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Preface

This book presents a computational mechanism for the interpretation of
line drawings by means of which a machine can extract three-dimensional
object structures from their pictures drawn on a two-dimensional plane. It is
easy for a human being to understand what is represented by line drawings,
so that they are frequently used in many stages of human communication,
such as illustrations in books and engineering drawings in factories. For
a machine, on the other hand, line drawings are simple collections of two-
dimensional line segments; some intelligent mechanism is required to extract
three-dimensional information from them. How the machine can possess
such intelligence is the main problem attacked throughout this book.

From a theoretical point of view this book provides a typical example of
making humanlike intelligence by a simple computational mechanism. We
are apt to think that the human ability to interpret line drawings is based
on various kinds of human experiences, and hence a mechanism that mimics
this ability should be supported by extensive and complicated knowledge
about the outside world. However, it turns out that this ability can be
realized by a simple mathematical procedure at least when the objects are
restricted to planar faced solids. The computational mechanism presented
here is not accompanied by a large database, but is composed of several
simple procedures based on linear algebra and combinatorial theory; it can
still mimic human flexible intelligence in picture perception.

From a practical point of view the results in this book can be applied to
man-machine communication and robot vision. One of the main problems
in a computer-aided system for geometric design is how to input data about
object structures that are born in a designer’s mind. The computational
mechanism in this book makes the communication flexible in the sense that
the system can extract object structures automatically from pictures drawn
by the designer. In a robot vision system for recognizing the outside world,
the present results can be used as an intermediate stage, which receives
line drawings from an image processing stage and offers the descriptions of
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three-dimensional object structures to an object recognition stage.
This book is mainly based on the author’s work during the past ten years,

the first half of which was spent at the Electrotechnicai Laboratory and the
other half at Nagoya University, on understanding line drawings. Among
many others the author would like to express his thanks to Prof. Noboru
Sugie of Nagoya University and Dr. Yoshiaki Shirai of the Electrotechnical
Laboratory for guiding him to this interesting field of research; Prof. Masao
Iri of Tokyo University for suggesting the importance of the combinato-
rial aspect of line drawings; Prof. Jun-ichiro Toriwaki of Nagoya Univer-
sity, Dr. Hiroshi Imai of Tokyo University, Prof. Henry Crapo of INRIA,
Prof. Walter Whiteley of McGill University, Dr. Masaki Oshima of the Elec-
trotechnical Laboratory, and Prof. Ken-ichi Kanatani of Gumma University
for valuable communications; and Mr. Hiroki Iguchi of NEC Co. Ltd, for
help in writing computer programs when he was a student at Nagoya Uni-
versity. Many of these people, in particular Profs. Iri, Sugie, and Kanatani,
gave the author valuable comments on earlier versions of the manuscript.
The author also wants to thank his wife Keiko Sugihara for helping him not
only mentally but also physically by keeping their daughters from his room
and thus giving him time for writing this book. The text was generated
by ATF (Advanced Text Formatter for science) at the Nagoya University
Computation Center.

K. Sugihara
March 1986
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Chapter 1

Introduction

1.1 Aim of the Book

Human beings invented a noble class of pictures called “line drawings” as
a means of representing three-dimensional shape of objects. The line draw-
ings, though they consist of only line segments on a plane, convey much
information about three-dimensional object structures; when we see them,
we can easily understand what is represented there. The line drawings are
widely used in various fields of human communication, from engineering
drawings of mechanical parts to illustrative figures in popular books.

For computers, on the other hand, line drawings are simple collections
of line segments on a two-dimensional plane. In order to extract three-
dimensional information from them, some intelligent mechanism is necessary.
However, we cannot mimic the human visual process, because we know
for the present almost nothing about how human beings understand line
drawings.

The aim of this book is to present a computational mechanism for ex-
tracting three-dimensional structures of objects from two-dimensional line
drawings. The objects considered here are polyhedrons, that is, solid ob-
jects bounded by planar faces, and the line drawings are single-view pic-
tures of these objects. Probably this mechanism is quite different from what
is employed in human perception. It can nevertheless make a computer
intelligent in the sense that, given line drawings, the computer generates
three-dimensional descriptions of objects automatically.

One of potential applications of this mechanism is flexible man-machine
communication. Computer-aided systems are widely used for the design of
geometric objects, such as mechanical parts and buildings. These systems
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2 1. Introduction

provide many facilities by which designers can analyze, deform, and monitor
various kinds of characteristics of shape of objects interactively. However,
these systems are not completely comfortable for users. One of the problems
is how to generate numerical data about shapes born in a designer’s mind. It
is tedious work for designers to convert their thoughts into numerical forms,
such as three-dimensional coordinates of vertices and incidence relations
among vertices, edges, and faces. The present mechanism can undertake
this work automatically; all that the designers have to do is to draw pictures
of what are in their minds, and, if necessary, to give a small number of
additional data, such as lengths of edges and angles between faces. Thus,
the mechanism can lessen human labor.

Another application of the mechanism is computer vision systems for
recognizing the outside world. Using optical sensors such as a television
camera, these systems obtain visual images from the outside, and analyze
them by these three stages: first, some features, such as edges, regions, and
textures, are extracted from the images; next, these two-dimensional features
are interpreted as three-dimensional structures; and finally, objects in the
scenes are recognized. The present mechanism can be used as a component
for the intermediate stage, the feature interpretation stage, which receives
line drawings from the image processing stage and offers descriptions of
three-dimensional structures to the object recognition stage.

In order to meet these fields of application, line drawings treated in this
book are assumed to be either those drawn by human hands or those ex-
tracted by computer processing of digital images. Consequently, they are
not necessarily perfect; some lines may be missing, some lines may be su-
perfluous, and/or vertices may be in a wrong position. Given a line drawing
of this kind, the mechanism carries out the following tasks. First, the mech-
anism judges whether it represents a polyhedral scene correctly or not, and,
if not, tries to correct it. Next, the mechanism specifies the set of all scenes
that the correct (or corrected) line drawing can represent. Finally, it selects
a unique scene that is most consistent with other information, such as edge
lengths given by a designer or surface texture given in the image.

1.2 Philosophy

When compared with languages, another means of human communication,
line drawings are easier to understand; they can be read without much
training by anyone in any country. This is probably because line drawings
are analogical in nature, whereas languages are symbolic. Line drawings
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are based on physical results of the imaging process, that is, projections
of three-dimensional scenes onto two-dimensional planes, and hence they
reflect configurations of three-dimensional structures directly.

However, line drawings also have a symbolic aspect. First, they are not
direct representations of the distribution of light intensity on the retina. For
example, texture details on a surface are usually omitted, whereas invisible
edges are sometimes represented by broken lines. These conventions are
artificial rules, not direct consequences of the imaging process. Second,
from a mathematical point of view a line drawing in general can admit many
possible interpretations, but it seems that most of them are never evoked
in human perception. The line drawing shown in Fig. 1.1, for example, is
usually interpreted as a picture of a truncated pyramid seen from above.
It is possible at least mathematically to regard it as the projection of four
objects floating in a space and aligning accidentally on the picture plane, as
is shown in Fig. 1.2, but this kind of an interpretation is rarely adopted. This
implies that in human communication line drawings involve some implicit
assumptions so that “unusual” interpretations are excluded. Third, we can
extract three-dimensional information from line drawings even if they are
mathematically incorrect. Consider the line drawing in Fig. 1.1 again. We
extract from it a structure of a truncated pyramid, but it is incorrect from
a mathematical point of view. Indeed, if it were a truncated pyramid, the
three quadrilateral side planes should share a common point in a space when
extended, and hence the three side edges should meet at a common point on
the picture plane, but they do not, as is shown in Fig. 1.3. The line drawing
can never be a projection of any truncated pyramid. It is nevertheless used
in human communication as a description of a truncated pyramid.

Figure 1.1. Example of a line drawing.
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Figure 1.2. Unnatural but possible interpretation of the line drawing shown
in Fig. 1.1.

Figure 1.3. Inconsistency in the interpretation of the line drawing in Fig. 1.1
as a truncated pyramid.

Thus, line drawings are not purely geometrical consequences but mix-
tures of geometry and human conventions; they have both an analogical
aspect and a symbolic aspect.

Basically, the interpretation of line drawings is an inverse problem of
the image forming process, where the analogical aspect plays the main role.
However, the symbolic aspect of line drawings is equally important in that
if a computer deals with only the analogical aspect, man-machine commu-
nication is almost impossible. Suppose that we draw a line drawing like
Fig. 1.1 and show it to a computer. If the computer ignores its symbolic
aspect, the computer will reject it simply because it is mathematically in-
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correct. Even if we notice that the three side edges must be concurrent, it
does not make sense to try to draw a precise picture because digitization
errors are inevitable. Thus, we must not be satisfied with a mechanism that
works correctly merely in a mathematical sense. A computer should have
some flexible mechanism that can extract three-dimensional structures even
if line drawings are not strictly correct.

It seems interesting to note that this point is important also in a com-
puter vision system. The input to the computer vision system is an image
obtained by means of a visual sensor, and hence it is not contaminated with
human conventions. Nevertheless, the three-dimensional structure cannot
be reconstructed at all if the data are treated in a purely mathematical
manner, because inevitable errors would make the line drawing incorrect.
The data must be treated as if they had the symbolic aspect.

In this book we study line drawings from both an analogical point of
view and a symbolic point of view, and construct a mechanism that can
extract three-dimensional information from both the aspects in a balanced
manner just as human beings do.

It should be said here that this book places emphasis on engineering
rather than human science. Our aim is to construct a computational mech-
anism by which a computer can practically process line drawing data. Hence,
our mechanism can be independent of the human visual mechanism on one
hand, but it must be correct, robust, and efficient on the other hand.

What we search for is a mechanism that is suitable for a computer; its
internal structure need not be the same as that in the human brain. Of
course, we must know what kind of spatial information the human visual
system can extract, because a machine should possess the same, or at least
similar, abilities for flexible man-machine communication. For this purpose
we consider the human visual system. For the design of internal structures
of our mechanism, however, the human visual system seems of little help,
because we know for the present almost nothing about the human visual
process at such a high level as the interpretation of line drawings. Therefore,
we learn what to do from the human visual system, whereas we decide how
to do it from an engineering point of view.

Needless to say, a mechanism cannot be applied to engineering use un-
less it works always correctly, and a mechanism that works always correctly
cannot be searched for unless the tasks of the mechanism is well defined.
This point is important when we try to replace human intelligence with
a machine, because human intelligence is not a well defined concept. “To
make a machine that extracts three-dimensional information as human be-
ings do” is not a good specification for the design of an intelligent machine.
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Different persons may extract different information from the same line draw-
ing, and even the same person may extract different information in different
situations. In order to define the problem well, we have to specify in math-
ematical terms what aspects of human intelligence we want to realize. This
is why we restrict our objects to polyhedrons .

In polyhedrons, faces are all planar and hence can be recovered eas-
ily from their boundaries. Thus, most of the important information about
polyhedrons are contained in “skeletal structures” consisting of edges and
vertices. Line drawings, which are projections of the skeletal structures, con-
sequently contain much information about the objects. In contrast, curved
surface objects cannot be reconstructed uniquely even if their skeletal struc-
tures are given. Hence, line drawings do not convey enough information.
Interpretation of line drawings of curved surface objects seems to depend on
each particular situation in human communication, and in general it is very
difficult to specify what shape should be extracted from what line drawings.
In the polyhedral object world, on the other hand, we can specify clearly the
input-output relation the intelligent machine should achieve. Thus we can
define the problem in a mathematical manner, and consequently can search
for a mechanism that works correctly in a mathematical sense.

Mathematically correct mechanisms are sometimes too weak for practical
purposes. As we have seen in Fig. 1.3, only slight errors in positions of
vertices on the picture plane often make line drawings incorrect. If line
drawings are treated simply in a mathematical manner, a large part of line
drawings are judged incorrect though they are usually treated as correct
in human communication. Therefore, a desired mechanism must be robust
(or, in other words, be flexible) in the sense that it can extract what are
intended in line drawings even if they are not strictly correct. How to attain
this robustness is the most important and interesting point of our study.

In addition to being correct and robust, a desired mechanism must of
course be efficient. Therefore, we search for efficient algorithms for all the
components of our mechanism. For this purpose we employ whatever results
in other fields, such as linear programming theory, network flow theory, and
matroid theory. In case that we cannot find a polynomial order algorithm for
a strict solution to a subproblem, we do not hesitate to introduce heuristics
in order to avoid the combinatorial explosions.
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1.3 Short History

Line drawings of three-dimensional objects have long been studied in de-
scriptive geometry and projective geometry, but the main problem there
is how to “describe” given objects on two-dimensional planes (for exam-
ple, Gurevich, 1960; Hohenberg, 1966). The converse problem, the problem
of how to “reconstruct” three-dimensional structures from line drawings,
started to draw attention only in later 1960s, when digital computers were
developed so that they could process image data.

Probably the earliest attempt at machine interpretation of line draw-
ings can be found in Roberts’ system for object recognition (Roberts, 1965).
Given an image of an object taken from a certain fixed set of a finite num-
ber of prototypes, his system identifies the object by first extracting a line
drawing from the image and next searching for a prototype whose projec-
tion coincides with the line drawing. Though his system requires the strong
assumption that objects are isolated in the images and that line drawings
can be extracted completely, his method forms a sound starting point for
“prototype-based” interpretation of line drawings, where objects are taken
from a finite number of prespecified prototypes. The prototype-based inter-
pretation was further developed by Falk (1972) and Grape (1973) so that
imperfect line drawings and/or partially occluded objects can also be dealt
with.

In the case where the object world is not restricted to a finite set of
prototypes, interpretation of line drawings contains problems that are quite
different from those in the prototype-based interpretation. One class of
problems arises in the interpretation of multi-view drawings (Shapira, 1974).
This class includes an important subclass, that is, the interpretation of three-
view drawings, such as engineering drawings composed of top, front, and side
views (Idesawa et al., 1975; Wesley and Markowsky, 1981 ; Preiss, 1981;
Haralick and Queeney, 1982; Aldefeld, 1983). Here, the main problems are
twofold; one is to establish the correspondence between different views, and
the other is to find a consistent way of packing material to exactly one side of
each face (Markovsky and Wesley, 1980). Another class of problems arises in
interactive systems for extracting three-dimensional structures from single-
view drawings, where the main problem is how to realize smooth and flexible
interaction between users and machines (Lafue, 1978; Liardet et al., 1978;
Fukui et al., 1983).

If only a single-view line drawing is given and no interaction between
man and machine is allowed, the problem of interpretation becomes more
difficult. This challenging problem, “prototype-free” interpretation of single-
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view line drawings, was first attacked by Guzman (1968a, 1968b), who tried
to find a systematic way of decomposing a line drawing of a pile of ob-
jects into regions so that each region may correspond to one object. In his
method, configurations of lines at junctions are used as keys for the region
decomposition. Though his method was based on only a collection of ad hoc
rules, it worked well for many complicated line drawings. However, his rules
were not based on any logical foundation and hence did not always work
correctly; indeed we can easily generate line drawings that cheat his method
(for example, see Ballard and Brown, 1982). His method is nevertheless
a milestone in the sense that it showed that prototype-free interpretation,
though it seemed impossible without some knowledge about human every-
day experiences, can be achieved fairly well by a relatively simple mechanism
based on configurations of lines at junctions.

The configurations of lines at junctions were exploited in a more theo-
retical manner by Huffman (1971) and Clowes (1971). Huffman introduced
labels in order to classify lines in pictures into three categories, that is, lines
representing convex edges whose both side faces face toward a viewer, those
representing convex edges one of whose side faces face opposite to the viewer,
and those representing concave edges. A crucial point he found is that
possible configurations of labeled lines at junctions (that is, configurations
that can appear in line drawings of polyhedrons) form a very small subset
of all the combinations of assignments of labels to lines around junctions.
Therefore, once all possible configurations at junctions are enumerated and
registered in a computer, the problem of interpreting line drawings can be
reduced to a problem of assigning labels to lines consistently in the sense
that the resultant configurations at junctions are all in the list of possible
configurations. Huffman (1971) demonstrated the validity of this scheme in
a so-called “trihedral object world”, where every vertex of objects is shared
by exactly three faces. Clowes (1971) also proposed an equivalent method
with slightly different notations, and hence this scheme is usually called
the Huffman-Clowes labeling scheme (see also Mackworth, 1977b; Winston,
1977; Nevatia, 1982; Cohen and Feigenbaum, 1982).

The validity of this scheme has been verified in various kinds of line draw-
ings, such as pictures with shadows and cracks (Waltz, 1972, 1975), pictures
in which hidden edges are represented by broken lines (Sankar, 1977; Sugi-
hara, 1978), pictures of curved objects bounded by quadric surfaces (Turner,
1974; Chien and Chang, 1974; Lee et al., 1985), pictures of paper-made ob-
jects (Kanade, 1980, 1981), and pictures of dynamic scenes (Asada et al.,
1984). There are also some attempts to refine the scheme in a restricted
object world, the world consisting of right-angled objects (Nakatani and
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Kitahashi, 1984; Kanatani, 1986).
It should be noted that the Huffman-Clowes labeling scheme is based on

a necessary, but not sufficient, condition for a line drawing to represent a
polyhedral scene. A correct line drawing always admits a consistent assign-
ment of labels, but the existence of consistent labeling does not imply that
the line drawing is correct. Some incorrect line drawings can also be labeled
consistently. Thus, a consistent assignment of labels to a line drawing gives
a mere candidate for a spatial interpretation of the line drawing. We have
to examine this candidate further in order to see whether it is a correct
interpretation or not.

