
BOUNDARY AND SHAPE OF COHEN-MACAULAY CONE

HAILONG DAO AND KAZUHIKO KURANO

Abstract. Let R be a Cohen-Macaulay local domain. In this paper we study
the cone of Cohen-Macaulay modules inside the Grothendieck group of finitely
generated R-modules modulo numerical equivalences, introduced in [3]. We
prove a result about the boundary of this cone for Cohen-Macaulay domain
admitting de Jong’s alterations, and use it to derive some corollaries on finite-
ness of isomorphism classes of maximal Cohen-Macaulay ideals. Finally, we
explicitly compute the Cohen-Macaulay cone for certain isolated hypersurface
singularities defined by ξη − f(x1, . . . , xn).

1. Introduction

Let R be a Noetherian local ring and G0(R) the Grothendieck group of finitely
generated R-modules. Using Euler characteristic of perfect complexes with finite
length homologies (a generalized version of Serre’s intersection multiplicity pair-
ings), one could define the notion of numerical equivalence on G0(R) as in [17]. See
Section 2 for precise definitions. When R is the local ring at the vertex of an affine
cone over a smooth projective variety X, this notion can be deeply related to that
of numerical equivalences on the Chow group of X as in [17] and [20]. Let G0(R)

be the Grothendieck group of R modulo numerical equivalences.
A simple result in homological algebra tells us that if M is maximal Cohen-

Macaulay (MCM), the Euler characteristic function will always be positive. Thus,
maximal Cohen-Macaulay modules all survive in G0(R), and it makes sense to talk
about the cone of Cohen-Macaulay modules inside G0(R)R:

CCM (R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R.

The definition of this cone and some of its basic properties was given in [3]. Un-
derstanding the Cohen-Macaulay cone is quite challenging, as it encodes a lot of
non-trivial information about both the category of maximal Cohen-Macaulay mod-
ules and the local intersection theory on R.

The first author is partially supported by NSF grant DMS 1104017. The second author is
partially supported by JSPS KAKENHI Grant 24540054.
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Figure 1. CM cone for k[[x, y, u, v]]/(xy − uv)

For example, let’s consider the hypersurface k[[x, y, u, v]]/(xy − uv). Then, the
main result of [10] tells us that G0(R)R is two dimensional, and one can pick a basis
consisting of [R] (vertical) and [R/(x, u)] (horizontal). Since the maximal Cohen-
Macaulau modules are completely classified ([16]), one can compute the Cohen-
Macaulay cone of the as shown in Figure 1. It is the blue region between the rays
from the origin to the points represented by the modules (x, u) and (x, v). Later in
the paper (Section 6 we shall compute these cones for a big class of hypersurface
singularities.

One of the main technical results of this paper, Theorem 3.1, asserts that if R
is a Cohen-Macaulay domain admitting de Jong’s alterations (a weak version of
resolution of singularity), the closure of CCM (R) intersects with the hyperplane of
torsion modules only at the origin. This has some surprising consequences, which
we now describe.

The first consequence is that given any integer r, the set of isomorphism classes
of maximal Cohen-Macaulay modules of rank r up to numerical equivalence is finite
(Theorem 3.3). This is interesting as results from Cohen-Macaulay representation
theory tells us that the set of these modules in any given rank is typically very big
(see [19] or [21] for some nice introduction to this topic. When r = 1, our results
confirm a number of cases when the set of Cohen-Macaulay ideals are actually
finite. This is raised in a question attributed to Hochster, which we discuss in
details in Section 4.
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In Section 5 we study when the map Ad−1(R) −→ Ad−1(R) has finite kernel.
This turns out to be a rather subtle question, even when R is the localization at
the vertex of a cone over a smooth projective variety. However, we are able to
prove that the map is an isomorphism for most isolated hypersurface singularities
of dimension 3 (Proposition 5.1).

Finally, in Section 6 we describe explicitly the Cohen-Macaulay cone for a class of
local hypersurfaces defined by a power series of the form ξη− f(x1, . . . , xn). These
are first examples of non-trivial Cohen-Macaulay cones in higher dimensions over
rings not of finite Cohen-Macaulay type, and the mere fact that they can actually
be computed even for this special class of singularities is quite encouraging.

In an upcoming paper, we shall apply the results here to study asymptotic
behavior of systems of ideals.

We thank Hubert Flenner, Ryo Takahashi, Charles Vial and Yuji Yoshino for
many helpful conversations. We also thank Eleonore Faber for helping us to trans-
late Karroum’s thesis ([16]).

2. Notations and preliminary results

We always assume that a Noetherian local ring in this paper is a homomorphic
image of a regular local ring.

For a Noetherian local ring R, we denote the Grothendieck group of finitely
generated R-modules (resp. the Chow group of R) by G0(R) (resp. A∗(R)). We
refer the reader to [11] for basic facts on them. Let us recall the definition of
numerical equivalence on G0(R) (see [17]).

For a bounded finite R-free complex F. with homologies of finite length, we define

χF. : G0(R) −→ Z

to be

χF.([M ]) =
∑
i

(−1)i`(Hi(F.⊗RM)).

We say that a cycle α in G0(R) is numerically equivalent to 0 if χF.(α) = 0 for
any bounded finite R-free complex F. with homologies of finite length. In the same
way, we say that a cycle β in A∗(R) is numerically equivalent to 0 if ch(F.)(β) = 0

for any above F., where ch(F.) is the localized Chern character (see Chapter 17 in
[11]). We denote by G0(R) and A∗(R) the groups modulo numerical equivalence,
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that is,

G0(R) =
G0(R)

{α | χF.(α) = 0 for any F.}

A∗(R) =
A∗(R)

{β | ch(F.)(β) = 0 for any F.}
.

