Then

- (1) the group Cl(S) is finitely generated if and only if $H^1(X, \mathcal{O}_X) = 0$;
- (2) the map $Cl(S) \longrightarrow Cl(\widehat{S})$ is bijective if and only if $H^1(X, \mathcal{O}_X(i)) = 0$ for each integer $i \geqslant 1$; and
- (3) the map $Cl(S) \longrightarrow Cl(S[[t]])$ is bijective if and only if $H^1(X, \mathcal{O}_X(i)) = 0$ for each integer $i \ge 0$.

The essential point in our construction is in the following proposition:

Theorem 4.2. Let A be a Cohen-Macaulay ring of dimension $d \ge 2$, which is a standard graded algebra over a field K. For $s \ge 2$, let z_1, \ldots, z_s be a regular sequence in A, consisting of homogeneous elements of equal degree, say k. Consider the Rees ring $\mathcal{R} = A[z_1t, \ldots, z_st]$ with the \mathbb{Z}^2 -grading where $\deg x = (n,0)$ for $x \in A_n$, and $\deg z_it = (0,1)$.

Let $\Delta = (g,h)\mathbb{Z}$ where g,h are positive integers, and let \mathfrak{m} denote the homogeneous maximal ideal of \mathcal{R}_{Δ} . Then:

- (1) $H_{\mathfrak{m}}^{q}(\mathcal{R}_{\Delta}) = 0$ if $q \neq d s + 1, d$; and
- (2) $H_{\mathfrak{m}}^{d-s+1}(\mathcal{R}_{\Delta})_i \neq 0$ if and only if $1 \leq i \leq (a+ks-k)/g$, where a is the a-invariant of A.

In particular, \mathcal{R}_{Δ} is Cohen-Macaulay if and only if g > a + ks - k.

Example 4.3. For $d \ge 3$, let $A = \mathbb{C}[x_0, \dots, x_d]/(f)$ be a standard graded hypersurface such that Proj A is smooth over \mathbb{C} . Take general k-forms $z_1, \ldots, z_{d-1} \in A$, and consider the Rees ring $\mathcal{R} = A[z_1t, \dots, z_{d-1}t]$. Since $(z) \subset A$ is a radical ideal,

$$\operatorname{gr}((\boldsymbol{z}), A) \cong A/(\boldsymbol{z})[y_1, \dots, y_{d-1}]$$

is a reduced ring, and therefore $\mathcal{R} = A[z_1t, \dots, z_{d-1}t]$ is integrally closed in A[t]. Since A is normal, so is \mathcal{R} . Note that $\operatorname{Proj} \mathcal{R}_{\Delta}$ is the blow-up of $\operatorname{Proj} A$ at the subvariety defined by (z), i.e., at $k^{d-1}(\deg f)$ points. It follows that $\operatorname{Proj} \mathcal{R}_{\Delta}$ is smooth over \mathbb{C} . Hence \mathcal{R}_{Δ} is a standard graded \mathbb{C} -algebra, which is normal and has an isolated singularity.

If $\Delta = (g, h)\mathbb{Z}$ is a diagonal with $1 \leq g \leq \deg f + k(d-2) - (d+1)$ and $h \geq 1$, then Theorem 4.2 implies that

$$H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_0 = 0$$
 and $H^2_{\mathfrak{m}}(\mathcal{R}_{\Delta})_1 \neq 0$.

The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field K is infinite. Then one can find linear forms x_1, \ldots, x_{d-s} in A such that $x_1, \ldots, x_{d-s}, z_1, \ldots, z_s$ is a maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let \mathfrak{a} be the homogeneous maximal ideal of A. Set $I = (z_1, \ldots, z_s)A$. Let r be a positive integer.

- (1) $H_q^q(I^r) = 0$ if $q \neq d s + 1, d$.
- (2) Assume d > s. Then, $H_{\mathfrak{a}}^{d-s+1}(I^r)_i \neq 0$ if and only if $i \leqslant a+ks+rk-k$. (3) Assume d = s. Then, $H_{\mathfrak{a}}^{d-s+1}(I^r)_i \neq 0$ if and only if $0 \leqslant i \leqslant a+ks+rk-k$.

Proof. Recall that A and A/I^r are Cohen-Macaulay rings of dimension d and d-s, respectively. By the exact sequence

$$0 \longrightarrow I^r \longrightarrow A \longrightarrow A/I^r \longrightarrow 0$$

we obtain

$$H^q_{\mathfrak{a}}(I^r) = \begin{cases} H^d_{\mathfrak{a}}(A) & \text{if } q = d \\ H^{d-s}_{\mathfrak{a}}(A/I^r) & \text{if } q = d-s+1 \\ 0 & \text{if } q \neq d-s+1, d, \end{cases}$$

which proves (1).