In order to back up the labeling scheme, many new ideas have been
proposed. Various types of conditions that the correct line drawing should
satisfy are found and used to check the correctness of the labeled line draw-
ings. One of the most appealing ideas is the use of reciprocal figures in
a gradient space (Huffman, 1971, 1976, 1977a, 1977b, 1978; Mackworth,
1973). For every line drawing representing a polyhedron, we can define a
reciprocal figure which is a dual in the sense that vertices, edges, and faces
in the reciprocal figure correspond to faces, edges, and vertices, respectively,
of the original line drawing. The reciprocal figure has a remarkable prop-
erty: all of its edges are perpendicular to the corresponding edges of the
original line drawing when the two figures are superposed upon each other
in an appropriate manner. This property was found more than a century
ago, and has been used for graphical calculus in mechanics (Maxwell, 1864,
1870; Cremona 1890). It was recently rediscovered by Huffman (1971) and
Mackworth (1973), and used for the analysis of line drawings in such a
way that a labeled line drawing can be judged incorrect if it cannot admit
a reciprocal figure (see also Whiteley, 1979, 1982). Other types of con-
ditions were also formulated in terms of such new concepts as “spanning
angles” (Kanade, 1980), “sidedness reasoning” (Draper, 1981), “cyclic order
property” of edges and vertices around faces (Sugihara, 1978; Shapira and
Freeman, 1979; Fukui et al., 1983), and “maximal sets of relative place”
(Shapira, 1984), and used for the check of labeled line drawings. The theory
of braids was also applied to the check of inconsistency of line drawings of
torus-type polyhedrons (Cowan, 1974, 1977; Térouanne, 1980). Whiteley
(1979) and Shapira (1985) took a figure-construction approach to the check
of the inconsistency. Those methods could indeed strengthen the labeling
scheme in that a larger class of incorrect interpretations can be recognized.
However, all of the conditions employed in those methods are necessary,
but still not sufficient, conditions for correct line drawings, and hence they
cannot discriminate between correct and incorrect interpretations perfectly.
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There is another, and more naive, approach to the analysis of line draw-
ings, that is, an approach using linear algebra. It was known from relatively
early days that a polyhedral object represented by a line drawing must sat-
isfy certain linear equations; this fact was pointed out, for example, by Falk
(1972) and Duda and Hart (1973). Though this approach seems natural, it
has not been taken so widely as the reciprocal-figure approach.

Quite recently, however, Sugihara (1984b) succeeded in representing in
terms of linear algebra a necessary and sufficient condition for a line drawing
to represent a polyhedral scene. This result reduces the problem of judging
the correctness of a line drawing to a problem of checking the existence of a
solution to a certain system of linear equations and linear inequalities. Thus,
the problem of discriminating between correct and incorrect line drawings
was solved “theoretically”.

However, this method alone cannot serve practical purposes. Indeed, the
condition represented by the system of equations and inequalities is math-
ematically strict, so that many pictures are judged incorrect only because
the vertices are slightly deviated from the correct positions. This difficulty,
the superstrictness of the system of equations and inequalities, stems from
the fact that the system contains redundant equations. The difficulty was
solved by a counting theorem (Sugihara, 1979c, 1982b, 1984c; Whiteley,
1984a), which tells us what equations are redundant, and hence enables us
to extract a subset of equations that is no longer superstrict. Thus, the
problem of discrimination between correct and incorrect line drawings was
solved not only in a theoretical sense but also in a practical sense. Using
these results we can construct a machine that, like human beings, extracts
the structures of objects from line drawings even if they are mathematically
incorrect due to digitization and/or free-hand drawing.

1.4 Overview of the Book

The computational mechanism for extracting structures of objects from line
drawings presented in this book is composed of four fundamental modules.
The first module is for extracting from a line drawing a set of probable
candidates for spatial interpretations. The purpose of this module is to
lessen the number of candidates for interpretations, which will be examined
more carefully in the subsequent part of the mechanism. Therefore, it may
extract some incorrect interpretations, but it must not fail to extract any
correct interpretations . This task seems to be achieved most successfully by
the Huffman-Clowes labeling scheme. So we shall review this scheme briefly
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in Chapter 2.
The second module is for discriminating between correct and incorrect

interpretations strictly. This module will be presented for two classes of
line drawings : for natural pictures in Chapter 3 and for hidden-part-drawn
pictures in Chapter 4. In both the cases a necessary and sufficient condition
for a correct interpretation is formulated in terms of linear algebra, and
thus the problem of discrimination is reduced to the problem of checking
the existence of feasible solutions to a linear programming problem.

The algebraic approach taken in Chapters 3 and 4 tells us much about
mathematical structures of line drawings. Chapter 5 will summarize them.
In particular, the distributions of degrees of freedom in recovering objects
from a line drawing will be studied in detail. The results in this chapter will
provide mathematical foundations on which the subsequent two modules are
established.

Chapters 6, 7, and 8 will present the third module, whose purpose is
to provide humanlike flexibility for the mechanism. Employing the first
two modules, the mechanism can discriminate between correct and incor-
rect line drawings strictly. The mathematical strictness, however, causes the
mechanism to behave very differently from human visual perception. Hu-
man beings can extract object structures even if the line drawings are not
strictly correct, whereas the mechanism composed of the first two modules
simply judges them incorrect; it does not extract any three-dimensional in-
formation. First, in Chapter 6, we shall present a theorem that enables us
to tell which equations are redundant in the system of equations associated
with a line drawing. On the basis of this theorem, we shall next establish,
in Chapter 7, the third module, which can remove the redundant equations
and thus circumvent the superstrictness. Moreover, this module enables the
mechanism to make necessary corrections to incorrect line drawings auto-
matically if the incorrectness is due to errors in vertex positions. In Chap-
ter 8, the module will be improved from a time complexity point of view.
Thus, instead of discriminating between correct and incorrect line drawings,
the mechanism can discriminate between “correctable” and “uncorrectable”
line drawings (where the correctable line drawings include correct ones), and
can extract three-dimensional structures from the correctable line drawings.
This is the way how our mechanism achieves humanlike flexibility. From a
practical point of view, this module is most important because if this mod-
ule were not available, the mechanism would be so sensitive to digitization
noises that it could not be applied to real data.

The last module is for determining the object structure uniquely. Using
the first three modules, the mechanism can specify explicitly the set of ail
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objects that a correct, or a corrected, line drawing can represent. This set
usually contains an infinite number of elements, because the line drawing
does not convey enough information about the third dimension. The task
of the last module is to choose from this set a unique object that is most
consistent with additional information. Chapters 9 and 10 will provide two
options for this module. The first option, which will be presented in Chapter
9, uses ranges of some points of objects from the observer or lengths and
angles given by a designer. The second option, presented in Chapter 10,
uses surface cues such as texture and shading. Thus, the description of the
whole mechanism will be completed.

It has long been known that line drawings of polyhedrons have close re-
lationships with mechanical structures composed of rigid rods and rotatable
joints. In Chapter 11, these relationships will be studied from our combina-
torial point of view, and classical results will be generalized. This chapter
is rather a digression from the main story of the book, but seems important
for future researches on line drawings.



Chapter 2

Candidates for Spatial
Interpretations

Given a line drawing, the mechanism should first collect probable candidates
for spatial interpretations. These candidates will be examined in detail in
the subsequent stages of the analysis. Hence, the set of the candidates
collected here must include all of the correct interpretations. For efficiency’s
sake, on the other hand, the number of the candidates should be as small as
possible. This chapter presents a module that executes the above task by
assigning labels that represent at least locally consistent interpretations.

2.1 Polyhedrons and Line Drawings

Objects we consider are polyhedrons, that is, three-dimensional solid bodies
bounded by a finite number of planar faces. Line segments shared by two
faces are called edges, and terminal points of edges vertices. Since faces are
planar, edges are straight. However, the objects may have hollows so that
faces are not necessarily simple polygons, but may have polygonal holes.

In order to avoid unnecessary confusion caused by “pathological” objects,
we put forth the following assumptions.

Assumption 2.1. For every face, one side is occupied with material and
the other side is an empty space.

Hence, we need not consider extremely thin objects such as a sheet of
paper.

13
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Assumption 2.2. Every edge is shared by exactly two faces.

Hence, we need not consider unnatural objects such as the one shown in
Fig. 2.1, where the edge e is shared by the four faces, two visible faces and
two invisible faces. At every edge, therefore, the two side faces form either
a ridge or a valley.

Figure 2.1. Pathological object; four faces meet at the edge e.

A scene is a collection of a finite number of objects. In order to exclude
“pathological” scenes, we assume that Assumption 2.2 is still satisfied when
the whole scene is considered as one (possibly disconnected) object. In other
words, edges of different objects do not come together accidentally in the
scene.

A line drawing, also called a picture , is a two-dimensional diagram com-
posed of a finite number of straight line segments. The line segments are
simply called “lines”, and terminal points of the lines are called “junctions”.
To be more strict, by junctions we refer to points where two or more non-
collinear lines meet, and by lines to the smallest fragments of straight line
segments divided by junctions. Thus, a line connects one junction with
another but does not have any other junctions between them.

If a scene, an observer, and a picture plane between them are fixed,
then a line drawing of the scene is obtained as a perspective projection of
the configurations of the edges onto the picture plane with respect to the
observer as the center of projection, as shown in Fig. 2.2. If the observer
goes infinitely far from the scene in the direction perpendicular to the picture
plane, the resultant picture is an orthographic projection. Once the scene,
the observer, and the picture plane are fixed, the line drawing is unique up
to the choice of whether hidden edges are drawn or not.

On the other hand, even if an observer, a line drawing, and a picture
plane are fixed, the associated scene cannot be determined uniquely. There
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Figure 2.2. Scene and its projection.

may be no scene or there may be an infinite number of possible scenes. How
to specify the set of all possible scenes is the problem we attack in this book.

In order to make the problem clearer we shall put forth three more
assumptions.

Assumption 2.3. When a scene is projected onto the picture plane the
edges only are drawn.

Hence, even if the object surface is covered with texture or scribbles,
they are not drawn. Thus, each line in a line drawing is to correspond to
some edge of an object.

Assumption 2.4. The observer (i.e., the center of the projection) is not
coplanar with any face.

If the observer is coplanar with some face, the face looks like a straight
line segment. Assumption 2.4 is to exclude such a degenerate case. Hence,
every face corresponds to some nonempty region on the picture plane.

Assumption 2.5. The observer is not coplanar with any pair of non-
collinear edges.
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Hence, no spatially distinct edges accidentally align on the picture plane.
The unnatural interpretation shown in Fig. 1.2 can be thus forbidden. As
a consequence, every line in the picture corresponds to exactly one edge in
the scene. Assumptions 2.4 and 2.5 are sometimes called “nonaccidentalness
assumptions” (Marr, 1982).

We consider two ways of generating line drawings. One is to project only
visible portions of the edges onto the picture plane. Line drawings generated
in this way are called natural line drawings or hidden-part-eliminated line
drawings. The other is to project all the edges of the objects, whether they
are visible or not. This kind of a line drawing is called a hidden-part-drawn
line drawing. The hidden lines, i.e., the invisible portions of edges, are
usually represented by broken lines.

Examples of line drawings are shown in Fig. 2.3. The picture in (a) is a
natural line drawing, and the picture in (b) is a hidden-part-drawn one.

(a) (b)

Figure 2.3. Two types of line drawings: (a) is a natural line drawing, and
(b) is a hidden-part-drawn line drawing.

It should be noted that some pictures can be regarded both as natural
line drawings and as hidden-part-drawn line drawings. An example is shown
in Fig. 2.4(a). When considered as a natural line drawing, this is a picture
of the visible surface of an object consisting of five visible faces; the picture
gives no information about the rear side of the object, so that we cannot tell
whether the rear side has only one face or has some complicated structure as
shown in (b). When considered as a hidden-part-drawn line drawing, on the
other hand, the picture gives information about both the front side and the
rear side; hence the interpretation in (b) is not allowed. Unless otherwise
mentioned, we will treat such ambiguous pictures as natural line drawings.
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(a) (b)

Figure 2.4. Picture that can be regarded both as a hidden-part-eliminated
line drawing and as a hidden-part-drawn line drawing: (a) is a
line drawing, and (b) is an interpretation in which the rear side
has a complicated structure. This interpretation is possible only
when the picture (a) is regarded as a hidden-part-eliminated line
drawing.

Remark 2.1. In this book two different types of figures are used. One
is a usual type of illustration, whose aim is to give the readers a vivid
impression about shapes and relations of geometrical objects. This type
of a figure should be regarded with common sense. Figs. 2.1 and 2.2 are
examples of this type. The picture in Fig. 2.1 represents an edge that has
four incident faces. In a mathematically strict sense, however, this figure
does not give any information about the invisible part of the object, and
hence the edge e does not necessarily have four faces. An edge shared by
four faces can be seen in this figure only when the invisible part of the object
is extrapolated with the aid of the reader’s common sense. The second type
of figure used in this book is a line drawing as the input data to the machine,
that is, material that is to be analyzed by our computational mechanism.
This type of a figure should be treated as it is; we need not use any common
sense, heuristics, or knowledge when we see such a figure. The pictures in
Fig. 2.3 belong to this type. In Fig. 2.4, the picture in (a) belongs to the
latter type, whereas the picture in (b) to the former type. In what follows
we shall not state the type of each figure explicitly because we can tell from
the context which type is meant by the figure.
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2.2 Classification of Lines

Let us first consider hidden-part-drawn line drawings; hidden-part-eliminated
line drawings (i.e., natural line drawings) will be treated as a special case.
Lines in line drawings can be classified into eight categories in the following
way.

When two planes meet at a line, they divide the surrounding space into
four regions. We call these regions quadrants, and number them from I to
IV consecutively, as shown in Fig. 2.5. The line of intersection of the two
planes forms an edge when some of the quadrants are filled with material.
However, we need not consider the case where exactly two quadrants are
filled with material. Indeed, if two consecutive quadrants are filled with
material, the line of intersection disappears, and if two mutually opposite
quadrants are filled with material, the line of intersection forms an edge
having four side faces, which has been excluded by Assumption 2.2. Thus,
the line of intersection forms an edge if and only if exactly one or three
quadrants are filled with material.

(a) (b)

Figure 2.5. Four quadrants generated by two mutually intersecting planes:
(a) shows two planes intersecting at a line, and (b) shows the
four quadrants generated by the two planes.

Without loss of generality we assume that the observer is in quadrant I.
Then, on the basis of relative configurations of an edge, the side faces, and
the observer, lines in a line drawing can be classified into eight categories, as
shown in Fig. 2.6. In (a) only quadrant III is filled with material, so that the
edge forms a visible ridge and both of the side faces are also visible. In (b) or
(c), either quadrant II or IV is filled, and consequently one of the side faces
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is visible while the other is hidden. In (d) the three quadrants II, III, IV are
filled, and hence the edge forms a visible valley. The configurations (e), (f),
(g), (h) are obtained from (a), (b), (c), (d), respectively, by interchanging
the filled quadrants and the empty quadrants.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6. Eight categories of lines.

Fig. 2.6 exhausts the cases. Indeed, because of Assumptions 2.1 and
2.2 we can restrict our consideration to the cases where either one or three
quadrants are filled with material, and because of Assumption 2.4 we need
not consider the case where the observer is on a boundary of two quadrants.

In order to represent these categories of lines we introduce the following
convention. First, the edge is represented by a solid line if quadrant I is
empty as in the cases (a), (b), (c), (d), whereas it is represented by a broken
line if quadrant I is occupied by material as in the cases (e), (f), (g), (h).
This way of using the solid and broken lines is similar to that in conventional
line drawings, but is not the same. In conventional line drawings, hidden
lines are always represented by broken lines, but we use solid lines for the
edges in (a), (b), (c), (d) even if the edges are hidden by other objects that
are between the edge and the observer. Thus, our way of using solid and
hidden lines rests only on whether quadrant I is filled with material or not
when we see the neighborhood (in a three-dimensional sense) of the edge
locally.
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Second, on the basis of which portions of the planes form the side faces of
the edges, we assign to the lines four kinds of additional labels: the plus label
+, the minus label −, and the arrow in each of the two possible directions.
If the boundary of quadrant III forms the side faces as in (a) and (e), the
plus label is assigned to the line, and if the boundary of quadrant I forms
the side faces as in (d) and (h), the minus label is assigned. If either the
boundary of quadrant II or that of quadrant IV forms the side faces as in
(b), (c), (f), and (g), the arrow is assigned to the line in such a way that the
side faces are to the right of the arrow.

Combining the solid and broken lines with the four additional labels, we
define the eight labels as is shown in Fig. 2.6. With this convention, we
can represent the categories of lines explicitly in the line drawing. A line
drawing is said to be labeled if every edge is represented by one of the eight
possible labels.

If a line drawing represents only visible edges, the first four labels, (a),
(b), (c), and (d), suffice for the categorization of the lines.

(a) (b)

Figure 2.7. Labeled line drawings.

Examples of the use of our labeling convention are shown in Fig. 2.7.
The set of labels assigned to the picture in (a) corresponds to one of the
most natural spatial structures the picture in Fig. 2.3(a) evokes in our mind.
Similarly, (b) represents one of the most natural interpretations of the pic-
ture in Fig. 2.3(b). Note that the distinction between solid and broken lines
in Fig. 2.7(b) is not the same as that in Fig. 2.3(b); some edges represented
by broken lines in Fig. 2.3(b) are represented by solid lines in Fig. 2.7(b).
This is because in Fig. 2.7(b) broken lines are used when quadrant I is filled
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with material in the neighborhoods of the edges, whereas in Fig. 2.3(b) bro-
ken lines are used when the edges are hidden by other portions which are
not necessarily in the neighborhood of the edges.