It is proven in Proposition 2.4 in [17] that numerical equivalence is consistent with
dimension of cycles in A∗(R), so we have

A∗(R) = ⊕di=0Ai(R).

The Riemann-Roch map τ preserves numerical equivalence as in [17], that is, it
induces the isomorphism τ that makes the following diagram commutative:

(2.1)
G0(R)Q

τ−→ A∗(R)Q

↓ ↓
G0(R)Q

τ−→ A∗(R)Q

Here NK denotes N ⊗Z K.
If R is Cohen-Macaulay, the Grothendieck group of bounded R-free complexes

with support in {m} is generated by finite free resolutions of modules of finite length
and finite projective dimension (see Proposition 2 in [20]). Therefore, in this case,
α in G0(R) is numerically equivalent to 0 if and only if χF.(α) = 0 for any free
resolution F. of a module with finite length and finite projective dimension.

Assumption 2.1. Let R be a Noetherian local ring such that, for each minimal
prime ideal p of R, there exists a proper generically finite morphism Z → SpecR/p

such that Z is regular.

By Hironaka [13] and deJong [14], R satisfies Assumption 2.1 if R satisfies one
of the following two conditions.

(1) R is an excellent local ring containing Q.
(2) R is essentially of finite type over a field, Z or a complete discrete valuation

ring.

By Theorem 3.1 and Remark 3.5 in [17], both G0(R) and A∗(R) are non-zero
finitely generated free abelian group if R satisfies Assumption 2.1.

Example 2.2. Let R be a Noetherian local ring satisfying Assumption 2.1.

(1) If K. is the Koszul complex of a system of parameters, then χK.([R]) 6= 0.
Hence, G0(R) 6= 0.

(2) If R is a Noetherian local domain with dimR ≤ 2, then rankG0(R) = 1.
See Proposition 3.7 in [17].
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(3) Let X be a smooth projective variety with embedding X ↪→ Pn. Let R
(resp.D) be the affine cone (resp. the very ample divisor) of this embedding.
Then, we have the following commutative diagram:

G0(R)Q
∼−→ A∗(R)Q

∼←− CH·(X)Q/D · CH·(X)Q

↓ ↓ ↓
G0(R)Q

∼−→ A∗(R)Q
φ←− CH·num(X)Q/D · CH·num(X)Q

(a) By the commutativity of this diagram, φ is a surjection. Therefore,
we have

(2.2) rankG0(R) ≤ dimQ CH·num(X)Q/D · CH·num(X)Q.

(b) If CH·(X)Q ' CH·num(X)Q, then we can prove that φ is an isomor-
phism ([17], [20]). In this case, the equality holds in (2.2).

(c) There exists an example such that φ is not an isomorphism [20].
Further, Roberts and Srinivas [20] proved the following: Assume that
the standard conjecture and Bloch-Beilinson conjecture are true. Then
φ is an isomorphism if the defining ideal of R is generated by polyno-
mials with coefficients in the algebraic closure of the prime field.

(4) It is conjectured that G0(R)Q ' Q if R is complete intersection isolated
singularity with d even. See Conjecture 3.2 in [8].

Let R be a d-dimensional Noetherian local ring. For α ∈ G0(R)Q, we put

τ(α) = τd(α) + τd−1(α) + · · ·+ τ0(α),

where τi(α) ∈ Ai(R)Q (see the diagram (2.1)). Furthermore, assume that R is a
normal ring. Then, we have the determinant map (or the first Chern class)

c1 : G0(R)→ Ad−1(R)

that satisfies

• c1([R]) = 0,
• c1([R/I]) = −c1([I]) = [SpecR/I] for each reflexive ideal I,
• c1([M ]) = 0 if dimM ≤ d− 2.

Here, [SpecR/I] denotes∑
P∈MinR(R/I)

`RP
((R/I)P )[SpecR/P ] ∈ Ad−1(R)

for a reflexive ideal I of a Noetherian normal domain R.
For an R-module M , we have

(2.3) τd−1([M ]) = c1([M ])− rankM

2
KR
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in Ad−1(R)Q, where KR is the canonical divisor of R, that is, KR = c1([ωR]) where
ωR is the canonical module of R. We refer the reader to Lemma 2.9 in [18] for the
above equality. (Remark that the map cl in [18] is equal to −c1 in this paper.)

Lemma 2.3. Assume that R is a d-dimensional Noetherian normal local domain
that satisfies Assumption 2.1. Then, there is the map c1 that makes the following
diagram commutative:

(2.4)
G0(R)

c1−→ Ad−1(R)

↓ ↓
G0(R)

c1−→ Ad−1(R)

Proof. First we prove that the map

(2.5) rk : G0(R) −→ Z

taking the rank of a module is well-defined. Let K. be the Koszul complex with
respect to a parameter ideal I. By the definition of numerical equivalence, the map

χK. : G0(R) −→ Z,

taking the alternating sum of the length of homologies of the complex K. tensored
with a given R-module, induces the map

χK. : G0(R) −→ Z.

Then, for an R-module M ,

χK.([M ]) = e(I,M) = e(I,R) · rankM,

where e(I,−) denotes the Hilbert-Samuel multiplicity with respect to I. Therefore,
the map rk : G0(R) −→ Z taking the rank of a module is well-defined.