Next we prove (2) and (3). Since A/I^r is a standard graded Cohen-Macaulay ring of dimension d-s, it is enough to show that the a-invariant of this ring equals a + ks + rk - k. This is straightforward if r = 1, and we proceed by induction. Consider the exact sequence

$$0 \longrightarrow I^r/I^{r+1} \longrightarrow A/I^{r+1} \longrightarrow A/I^r \longrightarrow 0.$$

Since z_1, \ldots, z_s is a regular sequence of k-forms, I^r/I^{r+1} is isomorphic to

$$\left((A/I)(-rk)\right)^{\binom{s-1+r}{r}}.$$

Thus, we have the following exact sequence:

$$0 \longrightarrow H^{d-s}_{\mathfrak{a}}\big((A/I)(-rk)\big)^{\binom{s-1+r}{r}} \longrightarrow H^{d-s}_{\mathfrak{a}}(A/I^{r+1}) \longrightarrow H^{d-s}_{\mathfrak{a}}(A/I^{r}) \longrightarrow 0 \,.$$

The a-invariant of (A/I)(-rk) equals a+ks+rk, and that of A/I^r is a+ks+rk-k by the inductive hypothesis. Thus, A/I^{r+1} has a-invariant a+ks+rk.

Proof of Theorem 4.2. Let $B = K[y_1, \ldots, y_s]$ be a polynomial ring, and set

$$T = A \otimes_K B = A[y_1, \dots, y_s].$$

Consider the \mathbb{Z}^2 -grading on T where $\deg x = (n,0)$ for $x \in A_n$, and $\deg y_i = (0,1)$ for each i. One has a surjective homomorphism of graded rings

$$T \longrightarrow \mathcal{R} = A[z_1 t, \dots, z_s t]$$
 where $y_i \longmapsto z_i t$,

and this induces an isomorphism

$$\mathcal{R} \cong T/I_2(\begin{smallmatrix} z_1 & \dots & z_s \\ y_1 & \dots & y_s \end{smallmatrix})$$
.

The minimal free resolution of $\mathcal R$ over T is given by the Eagon-Northcott complex

$$0 \longrightarrow F^{-(s-1)} \longrightarrow F^{-(s-2)} \longrightarrow \cdots \longrightarrow F^0 \longrightarrow 0,$$

where $F^0 = T(0,0)$, and F^{-i} for $1 \le i \le s-1$ is the direct sum of $\binom{s}{i+1}$ copies of

$$T(-k,-i) \oplus T(-2k,-(i-1)) \oplus \cdots \oplus T(-ik,-1)$$
.

Let \mathfrak{n} be the homogeneous maximal ideal of T_{Δ} . One has the spectral sequence:

$$E_2^{p,q} = H^p(H_n^q(F_{\Delta}^{\bullet})) \Longrightarrow H_m^{p+q}(\mathcal{R}_{\Delta}).$$

Let G be the set of (n, m) such that T(n, m) appears in the Eagon-Northcott complex above, i.e., the elements of G are

$$(0,0),$$

$$(-k,-1),$$

$$(-k,-2), (-2k,-1),$$

$$(-k,-3), (-2k,-2), (-3k,-1),$$

$$\vdots$$

$$(-k,-(s-1)), \dots (-(s-1)k,-1).$$

Let $\mathfrak a$ and $\mathfrak b$ be the homogeneous maximal ideal of A and B respectively. For integers n and m, the Künneth formula gives

$$\begin{split} &H^q_{\mathfrak{n}}(T(n,m))\\ &= H^q_{\mathfrak{n}}(A(n) \otimes_K B(m))\\ &= \left(H^q_{\mathfrak{a}}(A(n)) \otimes B(m)\right) \oplus \left(A(n) \otimes H^q_{\mathfrak{b}}(B(m))\right) \oplus \bigoplus_{i+j=q+1} H^i_{\mathfrak{a}}(A(n)) \otimes H^j_{\mathfrak{b}}(B(m))\\ &= H^q_{\mathfrak{a}}(T(n,m)) \oplus H^q_{\mathfrak{b}}(T(n,m)) \oplus \bigoplus_{i+j=q+1} H^i_{\mathfrak{a}}(A(n)) \otimes_K H^j_{\mathfrak{b}}(B(m)) \,. \end{split}$$

As A and B are Cohen-Macaulay of dimension d and s respectively, it follows that

$$H_n^q(F^{\bullet}) = 0$$
 if $q \neq s, d, d+s-1$.