2.3 Junction Dictionary and Consistent Labeling

To put one of the eight labels to a line means to choose one of the eight
possible ways of filling the surrounding space with material, and hence to
assign labels to the whole lines in a picture means to choose one candidate
for a spatial structure the picture may represent. Thus, the problem of the
interpretation of line drawings can be reduced to the problem of finding
combinations of the labels that correspond to the spatial structures of the
objects.

If we ignore physical realizability of an object, a line drawing having
l lines can admit as many as 8l different ways of labeling. These labeled
pictures can be thought of as the initial set of candidates for the structures of
the objects represented by the picture. Most of them are of course nonsense;
only a few correspond to realizable objects. Our present goal is to divide the
set of all the 8l labeled pictures into correct ones and incorrect ones, where
“correct” means that there is at least one object whose projection onto the
picture plane coincides with the picture and whose spatial structure is the
same as that indicated by the labels. As the first step to this goal, we
consider how to delete obviously nonsense labelings. In other words, we try
to lessen the number of candidates for spatial structures from 8l to a much
smaller number so that we can examine the remaining candidates in detail
in reasonable time.

In order to remove nonsense labelings, we construct a set of “rules”
labeled pictures must obey. The followings are obvious.

Rule 2.1. Each line has exactly one of the eight labels given in Fig. 2.6.

This is because a type of a line does not change as we go along the
associated edge unless we pass through a vertex.

Rule 2.2. Solid lines should be categorized as the type (a), (b), (c), or
(d) in Fig. 2.6.

This is because in hidden-part-drawn line drawings, solid lines mean that
quadrant I is empty.
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Rule 2.3. If the whole part of an object is drawn inside the picture
region, the outermost lines should be labeled as solid lines with arrows in
the clockwise direction.

This is because the outermost lines correspond to the boundary between
the object and the background unless the object is scissored off along the
border of the picture region.

Another important rule can be found at X-type junctions, that is, junc-
tions where two pairs of collinear lines meet. Because of Assumption 2.5,
two distinct edges do not become collinear on the picture plane. Hence the
X-type junctions do not correspond to three-dimensional vertices; they oc-
cur only when two spatially apart edges cross on the picture plane. Thus
we get the next rule.

Rule 2.4. At an X-type junction mutually collinear lines should have the
same label.

The above rules alone are not so powerful as to remove nonsense la-
belings. One powerful rule is obtained by constructing a complete list of
possible views of certain types of vertices.

Let us consider, for example, vertices at which exactly three faces meet.
Vertices of this kind are called trihedral vertices. All the junctions that can
represent the trihedral vertices can be generated in the following way.

(a) (b)

Figure 2.8. Eight octants generated by three mutually intersecting planes:
(a) shows three planes meeting at a point, and (b) shows the
eight octants generated by the three planes.
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Three planes meeting at a point divide the surrounding space into eight
portions, which we shall call octants and number from I to VIII, as is shown
in Fig. 2.8. Just as we have derived the eight categories of lines, we put the
observer in octant I and consider all the combinations of packing material
to some octants. Then we can generate the list of possible configurations
at junctions corresponding to trihedral vertices. Note, however, that every
way of packing material to some octants does not necessarily correspond
to some junction. Sometimes the point of intersection of the three planes
does not form a vertex (as is the case where octants VI and VII are occu-
pied by material), and sometimes the resultant vertex has more than three
faces (as is the case where octants VI and VIII are occupied). Moreover,
one case can be obtained by rotation of another; for example, the junction
generated by packing material to octant IV can be obtained by rotation on
the picture plane of the junction generated by packing material to octant II.
Checking all the cases similarly, we obtain 24 different types of configura-
tions of labeled lines at junctions, as are shown in Fig. 2.9. The first twelve
junctions correspond to the cases in which octant I is empty; the situation
for them is illustrated in Fig. 2.10. The latter twelve junctions in Fig. 2.9
are obtained from the first twelve ones, respectively, by interchanging the
occupied octants with the empty octants.

The list of possible junctions given in Fig. 2.9 is complete in the following
sense. We put the observer in octant I, but we are not interested in where
in octant I the observer is. Hence two junctions are considered as being of
the same type if one is obtained from the other when the observer moves
inside octant I. Moreover we are not interested in the exact angles at which
the three planes meet, so that two junctions are considered as being of the
same type if one is obtained from the other by changing the mutual angles of
the planes provided that the observer remains in octant I. Thus, we are not
concerned with the exact angles at which lines meet at junctions. We pay
our attention only to whether the mutual angles are less than π or greater
than π, because the mutual angles change from less than π to greater than
π or vice versa only when the observer goes out of octant I. Consequently,
if we ignore labels, junctions representing trihedral vertices consists of only
the two types: Y-type junctions where the three mutual angles are all less
than π, and W-type junctions where one of the three mutual angles is greater
than π. What Fig. 2.9 means is that there are only 8 ways of labeling for
Y-type junctions and 16 ways of labeling for W-type junctions.

The important point is that the number of possible junction types is
very small. If we ignore the physical realizability, the number of different
combinations of labels is tremendously large. Since one of the eight different
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Figure 2.9. Twenty-four possible junctions.

labels can be put to each line, the W-type junction admits 83 = 512 different
ways of labeling. Fig. 2.9 tells us that only 3.1% (= (16/512)×100) of them
can appear in line drawings of polyhedral scenes. Similarly, the Y-type
junction admits 176 different ways of labeling (note that a Y-type junction
has rotational symmetry, and hence there are (8 × 7 × 6)/3 = 112 different
ways of labeling if the three lines have mutually distinct labels, 8 × 7 = 56
different ways if exactly two lines have the same label, and 8 different ways
if all the three lines have the same label), but only 4.5% (= (8/176) × 100)
of them can appear in correct line drawings.

Thus we get the next rule.

Rule 2.5. If a junction has exactly three lines, the lines should be labeled
so that the resulting configuration at the junction belongs to the list shown
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Figure 2.10. Configurations of occupied octants corresponding to the first
twelve junctions in Fig. 2.9.

in Fig. 2.9.

Example 2.1. Let us consider the hidden-part-drawn line drawing in
Fig. 2.3(b), and see how the rules work for this picture. First note that
because of Rule 2.4 we need not divide the lines at X-type junctions. Assume
that the object is trihedral and the whole part is drawn in the picture. Then,
it follows from Rule 2.3 that the outermost lines (i.e., the lines 1-2, 2-3, 3-4,
5-6, 6-7, 7-8, 8-9, 9-1 in Fig. 2.11(a), where i− j denotes the line connecting
junction i with junction j) should be labeled uniquely as solid lines with
arrows in the clockwise direction. Since four other lines, the lines 1-10, 3-10,
8-10, 4-6, are represented by solid lines, they represent visible edges and
consequently should be categorized as type (a), (b), (c), or (d) in Fig. 2.6
(see Rule 2.2). The remaining six lines, broken lines in Fig. 2.3(b), should
be categorized as one of the eight types. Thus, if we employ Rules 2.1, 2.2,
2.3, and 2.4 only, there are 44 × 86 different combinations of labeling, which
amount to more than 67 million.

Rule 2.5 can drastically lessen the number of possible labelings. Junction
1 is a W-type junction whose two side lines are already labeled with an in-
arrow and an out-arrow, respectively. Comparing this configuration with the



26 2. Spatial Interpretations

(a) (b) (c)

(d) (e) (f)

Figure 2.11. Use of the labeling rules. If Rules 2.1, . . . , 2.4 only are applied
to the picture in Fig. 2.3(b), the eight lines are labeled uniquely
as shown in (a), and hence there still remain more than 67
million different ways of labeling the other lines. If Rule 2.5 is
also used, five more lines are labeled uniquely as in (b) , and
the other five lines admit only four ways of labeling, shown in
(c), (d), (e), and (f).

list in Fig. 2.9, we can see that the middle line, the line 1-10 in Fig. 2.11(b),
should have a plus label; the line is thus labeled uniquely. Because of the
same reason, the three other solid lines, the lines 3-10, 4-6, 8-10, are also
labeled with + uniquely. Next, the list in Fig. 2.9 tells us that the remaining
line at junction 4 (i.e., the line 4-11) should be labeled with a broken line
having the arrow from junction 4 to junction 11. Thus, the five more lines
have been categorized uniquely as shown in Fig. 2.11(b). Consulting the list
in Fig. 2.9 in a similar manner, we can eventually find that the other five
lines can admit only four ways of labeling that satisfy all the five rules, as
are shown in (c), (d), (e), and (f) in Fig. 2.11. Of course, even if a picture
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admits a set of labels that satisfies all the five rules, it does not necessarily
correspond to a correct interpretation. In fact among the four possible
labelings in Fig. 2.11, only (c) corresponds to a correct interpretation, but
(d), (e), and (f) do not. However, we can spend a relatively long time for
the check of the correctness of the labelings, because we need to check only
the four cases. Thus, the labeling scheme is a powerful method as the first
step in the interpretation of line drawings.

2.4 Hidden-Part-Eliminated Pictures

The rules we have obtained for the labeling of hidden-part-drawn line draw-
ings can be easily modified for natural pictures, that is, hidden-part-eliminated
line drawings. Since every line should correspond to a visible edge, Rules
2.1 and 2.2 can be merged into the following.

Rule 2.1’. Every line in natural pictures should have exactly one of the
four labels (a), (b), (c), (d) in Fig. 2.6.

Rule 2.3 need not be changed; it remains valid for the present class of
pictures.

Unlike hidden-part-drawn pictures, hidden-part-eliminated pictures con-
tain T-type junctions, junctions having three lines, two of which are collinear.
Junctions of this type are generated from some of X-type junctions when
hidden lines are removed. They also convey important information about
the structures of the objects. As we have seen, if an object is trihedral,
every vertex results in either an L-type, a Y-type, or a W-type junction.
Thus, a T-type junction does not correspond to a three-dimensional vertex;
it occurs only when an edge occludes another partially. The two collinear
lines correspond to the occluding edge, and the other to the occluded one.
Hence, a T-type junction should be labeled as is shown in Fig. 2.12, where
the asterisk * means that the line can admit any label. Thus, Rule 2.4 is
replaced by the next rule.

Rule 2.4’. If the object is trihedral, a T-type junction should be labeled
as is shown in Fig. 2.12.

Rule 2.5 is changed in the following way. Note that a trihedral vertex
can appear in a picture only when octant I in Fig. 2.8 is empty. Hence the
list of possible configurations for trihedral vertices can be obtained first by
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Figure 2.12. Possible labeling for the T-type junction.

picking up the first twelve configurations in Fig. 2.9, which correspond to the
case where octant I is empty, and next by deleting broken lines from these
configurations. The resultant list is shown in Fig. 2.13, which was first found
by Huffman (1971). Besides Y-type and W-type junctions, the list contains
also L-type junctions, that is, junctions composed of two noncollinear lines.
This is because we have deleted hidden lines from the configurations in
Fig. 2.9.

Figure 2.13. Complete list of possible junctions for trihedral vertices (for
hidden-part-eliminated line drawings).

The number of junctions listed in Fig. 2.13 is small. If we ignore the phys-
ical realizability, every line can have one of the four labels, and consequently
L-type junctions can be labeled in 42 = 16 different ways, W-type junctions
in 43 = 64 different ways, and Y-type junctions in 4×3×2/3+4×3+4 = 24
different ways (note that a Y-type junction admits rotational symmetry, and
therefore it can be labeled in 4×3×2/3 ways if the three lines have distinct la-
bels, in 4×3 ways if exactly two lines have the same labels, and in 4 ways if all
the three lines have the same label). Thus, there are in all 16+64+24 = 104
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different ways of labeling, and only 11.5% (= (12/104) × 100) of them can
represent trihedral vertices correctly.

Thus we get the following rule.

Rule 2.5’. If a junction corresponds to a trihedral vertex, the lines should
be labeled so that the resulting configuration at the junction belongs to the
list shown in Fig. 2.13.

It should be noted that Rule 2.5’ is less powerful than Rule 2.5, because
in order to apply Rule 2.5’ we must know whether a junction corresponds
to a trihedral vertex or not. When a picture represents both visible and
invisible edges, the picture itself tells us how many edges a junction has.
When hidden lines are eliminated from the picture, on the other hand, there
is no direct information about invisible edges, so that we cannot tell how
many invisible edges there are unless we have some a priori knowledge about
the object.

Thus, natural line drawings should be labeled subject to Rules 2.1’, 2.3,
2.4’, and 2.5’.

Example 2.2. Fig. 2.14 shows an example of how the labeling rules work
for the natural picture given in Fig. 1.1. The picture in Fig. 1.1 has nine lines
and each line should have one of the four possible labels, so that there are
49 = 262144 different ways of assigning labels to this picture if we consider
Rule 2.1’ only. Now assume that this picture represents a trihedral object.
If the whole part of the object is drawn in the picture, then from Rule
2.3 the outermost lines are labeled with arrows in the clockwise direction,
and next from Rule 2.5’ the other lines are uniquely labeled as is shown in
Fig. 2.14(a), where an example of a possible section of the object along the
indicated line is also illustrated. This labeling corresponds to the structure of
a truncated pyramid seen from above. If, on the other hand, the object may
be extended outside the picture, the picture can admit also three other ways
of labeling, which are shown in (b), (c), and (d). The labeled picture (b)
corresponds to a truncated pyramid on a floor, (c) corresponds to a plane
with a truncated-pyramid-shape hollow, and (d) corresponds to a board
penetrated by a truncated-pyramid-shape hole. Thus, the trihedral object
assumption allows only four ways of labeling for this picture.

Example 2.3. Some other natural pictures are shown in Fig. 2.15. The
picture (a) admits unique labeling if we assume that the object is trihedral
and the whole part is drawn in the picture; the result of labeling is shown
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(a) (b)

(c) (d)

Figure 2.14. Interpretation of a natural picture: if the object is restricted
to a trihedral one, the picture in Fig. 1.1 admits these four
labelings.

in (b). Note that the lines in this picture form two connected components,
and the component inside the other is not influenced by Rule 2.3. It can
nevertheless be labeled uniquely. The uniqueness stems from the T-type
junction 2. When Rule 2.4’ is applied to this junction, the lines 1-2 and 2-3
are labeled with the arrows in such a way that the third line, the line 2-4,
is to the left of the arrows. Next comparing the L-type junction 1 with the
list of possible junctions in Fig. 2.13, we can say that the line 1-4 is labeled
with either a plus symbol or an arrow directing from junction 4 to junction
1. However, the latter case is rejected at the W-type junction 4, and con-
sequently the line 1-4 is uniquely labeled with a plus symbol. The labeling
process proceeds similarly, and we eventually obtain the unique labeling (b).
The uniqueness of labeling of this configuration will be discussed in more
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detail in Section 2.6 (see Fig. 2.18).

(a) (b)

(c) (d)

(e) (f)

Figure 2.15. Some other examples of interpretation of natural pictures as
trihedral objects: the picture (a) admits the unique labeling (b),
the pictures (c) and (d) have no consistent labeling and hence
can be judged incorrect, and the pictures (e) and (f) admit
consistent labelings though they are incorrect (the picture (e)
is adapted from Penrose and Penrose (1958)).

The pictures (c) and (d) do not represent trihedral objects. The labeling
rules can detect the incorrectness, because there is no consistent way of
assigning labels to the pictures. If, beginning with the outermost lines, we
try to label lines one by one, we eventually find that the line labels contradict
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at the lines with question marks; a label determined at one terminal junction
is different from that determined at the other terminal junction.

On the other hand, the pictures (e) and (f) can admit consistent assign-
ments of labels although they do not represent any trihedral object. The
picture (e) is incorrect for the following reason. Note that if it were to repre-
sent a polyhedron, the three faces f1, f2, and f3 should have a common point
of intersection in a space (when they were extended) and consequently the
three pairwise intersection of the faces (i.e., the three lines labeled with +)
should be concurrent on the picture plane. However, they are not; thus (e)
does not represent a polyhedron. The incorrectness of (f) can be understood
if we note that the top face f1 shares two noncollinear lines with the face
f2, which is impossible unless the top face is curved.

Thus, labeled pictures do not always correspond to correct structures of
objects; they merely represent candidates for spatial structures. The label-
ing scheme is, however, powerful in that it can make the set of candidates
extremely small.

2.5 Hidden-Part-Eliminated Pictures

2.5.1 Non-Trihedral Objects

We have concentrated our attention upon the trihedral object world. Indeed
the complete lists of junctions in Figs. 2.9 and 2.13 together with the tri-
hedral object assumption have played the main role in the labeling process.
However, the labeling scheme itself can be applied likewise to non-trihedral
objects.

All we have to do is to provide the list of junctions for non-trihedral ver-
tices. It is of course impossible to enumerate all possible junctions, because
at least theoretically any number of faces can meet at a vertex, so that the
number of possible junctions is not finite. In practical situations, however,
we often have some a priori knowledge about the object world, and hence
can construct the complete list of possible junctions for that object world.

If a three-dimensional vertex is given, the method for enumeration of
possible junctions used in Section 2.3 can be employed straightforwardly.
That is, we extend all the incident faces, dividing the surrounding empty
space into a finite number of convex cones whose apexes are at the vertex,
and see how the vertex appears to the observer who stands in each empty
cone (Sugihara, 1979b). Hence, if, for example, the object world consists
of a finite number of prototypes, as is the case of machine manipulation of
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mechanical parts for assembly, the list of all the possible junctions for this
world can be generated automatically.