Recall that we have a well-defined map

τd−1 : G0(R)Q −→ Ad−1(R)Q

satisfying (2.3). Therefore, the map

c1 : G0(R)Q −→ Ad−1(R)Q

which takes the first Chern class is equal to τd−1 + KR
2 rkQ.

Since Ad−1(R) is torsion-free, we obtain the well-defined map

c1 : G0(R) −→ Ad−1(R)

that makes the diagram (2.4) commutative. �
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3. On the boundary of the Cohen Macaulay cone

In this section we prove the main technical results about CCM (R), Theorem 3.1.
We denote by Fd−1G0(R) the kernel of the map rk in (2.5). It is easy to check

that Fd−1G0(R) is generated by cycles [M ] with dimM < d. By the map rk, we
have the decomposition

(3.1) G0(R) = Fd−1G0(R)⊕ Z[R].

By tensoring (3.1) with the real number field R, we have

(3.2) G0(R)R = Fd−1G0(R)R ⊕ R[R].

Let CCM (R) be the Cohen-Macaulay cone defined in Definition 2.4 in [3], that
is,

CCM (R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R.

.
The following result is a main technical result of our paper and plays an impor-

tant role in the proof of Theorem 3.3.

Theorem 3.1. Let (R,m) be a Cohen-Macaulay local domain satisfying Assump-
tion 2.1.

Then, we have
CCM (R)− ∩ Fd−1G0(R)R = {0},

where CCM (R)− denotes the closure of the Cohen-Macaulay cone CCM (R) in G0(R)R
with respect to the classical topology.

Proof. Let e1, . . . , es be a free basis of Fd−1G0(R). Thinking [R], e1, . . . , es as an
orthonormal basis, we define a metric on G0(R)R. For each vector v in G0(R)R,
we denote ||v|| the length of the vector v.

Assume the contrary. Let α be a non-zero element in

CCM (R)− ∩ Fd−1G0(R)R.

We may assume that ||α|| = 1.
By Lemma 2.5 (2) in [3], there exists a sequence of maximal Cohen-Macaulay

modules
M1,M2, . . . ,Mn, . . .

such that

(3.3) lim
n→∞

[Mn]

||[Mn]||
= α

in G0(R)R.
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Let x1, . . . , xd be a system of parameters of R. Since Mn is Cohen-Macaulay,

(3.4) `R(Mn/mMn) ≤ `R(Mn/(x)Mn) = e((x),Mn) = rankMn · e((x), R).

Put m = e((x), R) and rn = rankMn for each n. If m = 1, then R is a regular
local ring, and therefore, Fd−1G0(R) = 0. Suppose m ≥ 2. By (3.4), we have an
exact sequence of the form

0 −→ Nn −→ Rrnm −→Mn −→ 0.

Remark that Nn is a maximal Cohen-Macaulay module.
Set

[Mn] = (βn, rn[R]) ∈ Fd−1G0(R)⊕ Z[R] = G0(R).

Then, we have

[Nn] = rnm[R]− [Mn] = (−βn, rn(m− 1)[R]) ∈ Fd−1G0(R)⊕ Z[R] = G0(R).

By (3.3), we have

lim
n→∞

rn[R]

||[Mn]||
= 0

lim
n→∞

βn
||[Mn]||

= α,

since α is in Fd−1G0(R)R. Hence, we have

lim
n→∞

rn(m− 1)[R]

||[Mn]||
= 0

lim
n→∞

−βn
||[Mn]||

= −α.

On the other hand, it is easy to see

lim
n→∞

||[Nn]||
||[Mn]||

= 1.

In fact, since m ≥ 2,
0 < ||[Mn]|| ≤ ||[Nn]||.

Hence,

1 ≤ ||[Nn]||
||[Mn]||

≤ ||rn(m− 1)[R]||
||[Mn]||

+
||βn||
||[Mn]||

−→ ||α|| = 1.

Then, we have

lim
n→∞

rn(m− 1)[R]

||[Nn]||
= 0

lim
n→∞

−βn
||[Nn]||

= −α.
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Therefore,

lim
n→∞

[Nn]

||[Nn]||
= −α.

Thus, we have
−α ∈ CCM (R)−.

It contradicts to Lemma 2.5 (4), (5) in [3]. �

Lemma 3.2. Let r be a positive integer. Put

CCM (R)−r = {α ∈ Fd−1G0(R)R | (α, r[R]) ∈ CCM (R)−},

where CCM (R)− ⊂ G0(R)R = Fd−1G0(R)R ⊕ R[R].
Then, CCM (R)−r is a compact subset of Fd−1G0(R)R.

Proof. Tensoring (2.5) with R, we obtain the map

rkR : G0(R)R −→ R.

Then, since
CCM (R)−r ' CCM (R)− ∩ (rkR)−1(r),

CCM (R)−r is a closed subset of Fd−1G0(R)R ' (rkR)−1(r). (Note that this identi-
fication is given by α 7→ α+ r[R].)

Suppose that CCM (R)−r is not bounded. Then, there exists a sequence of maxi-
mal Cohen-Macaulay modules

G1, G2, G3, . . .

such that, if

Gn = (αn, sn[R]) ∈ Fd−1G0(R)R ⊕ R[R] = G0(R)R,

we have

(3.5) lim
n→∞

r

sn
||αn|| =∞.

Put
S = {v ∈ Fd−1G0(R)R | ||v|| = 1}.

Then
αn
||αn||

∈ S

if αn 6= 0. Since S is compact, {αn/||αn||}n contains a subsequence that converges
to a point of S, say β. Taking a subsequence, we may assume

lim
n→∞

αn
||αn||

= β.
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Then,

lim
n→∞

[Gn]

||[Gn]||
= β.