In the case where d > s, one has

$$H_{\mathfrak{n}}^{s}(F^{\bullet}) = H_{\mathfrak{b}}^{s}(F^{\bullet})$$
 and $H_{\mathfrak{n}}^{d}(F^{\bullet}) = H_{\mathfrak{a}}^{d}(F^{\bullet})$,

and if d = s, then

$$H^d_{\mathfrak{n}}(F^{\bullet}) = H^d_{\mathfrak{a}}(F^{\bullet}) \oplus H^s_{\mathfrak{b}}(F^{\bullet})$$
.

We claim $H^s_{\mathfrak{b}}(F^{\bullet})_{\Delta}=0$. If not, there exists $(n,m)\in G$ and $\ell\in\mathbb{Z}$ such that

$$H^s_{\mathfrak{b}}(T(n,m))_{(g\ell,h\ell)} \neq 0$$
.

This implies that

$$H^s_{\mathfrak{b}}(T(n,m))_{(g\ell,h\ell)} = A(n)_{g\ell} \otimes_K H^s_{\mathfrak{b}}(B(m))_{h\ell} = A_{n+g\ell} \otimes_K H^s_{\mathfrak{b}}(B)_{m+h\ell}$$

is nonzero, so

$$n + g\ell \geqslant 0$$
 and $m + h\ell \leqslant -s$,

and hence

$$-\frac{n}{q} \leqslant \ell \leqslant -\frac{s+m}{h} \,.$$

But $(n, m) \in G$, so $n \leq 0$ and $m \geq -(s - 1)$, implying that

$$0 \leqslant \ell \leqslant -\frac{1}{h}$$
,

which is not possible. This proves that $H^s_{\mathfrak{b}}(F^{\bullet})_{\Delta}=0$. Thus, we have

$$H_{\mathfrak{n}}^{q}(F^{\bullet})_{\Delta} = \begin{cases} 0 & \text{if } q \neq d, d+s-1, \\ H_{\mathfrak{a}}^{d}(F^{\bullet})_{\Delta} & \text{if } q = d. \end{cases}$$

It follows that

$$E_2^{p,q} = H^p(H^q_{\mathfrak{n}}(F_{\Delta}^{\bullet})) = E_{\infty}^{p,q}$$

for each p and q. Therefore,

$$H^i_{\mathfrak{m}}(\mathcal{R}_{\Delta}) = E_2^{i-d,d} = H^{i-d}(H^d_{\mathfrak{n}}(F^{\bullet}_{\Delta})) = H^{i-d}(H^d_{\mathfrak{a}}(F^{\bullet})_{\Delta}) = H^i_{\mathfrak{a}}(\mathcal{R})_{\Delta}$$

for $d - s + 1 \leq i \leq d - 1$, and

$$H^i_{\mathfrak{m}}(\mathcal{R}_{\Delta}) = 0$$
 for $i < d - s + 1$.

We next study $H^i_{\mathfrak{a}}(\mathcal{R})$. Since

$$\mathcal{R} = A \oplus I(k) \oplus I^2(2k) \oplus \cdots \oplus I^r(rk) \oplus \cdots,$$

we have

$$H^i_{\mathfrak{a}}(\mathcal{R}) = H^i_{\mathfrak{a}}(A) \oplus H^i_{\mathfrak{a}}(I)(k) \oplus H^i_{\mathfrak{a}}(I^2)(2k) \oplus \cdots \oplus H^i_{\mathfrak{a}}(I^r)(rk) \oplus \cdots$$

Theorem 4.2 (1) now follow using Lemma 4.4 (1).

Assume that d > s. Then, by Lemma 4.4 (2), $H_{\mathfrak{a}}^{d-s+1}(I^r(rk))_i \neq 0$ if and only if $i \leq a + ks - k$.

Assume that d = s. Then, by Lemma 4.4 (3), $H_{\mathfrak{a}}^{d-s+1}(I^r(rk))_i \neq 0$ if and only if $-rk \leq i \leq a + ks - k$.

In each case, $H_{\mathfrak{a}}^{d-s+1}(\mathcal{R})_{(qi,hi)} \neq 0$ if and only if

$$1 \leqslant i \leqslant \frac{a + ks - k}{a} \,.$$

5. RATIONAL SINGULARITIES

Let R be a normal domain, essentially of finite type over a field of characteristic zero, and consider a desingularization $f \colon Z \longrightarrow \operatorname{Spec} R$, i.e., a proper birational morphism with Z a nonsingular variety. One says R has rational singularities if $R^i f_* \mathcal{O}_Z = 0$ for each $i \geqslant 1$; this does not depend on the choice of the desingularization f. For \mathbb{N} -graded rings, one has the following criterion due to Flenner [FI] and Watanabe [Wa1].