If, on the other hand, only the number of faces meeting at a vertex is
given, it is not so easy to enumerate the possible junctions because unlike
the trihedral case it is difficult to list up all possible vertices having the given
number of faces. Thus, the method in Section 2.3 cannot be applied directly.
However, we shall present in the next chapter a method for judging whether
a labeled picture represents a polyhedral scene correctly. This includes a
method for judging whether a labeled configuration at a junction represents
a three-dimensional vertex correctly. Therefore, given an unlabeled junction
drawn on the picture plane, we can generate all ways of consistent labeling
for the junction systematically, and use them to search for consistent ways
of labeling for the whole picture.

As the underlying object world becomes larger, the number of possible
interpretations increases. If we allow any number of faces meeting at a
vertex, the line drawing in Fig. 1.1 admits many more interpretations than
those listed in Fig. 2.14. Fig. 2.16 shows two examples of interpretations as
nontrihedral objects together with possible sections of the objects along the
indicated lines. In (a), the outermost three W-type vertices do not belong
to the list in Fig. 2.13; each of the three vertices has at least two invisible
faces in the rear side. The object represented in (b) can be obtained by
connecting three triangular prisms in a cyclic manner, so that every vertex
is nontrihedral.

(a) (b)

Figure 2.16. Interpretation of the picture in Fig. 1.1 as nontrihedral objects.
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2.5.2 Other Variations

Other types of variations of the labeling scheme also arise when the line
categories and/or the class of objects are changed.

Waltz (1972, 1975) studied the labeling method for pictures with shad-
ows and cracks. In addition to the first four categories of lines in Fig. 2.6, he
introduced new labels for “cracks” and “boundaries of shadows”, and fur-
thermore three new labels for regions: regions illuminated, those shadowed,
and those facing opposite to the light source. As a result of augmenting la-
bels, his list of possible junctions includes several thousand different types.
However, he observed that the introduction of new labels does not cause
more ambiguity in interpretation, but can lessen the number of possible
interpretations. This point may be understood intuitively if we consider
Fig. 2.14 again. The labeled picture (a) represents a truncated pyramid
isolated in a space, whereas (b) represents the same object on the floor. If
the object casts its shadow onto the floor and the shadow boundaries are
also drawn in the picture, then the ambiguity between (a) and (b) would be
cleared up. Thus, shadows convey important information about the struc-
tures of the scenes.

Another new category of lines was introduced by Sugihara (1979a) for the
analysis of range data obtained by triangulation. In triangulation, a range
to a target point on the surface of the object can be obtained by determining
a triangle composed of the target point and the two base points, so that the
range is measured only when the target is visible from both of the base
points. In the corresponding picture, therefore, there often remains some
regions whose ranges are not observed. The new category of lines is used
to represent the boundaries of these regions. An interesting point is that
in the case of range data analysis the list of possible junctions can be used
for the “prediction” of missing edges, because the range data enable us to
assign labels to lines correctly even if a line drawing is given partially. See
Sugihara (1979a) for the details.

A typical example of nonpolyhedral object worlds is Kanade’s Origami
world (Kanade, 1980), where objects are composed of planar panels which
are so thin that the thickness is negligible. He constructed a list of pos-
sible junctions for vertices having three or less panels, and demonstrated
the validity of the labeling scheme to this object world. He observed that
there are some interpretations that are possible in the Origami world but
impossible in the trihedral object world. The pictures in Fig. 2.16 can be
considered as examples of such interpretations, where we have to read a line
with an arrow as an occluding edge whose right side corresponds to a panel
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and whose left side corresponds to a background or something farther from
the observer. As will be shown in the next chapter, if the number of faces or
panels meeting at a junction is not restricted, the difference between polyhe-
dral objects and planar-panel objects disappears. That is, we can show that
a labeled picture represents a polyhedral object if and only if it represents
a planar-panel object.

2.5.3 Other Rules

We have considered only a simple set of rules, Rules 2.1, . . ., 2.5 for hidden-
part-drawn line drawings and Rules 2.1’, 2.3, 2.4’, and 2.5’ for natural line
drawings. These rule are powerful, but not complete; labeled pictures obey-
ing the rules do not necessarily represent correct structures of objects. In
order to check the inconsistency that cannot be found by the above rules,
many additional rules have been proposed. They include reciprocal figures in
a gradient space (Huffman, 1971; Mackworth, 1973; Whiteley, 1979; Kanade,
1980, 1981), theory of braids (Cowan, 1974, 1977; Térouanne, 1980), dual
representations (Huffman, 1977a), ϕ and ϕ′ points (Huffman, 1977b), cyclic
order properties of vertices and edges around faces (Sugihara, 1978; Shapira
and Freeman, 1979), thickness of objects (Sugihara, 1978), spanning angles
(Kanade, 1980), and sidedness reasoning (Draper, 1981).

However, we do not employ any of them here, because they are rather
complicated for their effects. Recall that the aim of the first module is to
produce a relatively small set of candidates for possible interpretations. It
is not expected to produce the precise set of correct interpretations, because
the correctness of these candidates will be judged strictly by the second
module. In this sense, the present set of rules is powerful enough to reduce
the candidate set to a tractable size.

2.6 Constraint Propagation

We have seen that although a picture having l lines can admit as many
as 8l different ways of labeling, or 4l ways if hidden lines are not drawn,
the labeling scheme can successfully extract from them a very small set of
candidates for correct interpretations. Now, how much time does it take to
select the candidates? If we simply pick up 8l labeled pictures one by one
and check whether they obey the rules, it is impossible to finish the task in a
reasonable time unless l is very small. For example, if a picture is composed
of 15 lines, the number of labeled pictures amounts to 815 = 245, and even
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if each labeling can be checked in 1 microsecond, it would take more than a
year to check all the cases.

Fortunately, however, each rule can be checked “locally” and conse-
quently we need not examine every labeled picture independently. For ex-
ample, if a local assignment of labels to lines incident to a junction turns
out to be incorrect, then it implies that all labeled pictures having this lo-
cal assignment of labels are incorrect. Thus, we can delete many labeled
pictures by only one local check. This idea leads us to the following sys-
tematic method; it is sometimes called a constraint propagation method or
a relaxation method (Montanari, 1974; Waltz, 1975; Rosenfeld et al., 1976;
Mackworth, 1977a; McGregor, 1979; Haralick and Shapiro, 1980; Nudel,
1983).

For each junction s in the picture we associate a set J(s) of candidates
for labeled configurations the junction may admit. Initially J(s) contains all
locally possible configurations, and if some elements turn out to be incon-
sistent with the candidates at the neighboring junctions, they are removed
from J(s). The inconsistency check is based on Rule 2.1 or 2.1’. The rule
says that each line should have exactly one type of a label in a labeled
picture, and hence we get the following definition of local consistency.

Figure 2.17. Local consistency of labeling.

Let s and t be two junctions sharing a common line. A configuration
in J(s) is said to be locally consistent with J(t) if J(t) contains an element
having the same label for the common line as the configuration has. Con-
sider, for example, two junctions s and t in Fig. 2.17. Assume that they have
the configuration sets J(s) and J(t) as is shown in the figure. J(s) contains
the three elements a, b, c, and J(t) contains the two elements d, e. Though a
Y-type junction has rotational symmetry, we do not allow here the rotation
of elements in J(t). Hence, the line connecting s and t corresponds to the



2.6 Constraint Propagation 37

left side horizontal line of each configuration in J(t). The elements a and b
are locally consistent with J(t), because the label assigned to the common
line (i.e., the + label) appears in the element d, whereas c is not locally
consistent with J(t) because J(t) has no element having the − label for the
common line. Similarly, d is locally consistent with J(s), but e is not.

Given an initial set J(s) for each junction s, the next procedure can
delete locally inconsistent candidates from J(s) . The procedure is written
in Pidgin ALGOL used by Aho et al. (1974).

Initially put all lines in stack E;
while E is not empty do

begin
select and delete an element e from E (let the two terminal junc-
tions of e be s and t);
if J(s) has elements that are not locally consistent with J(t) then

begin
delete all such elements from J(s);
add to E all the lines other than e that emanate from s if
they are not in E

end;
if J(t) has elements that are not locally consistent with J(s) then

begin
delete all such elements from J(t);
add to E all the lines other than e that emanate from t if
they are not in E

end
end

In this procedure, E is used as the stack containing lines along which
the local consistency should be checked; hence initially all the lines are put
in it. For each line in E we check if the terminal junctions contain locally
inconsistent elements with respect to the other. If so, we delete them from
the candidate sets, and at the same time add to E the other lines incident
to the terminal junctions (if they are not in E) for the later check, because
the present change of the candidate sets may cause some change at other
junctions. The procedure repeats similar processing until the candidate sets
cannot be changed any more.

Example 2.4. An example of the behavior of the procedure is shown
in Fig. 2.18. Let us assume again that the picture is part of a trihedral
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(a) E = (1 − 2, 2 − 3, 3 − 4, 1 − 4, 2 − 4)

(b) E = (3 − 4, 1 − 4, 2 − 4)

(c) E = (2 − 3, 1 − 2)

Figure 2.18. Constraint propagation.

object. Fig. 2.18(a) represents the initial state, where the candidate sets
J(1), . . . , J(4) contain all possible configurations given in Figs.2.12 and 2.13,
and E contains all the lines. First, the line 1-2 is chosen from E and the
local consistency check is carried out at the line. Since the line 1-2 is labeled
with an arrow from 1 to 2 in all candidates in J(2), only two elements in
J(1) (i.e., the first and the third ones) are locally consistent with J(2) and
the other four elements are deleted from J(1). Next, the line 2-3 is chosen,
and four elements are likewise deleted from J(3). The result is shown in (b).

Next the line 3-4 is chosen, and the local consistency check results in
two singletons J(3) and J(4) as shown in (c), because the only common
label for the line 3-4 is a plus symbol. Since J(3) is changed, the line 2-3
is added to E again. When the lines 1-4 and 2-4 are checked, J(1) and
J(2) are respectively reduced to singletons, and the line 1-2 is added to E.
This situation is represented in (c). Now all the candidate sets have become
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singletons, and no more change occurs; E eventually becomes empty. Thus
the procedure terminates, leaving only one element in each candidate set,
and consequently we have a unique labeling that is the same as the result
we have obtained in Fig. 2.15(b).

In the above example we happen to have a unique labeling. In general,
however, a candidate set may contain two or more elements at the end
of the constraint propagation. Therefore, in order to obtain the set of all
consistently labeled pictures we have to make a search: for example, a depth-
first search. This is not so difficult because the constraint propagation can
usually make the set of possible configurations at each junctions very small.





Chapter 3

Discrimination between
Correct and Incorrect
Pictures

The first module, the picture labeling module, has generated a small set of
candidates for spatial interpretations, which are represented in the form of
labeled pictures. The next task of our mechanism is to divide these candi-
dates into correct interpretations and incorrect ones. The present chapter
presents a module that performs this task by reducing the problem to a
problem of judging satisfiability of a certain set of linear constraints.

3.1 Basic Idea

In this chapter we shall solve the problem of judging whether a labeled pic-
ture represents a polyhedral scene. We shall first restrict our consideration
to the orthographic projection, but later show that the results are valid also
for the perspective projection. The basic idea is the following.

Suppose that an object is fixed to an (x, y, z) Cartesian coordinate sys-
tem, and the picture is obtained as the orthographic projection of the object
onto the x-y plane, as shown in Fig. 3.1. Let (xα, yα, zα) denote the position
of the αth vertex of the object and ajx+ bjy + z + cj = 0 denote the surface
on which the jth face lies.

When the picture is given, xα and yα are known constants whereas
zα, aj, bj , cj are unknowns. Labels assigned to the picture tell us which
vertex should be on which face. If the αth vertex should be on the jth face,

41
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Figure 3.1. Object and its orthographic projection.

we get the equation
ajxα + bjyα + zα + cj = 0,

which is linear in the unknowns zα, aj , bj , cj . The labeled picture also con-
tains information about relative distance; it tells us which part of the object
should be nearer to the observer than other part. For example, if the βth
vertex should be nearer than the kth face, we get

akxβ + bkyβ + zβ + ck > 0,

which is also linear in the unknowns zβ , ak, bk, ck.
We shall see that if such linear constraints are gathered in some system-

atic manner, the resulting system of equations and inequalities allows us to
express a necessary and sufficient condition for the picture to represent a
polyhedral scene; that is, the picture represents a polyhedral scene if and
only if the system has a solution. Now the most important point is how to
extract from the picture relevant equations and inequalities systematically.
In order to describe this process clearly we shall introduce a concept called
a “spatial structure”, which is defined for each labeled picture.

Here we restrict our consideration to hidden-part-eliminated pictures;
hidden-part-drawn pictures will be treated in the next chapter. Though our
objects are polyhedrons, we begin by considering the world consisting of
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thin objects called planar panels; we shall present a necessary and sufficient
condition for a labeled picture to represent a planar-panel scene, and then
show that a labeled picture represents a polyhedral scene if and only if it
represents a planar-panel scene.

3.2 Planar-Panel Scenes

A planar-panel scene is a collection of a finite number of planar panels fixed
to a three-dimensional space. Panels are thin enough (but not transpar-
ent), and bounded by a finite number of straight line segments called edges.
Hence, panels can be regarded as two-dimensional polygonal areas with pos-
sible polygonal holes. Panels in a scene may touch each other but should
not penetrate one another.

In order to exclude “pathological” panels, we assume that panels are
homogeneously two-dimensional and hence contain no hanging or isolated
structures of different dimension such as solids, lines, or points. Formally,
it is assumed that a panel coincides with the closure of its interior in a
two-dimensional set theoretical sense.

A scene fixed to an (x, y, z) Cartesian coordinate system is assumed to
be seen from the observer that is infinitely distant in the positive direction
of the z axis, as shown in Fig. 3.1. Hence, a picture of the scene is to be
an orthographic projection onto the x-y plane of visible part of edges of the
panels (note that this is a restatement of Assumption 2.3).

In order to categorize lines in pictures of planar-panel scenes we use the
same labels as in pictures of polyhedral scenes. The label + is assigned to
a convex line along which two visible panels form a ridge with respect to
the viewer, the label − to a concave line along which two panels form a
valley with respect to the viewer, and the arrow to an occluding line one
side of which corresponds to the panel whose boundary edge yields the line
and the other side corresponds to the background or another panel behind
(the direction of the arrow is chosen in a way that the right side of the
arrow corresponds to the panel and the left side to the background or the
other panel behind). It may occur that a panel occludes another along its
boundary line segment and at the same time they touch each other along
this line segment, as shown in Fig. 3.2(a). We categorize this type of a line
as a concave line. Hence, an occluding line implies that the two associated
panels must have a gap in their z coordinates, as are shown in (b) and (c);
they can touch only at one point.

If two panels in a scene touch along a common boundary line at angle π,
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Figure 3.2. Distinction between the concave lines and the occluding lines:
scene (a) generates a concave line, whereas scenes (b) and (c)
generate occluding lines.

then we remove the common boundary line and merge them together into
a single panel. Moreover, we assume that neither any panels are parallel
to the z axis (note that this is a restatement of Assumption 2.4), nor any
two spatially distinct boundary lines align on the picture plane (this is a
restatement of Assumption 2.5). Hence, all lines in the picture corresponding
to the scene can be classified into the above three categories without any
ambiguity.

A labeled picture is formally represented as a quadruple D = (J,E, u, h)
in the following way.

(1) J is a finite set whose elements are called junctions.
(2) u is a map from J to R2 (where Rd denotes a d-dimensional Euclidean

space) such that u(s) represents the position of junction s (∈ J).
(3) E is a set of ordered pairs of J . Element (s, t) of E is called a line from

initial junction s to terminal junction t.
(4) h is a map from E to the set of line categories {CONVEX, CONCAVE,

P-ARROW, N-ARROW}. For any line (s, t),

h(s, t) = CONVEX if the line has the label +,

h(s, t) = CONCAVE if it has the label −,

h(s, t) = P-ARROW if it has the arrow from s to t,
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h(s, t) = N-ARROW if it has the arrow from t to s.

Without loss of generality we furthermore assume the following:

(a) (s, s) /∈ E (s ∈ J).
(b) (s, t) ∈ E implies (t, s) /∈ E (s, t ∈ J).
(c) Lines in E do not meet each other except at their end points.
(d) Each junction has two or more lines incident to it.

Conditions (a) and (b) are obvious. Condition (c) means that lines in a
picture are divided into as small fragments as possible. Hence, the straight
line segment connecting junctions 1 and 3 in Fig. 3.3(a) is divided to (1, 2)
and (2, 3); we should not represent it by (1, 3) because another line, (2, 8),
meets it midway. Condition (d) does not place any restriction. Indeed, a
junction with a single line never occurs in a perfect picture, because a planar
panel can neither intersect itself nor occlude itself.

(a) (b)

Figure 3.3. Junctions with single lines. Picture (a) contains junctions with
single lines, but they are converted to normal junctions by the
introduction of a large window, as shown in (b).

However, if some panels are too large to be entirely in view, a picture may
contain junctions with single lines, just as junctions 7 and 8 in Fig. 3.3(a).
For this kind of a picture we introduce, without loss of generality, a new
large panel with a rectangular hole through which the scene is viewed, as
is shown in Fig. 3.3(b), and thus can make all junctions have two or more
lines.

There remains some arbitrariness in the representation of D; that is,
a line connecting junctions s and t can be represented either by (s, t) or
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by (t, s). Unless otherwise mentioned, we assume that occluding lines are
represented in a way that the direction from the initial junction toward the
terminal one coincides with that indicated by the arrow. For convex and
concave lines, we use any one of the two alternative representations. How-
ever, once we fix the representation, those lines also have their directions.
Therefore, we treat them as directed lines, and use expressions such as “the
initial junction of a convex line”, and “the right side of a concave line”.

Now, our problem is to judge whether or not a labeled picture D =
(J,E, u, h) represents a planar-panel scene.