In fact, by (3.5), we know

lim
n→∞

[R]
1
sn
||[Gn]||

= 0,

since 0 ≤ ||αn||/sn ≤ ||[Gn]||/sn. Further,

1 =
||[Gn]||
||[Gn]||

≤ ||αn||
||[Gn]||

+
||sn[R]||
||[Gn]||

≤ 1 +
||[R]||

1
sn
||[Gn]||

−→ 1 (n→∞).

Hence

lim
n→∞

||αn||
||[Gn]||

= 1.

Therefore,

lim
n→∞

[Gn]

||[Gn]||
= lim

n→∞

αn
||[Gn]||

+ lim
n→∞

[R]
1
sn
||[Gn]||

= lim
n→∞

αn
||αn||

= β ∈ S ⊂ Fd−1G0(R)R.

Thus, we have
0 6= β ∈ CCM (R)− ∩ Fd−1G0(R)R.

It contradicts Theorem 3.1. �

A key consequence is the following.

Theorem 3.3. Assume that R is a Cohen-Macaulay local domain that satisfies
Assumption 2.1.

Then, for any positive integer r,

{[M ] ∈ G0(R) |M is a maximal Cohen-Macaulay module of rank r }

is a finite subset of G0(R).

Proof. Assume the contrary: suppose that there exist infinitely many maximal
Cohen-Macaulay modules

L1, L2, . . . , Ln, . . .

such that

• rankLn = r for all n > 0, and
• [Li] 6= [Lj ] in G0(R) if i 6= j.

Here, note
[Li]− r[R] ∈ Fd−1G0(R) ' Zs

(for some s) for each i, and

[Li]− r[R] 6= [Lj ]− r[R]
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if i 6= j. Therefore, we have

lim
i→∞
||[Li]− r[R]|| =∞.

Now, one can evoke Lemma 3.2 to finish the proof.
�

The following corollary immediately follows from Theorem 3.3 and Lemma 2.3.

Corollary 3.4. Assume that R is a d-dimensional Cohen-Macaulay local normal
domain that satisfies Assumption 2.1.

Then, for any positive integer r,

{c1([M ]) ∈ Ad−1(R) |M is a maximal Cohen-Macaulay module of rank r }

is a finite subset of Ad−1(R).

4. On finiteness of Cohen-Macaulay ideals

In this section we discuss applications of our main technical results in Section 3
on the following:

Question 4.1. Let R be a local normal domain. If the divisor class group Cl(R) is
finitely generated, then does it contain only finitely many maximal Cohen-Macaulay
modules of rank one up to isomorphisms?

Although this question seems to be well-known among certain experts, it is not
clear who made it (it was attributed to Hochster in [15]). As stated, it needs some
adjustments. Here we give a counter example in Example 4.2 in dimension two. In
this situation, since any reflexive module is a maximal Cohen-Macaulay module,
the question merely states that the class group is finitely generated if and only if
it is finite.

Example 4.2. Let E be an elliptic curve over Q of rank positive. Then it follows
from the Mordell-Weil theorem (see [4, Theorem 1.9] for details) that the Picard
group of E is finitely generated. But since the group of Q-rational points in E

has rank positive, the rank of Pic(E) (= Cl(E)) is at least 2. Now take the cone
over E and let R be the local ring at the vertex. Then Cl(R) = Cl(E)/ZH is
finitely generated with positive rank. By adjoining new variables to R one can get
examples in all higher dimensions.

It is natural to speculate the following:
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Conjecture 4.3. Let R be a local normal domain over an algebraically closed field.
If Cl(R) is finitely generated, then it contains only finitely many maximal Cohen-
Macaulay modules of rank one up to isomorphisms.

Conjecture 4.4. Let R be a local normal domain. If Cl(Rsh) (the class group
of strict henselization) is finitely generated , then there exist only finitely many
maximal Cohen-Macaulay modules of rank one up to isomorphisms.

Conjecture 4.5. Let R be an excellent local normal domain with isolated singular-
ity. If the dimension of R is bigger than or equal to 3, then there exist only finitely
many maximal Cohen-Macaulay modules of rank one up to isomorphisms.

By the commutativity of diagram (2.4), the following corollary easily follows
from Corollary 3.4.

Corollary 4.6. Assume that R is a d-dimensional Cohen-Macaulay local normal
domain that satisfies Assumption 2.1. Assume that the kernel of the natural map

(4.1) Ad−1(R) −→ Ad−1(R)

is a finite group.
Then, for any positive integer r,

{c1([M ]) ∈ Ad−1(R) |M is a maximal Cohen-Macaulay module of rank r }

is a finite subset of Ad−1(R).
In particular, R has only finitely many maximal Cohen-Macaulay modules of

rank one up to isomorphism.

By Corollary 4.6, if the kernel of the map (4.1) is a finite set, there exist only
finitely many maximal Cohen-Macaulay modules of rank one under a mild condi-
tion. As in the following theorem due to Danilov (Lemma 4 in [5] and Theorem 1,
Corollary 1 in [6]), Ad−1(R) is finitely generated for most of Cohen-Macaulay local
normal domain of dimension at least three. Note that, if Ad−1(R) is finitely gener-
ated and if Ad−1(R)Q → Ad−1(R)Q is an isomorphism, then the kernel of (4.1) is
a finite set.

Theorem 4.7. (Danilov) Let R be a equi-characteristic excellent local normal do-
main with isolated singularity. Assume that R satisfies one of the following two
conditions:

a) R is essentially of finite type over a field of characteristic zero.
b) There exists a maximal primary ideal I of R such that the blow-up at I is

a regular scheme.
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If depthR ≥ 3, then Cl(R) is finitely generated.