Theorem 5.1. Let R be a normal \mathbb{N} -graded ring which is finitely generated over a field R_0 of characteristic zero. Then R has rational singularities if and only if it is Cohen-Macaulay, a(R) < 0, and the localization $R_{\mathfrak{p}}$ has rational singularities for each $\mathfrak{p} \in \operatorname{Spec} R \setminus \{R_+\}$.

When R has an isolated singularity, the above theorem gives an effective criterion for determining if R has rational singularities. However, a multigraded hypersurface typically does not have an isolated singularity, and the following variation turns out to be useful:

Theorem 5.2. Let R be a normal \mathbb{N}^r -graded ring such that R_0 is a local ring essentially of finite type over a field of characteristic zero, and R is generated over R_0 by elements

$$x_{11}, x_{12}, \ldots, x_{1t_1}, \quad x_{21}, x_{22}, \ldots, x_{2t_2}, \quad \ldots, \quad x_{r1}, x_{r2}, \ldots, x_{rt_r},$$

where deg x_{ij} is a positive integer multiple of the i-th unit vector $e_i \in \mathbb{N}^r$. Then R has rational singularities if and only if

- (1) R is Cohen-Macaulay,
- (2) $R_{\mathfrak{p}}$ has rational singularities for each \mathfrak{p} belonging to

Spec
$$R \setminus (V(x_{11}, x_{12}, \dots, x_{1t_1}) \cup \dots \cup V(x_{r1}, x_{r2}, \dots, x_{rt_r}))$$
, and

(3) a(R) < 0, i.e., $a(R^{\varphi_i}) < 0$ for each coordinate projection $\varphi_i : \mathbb{N}^r \longrightarrow \mathbb{N}$.

Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let R be an \mathbb{N} -graded ring. We use R^{\natural} to denote the Rees algebra with respect to the filtration $F_n = R_{\geqslant n}$, i.e.,

$$R^{\natural} = F_0 \oplus F_1 T \oplus F_2 T^2 \oplus \cdots$$

When considering Proj R^{\natural} , we use the N-grading on R^{\natural} where $[R^{\natural}]_n = F_n T^n$. The inclusion $R = [R^{\natural}]_0 \hookrightarrow R^{\natural}$ gives a map

$$\operatorname{Proj} R^{\natural} \xrightarrow{f} \operatorname{Spec} R$$
.

Also, the inclusions $R_n \hookrightarrow F_n$ give rise to an injective homomorphism of graded rings $R \hookrightarrow R^{\natural}$, which induces a surjection

$$\operatorname{Proj} R^{\natural} \xrightarrow{\pi} \operatorname{Proj} R$$
.

Lemma 5.4. Let R be an \mathbb{N} -graded ring which is finitely generated over R_0 , and assume that R_0 is essentially of finite type over a field of characteristic zero.

If $R_{\mathfrak{p}}$ has rational singularities for all primes $\mathfrak{p} \in \operatorname{Spec} R \setminus V(R_+)$, then $\operatorname{Proj} R^{\mathfrak{p}}$ has rational singularities.

Proof. Note that $\operatorname{Proj} R^{\natural}$ is covered by affine open sets $D_{+}(rT^{n})$ for integers $n \geqslant 1$ and homogeneous elements $r \in R_{\geqslant n}$. Consequently, it suffices to check that $[R_{rT^{n}}^{\natural}]_{0}$ has rational singularities. Next, note that

$$[R_{rT^n}^{\natural}]_0 = R + \frac{1}{r}[R]_{\geqslant n} + \frac{1}{r^2}[R]_{\geqslant 2n} + \cdots$$

In the case $\deg r > n$, the ring above is simply R_r , which has rational singularities by the hypothesis of the lemma. If $\deg r = n$, then

$$\left[R_{rT^n}^{\natural}\right]_0 = \left[R_r\right]_{\geq 0}.$$

The \mathbb{Z} -graded ring R_r has rational singularities and so, by [Wa1, Lemma 2.5], the ring $[R_r]_{\geqslant 0}$ has rational singularities as well.

Lemma 5.5. [Hy2, Lemma 2.3] Let R be an \mathbb{N} -graded ring which is finitely generated over a local ring (R_0, \mathfrak{m}) . Suppose $[H^i_{\mathfrak{m}+R_+}(R)]_{\geqslant 0}=0$ for all $i\geqslant 0$. Then, for all ideals \mathfrak{a} of R_0 , one has

$$\left[H^i_{\mathfrak{a}+R_+}(R)\right]_{\geq 0} = 0$$
 for all $i \geq 0$.