3.3 Extraction of the Spatial Structure

Given a labeled picture D = (J,E, u, h), we first extract a possible spatial
structure from D. A spatial structure of D is a quadruple S = (V, F,R, T ).
Elements of V are three-dimensional points vα = (xα, yα, zα) called ver-
tices, where xα’s and yα’s are given constants whereas zα’s are considered
as unknown variables. F is a set of visible panels corresponding to two-
dimensional regions on the picture plane. We denote by [fj] a connected re-
gion on the picture plane, and by fj itself the associated panel in the space.
R and T are used to represent relative depths among vertices and panels. R
is a set of vertex-panel pairs such that the former lies on the latter. T is a
set of ordered triple of the form (α, β, δ) such that α and β are taken from
V and V ∪F , respectively, and δ is taken from the set {BEHIND, FRONT,
PROPERLY-BEHIND, PROPERLY-FRONT}. A triple (α, β,BEHIND)
(resp. (α, β,FRONT) ) means that α has the same depth as β or it is be-
hind (resp. in front of) β, and (α, β,PROPERLY-BEHIND) (resp. (α, β,
PROPERLY-FRONT) ) means that α is properly behind (resp. properly in
front of) β.

The spatial structure S = (V, F,R, T ) associated with D is defined in
the following constructive way.

The lines of the picture D partition the picture plane into a finite number,
say m, of connected regions. We shall denote them by [f1], [f2], · · · , [fm],
respectively, and put F = {f1, f2, · · · , fm}. This definition is based on the
implicit convention that any point on the picture plane corresponds to some
panel. Hence, the region [f1] in Fig. 3.3, which is usually interpreted as
an empty space, is also thought of as a certain panel that is sufficiently
large and far away. This convention does not restrict our problem domain,
whereas it makes the subsequent discussion much simpler.

In the initial state, let V,R, and T be empty; they are augmented in
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the following way. Suppose that junction s has p lines (p ≥ 2). Let
[f1], [f2], · · · , [fp] be the p regions touching the junction and surrounding
the junction counterclockwise in this order, as shown in Fig. 3.4(a). Note
that f1, · · · , fp are not necessarily distinct; some of them may be identical
because a region may touch the junction twice or more (see Fig. 3.4(b)).
Suppose that q out of the p lines are occluding lines and the other p−q lines
are convex or concave ones (q ≥ 1). Let the q occluding lines be l1, l2, · · · , lq,
which are arranged counterclockwise in this order. Moreover, without loss
of generality, we assume that f1 immediately follows l1 in the counterclock-
wise order, as shown in Fig. 3.4(a). If we see the junction locally, the q
occluding lines partition the surrounding plane into q fan-shaped areas and,
consequently, partition the set {f1, · · · , fp} into q subsets, say F1, F2, · · · , Fq.
Recall that panels have gaps in depth only at occluding lines. Hence, the
panels in each Fα (α = 1, 2, · · · , q) form a continuous surface, and conse-
quently they have the same depth at the junction s. On the basis of this
observation, we introduce q vertices, p elements of R, and q elements of T
in the following way.

(a) (b)

Figure 3.4. Regions surrounding a junction.

We first define q new vertices, say vα = (xα, yα, zα) (α = 1, 2, · · · , q), in
such a way that (x1, y1) = (x2, y2) = · · · = (xq, yq) = u(s) and add them to
V . We next generate, as new elements of R, p pairs (vα, fj) such that fj

is an element of Fα (α = 1, · · · , q; j = 1, · · · , p). Last, we generate q triples
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(vα−1, vα, δα) (α = 1, 2, · · · , q), as elements of T , such that

δα = BEHIND if lα has an in-arrow,

δα = FRONT if lα has an out-arrow,

where we assume v0 ≡ vq.
If the junction s does not have any occluding line (i.e., q = 0), then we

simply add to V one new vertex, say v1 = (x1, y1, z1), such that (x1, y1) =
u(s), and add p elements (v1, fj) (j = 1, · · · , p) to R.

We repeat the above procedure for all junctions of D. Then, we get the
“basic part” of the spatial structure S = (V, F,R, T ). We call it the basic
part, because V,R, and T shall be furthermore augmented in the sequel.

For the spatial structure S = (V, F,R, T ) thus constructed from D =
(J,E, u, h), the following propositions hold.

Proposition 3.1. Let l be any convex or concave line in D, and let
s, t, [fj ], [fk] be the initial junction, the terminal junction, the right side
region, and the left side region, respectively, of l. Then, there exist vα and
vβ in V such that

(xα, yα) = u(s), (xβ, yβ) = u(t),
(vα, fj), (vα, fk), (vβ , fj), (vβ , fk) ∈ R.

Proposition 3.2. Let l be any occluding line in D, and let s, t, [fj ], [fk]
be the initial junction, the terminal junction, the right side region, and the
left side region, respectively, of l. Then, there exist four vertices vα, vβ , vγ , vδ

(not necessarily distince) in V such that

(xα, yα) = (xβ, yβ) = u(s), (xγ , yγ) = (xδ , yδ) = u(t),
(vα, fj), (vβ , fk), (vγ , fj), (vδ , fk) ∈ R,

(vα, vβ ,FRONT), (vδ , vγ ,BEHIND) ∈ T.

We have constructed elements of V,R, and T at junctions. Now we
augment the sets at lines.

Let l be any convex or concave line, and [fj] and [fk] be the right and
left side regions, respectively, of l. The line l, when extended, divides the
picture plane into two open half spaces, which shall be referred to as the
“fj side” and the “fk side” with respect to l. The region [fk] often occupies
part of the fj side (and vice versa) as shown in Fig. 3.5, but there is no
ambiguity in naming the fj side and the fk side because the side name is
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defined according to which region occupies the side in the neighbor of the
middle point of the line segment l. Then, we choose a vertex, say vα, such
that vα lies on fk but not on fj, and that vα is on the fk side with respect
to l.

(a) (b)

Figure 3.5. Vertex on the fk side with respect to the line l.

For example, out of the six vertices v1, · · · , v6 on fk in Fig. 3.5(a), only
v1 and v2 satisfy the condition. The other vertices do not, because v3 and
v4 lie also on fj, and v5 and v6 are on the fj side. Hence, we can choose as
vα either v1 or v2.

Sometimes we may not find any such vertex. For example, see Fig. 3.5(b).
In this case we introduce a new vertex, say vα, which lies on fk and which is
on the fk side, as shown in Fig. 3.5(b). Formally, we put α = |V |+1, choose
an arbitrary point (xα, yα) on the fk side with respect to l, introduce new
unknown zα, and add new vertex vα = (xα, yα, zα) to V and the associated
vertex-panel pair (vα, fk) to R.

If the line l is convex, the vertex vα chosen in this way should be behind
the planar surface on which the panel fj lies. If, on the other hand, l is
concave, vα should be in front of the surface containing fj. Therefore, we
add the triple (vα, fj, δ) to T , where

δ = PROPERLY-BEHIND if l is convex,
δ = PROPERLY-FRONT if l is concave.

We generate similar triples for all convex and concave lines.
The above process directly results in the following proposition.
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Proposition 3.3. Let l be any convex or concave line of D, and [fj] and
[fk] be the right side region and the left side region, respectively, of l. Then,
there exists a vertex vγ in V such that (xγ , yγ) is on the fk side with respect
to l, and

(vγ , fk) ∈ R, and (vγ , fj, δ) ∈ T,

where

δ = PROPERLY-BEHIND if l is convex,
δ = PROPERLY-FRONT if l is concave.

Figure 3.6. Vertices generated around an occluding line.

Next, let l be any occluding line, and let [fj] and [fk] be the right side
region and the left side region, respectively, of l, as shown in Fig. 3.6. Fur-
thermore, let l∗ be the three-dimensional counterpart of l; that is, l∗ is the
line segment in the space that belongs to the boundary of the panel fj and
its projection coincides with l. As stated in Proposition 3.2, we have already
generated four vertices (i.e., vα, vβ, vγ , vδ in Proposition 3.2), four elements
of R, and two elements of T , which altogether express that the panel fk

does not pass in front of l∗. Indeed, this meets what is required by the
occluding line l. Recall, however, that the occluding line l also implies that
fk should not touch fj at all points on l∗ (if fk touches fj at all points
on l∗, l must be categorized as a concave line). Since the panels are pla-
nar, fk can touch fj, if possible, only either at the initial point or at the
terminal point of l∗. In order to express this property, we generate a new
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vertex vλ = (xλ, yλ, zλ) whose two-dimensional position (xλ, yλ) coincides
with the midpoint of l, a new vertex-panel pair (vλ, fk), and a new triple
(vλ, fj,PROPERLY-BEHIND), and add them to V,R, and T , respectively.
We repeat the same process for all occluding lines.

This directly leads us to the following proposition.

Proposition 3.4. Let l be any occluding line in D, and [fj ] and [fk] be
the right side region and the left side region, respectively, of l. Then there
exists a vertex vλ in V such that (xλ, yλ) is the midpoint of l, and

(vλ, fk) ∈ R, and (vλ, fj ,PROPERLY-BEHIND) ∈ T.

Thus we have completely constructed the spatial structure S = (V, F,R, T )
from the labeled picture D = (J,E, u, t).

Figure 3.7. Labeled picture considered in Example 3.1.

Example 3.1. Consider a labeled picture shown in Fig. 3.7. This picture
partitions the x-y plane into three regions: two triangular regions and one
surrounding region. We name them [f1], [f2], and [f3] as shown in the figure.
Hence, F = {f1, f2, f3}.

Since junction s1 has exactly one occluding line, one vertex, say v1, is
generated at this junction:

v1 ∈ V, (x1, y1) = (1, 3).
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Two regions [f1] and [f2] share this junction, and hence we get

(v1, f1), (v1, f2) ∈ R.

Moreover, the occluding line at s1 has an in-arrow, and hence we get

(v1, v1,BEHIND) ∈ T.

Similarly, at junction s2 we get

v2 ∈ V, (x2, y2) = (5, 3),
(v2, f1), (v2, f3) ∈ R, (v2, v2,BEHIND) ∈ T.

Junction s3 also has exactly one occluding line, and therefore one vertex,
say v3, is generated at this junction:

v3 ∈ V, (x3, y3) = (3, 1).

Since s3 is shared by all of the three regions, we get

(v3, f1), (v3, f2), (v3, f3) ∈ R.

The occluding line at s3 has an out-arrow, which generates

(v3, v3,FRONT) ∈ T.

Junction s4 has three occluding lines, and hence three vertices, say
v4, v5, v6, are generated at this junction in such a way that

v4, v5, v6 ∈ V, (x4, y4) = (x5, y5) = (x6, y6) = (3, 6),
(v4, f1), (v5, f2), (v6, f3) ∈ R,

(v4, v5,FRONT), (v5, v6,BEHIND), (v6, v4,FRONT) ∈ T.

Next consider the convex line s1s3 (assume that the direction of the line is
defined to be from s1 to s3). This line has the right side region [f1] and the
left side region [f2]. The vertex v5 is on the [f2] side (i.e., to the left of the
line s1s3 in the picture plane) and lies on f2 (i.e., (v5, f2) ∈ R), but not on
f1. Hence we get

(v5, f1, PROPERLY-BEHIND) ∈ T.

The concave line s2s3 has the right side region [f3] and the left side region
[f1]. There is, however, no vertex that is to the left of s2s3 and that lies on
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f1 but not on f3. Hence we generate a new vertex, say v7, at some point to
the left of the line s2s3 so that

v7 ∈ V, (x7, y7) = (5, 1), (v7, f1) ∈ R,

(v7, f3,PROPERLY-FRONT) ∈ T.

For the other three lines, occluding lines, we generate three vertices whose
projections on the x-y plane respectively coincide with the midpoints of
these lines: say v8 for the line s4s1, v9 for s3s4, and v10 for s4s2. Then, we
get

v8, v9, v10 ∈ V,

(x8, y8) = (2, 4.5), (x9 , y9) = (3, 3.5), (x10, y10) = (4, 4.5),
(v8, f2) ∈ R, (v8, f1,PROPERLY-BEHIND) ∈ T,

(v9, f2) ∈ R, (v9, f3,PROPERLY-BEHIND) ∈ T,

(v10, f1) ∈ R, (v10, f3,PROPERLY-BEHIND) ∈ T.

Thus, the spatial structure S = (V, F,R, T ) of the labeled picture in Fig. 3.7
consists of all the elements described above: |V | = 10, |F | = 3, |R| = 14,
and |T | = 11.

In the definition of the triple (vα, fj, δ) for a convex or concave line,
we have chosen as fj the right side face and as vα a vertex that is to the
left of the line and is on the left side face. Since our aim is to represent
convexedness or concaveness of the line, the range in choice of the triple can
be widened. For example, we can adopt as fj the left side face and as vα a
vertex that is to the right of the line and is on the right side face (in this case
δ is the same as above), or we can adopt as fj the right side face and as vα a
vertex that is to the right of the line and is on the left side face (in this case
δ should be changed from PROPERLY-FRONT to PROPERLY-BEHIND
or vice versa). Consider the line drawing in Fig. 3.7 again. For the line s2s3

we have generated the triple (v7, f3,PROPERLY-FRONT). Instead of this
triple, however, we can choose any one of the following:

(v1, f3,PROPERLY-BEHlND),
(v4, f3,PROPERLY-BEHlND),
(v6, f1,PROPERLY-BEHlND).

Thus we can save generating the pseudo-vertex v7. This kind of modification
is useful for computer implementation of the present method. We adopt the
above definition of the spatial structure only because we want to describe
our basic idea simply.
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3.4 Interpretation as a Planar-Panel Scene

Suppose that S = (V, F,R, T ) is the spatial structure of labeled picture
D = (J,E, u, h). Let |V | = n and |F | = m. For each vertex vα = (xα, yα, zα)
in V , xα and yα are given constants whereas zα is an unknown variable.
Hence, we have n unknowns z1, · · · , zn. With each panel fj in F , we associate
a planar surface

ajx + bjy + z + cj = 0,

on which the panel fj should lie. This equation cannot represent a surface
that is parallel to the z axis. There is, however, no problem because we
have assumed that such panels never occur (recall Assumption 2.4). Thus
we further obtain 3m unknowns a1, b1, c1, · · · , am, bm, cm.

An element (vα, fj) of R represents the fact that vα lies on the planar
surface containing fj, and hence we get

ajxα + bjyα + zα + cj = 0. (3.1)

Note that this equation is linear with respect to the unknowns. Gathering
all such equations, one for each element of R, we get the system of linear
equations

Aw = 0, (3.2)

where w = t(z1 · · · zna1b1c1 · · · ambmcm) (t denotes transpose) and A is a
constant matrix of size |R| × (3m + n).

Next we consider relative depth constraints represented by T . A triple
of the form (vα, vβ ,FRONT) represents the fact that “vertex vα is in front
of vertex vβ”. From the way we construct S, we can easily see that if
(vα, vβ ,FRONT) is an element of T , then the projection of vα coincides
with that of vβ, that is, xα = xβ and yα = yβ. Therefore, the constraint
represented by the triple can be paraphrased by

zα ≥ zβ, (3.3a)

because we see the scene from the view point infinitely distant in the positive
direction of the z axis. Similarly, for the triple (vα, vβ,BEHIND), we get

zα ≤ zβ. (3.3b)

A triple of the form (vα, fj,PROPERLY-FRONT) represents that the vertex
vα is properly in front of the planar surface on which the panel fj lies, and
hence we get

ajxα + bjyα + zα + cj > 0. (3.3c)
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Similarly, for the triple (vα, fj ,PROPERLY-BEHIND), we get

ajxα + bjyα + zα + cj < 0. (3.3d)

We can note that any element of T belongs to one of the above four
types. Gathering all inequalities of the forms (3.3a), · · ·, (3.3d), we get

Bw > 0, (3.4)

where B is a constant matrix of size |T | × (3m + n), and the inequality
symbol is an abbreviation of componentwise inequalities, some of which
allow equalities.

Thus, a labeled hidden-part-eliminated line drawing is associated with
the spatial structure S, and we consequently obtain (3.2) and (3.4) uniquely.
Now, we can state the next theorem.

Theorem 3.1 (Correct pictures of planar-panel scenes). A labeled
line drawing D represents a planar-panel scene if and only if the system
consisting of (3.2) and (3.4) has a solution.

Proof. First suppose that D represents a planar-panel scene. Then, from
this planar-panel scene we can construct a solution to (3.2) and (3.4) in the
following way. First, for each j (j = 1, · · · ,m) we define three reals aj, bj , cj

in such a way that ajx+bjy +z+cj = 0 coincides with the surface on which
the jth panel lies. Next, for each α (α = 1, · · · , n) we define a real zα as the z
coordinate of the point of intersection of the line that goes through (xα, yα, 0)
parallel to the z axis and a panel which vα is to lie on. Finally, using the
n+3m reals, we construct column vector w = t(z1 · · · xna1b1c1 · · · ambmcm).
From the construction, w satisfies (3.2) and (3.4). Thus, if D represents a
planar-panel scene, the system consisting of (3.2) and (3.4) has a solution.