In the case of dimension 2, there exist examples of isolated hypersurface singu-
larity that has infinitely many maximal Cohen-Macaulay modules of rank one (see
Example 4.2).

Our next corollary confirms the Conjectures considered in this section for most
isolated hypersurface singularities of dimension at least 3.

Corollary 4.8. Let R be a 3-dimensional isolated hypersurface singularity with
desingularization f : X → SpecR such that X \ f−1(m) ' SpecR \ {m}. Then
R has only finitely many maximal Cohen-Macaulay modules of rank one up to
isomorphism.

Proof. This follows immediately from Corollary 4.6 and Proposition 5.1. �

Example 4.9. Suppose that A is a positively graded ring over a field k, that is,
A = ⊕n≥0An. Put R = AA+ and X = ProjA. We assume that X is smooth over
k.

Further, assume that depthA ≥ 3, the characteristic of k is zero and k is alge-
braically closed.

In this case, sinceH1(X,OX) = 0, Pic(X) is finitely generated. Therefore, Cl(R)

is also a finitely generated abelian group. Then, there exists only finitely many
maximal Cohen-Macaulay modules of rank one up to isomorphism. It is essentially
written in Karroum [15], Theorem 6.11. We thank H. Flenner for explaining this
result to us.

5. On the kernel of the map (4.1)

In this section we study the question when the kernel of the map (4.1):

Ad−1(R) −→ Ad−1(R)

to be a finite set. This turns out to be a rather deep question, even in the graded
case. However, our next Proposition (and Remark) establish it for most isolated
hypersurfaces singularities of dimension at least 3.

Proposition 5.1. Let R be a 3-dimensional isolated hypersurface singularity with
desingularization f : X → SpecR such that X \f−1(m) ' SpecR \{m}. Then, the
natural map

A2(R) −→ A2(R)

is an isomorphism.
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Proof. Let I be a reflexive ideal. Assume that c1([I]) is numerically equivalent to
zero in A2(R). We shall prove c1([I]) = 0 in A2(R).

Put
τ([I]) = τ3([I]) + τ2([I]) + τ1([I]) + τ0([I]),

where τi([I]) ∈ Ai(R)Q for i = 0, 1, 2, 3. By the top term property and that R is a
complete intersection,

τ3([I]) = [SpecR] = τ([R])

in A∗(R)Q. By the equality (2.3), we have

τ2([I]) = c1([I])

in A2(R)Q, where it is numerically equivalent to zero by our assumption. By
Proposition 3.7 in [17], τ1([I]) and τ0([I]) are numerically equivalent to zero in the
Chow group. Therefore, τ([I]) is numerically equivalent to τ([R]) in the Chow
group. Then, [I] is numerically equivalent to [R] in the Grothendieck group.

Let θR be the Hochster’s theta function (see [8]). Then we have

θR(I, I) = θR(R, I) = 0

by Corollary 6.3 (1) in [8]. Then, by Corollary 7.9 in [8], c1([I]) = 0 in A2(R). �

Remark 5.2. If R is a complete intersection with isolated singularity of dimension
at least four, then R is a unique factorization domain (Lemma 3.16, 3.17 in [12]
or [2]). Therefore, the map (4.1) is automatically an isomorphism.

In the rest of this section, suppose that A is a standard graded ring over a field
k, that is, A = ⊕n≥0An = k[A1]. Put R = AA+ and X = ProjA. We assume that
X is smooth over k. Put d = dimA and n = dimX > 0. Of course, d = n+ 1. Let
CHi(X) (resp. CHi

num(X)) be the Chow group of X (resp. the Chow group of X
modulo numerical equivalence) of codimension i. Put h = c1(OX(1)) ∈ CH1(X).
By (7.5) in [17], we have the induced map

(5.2) f : CH1
num(X)Q/hCH0

num(X)Q −→ Ad−1(R)Q.

Consider the following natural map:
(5.3)

g : ker
(

CHn−1(X)Q
h→ CHn(X)Q

)
−→ ker

(
CHn−1

num(X)Q
h→ CHn

num(X)Q

)
,

where the map h means the multiplication by h.
Here, we obtain the following lemma which is essentially due to Roberts-Srinivas [20].

Lemma 5.3. dimQ ker(f) = dimQ coker(g).
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Proof. If dimX = 1, then both of ker(f) and coker(g) are zero.
Suppose dimX ≥ 2. Consider the following diagram:

CH1(X)Q −→ CH1(X)Q/hCH0(X)Q −→ CH1
num(X)Q/hCH0

num(X)Q

‖ f ↓
Ad−1(R)Q

p−→ Ad−1(R)Q

Here p is the natural surjection. Let Km
0 (R)Q be the Grothendieck group of

bounded finite free R-complexes with homologies of finite length. We define

ϕ : Km
0 (R)Q −→ CH•(X)Q

as in (7.2) in [17]. Let β (in Ad−1(R)Q) be the image of β (in CH1(X)Q). By (7.6)
in [17], for any α ∈ Km

0 (R)Q, we have

ch(α)
(
β
)

= π∗(ϕ(α) · β),

where π : X → Spec k is the structure map, and ϕ(α) ·β is the intersection product
in the Chow ring of X. Thus, we know the following:

(5.4)

p(β) = 0 in Ad−1(R)Q
⇐⇒ ∀α ∈ Km

0 (R)Q, ch(α)
(
β
)