We are now in a position to prove the following theorem, which is a variation of [Fl, Satz 3.1], [Wa1, Theorem 2.2], and [Hy1, Theorem 1.5].

Theorem 5.6. Let R be an \mathbb{N} -graded normal ring which is finitely generated over R_0 , and assume that R_0 is a local ring essentially of finite type over a field of characteristic zero. Then R has rational singularities if and only if

- (1) R is Cohen-Macaulay,
- (2) $R_{\mathfrak{p}}$ has rational singularities for all $\mathfrak{p} \in \operatorname{Spec} R \setminus V(R_{+})$, and
- (3) a(R) < 0.

Proof. It is straightforward to see that conditions (1)–(3) hold when R has rational singularities, and we focus on the converse. Consider the morphism

$$Y = \operatorname{Proj} R^{\natural} \xrightarrow{f} \operatorname{Spec} R$$

as in Remark 5.3. Let $g: Z \longrightarrow Y$ be a desingularization of Y; the composition

$$Z \stackrel{g}{\longrightarrow} Y \stackrel{f}{\longrightarrow} \operatorname{Spec} R$$

is then a desingularization of Spec R. Note that $Y = \operatorname{Proj} R^{\natural}$ has rational singularities by Lemma 5.4, so

$$g_*\mathcal{O}_Z = \mathcal{O}_Y$$
 and $R^q g_*\mathcal{O}_Z = 0$ for all $q \geqslant 1$.

Consequently the Leray spectral sequence

$$E_2^{p,q} = H^p(Y, R^q g_* \mathcal{O}_Z) \Longrightarrow H^{p+q}(Z, \mathcal{O}_Z)$$

degenerates, and we get $H^p(Z, \mathcal{O}_Z) = H^p(Y, \mathcal{O}_Y)$ for all $p \geqslant 1$. Since Spec R is affine, we also have $R^p(g \circ f)_*\mathcal{O}_Z = H^p(Z, \mathcal{O}_Z)$. To prove that R has rational singularities, it now suffices to show that $H^p(Y, \mathcal{O}_Y) = 0$ for all $p \geqslant 1$. Consider the map $\pi \colon Y \longrightarrow X = \operatorname{Proj} R$. We have

$$H^p(Y,\mathcal{O}_Y)=H^p(X,\pi_*\mathcal{O}_X)=\bigoplus_{n\geqslant 0}H^p(X,\mathcal{O}_X(n))=\left[H^{p+1}_{R_+}(R)\right]_{\geqslant 0}.$$

By condition (1), we have $[H^p_{\mathfrak{m}+R_+}(R)]_{\geqslant 0}=0$ for all $p\geqslant 0$, and so Lemma 5.5 implies that $[H^p_{R_+}(R)]_{\geqslant 0}=0$ for all $p\geqslant 0$ as desired.

Proof of theorem 5.2. If R has rational singularities, it is easily seen that conditions (1)–(3) must hold. For the converse, we proceed by induction on r. The case r=1 is Theorem 5.6 established above, so assume $r \geq 2$. It suffices to show that $R_{\mathfrak{M}}$ has rational singularities where \mathfrak{M} is the homogeneous maximal ideal of R. Set

$$\mathfrak{m}=\mathfrak{M}\cap\left[R^{\varphi_r}\right]_0,$$

and consider the N-graded ring S obtained by inverting the multiplicative set $[R^{\varphi_r}]_0 \setminus \mathfrak{m}$ in R^{φ_r} . Since $R_{\mathfrak{M}}$ is a localization of S, it suffices to show that S has rational singularities. Note that $a(S) = a(R^{\varphi_r})$, which is a negative integer by (1). Using Theorem 5.6, it is therefore enough to show that $R_{\mathfrak{P}}$ has rational singularities for all $\mathfrak{P} \in \operatorname{Spec} R \setminus V(x_{r1}, x_{r2}, \dots, x_{rt_r})$. Fix such a prime \mathfrak{P} , and let

$$\psi \colon \mathbb{Z}^r \longrightarrow \mathbb{Z}^{r-1}$$

be the projection to the first r-1 coordinates. Note that R^{ψ} is the ring R regraded such that $\deg x_{rj} = 0$, and the degrees of x_{ij} for i < r are unchanged. Set