Next suppose that we are given constants z1, · · · , zn, a1, b1, c1, · · · , am, bm,
cm such that w = t(z1 · · · zna1b1c1 · · · ambmcm) satisfies (3.2) and (3.4).
From w we construct a planar-panel scene in the following way. For each
j (1 ≤ j ≤ m) we fix the planar surface ajx + bjy + z + cj = 0 to a
three-dimensional space, and scissor off some part of it in such a way that
the projection of the remaining part coincides with the corresponding re-
gion [fj] on the picture plane. In this way we obtain the set of m panels
fj (j = 1, · · · ,m) in a three-dimensional space. These panels may touch
each other, but do not penetrate one another because their projections on
the picture plane do not overlap. Next we slightly extend them so that they
overlap along occluding lines. We fix a sufficiently small positive constant
ε. Let l be any occluding line of D, and [fj] and [fk] be the right side region



56 3. Correct and Incorrect Pictures

and the left side region, respectively, of l. We extend panel fk toward the
outside of the boundary line segment corresponding to l in such a way that
the additional part forms an isosceles triangle whose base coincides with the
boundary line segment and whose height equals to ε, as shown in Fig. 3.8.
We execute the extension for all occluding lines and rename the resulting
panels as fk (k = 1, · · · ,m).

Figure 3.8. Extension of a panel beyond an occluding line.

Now we can show that the collection of the panels fj (j = 1, · · · ,m)
form a planar-panel scene represented by D. First, the panels are all planar.
Second, the physical properties of convex lines and concave lines are satisfied.
Indeed, let l be a convex or concave line, and [fj] and [fk] be the right and
the left side regions. Then, Proposition 3.1 assures us that the depths of
fj and fk coincide at the two end points of l (strictly, we have to say “at
the three-dimensional counterparts of the two end points of l”, because l
is on the picture plane, neither on fj nor on fk; the strict expression is,
however, unnecessarily long, and hence we use the abbreviated expression),
and hence the surface consisting of fj and fk is continuous at all points on l.
Moreover, it follows from Proposition 3.3 that fj and fk form a ridge along
l if l is convex, whereas they form a valley if concave.

Third, the physical properties of occluding lines are satisfied for the
following reason. Let l be an occluding line, and s, t, [fj], [fk] respectively be
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the initial junction, the terminal junction, the right side region, and the left
side region of l. Furthermore, let l∗ be the three-dimensional counterpart of l
that belongs to the boundary of the panel fj. Then, Proposition 3.2 assures
us that the panel fk passes behind the line segment l∗, and Proposition
3.4 further assures us that there is a net gap in depth between fk and the
midpoint of l∗, which is what the occluding line means.

Last, the panels do not penetrate one another. As we have just seen,
there is a net gap in depth between the occluded panel fk and the midpoint
of the occluding boundary line segment l∗. Moreover, none of the panels is
parallel to the z axis. Therefore, if we choose a sufficiently small value as ε,
we can execute the extension of panels without penetrating others.

Example 3.1 (cont.) Let S = (V, F,R, T ) be the spatial structure ob-
tained in the last section from the labeled picture in Fig. 3.7. As we have
seen, S satisfies |V | = 10, |F | = 3, |R| = 14, and |T | = 11. Hence, the associ-
ated system, (3.2) and (3.4), consists of 14 equations and 11 inequalities with
respect to 19 (= |V |+3|F |) unknowns z1, · · · , z10, a1, b1, c1, · · · , a3, b3, c3. For
example, since (v1, f1) ∈ R, we get

a1 + 3b1 + z1 + c1 = 0

(note that x1 = 1 and y1 = 3); since (v1, v1,BEHIND) ∈ T , we get

z1 ≤ z1;

since (v5, f1,PROPERLY-BEHIND) ∈ T , we get

3a1 + 6b1 + z5 + c1 < 0

(note that x5 = 3 and y5 = 6), and so on. This system of (3.2) and (3.4)
has solutions. For example, we can easily see that

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = −10, z6 = 10, z7 = 0, z8 = −5,

z9 = −5, z10 = 0, a1 = 0, b1 = 0, c1 = 0, a2 = 2, b2 = 2, c2 = −8,

a3 = 2, b3 = −2, c3 = −4

satisfy the system, and hence from Theorem 3.1 the labeled picture in
Fig. 3.7 represents a planar-panel scene correctly.

3.5 Interpretation as a Polyhedral Scene

We have restricted our consideration to planar-panel scenes, scenes consist-
ing of thin objects . We now return to polyhedral objects, objects with finite
thickness. We can prove the next theorem.
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Theorem 3.2 (Correct pictures of polyhedral scenes). A labeled
line drawing D represents a polyhedral scene if and only D represents a
planar-panel scene.

Proof. Assume that D represents a polyhedral scene. From this polyhe-
dral scene we can easily construct a planar-panel scene that D can represent.
For this purpose, we first collect all of the visible parts of the faces of the
polyhedrons in the scene, which can be thought of as a collection of planar
panels, and next, for each occluding line in D, we execute the extension
shown in Fig. 3.8. Thus, if D represents a polyhedral scene, D represents a
planar-panel scene.

Assume conversely that D represents a planar-panel scene. From this
planar-panel scene, we can construct a polyhedral scene by filling the rear
side of the panels with material in the following way.

Let z0 be a constant such that z0 < zα for any vertex vα = (xα, yα, zα)
in the scene. We first partition each panel into triangles in an arbitrary way.
We call the resultant triangles triangular panels. For each triangular panel,
we generate a new vertex, say v0, such that the projection of v0 on the x-y
plane coincides with that of the center of gravity of the triangular panel and
that the z coordinate of v0 is equal to z0, and generate a tetrahedron by
packing material inside the convex hull defined by the triangular panel and
the new vertex v0. Since the scene is seen from the point that is infinitely
far in the positive direction of the z axis, v0 is behind the triangular panel
and hence the three new faces and the three new edges of the tetrahedron
are all invisible. In this way we generate a tetrahedron for every triangular
panel. Let X1 be the set of all tetrahedrons thus generated.

The set-theoretical union of elements of X1 may be considered as a poly-
hedral scene, but it is of no interest because tetrahedrons align accidentally
and form “pathological” edges just like an edge shown in Fig. 2.1; it does not
satisfy Assumption 2.2. We must construct a “normal” polyhedral scene.
For this purpose, we next “weld” objects along these pathological edges.

Let l be a convex edge (where an “edge” means a three-dimensional
counterpart of a line in the line drawing) or a concave edge or a line segment
generated by partitioning panels into triangles, let v1 and v2 be the two
terminal points of l, and let fj and fk be the two triangular panels sharing
l. Furthermore, let v3 and v4 be points on fj and fk, respectively, such that
{v1, v2, v3} and {v1, v2, v4} form isosceles triangles whose base coincides with
l and whose height is equal to ε, where ε is a small positive constant. Next,
let v0 be a new vertex such that the projection of v0 on the x-y plane
coincides with that of the midpoint of l and the z coordinate of v0 equals
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z0. We fill two tetrahedrons defined by {v0, v1, v2, v3} and by {v0, v1, v2, v4}
with material, and glue them together along the triangular face {v0, v1, v2}.
Then we get a six-face object, of which only the two faces {v1, v2, v3} and
{v1, v2, v4} are visible and the other four faces are invisible. We generate
similar six-face objects for all convex edges, concave edges, and other line
segments shared by two triangular panels. Let X2 be the set of all such
six-face objects.

Let X be the set-theoretical union of all elements of X1 and X2. Then,
X is a polyhedral scene whose projection on the x-y plane coincides with
D. Indeed, we fill the rear side of the panels with material in such a way
that newly generated faces of tetrahedrons and of six-face objects are all
invisible, and hence the line drawing of X coincides with D. Moreover, X
satisfies Assumption 2.2 for the following reason. First, new vertices (v0 in
the above notation) generated in the rear side of the panels are distinct, and
hence no pair of newly generated edges (invisible edges) align in the scene X.
Second, “pathological” edges generated by the union of all the tetrahedrons
are welded by six-face objects. Thus, if D represents a planar-panel scene,
D represents a polyhedral scene.

3.6 Reducing to a Linear Programming Problem

Theorems 3.1 and 3.2 give us a theoretical answer to the problem of how
to discriminate between correct and incorrect pictures, However, it is not
very tractable in that the system of (3.4) contains proper inequalities (i.e.,
inequalities that do not allow equalities) such as (3.3c) and (3.3d). The
equations (3.2) and inequalities (3.4) place linear constraints on the n + 3m
unknowns, and hence the set of solutions to (3.2) and (3.4) form a polytope
(i.e., a convex polyhedron) in the (n + 3m)-dimensional space. It should be
noted that this set is not necessarily closed, because some portions of the
boundary of the polytope are defined by the proper inequalities. In general
the judgment of nonemptiness of an open set is not so easy as that of a
closed set. Fortunately, however, we can convert the system consisting of
(3.2) and (3.4) to a more tractable one.

Let e be any positive constant, and e be a |T |-dimensional vector whose
ith component is e if the ith inequality in (3.4) is of the form (3.3c) or (3.3d),
and is 0 if it is of the form (3.3a) or (3.3b). We construct an inequality system

Bw ≥ e. (3.5)

Then, we get the following.
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Proposition 3.5. The system consisting of (3.2) and (3.4) has a solution
if and only if the system consisting of (3.2) and (3.5) has a solution.

Proof. Since e ≥ 0, (3.5) implies (3.4), and hence a solution to (3.2)
and (3.5) satisfies (3.4). Conversely, let w1 be a solution to (3.2) and (3.4).
Then, we can find a sufficiently large positive constant d such that w2 = dw1

satisfies (3.2) and (3.4).

From Theorems 3.1 and 3.2 and Proposition 3.5 we directly obtain the
theorem.

Theorem 3.3 (Discrimination between correct and incorrect pic-
tures). For any labeled picture D, the following four statements are equiv-
alent:
(1) D represents a planar-panel scene.
(2) D represents a polyhedral scene.
(3) the system consisting of (3.2) and (3.4) has a solution.
(4) the system consisting of (3.2) and (3.5) has a solution.

Since all inequalities in (3.5) allow equalities, the solutions to the system
composed of (3.2) and (3.5) form a closed set, and the judgment of nonempti-
ness of this set is equivalent to the judgment of the existence of a feasible
solution to a linear programming problem whose constraint set is defined
by (3.2) and (3.5). Moreover, methods for judging the existence of feasible
solutions have been well established (Dantzig, 1963). Hence condition (4)
in Theorem 3.3 can be checked efficiently. Thus the problem of discrimina-
tion between correct and incorrect line drawings is reduced to the problem
of judging the existence of a feasible solution to the linear programming
problem.

3.7 Perspective Projection

When the scene is at a finite distance from the observer, the picture is ob-
tained as a perspective projection with the observer as the center of the
projection. A perspective projection is different from an orthographic pro-
jection. However, as far as the realizability of a polyhedral scene is con-
cerned, there is no difference between the perspective projection and the
orthographic projection. This can be understood in the following way.

Without loss of generality suppose that the center of the projection (i.e.,
the observer) is at the origin (0, 0, 0) and the picture plane is z = 1, as shown
in Fig. 3.9. Let pα = (xα, yα, 1) denote the position vector of the projection



3.7 Perspective Projection 61

(onto the picture plane) of a vertex vα, and xα = pα/tα denote the position
vector of vα itself, where tα is unknown. Let qj ·x = −1 denote the equation
of the face fj, where qj = (aj , bj , cj). This equation cannot represent a plane
that passes through the origin. There is, however, no problem because we
have assumed that no face is coplanar with the observer (recall Assumption
2.4).

Figure 3.9. Perspective projection.

If the vertex vα is on the face fj, we get qj · pα + tα = 0, that is,

ajxα + bjyα + cj + tα = 0,

which has the same form as (3.1) (although the meaning of the unknowns
is slightly different).

If the two vertices vα and vβ are projected on the same point (i.e.,
pα = pβ) and vα is in front of vβ, then we get

1
tα

≤ 1
tβ

, that is, tα ≥ tβ.

This inequality is of the same form as (3.3a). If the vertex vα is properly in
front of the face fj, we get

1
tα

<
−1

qj · pα

, that is, ajxα + bjyα + cj + tα > 0,
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which is of the same form as (3.3c). Inequalities of the same forms as (3.3b)
and (3.3d) can be obtained similarly. Therefore, we get the same system
of linear equations and linear inequalities as in the case of the orthographic
projection.

Thus, there is no difference between the algebraic structure of the ortho-
graphic projection and that of the perspective projection, and consequently
we get the next theorem.

Theorem 3.4 (Equivalence between the orthographic and perspec-
tive projections). Let D be a labeled picture and p be any three-
dimensional point in the front side of the picture plane. Then D is a
perspective projection of a polyhedral scene with respect to the center of
projection p if and only if D is an orthographic projection of a polyhedral
scene.

Proof. Without changing the realizability of the picture D, we can trans-
late the (x, y, z) coordinate system and change the scale in such a way that
p coincides with the origin and the picture plane is on the surface z = 1.
Hence the theorem follows from the above argument.

Therefore, the realizability of a scene depends on neither where the ob-
server stands nor whether the picture is an orthographic projection or a
perspective projection. We hereafter treat the pictures as the orthographic
projections of the scenes, but because of Theorem 3.4 all the results in this
book can be applied also to the case of perspective projections with, if nec-
essary, only obvious modifications.

3.8 Pictures with Additional Information

We have concentrated our attention only on the information conveyed by a
labeled picture itself. In practical situations, however, we are often given
additional information.

One type of such additional information is about the occluded part of the
objects. For example, consider the picture in Fig. 3.10(a). Some cue may tell
us that fj and fk belong to the same panel, or at least it seems worth while
to consider whether such an interpretation is possible. Our formulation can
easily be generalized for these kinds of additional information. In the case
of Fig. 3.10, the only thing we have to do is to add three more equations,

aj = ak, bj = bk, cj = ck,
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to (3.2). Note that these additional equations are also linear and hence the
linear programming methods are still applicable to this case.

(a) (b)

Figure 3.10. Examples of additional information.

Another type of additional information is given by shadows (Shafer and
Kanade, 1983; Shafer, 1985). Suppose that pictures contain shadows and
furthermore that the correspondences between edges and their shadows are
given. Then, the system of equations (3.2) can be augmented by intro-
ducing virtual planes each of which should contain both an edge and the
corresponding shadow line.

Consider for example a line drawing given in Fig. 3.10(b), which rep-
resents a polyhedral scene with shadows. Suppose that we know that the
shadow line 1-2 is caused by the edge 3-4. Then, we introduce a new virtual
plane, say fj , and add to (3.2) the following four new equations:

ajxα + bjyα + zα + cj = 0, α = 1, 2, 3, 4.

Other pairs of edges and their shadows can be treated in a similar manner.





Chapter 4

Correctness of
Hidden-Part-Drawn Pictures

We have presented in terms of linear algebra a necessary and sufficient con-
dition for a labeled picture to represent a polyhedral scene, and have thus
reduced the problem of judging the correctness of the picture to the problem
of judging the existence of a solution to a certain system of linear equations
and inequalities, which can be solved by linear programming techniques.
However, the pictures have been restricted to hidden-part-eliminated ones.
Here we shall generalize the condition so that it can be applied to hidden-
part-drawn pictures.

4.1 Ambiguity in Interpretation

As has been seen, a labeled hidden-part-eliminated picture defines a unique
spatial structure. If the hidden part is also drawn, on the other hand, a
labeled picture cannot necessarily represent the spatial structure uniquely.

Let us consider the labeled picture in Fig. 4.1(a). The lines in the picture
constitute two connected components, one representing a hexahedron, and
the other representing a little more complicated object. The labels tell us
that the bottom of the hexahedron should touch some other face. There
are, however, two possible faces on which the hexahedron can lie, as shown
in (b) and (c), where the objects are seen from the view angle indicated by
the large arrow in (a).

Thus, even if a picture is labeled, the corresponding spatial interpretation
is not unique. The correctness of a labeled picture should be judged for
each of the spatial interpretations. While in the case of natural pictures

65
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Figure 4.1. Ambiguity in interpretation of a labeled hidden-part-drawn line
drawing. The picture (a) admits the two interpretations (b) and
(c).

a spatial structure is extracted automatically from a labeled picture, here
we shall consider a spatial structure as new information. Assuming that we
are given both a labeled picture and a spatial structure, we study how to
judge whether the labeled picture represents the spatial structure correctly.
This is the main reason why we treat hidden-part-drawn pictures in this
new chapter.

In addition to the basic assumptions in Section 2.1, we make some more
assumptions.

Assumption 4.1. Edges incident to a vertex are not collinear with each
other.

Assumption 4.2. Every face is a simple polygon.

These two assumptions are about the objects themselves. Assumption
4.1 is helpful when we try to distinguish between projections of vertices and
accidental crossings of distinct edges on the picture plane. Assumption 4.2
implies that a face has no holes and consequently the boundary of the face
can be represented by a cyclic list of edges.

Assumption 4.3. Any pair of vertices is not collinear with the observer.

Assumption 4.4. The observer is outside the object.

Assumption 4.5. The whole part of the object is drawn in the picture
plane .
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These three assumptions state relationships between the object and the
observer. Assumption 4.3 together with Assumptions 2.4 and 2.5 is usually
paraphrased by saying that the observer is in “general position,” which
implies that interesting spatial features do not disappear in the picture. For
example, if two edges are noncollinear in a space, the corresponding two lines
are likewise noncollinear in the picture. Assumption 4.4 excludes a certain
class of pathological interpretations. Assumption 4.5 reduces the number of
possible interpretations, as was done in Chapter 2.

4.2 Face-Layer Structure

In a way similar to the case of hidden-part-eliminated pictures, let D =
(J,E, u, h) be a labeled line drawing, where J is the set of junctions at
which two or more lines meet, E is the set of lines represented by ordered
pairs of junctions, u is a mapping from J to R2 so that u(s) denotes the
position of the junction s, and h is a mapping from E to the set of the eight
categories of lines given in Fig. 2.6 so that h(l) denotes the label assigned
to the line l. Here again we assume that the lines in E have been divided
into as small fragments as possible, and hence lines do not meet each other
except at their terminal points.