= 0

⇐⇒ ∀α ∈ Km
0 (R)Q, π∗(ϕ(α) · β) = 0

⇐⇒ ∀α′ ∈ ker
(

CHn−1(X)Q
h→ CHn(X)Q

)
, π∗(α′ · β) = 0

by the exact sequence (7.2) in [17].
Consider the perfect pairing

(5.5) CH1
num(X)Q × CHn−1

num(X)Q −→ CHn
num(X)Q = Q

induced by the intersection product. We define Q-vector subspaces as follows:

V =
{
γ ∈ CH1

num(X)Q | hn−1γ = 0 in CHn
num(X)Q

}
⊂ CH1

num(X)Q

U =
{
δ ∈ CHn−1

num(X)Q | hδ = 0 in CHn
num(X)Q

}
⊂ CHn−1

num(X)Q

Then, it is easy to see

CH1
num(X)Q = hCH0

num(X)Q ⊕ V

CHn−1
num(X)Q = hn−1CH0

num(X)Q ⊕ U

The intersection pairing (5.5) induces the following perfect pairing:

(5.6) V × U −→ CHn
num(X)Q = Q

Here remark that dimQ V = dimQ U = dimQ CH1
num(X)Q − 1. Put W = Im(g) ⊂

U , where g is the map in (5.3). Take a Q-vector subspace W1 of U such that

U = W ⊕W1.
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We define a Q-vector subspace of V as follows:

V1 = {v ∈ V | ∀w ∈W, v · w = 0} ⊂ V

The intersection pairing (5.6) induces the following perfect pairing:

V1 ×W1 −→ CHn
num(X)Q = Q

Then,
dimQ coker(g) = dimQW1 = dimQ V1.

Note that the composite map of

V ↪→ CH1
num(X)Q −→ CH1

num(X)Q/hCH0
num(X)Q

is an isomorphism. We identify V with CH1
num(X)Q/hCH0

num(X)Q. Then, we have
an exact sequence

0 −→ V1 −→ CH1
num(X)Q/hCH0

num(X)Q
f−→ Ad−1(A)Q −→ 0

because, for v ∈ V , f(v) is equal to 0 if and only if w · v = 0 for any w ∈ W by
(5.4). Therefore, dimQ ker(f) = dimQ coker(g). �

Proposition 5.4. Let A be a standard graded Cohen-Macaulay ring over a field k
of characteristic zero. Assume that X = ProjA is smooth over k. Put R = AA+.
Let d = dimX + 1 ≥ 3.

Then, the kernel of (4.1) is a finite set if and only if the map g in (5.3) is
surjective. In particular, if CHdimX(X)Q ' Q, then the kernel of (4.1) is a finite
set.

Proof. The natural map

CH1(X)Q −→ CH1
num(X)Q

is an isomorphism and CH1(X) is finitely generated since H1(X,OX) = 0. Then,
by Lemma 5.3, g is surjective if and only if Ad−1(R)Q is isomorphic to Ad−1(R)Q.

�

Note that, in the case of dimX = 2 under the situation in Proposition 5.4, g is
surjective if and only if the image of the map

CH1(X)Q
h→ CH2(X)Q

is isomorphic to Q, that is, for α ∈ CH1(X), if the degree of hα is zero, then hα is
a torsion in CH2(X).

Some varieties (e.g., Fano variety, toric variety, etc) satisfies CHdimX(X)Q = Q.
In fact we have:
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Proposition 5.5. Let A be a standard graded Cohen-Macaulay ring over a field k
of characteristic zero. Assume that X = ProjA is smooth over k. Put R = AA+.
Consider the following

(1) X is Fano.
(2) CHdimX(X)Q = Q.
(3) R has rational singularity.

Then (1) =⇒ (2) =⇒ (3). If R is Gorenstein, all the three conditions are
equivalent.

Proof. It is well known that Fano varieties are rationally connected, so (1) =⇒
(2). If X satisfies CHdimX(X)Q = Q then R has only a rational singularity (use
Lemma 3.9 in [7]). Finally, if R is Gorenstein and has rational singularity, then
the graded canonical module of A is generated in positive degree, so X is Fano by
definition. �

Proposition 5.6. Let A be a standard graded Cohen-Macaulay ring of dimension
d ≥ 3. Assume that defining equations can be chosen to be polynomials with coef-
ficients algebraic over the prime field. Let R be the affine cone of ProjA. Assume
that ProjA is smooth over the field A0.

If some conjectures (the standard conjecture and the Bloch-Beilinson conjecture)
on algebraic cycles are true, then the kernel of the natural map

Ad−1(R) −→ Ad−1(R)

is a finite group.

We can prove the above proposition in the same way as in Section 5 in Roberts-
Srinivas [20].

Example 5.7. The map f in (5.2) is not necessary isomorphism as in Section 5
in Roberts-Srinivas [20]. We give an example here.

Let A be a standard graded Cohen-Macaulay domain over C of dimension 3

with an isolated singularity. Assume that A is a unique factorization domain and
H2(X,OX) 6= 0, where X = ProjA. For example, C[x, y, z, w]/(f(x, y, z, w))

satisfies these assumptions for any general homogeneous form f(x, y, z, w) of degree
≥ 4 (by Noether-Lefschetz theorem).