$$\mathfrak{p}=\mathfrak{P}\cap\left[R^{\psi}\right]_{\mathbf{0}},$$

and let T be the ring obtained by inverting the multiplicative set $[R^{\psi}]_{\mathbf{0}} \setminus \mathfrak{p}$ in R^{ψ} . It suffices to show that T has rational singularities. Note that T is an \mathbb{N}^{r-1} -graded ring defined over a local ring $(T_{\mathbf{0}}, \mathfrak{p})$, and that it has homogeneous maximal ideal $\mathfrak{p} + \mathfrak{b}T$ where

$$\mathfrak{b} = (R^{\psi})_{\perp} = (x_{ij} \mid i < r)R.$$

Using the inductive hypothesis, it remains to verify that a(T) < 0. By condition (1), for all integers $1 \le j \le r - 1$, we have

$$\left[H_{\mathfrak{M}}^{i}(R)^{\varphi_{j}}\right]_{\geq 0} = 0$$
 for all $i \geq 0$,

and using Lemma 5.5 it follows that

$$\left[H_{\mathfrak{p}+\mathfrak{b}}^{i}(R)^{\varphi_{j}}\right]_{\geq 0} = 0$$
 for all $i \geq 0$.

Consequently $a(T^{\varphi_j}) < 0$ for $1 \leq j \leq r - 1$, which completes the proof.

6. F-regularity

For the theory of tight closure, we refer to the papers [HH1, HH2] and [HH3]. We summarize results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

- (1) Regular rings are F-regular.
- (2) Direct summands of F-regular rings are F-regular.
- (3) F-rational rings are normal; an F-rational ring which is a homomorphic image of a Cohen-Macaulay ring is Cohen-Macaulay.
- (4) F-rational Gorenstein rings are F-regular.
- (5) Let R be an \mathbb{N} -graded ring which is finitely generated over a field R_0 . If R is weakly F-regular, then it is F-regular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] respectively; (3) is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7], Lastly, (5) is [LS, Corollary 4.4].

The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of characteristic zero. A finitely generated K-algebra $R = K[x_1, \ldots, x_m]/\mathfrak{a}$ is of F-regular type if there exists a finitely generated \mathbb{Z} -algebra $A \subseteq K$, and a finitely generated free A-algebra

$$R_A = A[x_1, \ldots, x_m]/\mathfrak{a}_A$$

such that $R \cong R_A \otimes_A K$ and, for all maximal ideals μ in a Zariski dense subset of Spec A, the fiber rings $R_A \otimes_A A/\mu$ are F-regular rings of characteristic p > 0. Similarly, R is of F-rational type if for a dense subset of μ , the fiber rings $R_A \otimes_A A/\mu$ are F-rational. Combining results from [Ha, HW, MS, Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then R has rational singularities if and only if it is of F-rational type. If R is \mathbb{Q} -Gorenstein, then it has log terminal singularities if and only if it is of F-regular type.

Proposition 6.3. Let K be a field of characteristic p > 0, and R an \mathbb{N} -graded normal ring which is finitely generated over $R_0 = K$. Let ω denote the graded canonical module of R, and set $d = \dim R$.

Suppose R is F-regular. Then, for each integer k, there exists $q = p^e$ such that

$$\operatorname{rank}_K R_k \leqslant \operatorname{rank}_K [H^d_{\mathfrak{m}}(\omega^{(q)})]_k$$
.

Proof. If $d \leq 1$, then R is regular and the assertion is elementary. Assume $d \geq 2$. Let $\xi \in [H^d_{\mathfrak{m}}(\omega)]_0$ be an element which generates the socle of $H^d_{\mathfrak{m}}(\omega)$. Since the map $\omega^{[q]} \longrightarrow \omega^{(q)}$ is an isomorphism in codimension one, $F^e(\xi)$ may be viewed as an element of $H^d_{\mathfrak{m}}(\omega^{(q)})$ as in [Wa2].

Fix an integer k. For each $e \in \mathbb{N}$, set V_e to be the kernel of the vector space homomorphism

(6.3.1)
$$R_k \longrightarrow \left[H_{\mathfrak{m}}^d(\omega^{(p^e)})\right]_k$$
, where $c \longmapsto cF^e(\xi)$.

If $cF^{e+1}(\xi) = 0$, then $F(cF^e(\xi)) = c^p F^{e+1}(\xi) = 0$; since R is F-pure, it follows that $cF^e(\xi) = 0$. Consequently the vector spaces V_e form a descending sequence

$$V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$$
.

The hypothesis that R is F-regular implies $\bigcap_e V_e = 0$. Since each V_e has finite rank, $V_e = 0$ for $e \gg 0$. Hence the homomorphism (6.3.1) is injective for $e \gg 0$.