In hidden-part-drawn pictures, there often appear X-type junctions, that
is, junctions composed of two pairs of collinear lines. X-type junctions usu-
ally occur when projections of two edges spatially apart cross each other on
the picture plane. Since the objects are in general position with respect to
the observer, it follows from Assumption 4.1 that X-type junctions never
correspond to vertices of the objects. Let J2 be the set of all X-type junc-
tions, and let J1 = J − J2. Then, there is a one-to-one correspondence
between the set J1 and the set of all vertices of the object.

Since an X-type junction does not correspond to any vertex, line drawing
D should satisfy this condition: If (s1, s2) and (s2, s3) are mutually collinear
lines meeting at the X-type junction s2, then the two lines have the same
line category, i.e., h((s1, s2)) = h((s2, s3)). This is what we observed in Rule
2.4.

For convenience, we also introduce another notation for the lines in the
picture. While E represents the set of all minimal line fragments connecting
junctions, let E∗ denote the set of all line segments connecting junctions
in J1. Hence, an element of E∗ may have some X-type junctions midway.
That is, an element of E∗ can be considered as a concatenation of one or
more elements of E of the form ((s1, s2), (s2, s3), . . . , (sk−1, sk)) such that
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the (sα, sα+1)’s (α = 1, 2, . . . , k − 1) are collinear and have the same label
and that s1 and sk belong to J1 and all the other junctions s2, s3, . . . , sk−1

belong to J2. From our assumptions there is a one-to-one correspondence
between E∗ and the set of all edges of the object.

Unlike the case of natural pictures, we cannot extract a unique spatial
structure directly from a labeled hidden-part-drawn picture because of the
ambiguity we have seen in the last section. In order to avoid the ambiguity
in interpretation we need some more information about the structure of the
scene. For this purpose, we introduce a new concept, “face-layer structure”.

Figure 4.2. Line of sight emanating from the viewer. It passes through faces
facing the viewer and those facing opposite to the viewer alter-
natingly.

A face-layer structure is an ordered triple L = (F1, F2, g), whose intuitive
meaning is the following. F = F1 ∪ F2 is the set of all visible and invisible
faces of the object, and it is partitioned into F1 and F2 (F1∩F2 = ∅) in such
a way that outward normals to the faces in F1 are in the direction of the
observer, and those to the faces in F2 are in the opposite direction. Since
each face fj ∈ F1 ∪ F2 is a simple polygon in a space (recall Assumption
4.2), the projection of fj onto the picture plane, denoted by [fj], is a simple
polygon on the picture plane.

The third constituent, g, represents how the faces overlap each other
when seen by the observer. Consider a line of sight emanating from the
observer and penetrating the object. If we travel along this line, we first
pass through a face facing the observer, next pass through a face facing
opposite to the observer, and similarly pass through these two kinds of faces
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alternatingly, as shown in Fig. 4.2. Hence, for each point p on the picture
plane there exist exactly an even number of faces whose projections contain
p, half of which belong to F1 and the other half to F2. Let (f1, f2, . . . , f2k)
be the list of faces that appear in this order when we travel along the line
of sight passing through the picture point p. Then f2j−1 (j = 1, . . . , k)
should belong to F1 and f2j (j = 1, . . . , k) to F2. Moreover, even if p moves
on the picture plane, the associated list of faces does not change unless p
passes from one side of a boundary line of some polygon [fj] to the other
side, because the faces should not penetrate each other. Hence, we need
not specify the list of faces for each point p; we need to specify it only for
each region defined by the partition of the picture plane induced by all the
boundary lines of the projections of the faces.

Keeping this in mind, we define the face-layer structure formally as the
triple L = (F1, F2, g) satisfying the next three conditions, (1), (2), and (3):

(1) F1 and F2 are two disjoint sets (elements of F1 ∪ F2 are called “faces”).
(2) With each face fj ∈ F1∪F2 is associated a simple polygon on the picture

plane (this polygon is called the “projection” of the face fj and is denoted
by [fj]).

(3) Let P be any picture region defined by the partition of the plane induced
by all the boundary lines of the projections of the faces. Then, g(P ) is
the list of an even number of faces, say g(P ) = (f1, f2, . . . , f2k), such
that all the projections [fj] (j = 1, 2, . . . , 2k) include P and such that
f2j−1 ∈ F1 and f2j ∈ F2 for j = 1, 2, . . . , k. Moreover, P is not contained
in a projection of any face that does not appear in the list g(P ).

The definition of the face-layer structure is independent of a labeled
picture. Now we construct relationship between these two structures. A
face-layer structure L = (F1, F2, g) is said to be consistent with a labeled
line drawing D = (J,E, u, h) if they satisfy the following three conditions,
(1), (2), and (3):

(1) For any fj ∈ F1 ∪ F2, the boundary of [fj ] consists of lines in E∗ (i.e.,
the set of lines connecting non-X-type junctions).

(2) Every line in E∗ belongs to the boundaries of exactly two of the projec-
tions [fj].

(3) Let l be any line in E∗, and let [fj] and [fk] be two polygons whose
boundaries share l. Then, (3a) if l is a solid line with + or − (i.e., the
type (a) or (d) in Fig. 2.6), both fj and fk belong to F1 and [fj] and [fk]
are mutually in the opposite sides of l; (3b) if l is a broken line with +
or − (i.e., the type (e) or (h) in Fig. 2.6), both fj and fk belong to F2



70 4. Hidden-Part-Drawn Pictures

and [fj] and [fk] are mutually in the opposite sides of l; and (3c) if l is a
line with an arrow (i.e., the type (b), (c), (f), or (g) in Fig. 2.6), one of
fj and fk belongs to F1 and the other belongs to F2, and both [fj] and
[fk] are to the right of the arrow.

These conditions are necessary for F = F1∪F2 to be a correct set of faces
of the object represented by the picture D. This can be understood when
we recall that all the corners of the projections of the faces should belong to
the set J1 (Assumptions 2.4, 2.5, and 4.1), every edge of the object should
be shared by exactly two faces (Assumption 2.2), and the line categories in
Fig. 2.6 depend only on local configurations of faces around the edges.

Since the boundary of every polygon [fj] is composed of lines in E∗,
all the corners of the boundary belong to J1. Hence, if we list the cor-
ners on the boundary of [fj ] in the counterclockwise order, we get a cyclic
list, say (s1, s2, . . . , sk, s1), where si ∈ J1 (i = 1, . . . , k). This list spec-
ifies the polygonal region [fj ] uniquely. We hereafter use the notation
[fj] = (s1, s2, . . . , sk) in order to represent that [fj] is a polygon bounded by
the lines (s1, s2), (s2, s3), . . . , (sk−1, sk), and (sk, s1).

Note that the above definitions of F1, F2, and g are not constructive;
there may be more than one way to choose them. Thus a face-layer structure
L consistent with D is not necessarily unique. This is why we call L a face-
layer structure “consistent with” D, but not the face-layer structure “of”
D.

One problem here is how to get a face-layer structure. One of the main
situations of machine interpretation of hidden-part-drawn pictures can be
found in man-machine communication between a human designer and a
computer-aided system for geometric design. In this situation it is the hu-
man designer who draws a line drawing, and hence he can also tell the
system the face-layer structure of the object he intends by the line drawing.
It is also possible to extract all consistent face-layer structures from a la-
beled line drawing automatically. The key point is how to choose efficiently
the set of polygonal regions [fj] with the required properties. For this pur-
pose, “cyclic order properties” of edges and vertices around faces can play
an important role (Sugihara, 1978; Shapira and Freeman, 1979; Fukui et al.,
1983). In what follows, however, we do not consider this problem any more,
but merely assume that we are given a face-layer structure together with
the labeled line drawing.
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4.3 Spatial Structure

Suppose that we are given a labeled line drawing D = (J,E, u, h) and a face-
layer structure L = (F1, F2, g) consistent with D. Then we can construct
the spatial structure S = (V, F,R, T ) of D and L. Like the spatial structure
of a natural picture, V is the set of vertices on the surface of the object,
and F is the set of faces. R is the set of vertex-face pairs representing
which vertices should be on which faces. T is a set of ordered triples of the
form (α, β, δ) representing relative distances of parts of the object from the
observer, where α and β are taken from V ∪ F and δ is taken from the set
{PROPERLY-FRONT, PROPERLY-BEHIND}.

The spatial structure S = (V, F,R, T ) is defined in a constructive man-
ner. F is defined as F = F1 ∪ F2. The other three sets, V,R, and T , are
initially set empty, and elements are added to them in the following way.

As has been seen, there is a one-to-one correspondence between J1 and
the set of vertices of the object. Hence, for each element sα of J1, we
generate the corresponding vertex vα = (xα, yα, zα), where u(sα) = (xα, yα)
and zα is an unknown, and add it to V . Next, for each polygon, say [fj ] =
(s1, s2, . . . , sk) (where s1, s2, . . . , sk are elements of J1), we generate pairs
(v1, fj), (v2, fj), . . . , (vk, fj) and add them to R. The three sets V, F , and R
generated by now represent the basic structure about which vertices should
be on which faces. Since each line in E∗ belongs to the boundaries of the
projections of exactly two faces, we get the following.

Proposition 4.1. Let (s1, s2) be any line in E∗. Then, there are exactly
two faces, say fj and fk, such that (s1, s2) belongs to the boundary of [fj]
and that of [fk]. Moreover, there exist vα and vβ in V such that

(xα, yα) = u(s1), (xβ , yβ) = u(s2),
(vα, fj), (vα, fk), (vβ , fj), (vβ , fk) ∈ R.

Next, we shall augment V,R, and T in order to represent relative dis-
tances and the thickness of the object.

For each line in E∗ we generate one element of T so that it may represent
the physical category of the corresponding edge. Let l be a line in E∗, and
[fj] and [fk] be the two polygons whose boundaries contain l.

First suppose that l is labeled with + or − (i.e., l belongs to the category
(a), (d), (e), or (h) in Fig. 2.6). Then, [fj] and [fk] are mutually on opposite
sides of l (recall condition (3) in the definition of the consistency of L with
D). Hence, as we have done in the construction the spatial structure of a
natural picture, we choose a vertex, say vα, such that vα lies on fk but not
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on fj (i.e., (vα, fk) is an element of R but (vα, fj) is not) and such that vα is
on the fk side with respect to l, and add the triple (vα, fj , δ) to T , where

δ = PROPERLY-BEHIND if l has the label +,

δ = PROPERLY-FRONT if l has the label − .

Next suppose that l is labeled with an arrow (i.e., l belongs to the cat-
egory (b), (c), (f), or (g) in Fig. 2.6). Then, both [fj] and [fk] are to the
right of the arrow, and one of fj and fk belongs to F1 and the other to
F2. Without loss of generality let fj belong to F1 and fk belong to F2. We
choose a vertex, say vα, such that vα lies on fk but not on fj and such that
vα is to the right of the arrow, and add the triple (vα, fj, δ) to T , where

δ = PROPERLY-BEHIND if l is a solid line (i.e., the category (b) or (c)
in Fig. 2.6),

δ = PROPERLY-FRONT if l is a broken line (i.e., the category (f) or (g)
in Fig. 2.6).

Now we get the following.

Proposition 4.2. Let l be any line in E∗, and l be contained in the
boundary of [fj] and that of [fk]. Then we see, if necessary by interchanging
fj and fk, that there exists a vertex, say vα, such that vα is on the fk side
with respect to l and

(vα, fk) ∈ R, (vα, fj) /∈ R, (vα, fj, δ) ∈ T,

where δ = PROPERLY-BEHIND if l has the label + or l is a solid line with
an arrow, and δ = PROPERLY-FRONT if l has the label − or l is a broken
line with an arrow.

Finally, V,R, and T are augmented in order to represent the relative dis-
tance information given by the mapping g. The picture plane is partitioned
into regions by lines in E. Let P be one of such regions, p be an arbitrary
interior point of P , and let g(P ) = (f1, f2, . . . , f2k).

We first generate 2k new vertices, say vα (α = 1, 2, . . . , 2k), whose
(x, y) coordinates coincide with those of p, generate 2k vertex-face pairs
(v1, f1), (v2, f2), . . . , (v2k, f2k), and generate 2k − 1 triples (vα, vα+1,

PROPERLY-FRONT) (α = 1, 2, . . . , 2k − 1). Thus we get the following.

Proposition 4.3. Let P be any region defined by the partition of the
picture plane induced by the lines in E. Then, there exists an interior point



4.4 Example 73

p of P such that, for any consecutive two faces fα and fα+1 in the list g(P ),
there exist two vertices, say vα and vα+1, whose (x, y) coordinates coincide
with those of p and

(vα, fα), (vα+1, fα+1) ∈ R,

(vα, vα+1,PROPERLY-FRONT) ∈ T.

Next for each junction s (∈ J1 ∪J2) on the boundary of P we do the fol-
lowing. We generate 2k new vertices, say wβ (β = 1, 2, . . . , 2k), whose
(x, y) coordinates coincide with u(s), and generate 2k vertex-face pairs
(w1, f1), (w2, f2), . . . , (w2k, f2k). For each β (β = 1, 2, . . . , 2k − 1), if the
boundary of [fβ] and that of [fβ+1] share a common line and s is on this
common line (this occurs when s is on a line, say l, in E∗ and l belongs
to both the boundary of [fβ] and that of [fβ+1]), then we identify vβ with
vβ+1, and otherwise we add the triple (wβ , wβ+1,PROPERLY-FRONT) to
T . Hence, we get the next proposition.

Proposition 4.4. Let P be any region defined by the picture plane in-
duced by the lines in E. For any junction s on the boundary of P and
for any consecutive two faces fj and fj+1 in the list g(P ), there exist two
vertices, say vα and vβ, in V such that

(xα, yα) = (xβ, yβ) = u(s),
(vα, fj), (vβ , fj+1) ∈ R,

(vα, vβ ,PROPERLY-FRONT) ∈ T,

unless s is on both the boundary of [fj] and that of [fj+1].

Thus we have completed the construction of the spatial structure S =
(V, F,R, T ) of the line drawing D = (J,E, u, h) and the face-layer structure
L = (F1, F2, g).

4.4 Example

Before presenting our main theorem, we will see by an example how the
spatial structure can be constructed.

Let D = (J,E, u, h) be the labeled line drawing shown in Fig. 4.3(a),
where

J = J1 ∪ J2, J1 = {1, 2, . . . , 10}, J2 = {11,12, . . . , 15},
E = {(1,2), (1, 5), (1, 6), (2, 3), (2, 12), (3, 8), (3, 12),

(4, 5), (4, 11), (4, 13), etc.}
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and u and h are as indicated in the figure (strictly, the labels should be as-
signed to elements of E, but in the figure the labels are assigned to elements
of E∗; this is because, as we have seen in Rule 2.4, mutually collinear lines
meeting at an X-type junction should have the same label). Since the junc-
tions 11, 12, . . ., 15 are of the X-type, the set of lines connecting non-X-type
junctions, E∗, consists of 15 elements; for example, the line 5-10 belongs to
E∗ whereas the lines 5-11, 11-14, and 14-10 belong to E.

Figure 4.3. Labeled line drawing, and the partition of the plane induced by
all the lines.

Let us define the face set F = F1 ∪ F2 by

F1 = {f1, f2, f3}, F2 = {f4, f5, f6, f7},
[f1] = (1, 5, 4, 3, 2), [f2] = (1, 6, 10, 5), [f3] = (3, 4, 9, 8),
[f4] = (1, 6, 7, 2), [f5] = (2, 7, 8, 3), [f6] = (4, 9, 10, 5),
[f7] = (6, 10, 9, 8, 7).
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The lines in E partition the picture plane into one outer region, say P0,
and eleven polygons, say P1, P2, . . . , P11, as shown in Fig. 4.3(b). Let g be
defined by

g(P0) = ∅, g(P1) = (f2, f4),
g(P2) = (f1, f4), g(P3) = (f1, f6, f2, f4),
g(P4) = (f1, f5), g(P5) = (f3, f6, f2, f4),
g(P6) = (f3, f4), g(P7) = (f3, f5),
g(P8) = (f2, f7), g(P9) = (f3, f6, f2, f7),
g(P10) = (f3, f6), g(P11) = (f3, f7).

Then, the triple L = (F1, F2, g) is a face-layer structure, and we can easily
see that L is consistent with the line drawing D given in Fig. 4.3(a). Indeed,
every line in E∗ belongs to the boundaries of the projections of exactly two
faces (for example, the line 1-2 belongs to the boundaries of [f1] and [f4]
and to them only), and these two faces possess the required properties (for
example, [f1] and [f4] are both to the right of the arrow assigned to the line 1-
2, and f1 ∈ F1 whereas f4 ∈ F2). Moreover, at each region Pi (i = 1, . . . , 11),
g(Pi) has an even number of faces, and the first and the third faces (if they
exist) are taken from F1 whereas the second and the fourth faces are taken
from F2.

From the above D and L we can generate the spatial structure S =
(V, F,R, T ) systematically. The face set F has already been defined in L.
The other three sets V,R, and T are initially made empty, and new elements
are generated and added to them in the following way.

First, for each element of J1 the associated vertex is generated and added
to V :

v1 = (2, 8, z1), v2 = (9, 8, z2), v3 = (11,6, z3), v4 = (4, 6, z4),
v5 = (7, 7, z5), v6 = (2, 4, z6), v7 = (9, 4, z7), v8 = (11,2, z8),
v9 = (4, 2, z9), v10 = (7, 3, z10).

Second, for each face, say fj, and each corner of the boundary of [fj ], we
generate the associated element of R. From [f1] = (1, 5, 4, 3, 2), we generate
the five elements

(v1, f1), (v5, f1), (v4, f1), (v3, f1), (v2, f1) ∈ R.