Let H be a divisor corresponding to OX(1). Then, H2 is not zero in CH2(X)Q.
By Mumford’s infinite dimensionality theorem (e.g. Lemma 3.9 in [7]) for 0-cycles,
CH2(X)Q is of dimension infinite. Let r be a positive integer. Let p1, . . . , pr be
closed points of X such that H2, p1, . . . , pr (in CH2(X)Q) are linearly independent
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over Q. Let π : Q → X be the blow-up at {p1, . . . , pr}. Put Ei = π−1(pi) for
i = 1, . . . , r. Choose positive integers a, b1, . . . , br such that

aπ∗H − b1E1 − · · · − brEr

is a very ample, projectively normal divisor on Q. We denote it by D. Then,

CH1(Q) ' CH1
num(Q) = Zπ∗H + ZE1 + · · ·+ ZEr ' Zr+1.

By the construction, one can prove that

CH1(Q)Q
D−→ CH2(Q)Q

is injective. Since the kernel of

CH1
num(Q)Q

D−→ CH2
num(Q)Q = Q

is Qr, the cokernel of the map g in (5.3) is Qr. Therefore, by Lemma 5.3, the kernel
of the map f in (5.2) is Qr.

However, remember that

⊕n≥0H0(Q,OQ(nD))

has only finitely many maximal Cohen-Macaulay modules of rank one by Exam-
ple 4.9.

6. Some explicit examples of the Cohen-Macaulay cones

In this section, we compute Cohen-Macaulay cones for certain hypersurfaces.
One of the main tools we use is Knörrer periodicity [16].

We define C ′CM (R) to be the cone spanned by maximal Cohan-Macaulay modules
in G0(R)R, that is,

C ′CM (R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R.

Theorem 6.1. Let k be a field. Put R = k[[x1, . . . , xn]]/(f). Suppose 0 6= f =

fa11 fa22 · · · famm ∈ k[[x1, . . . , xn]] with each fi irreducible, and f1, . . . , fm are pair-
wise coprime. Let R## = k[[x1, . . . , xn, ξ, η]]/(ξη + f). For 1 ≤ j1 < j2 < · · · <
jt ≤ n, let Ij1j2···jt denote the ideal (η, f

aj1
j1
f
aj2
j2
· · · fajtjt

).
We assume that, if N is an R-module with dimN < dimR, then [N ] = 0 in

G0(R)Q. (If n = 2, it is always satisfied.)

(1) Suppose m = 1. Then, we have

G0(R)R = R[R/(f1)] ⊃ C ′CM (R) = R≥0[R/(f1)]

and
G0(R

##)R = R[R##] ⊃ C ′CM (R##) = R≥0[R##].
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(2) Suppose m ≥ 2. Then, we have

G0(R)R = ⊕mi=1R[R/(fi)] ⊃ C ′CM (R) =

m∑
i=1

R≥0[R/(fi)]

and
G0(R

##)R = ⊕mi=1R[Ii].

Furthermore, C ′CM (R##) is minimally spanned by by

{[Ij1j2···jt ] | ∅ 6= {j1, . . . , jt} ( {1, . . . , n}}.

(3) Suppose n = 2. Assume that there exists a resolution of singularity π :

X → SpecR## such that X \ π−1(V ((x1, x2, ξ, η)R##)) → SpecR## \
V ((x1, x2, ξ, η)R##) is an isomorphism. Then, the natural map G0(R

##)Q →
G0(R##)Q is an isomorphism. In particular, the cone C ′CM (R##) coincides
with the Cohen-Macaulay cone CCM (R##).

We refer the reader to [21] for the terminologies and the basic theory on maximal
Cohen-Macaulay modules.

Using Knörrer periodicity [16], we have the category equivalence

Ω : C(R)→ C(R##),

where C(R) (resp. C(R##)) denotes the stable category of maximal Cohen-Macaulay
R-modules (resp. R##-modules). In order to prove Theorem 6.1, we need the fol-
lowing claim:

Claim 6.2. Under the same situation as in Theorem 6.1, the functor Ω induces
the natural isomorphism

(6.7) G0(R)/Z[R] ' G0(R
##)/Z[R##].

Proof. By Theorem 4.4.1 in [1], C(R) has a structure of a triangulated category
since R is a Gorestein ring. We can define the Grothendieck group K0(C(R)) as a
triangulated category. By 4.9 in [1], we have an isomorphism

K0(C(R)) ' G0(R)/Z[R].

Since R## is Gorenstein, we also obtain

K0(C(R##)) ' G0(R
##)/Z[R##].

Since Knörrer periodicity Ω : C(R) → C(R##) is a category equivalence as trian-
gulated categories, we have

K0(C(R)) ' K0(C(R##)).

�
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Now, we start to prove Theorem 6.1.
It is easy to prove (1). We omit a proof.
We shall prove (2). Since [N ] = 0 in G0(R)Q for any R-module N with dimN <

dimR, it is easy to see

G0(R)R = ⊕mi=1R[R/(fi)] = ⊕mi=1R[R/(faii )]

and

C ′CM (R) =

m∑
i=1

R≥0[R/(fi)] =

m∑
i=1

R≥0[R/(faii )].

Here remark that [R/(faii )] = ai[R/(fi)].
By Knörrer periodicity, we have a bijection between the set of isomorphism

classes of indecomposable maximal Cohan-Macaulay R-modules and that of R##.
For an indecomposable maximal Cohan-Macaulay R-moduleN , we denote by Ω(N)

the corresponding indecomposable maximal Cohan-Macaulay R##-module. Then,
by definition, we have Ω(R/(f

aj1
j1
· · · fajtjt

)) = Ij1j2···jt .
Since [R] =

∑m
i=1[R/(f

ai
i )], we have

G0(R)R/R[R] =
⊕mi=1R[R/(faii )]

R(
∑m

i=1[R/(f
ai
i )])

.