We next record tight closure properties of general N-graded hypersurfaces. The results for F-purity are essentially worked out in [HR].

Theorem 6.4. Let $A = K[x_1, ..., x_m]$ be a polynomial ring over a field K of positive characteristic. Let d be a nonnegative integer, and set $M = \binom{d+m-1}{d} - 1$. Consider the affine space \mathbb{A}_K^M parameterizing the degree d forms in A in which x_1^d occurs with coefficient 1.

Let U be the subset of \mathbb{A}_K^M corresponding to the forms f for which A/fA F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$.

Let V be the set corresponding to forms f for which A/fA is F-regular. Then V contains a nonempty Zariski open set if d < m, and is empty otherwise.

Proof. The set U is Zariski open by [HR, page 156] and it is empty if d > m by [HR, Proposition 5.18]. If $d \leq m$, the square-free monomial $x_1 \cdots x_d$ defines an F-pure hypersurface $A/(x_1 \cdots x_d)$. A linear change of variables yields the polynomial

$$f = x_1(x_1 + x_2) \cdots (x_1 + x_d)$$

in which x_1^d occurs with coefficient 1. Hence U is nonempty for $d \leq m$.

If $d \geqslant m$, then A/fA has a-invariant $d-m \geqslant 0$ so A/fA is not F-regular. Suppose d < m. Consider the set $W \subseteq \mathbb{A}_K^M$ parameterizing the forms f for which A/fA is F-pure and $(A/fA)_{\overline{x}_1}$ is regular; W is a nonempty open subset of \mathbb{A}_K^M . Let f correspond to a point of W. The element $\overline{x}_1 \in A/fA$ has a power which

is a test element; since A/fA is F-pure, it follows that \overline{x}_1 is a test element. Note that $\overline{x}_2, \ldots, \overline{x}_m$ is a homogeneous system of parameters for A/fA and that \overline{x}_1^{d-1} generates the socle modulo $(\overline{x}_2, \ldots, \overline{x}_m)$. Hence the ring A/fA is F-regular if and only if there exists a power q of the prime characteristic p such that

$$x_1^{(d-1)q+1} \notin (x_2^q, \dots, x_m^q, f)A$$
.

The set of such f corresponds to an open subset of W; it remains to verify that this subset is nonempty. For this, consider

$$f = x_1^d + x_2 \cdots x_{d+1} ,$$

which corresponds to a point of W, and note that A/fA is F-regular since

$$x_1^{(d-1)p+1} \notin (x_2^p, \dots, x_m^p, f)A.$$

These ideas carry over to multi-graded hypersurfaces; we restrict below to the bigraded case. The set of forms in $K[x_1,\ldots,x_m,y_1,\ldots,y_n]$ of degree (d,e) in which $x_1^dy_1^e$ occurs with coefficient 1 is parametrized by the affine space \mathbb{A}_K^N where $N = \binom{d+m-1}{d}\binom{e+n-1}{e}-1$.

Theorem 6.5. Let $B = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ be a polynomial ring over a field K of positive characteristic. Consider the \mathbb{N}^2 -grading on B with $\deg x_i = (1,0)$ and $\deg y_j = (0,1)$. Let d, e be nonnegative integers, and consider the affine space \mathbb{A}_K^N parameterizing forms of degree (d,e) in which $x_1^d y_1^e$ occurs with coefficient 1.

Let U be the subset of \mathbb{A}_K^N corresponding to forms f for which B/fB is F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$ and $e \leq n$.

Let V be the set corresponding to forms f for which B/fB is F-regular. Then V contains a nonempty Zariski open set if d < m and e < n, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if $d \leq m$ and $e \leq n$, then the polynomial $x_1 \cdots x_d y_1 \cdots y_e$ defines an F-pure hypersurface.

If B/fB is F-regular, then $\mathbf{a}(B/fB) < \mathbf{0}$ implies d < m and e < n. Conversely, if d < m and e < n, then there is a nonempty open set W corresponding to forms f for which the hypersurface B/fB is F-pure and $(B/fB)_{\overline{x_1}\overline{y_1}}$ is regular. In this case, $\overline{x_1}\overline{y_1} \in B/fB$ is a test element. The socle modulo the parameter ideal $(x_1-y_1,x_2,\ldots,x_m,y_2,\ldots,y_n)B/fB$ is generated by $\overline{x_1}^{d+e-1}$, so B/fB is F-regular if and only if there exists a power $q=p^e$ such that

$$x_1^{(d+e-1)q+1} \notin (x_1^q - y_1^q, x_2^q, \dots, x_m^q, y_2^q, \dots, y_n^q, f)B$$

The subset of W corresponding to such f is open; it remains to verify that it is nonempty. For this, use $f = x_1^d y_1^e + x_2 \cdots x_{d+1} y_2 \cdots y_{e+1}$.