By Claim 6.2, we have

(6.8) G0(R
##)R/R[R##] =

⊕mi=1R[Ii]

R(
∑m

i=1[Ii])
.

Since

[R/Ij1j2···jt ] =
t∑
i=1

[R/Iji ],

we have

[Ij1j2···jt ] + (t− 1)[R##] =

t∑
i=1

[Iji ].

In particular, we have

(6.9) m[R##] =

m∑
i=1

[Ii].

By (6.8) and (6.9), we have

G0(R
##)R = ⊕mi=1R[Ii].

Let C” be the cone in G0(R)R spanned by by

{[Ij1j2···jt ] | ∅ 6= {j1, . . . , jt} ( {1, . . . , n}}.
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We shall prove C” = C ′CM (R##). By definition, C” ⊂ C ′CM (R##). It is sufficient
to show that [M ] is in C” for any indecomposable maximal Cohen-Macaulay R##-
module M . By (6.9), [R##] ∈ C”.

Let M be an indecomposable maximal Cohen-Macaulay R##-module with M 6'
R##.

Suppose that [M ] =
∑n

i=1 xi[Ii] in G0(R
##)R where xi’s are rational numbers.

Without loss of generalities we may assume that x1 ≤ x2 ≤ · · · ≤ xn. We shall
rewrite the above equation as follows:

[M ]

= x1([I1] + · · ·+ [In]) + (x2 − x1)([I2] + · · ·+ [In]) + · · ·+ (xn − xn−1)[In]

= x1([I12···n] + (n− 1)[R##]) + (x2 − x1)([I2···n] + (n− 2)[R##]) + · · ·+ (xn − xn−1)[In]

= (

n∑
i=1

xi + (x1 − xn))[R##] + (x2 − x1)[I2···n] + · · ·+ (xn − xn−1)[In]

= (rank(M) + (x1 − xn))[R##] + (x2 − x1)[I2···n] + · · ·+ (xn − xn−1)[In]

As xi+1 − xi ≥ 0 for all i it remains to show that rank(M) ≥ xn − x1. Using
Knörrer periodicity [16], we can assume our module M has a form M = Ω(N) for
some indecomposable maximal Cohen-Macaulay R-module N with N 6' R.

We claim that µ(M) = 2 rank(M). Since R## has multiplicity 2 and M has no
free summand, we have

2 rank(M) ≥ µ(M) = rank(M) + rank(Syz1R##M),

which implies rank(M) ≥ rank(Syz1R##M). However, as Syz2R##M = M , we must
have equality.

Since the functor Ω doubles the number of generators for a maximal Cohen-
Macaulay R-module with no free summand, we have rank(M) = µ(N). Suppose
[N ] =

∑
i yi[R/(f

ai
i )] in G0(R)R, here

(6.10) yiai = lengthR(fi)
N(fi).

Then we have
n∑
i=1

xi[Ii] = [M ] = [Ω(N)] =
∑
i

yi[Ω(R/(faii ))] =
∑
i

yi[Ii] in G0(R
##)/R[R##].

By (6.8), we have

x1 − y1 = x2 − y2 = · · · = xm − ym.

In particular, we have xm − x1 = ym − y1. So to finish the proof we need to show
that µ(N) ≥ ym − y1.
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As we have a surjection Rµ(N) → N , by localizing at (fm) we have a surjection

R
µ(N)
(fm) → N(fm).

By counting the length, we have

µ(N)am ≥ ymam

by (6.10). Since y1 ≥ 0 by (6.10), we get µ(N) ≥ ym ≥ ym − y1. We have proved
that [M ] is in C”.

We leave it to the reader to show that these rays are the “minimal" generators
of the cone.

Next, we shall prove (3). Assume that
∑m

i=1 qi[Ii] (∈ G0(R
##)Q) is numerically

equivalent to 0. We may assume that q1 ≤ q2 ≤ · · · ≤ qm.
If q1 = qm, then

∑m
i=1 qi[Ii] = mq1[R

##]. Since [R##] 6= 0 in G0(R##)Q, we
have q1 = 0.

Assume that q1 < qm. Then,

m∑
i=1

qi[Ii] = q1m[R##] +
m∑
i=2

(qi − q1)[Ii].

It is easy to see that

θR
##

(Ii, Ij) =

{
`R(R/(faii , f

a1
1 · · · f

ai−1

i−1 f
ai+1

i+1 · · · fann )) (i = j)

−`R(R/(faii , f
aj
j )) (i 6= j),

where θR## is the Hochster’s theta pairing. Then, we have

θR
##

(I1,
m∑
i=1

qi[Ii]) =
m∑
i=2

(qi− q1)θR
##

(I1, Ii) = −
n∑
i=2

(qi− q1)`R(R/(fa11 , faii )) < 0

because θR##
(I1, R

##) = 0. By Corollary 6.2 (1) in [8],
∑m

i=1 qi[Ii] is not numeri-
cally equivalent to 0. �

We remark that, if f ∈ (x, y)4S, then R## is not of finite representation type.
If R is a Cohen-Macaulay local ring, the rank of the Grothendieck group of mod-

ules of finite length and finite projective dimension modulo numerical equivalence
coincides with the rank of G0(R) by Proposition 2 in [20] and Theorem 3,1, Re-
mark 3.5 in [17]. By (3) of Theorem 6.1, we know that the rank of the Grothendieck
group of modules of finite length and finite projective dimension modulo numer-
ical equivalence is equal to m for R = k[[x1, x2, ξ, η]]/(ξη + f), where 0 6= f =

fa11 · · · famm ∈ k[[x1, x2]].
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