References

- [CHTV] A. Conca, J. Herzog, N. V. Trung, and G. Valla, Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces, Amer. J. Math. 119 (1997), 859–901.
- [CH] S. D. Cutkosky and J. Herzog, Cohen-Macaulay coordinate rings of blowup schemes, Comment. Math. Helv. 72 (1997), 605-617.
- [Da1] V. I. Danilov, The group of ideal classes of a completed ring, Math. USSR Sbornik 6 (1968), 493–500.
- [Da2] V. I. Danilov, Rings with a discrete group of divisor classes, Math. USSR Sbornik 12 (1970), 368–386.
- [Fl] H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. 36 (1981), 35–44.
- [GG] A. V. Geramita and A. Gimigliano, Generators for the defining ideal of certain rational surfaces, Duke Math. J. 62 (1991), 61–83.
- [GGH] A. V. Geramita, A. Gimigliano, and B. Harbourne, *Projectively normal but superabundant embeddings of rational surfaces in projective space*, J. Algebra **169** (1994), 791–804.
- [GGP] A. V. Geramita, A. Gimigliano, and Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301 (1995), 363–380.
- [GW1] S. Goto and K.-i. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), 179–213.
- [GW2] S. Goto and K.-i. Watanabe, On graded rings. II (\mathbb{Z}^n -graded rings), Tokyo J. Math. 1 (1978), 237–261.
- [Ha] N. Hara, A characterisation of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), 981–996.
- [HW] N. Hara and K.-i. Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), 363–392.
- [HH1] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.
- [HH2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1–62.
- [HH3] M. Hochster and C. Huneke, Tight closure of parameter ideals and splitting in modulefinite extensions, J. Algebraic Geom. 3 (1994), 599–670.
- [HH4] M. Hochster and C. Huneke, Tight closure in equal characteristic zero, in preparation.
- [HHR] M. Herrmann, E. Hyry, and J. Ribbe, On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79 (1993), 343–377.
- [HIO] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up: an algebraic study, Springer-Verlag, Berlin-New York, 1988.
- [HR] M. Hochster and J. Roberts, The purity of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117–172.
- [Hy1] E. Hyry, Blow-up rings and rational singularities, Manuscripta Math. 98 (1999), 377–390.
- [Hy2] E. Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), 2213–2232.
- [Lv1] O. Lavila-Vidal, On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra, Manuscripta Math. 95 (1998), 47–58.
- [Lv2] O. Lavila-Vidal, On the diagonals of a Rees algebra, thesis, Universitat de Barcelona, 1999.
- [LvZ] O. Lavila-Vidal and S. Zarzuela, On the Gorenstein property of the diagonals of the Rees algebra, Collect. Math. 49 (1998), 383–397.
- [LS] G. Lyubeznik and K. E. Smith, Strong and weak F-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), 1279–1290.

- [MS] V. B. Mehta and V. Srinivas, A characterization of rational singularities, Asian J. Math. 1 (1997), 249–271.
- [RSS] P. Roberts, A. K. Singh, and V. Srinivas, Annihilators of local cohomology in characteristic zero, Illinois J. Math. 51 (2007), 237–254.
- [STV] A. Simis, N. V. Trung, and G. Valla, The diagonal subalgebra of a blow-up algebra, J. Pure Appl. Algebra 125 (1998), 305–328.
- [Si] A. K. Singh, Veronese subrings and tight closure, Pacific J. Math. 192 (2000), 399–413.
- [Sm] K. E. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159–180.
- [Tr] N. V. Trung, Diagonal subalgebras and blow-ups of projective spaces, Vietnam J. Math. 28 (2000), 1–15.
- [Wa1] K.-i. Watanabe, Rational singularities with k^* -action, in: Commutative algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math. **84**, Dekker, New York, (1983), 339–351.
- [Wa2] K.-i. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341–350.

Department of Mathematics, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki-shi 214-8571, Japan

 $E ext{-}mail\ address: kurano@math.meiji.ac.jp}$

Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka-city 812-8581, Japan

E-mail address: esato@math.kyushu-u.ac.jp

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

 $E ext{-}mail\ address: singh@math.utah.edu}$

Department of Mathematics, Nihon University, Sakura-Josui 3-25-40, Setagaya, Tokyo 156-8550, Japan

 $E ext{-}mail\ address:$ watanabe@math.chs.nihon-u.ac.jp