New elements of R are generated similarly for f2, f3, . . . , f7. At this point
|R| = 4 × 5 + 5 × 2 = 30, because there are five quadrilateral faces and two
pentagonal faces in F .
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Third, new elements of T are generated for lines in E∗. The line 1-2 is a
solid line with an arrow from the junction 1 to the junction 2, and this line
is shared by the boundary of [f1] and that of [f4]. Since f4 belongs to F2,
we choose one vertex which lies on f4 but not on f1 and whose projection
on the picture plane is to the right of the arrow, say v6 (or alternatively v7),
and generate

(v6, f1,PROPERLY-BEHIND) ∈ T.

Elements of T are generated similarly for other lines in E∗, one for each line.
Hence at this point the number of elements of T is 15 (= |E∗|).

Finally, V,R, and T are augmented for the polygonal regions bounded
by the lines of the picture, that is, the regions P1, P2, . . . , P11 in Fig. 4.3(b)
(since g(P0) = ∅, we do nothing for P0). In order to illustrate this process
we consider the region P3, because it is more informative than considering
P1. We choose an arbitrary point in P3, say p3 = (6, 6.33), which is the
center of gravity of the three corners of P3. Since g(P3) = (f1, f6, f2, f4), we
generate four new vertices,

v11 = (6, 6.33, z11), v12 = (6, 6.33, z12) ∈ V,

v13 = (6, 6.33, z13), v14 = (6, 6.33, z14) ∈ V,

four vertex-face pairs,

(v11, f1), (v12, f6), (v13, f2), (v14, f4) ∈ R,

and three triples,

(v11, v12,PROPERLY-FRONT), (v12, v13,PROPERLY-FRONT) ∈ T,

(v13, v14, PROPERLY-FRONT) ∈ T.

The region P3 has three corners, that is, the junctions 4, 11, and 5; new ele-
ments are further generated at these corners. At the junction 4, we generate
four new vertices,

v15 = (4, 6, z15), v16 = (4, 6, z16) ∈ V,

v17 = (4, 6, z17), v18 = (4, 6, z18) ∈ V,

and four vertex-face pairs,

(v15, f1), (v16, f6), (v17, f2), (v18, f4) ∈ R,

Since the boundary of [f1] and that of [f6] share the line 4-5 and the junction
4 is on this line, we identify v15 with v16; that is, we delete v16 from R and
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replace (v16, f6) with (v15, f6). On the other hand, the junction 4 is neither
on the boundary of [f2] nor on that of [f4], and hence we generate the two
triples

(v15, v17,PROPERLY-FRONT), (v17, v18,PROPERLY-FRONT) ∈ T.

Note that the first constituent of the left triple is not v16 but v15; this is
because we have identified v16 with v15.

At the junction 5, we first generate four new vertices. However, the first
and the second vertices are identified with each other because the boundary
of [f1] and that of [f6] share the line 4-5. Similarly the second and third
vertices are identified with each other because the boundary of [f6] and that
of [f2] share the line 5-10 and the junction 5 is on this line. Hence, we
eventually generate the two vertices

v19 = (7, 7, z19), v20 = (7, 7, z20) ∈ V,

the four vertex-face pairs

(v19, f1), (v19, f6), (v19, f2), (v20, f4) ∈ R,

and the triple
(v19, v20,PROPERLY-FRONT) ∈ T,

where v19 denotes the vertex resulting from the identification of the initially
distinct three vertices, one of which was on f1, another was on f6, and still
another was on f2. Finally, at the junction 11, we generate

v21 = (7, 6, z21), v22 = (7, 6, z22), v23 = (7, 6, z23) ∈ V,

(v21, f1), (v22, f6), (v22, f2), (v23, f4) ∈ R,

(v21, v22,PROPERLY-FRONT), (v22, v23,PROPERLY-FRONT) ∈ T.

For the other regions, P1, P2, P4, . . . , P11, we generate new elements in a
similar manner and thus complete the spatial structure S.

4.5 Realizability of a Polyhedral Scene

Let D be a labeled line drawing, L be a face-layer structure consistent with
D, and S = (V, F,R, T ) be the spatial structure of D and L. We can
construct a system of linear equations and linear inequalities from S in the
same manner as we did in the case of natural pictures.
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For each vertex vα = (xα, yα, zα) (∈ V ), xα and yα are known constants
and zα is an unknown. With each face fj(∈ F ), we associate a planar
surface ajx+ bjy + z + cj = 0 on which fj should lie, where aj , bj , and cj are
unknowns. Thus, we have altogether |V |+3|F | unknowns. Since an element
(vα, fj) of R indicates that the vertex vα should be on the face fj, we get

ajxα + bjyα + zα + cj = 0.

Collecting all such linear equations, one for each element of R, we obtain
the system of linear equations

Aw = 0, (4.1)

where w = t(z1 · · · zna1b1c1 · · · ambmcm), m = |F |, n = |V |, and A is a
constant matrix of size |R| × (3m + n).

Elements of T represent relative distances between parts of the objects.
From a triple of the form (vα, vβ ,PROPERLY-FRONT) we get

zα > zβ,

from a triple of the form (vα, fj ,PROPERLY-FRONT) we get

ajxα + bjyα + zα + cj > 0,

and from a triple of the form (vα, fj ,PROPERLY-BEHIND) we get

ajxα + bjyα + zα + cj < 0.

Collecting all of the above three kinds of inequalities, one from each element
of T , we obtain the system of linear inequalities

Bw > 0, (4.2)

where B is a constant matrix of size |T | × (3m + n).
Now we can prove the next theorem.

Theorem 4.1 (Correctness of hidden-part-drawn pictures). Let D
be a labeled hidden-part-drawn line drawing, L be a face-layer structure
consistent with D, and S be the spatial structure of D and L. D represents
a polyhedral scene in which the faces are arranged along each line of sight
in the order as indicated by L if and only if the system consisting of (4.1)
and (4.2) has a solution.
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Outline of the proof. If D represents a polyhedral scene in which the
faces are located in the way indicated by L, then from this scene we can
obtain a solution to the system of (4.1) and (4.2).

Conversely, suppose that the system of (4.1) and (4.2) has a solution, say
w. Then, we can construct a polyhedral scene from w in the following way.
First, for each face fj ∈ F , we locate the planar surface ajx+bjy+z+cj = 0
(where aj, bj , and cj are given in w), and scissor off some portion of it,
forming a polygonal panel in such a way that the projection of the panel
coincides with the polygon [fj]. Next, we pack material between the panels.
For this purpose, consider the partition of the picture plane induced by all
the lines in E. Let P be any one of such partitioned regions, and let g(P ) =
(f1, f2, . . . , f2k). If we translate the polygonal region P in the direction
perpendicular to the picture plane, the swept volume forms a prism extended
infinitely in both the positive and negative directions of the z axis. Now we
pack material in the portion of the prism pinched by the two panels f2j−1

and f2j for every j = 1, 2, . . . , k (recall that f2j−1 ∈ F1 and f2j ∈ F2). We
can indeed pack a nonzero volume of material in each portion because there
are nonzero gaps between the faces (Proposition 4.3). We repeat the same
process for every picture region, and thus construct a polyhedral scene.

We can see that this scene is what is represented by D and L. Indeed,
first, the polygonal panels are all planar, and for each partitioned region
P on the picture plane, the panels are arranged along the line of sight in
the order in which they appear in g(P ) (Propositions 4.3 and 4.4). Second,
from the definition of the face-layer structure, for each line l in E∗ there
exist exactly two panels, say fj and fk, such that the boundaries of the two
panels share a common edge in the space, whose projection on the picture
plane coincides with l (Proposition 4.1); each edge is shared by exactly two
panels. Third, the panels do not penetrate each other, because for each
picture region bounded by the lines in E the corresponding panels do not
touch each other except at the boundaries of the panels (Proposition 4.4).
Fourth, exactly one side of each panel is filled with material; if the face
belongs to F1, material is packed in the rear side (i.e., the side with a smaller
z coordinate) , and if it belongs to F2, material is packed in the front side
(i.e. , the side with a larger z coordinate). Finally, the configuration formed
by material thus packed is the same as is required by the label assigned to
each line (Proposition 4.2). Hence we get the theorem.

Thus we have obtained a necessary and sufficient condition for a hidden-
part-drawn line drawing to represent a polyhedral scene. It should be noted
that (4.1) and (4.2) have the same forms as those of (3.2) and (3.4). However,
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note that all the inequalities in (4.2) are proper, that is, the inequalities
do not include equalities. Let e be any positive constant and e be a |T |-
dimensional vector whose components are all equal to e. Then, in the same
way as in the last chapter, we can show that the existence of a solution to
(4.1) and (4.2) is equivalent to the existence of a solution to (4.1) and

Bw ≥ e. (4.3)

Thus, the problem of judging the correctness of a hidden-part-drawn drawing
is also reduced to the problem of judging the existence of a feasible solution
to the linear programming problem.

Moreover, we can show that Theorem 3.4 is valid also for hidden-part-
drawn line drawings. That is, the correctness of a picture does not depend
on whether it is considered as the orthographic projection or perspective
projection. However, we omit the proof because it is very similar to that for
natural pictures.



Chapter 5

Algebraic Structures of Line
Drawings

A necessary and sufficient condition for a labeled picture to be correct has
been given in terms of linear equations and inequalities. When a picture
is judged correct, the next problem is to reconstruct the three-dimensional
structure of the object represented there. However, the structure is not
unique; many different objects can yield the same picture. Here we study
how many and what kinds of degrees of freedom remain in the choice of the
object represented by a correct picture.

5.1 Degrees of Freedom in the Choice of Objects

In the last two chapters we considered natural pictures and hidden-part-
drawn pictures separately. In what follows, on the other hand, we treat
these two kinds of pictures in a unifying manner. Let D be a labeled line
drawing and S = (V, F,R, T ) be a spatial structure associated with D; S
is unique if D is a natural picture, whereas S depends on the choice of a
face-layer structure if D is a hidden-part-drawn picture. Let

Aw = 0, (5.1)
Bw > 0 (5.2)

be the set of equations and that of inequalities obtained from the spatial
structure S, that is, (5.1) and (5.2) stand for (3.2) and (3.4), respectively, if
D is a natural picture, and they stand for (4.1) and (4.2) if D is a hidden-
part-drawn pictures. Furthermore, let

Bw ≥ e (5.2′)

81
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denote (3.5) if D is a natural picture and (4.3) if D is a hidden-part-drawn
picture. As has been seen, for the picture D to be correct, for the system
consisting of (5.1) and (5.2) to have a solution, and for the system consisting
of (5.1) and (5.2′) to have a solution are all equivalent.

Suppose that the picture D represents a polyhedral scene correctly.
Then, the picture itself does not specify the scene uniquely; an infinite num-
ber of different scenes can be represented by D. Hence, we can determine
values of z coordinates of some vertices and/or values of some face parame-
ters arbitrarily and can still obtain a polyhedral scene. Now, how many and
what kinds of different scenes can the picture represent? We will answer
this question in this chapter.

As we have seen, there is a one-to-one correspondence between a poly-
hedral scene that the picture D can represent and a solution to the system
consisting of (5.1) and (5.2). The number of possible scenes, therefore, is
equal to the number of solutions to (5.1) and (5.2).

Recall that the unknown vector w consists of the z coordinates of vertices
and the face parameters; that is, w = t(z1 · · · zna1b1c1 · · · ambmcm), where
n = |V | and m = |F |. Hence the total number of unknowns is n + 3m;
a solution to (5.1) and (5.2) can be considered as a point in an (n + 3m)-
dimensional Euclidean space. The set of solutions, therefore, forms a certain
region in this space.

The dimension of this region depends mainly on (5.1). Indeed, each
inequality in (5.2) represents an (n+3m)-dimensional half space, and hence
the set of all inequalities in (5.2) defines an intersection of the half spaces. If
this intersection is empty, the associated line drawing does not represent any
polyhedral scene, which we are not interested in. Otherwise, it usually forms
an (n + 3m)-dimensional region, because the intersection of a finite number
of k-dimensional half spaces in a k-dimensional space remains k-dimensional
unless the half spaces are in some special position. In what follows, therefore,
we assume that (5.2) form an (n+3m)-dimensional region, and concentrate
our attention upon (5.1).

Each equation in (5.1) restricts the solutions to an (n+3m−1)-dimensional
hyperplane in the (n+3m)-dimensional space . Since (5.1) contains rank(A)
independent equations, all the solutions to (5.1) form a region of dimension
(n + 3m) − rank(A). This means that there are n + 3m − rank(A) degrees
of freedom in the choice of a solution to (5.1); in other words, there exists
a set of n + 3m− rank(A) unknowns such that we can specify the values of
these unknowns independently, and once we do we get a unique solution to
(5.1).
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Let ui denote the ith component of the unknown vector w:

ui = zi if 1 ≤ i ≤ n,

ui = aj if i = n + 3j − 2, 1 ≤ j ≤ m,

ui = bj if i = n + 3j − 1, 1 ≤ j ≤ m,

ui = cj if i = n + 3j, 1 ≤ j ≤ m.

Furthermore, let H denote the set of all unknowns: H = {z1, . . . , zn, a1, b1, c1,
. . . , am, bm, cm} = {u1, . . . , un+3m}. Suppose that we give an arbitrary value
to the ith unknown ui, that is, ui = di, where di is an arbitrary constant.
This equation can be rewritten as ei · w = di, where ei is an (n + 3m)-
dimensional row vector whose ith component is 1 and all the other com-
ponents are 0’s. It is obvious that we can choose an arbitrary value for ui

and can still obtain a solution to (5.1) if and only if the system composed of
ei ·w = di and (5.1) has a solution for any di. More generally, for any subset
X of the unknown set H, we can choose any values for the unknowns in X
and can still obtain a solution to (5.1) if and only if the system consisting
of

ei · w = di for ui ∈ X (5.3)

and (5.1) has a solution for any di.
Let {A} denote the set of row vectors in the matrix A. Since the rank of

A is invariant under permutation of rows of A, the rank can be considered
as a function of the row vector set {A}, rather than the matrix A itself.
Hence we can write rank({A}) = rank(A). Using this notation, we define
a nonnegative integer-valued function ρH on 2H (where 2H represents the
family of all subsets of H) by

ρH(X) = rank({A} ∪ {ei | ui ∈ X}) − rank({A}), (5.4)

where X ⊆ H. Then, we get the following.

Theorem 5.1 (Degrees of freedom in the choice of objects). Let
X be any subset of the unknown set H. Then, ρH(X) is the maximum
cardinality of the subset Y of X such that even if we fix values of the
unknowns in Y arbitrarily, the system of (5.1) still has a solution.

Proof. We have n + 3m − rank(A) degrees of freedom in the choice of a
solution to (5.1). If we are given values of the unknowns in X, we have the
additional constraints of the equations given by (5.3), and hence the degrees
of freedom in the choice of a solution decrease to

n − 3m − rank({A} ∪ {ei | ui ∈ X}),
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which corresponds to the degrees of freedom in the choice of a solution
to the system composed of (5.1) and (5.3). The value ρH(X) represents
the difference of these two kinds of the degrees of freedom; that is, ρH(X)
represents how much the degrees of freedom decrease when values of the
unknowns in X are given. Thus, ρH(X) represents the maximum number
of unknowns in X whose values can be chosen arbitrarily.

We call ρH(X) the degrees of freedom of the unknown set X. The un-
known set X is said to be independent if |X| = ρH(X), and dependent
otherwise. A maximal independent set is called a base. From Theorem 5.1
we see that we can choose values of the unknowns in X arbitrarily if and
only if X is independent, and that we can specify a solution to (5.1) uniquely
by giving arbitrary values to the unknowns in X if and only if X is a base.
Thus, the function ρH tells us how the degrees of freedom in the choice of
a solution to (5.1) are distributed over the unknowns, or in other words, it
tells us how the degrees of freedom in the choice of a polyhedral scene are
distributed over the vertices and the faces.

Let us partition the unknown set H into the set of the z coordinates
of the vertices HV = {z1, . . . , zn} = {u1, . . . , un} and the set of the face
parameters HF = {a1, b1, c1, . . . , am, bm, cm} = {un+1, . . . , un+3m}, and let
ρH denote also the function obtained by restricting the domain to the family
of subsets of HV or to the family of subsets of HF . Then, for any X ⊆ HV ,
ρH(X) represents the maximum number of z values in X that can be chosen
independently. Similarly, for any X ⊆ HF , ρH(X) represents the maximum
number of face parameters in X that can be chosen independently. The
use of the same symbol ρH for the functions on the three different sets
H, HV , and HF does not cause confusion because we can easily understand
from context what set is under consideration. Thus, the function ρH also
represents, when the domain is restricted, the distribution of the degrees
of freedom in the choice of a polyhedral scene over the vertices or over the
faces.

Since there is a natural one-to-one correspondence between the vertex
set V and the z coordinate set HV , we can introduce from ρH naturally a
function ρV on 2V ; that is, for any X ⊆ V , we can define

ρV (X) = ρH({zα | vα ∈ X}). (5.5)

For any subset X of V , X is said to be independent if |X| = ρV (X) and
dependent otherwise, and a maximal independent set is called a base.

In the spatial structure S every vertex is at least on one face and every
face has at least three vertices, and hence all the degrees of freedom can be
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removed by specifying z coordinates of some parameters. Thus we get

ρV (V ) = ρH(HF ) = ρH(H) = n + 3m − rank(A). (5.6)

Example 5.1. Consider the labeled hidden-part-eliminated line drawing
shown in Fig. 5.1(a). This picture has six junctions, and they are numbered
as shown in the figure. Let vα (α = 1, . . . , 6) be the vertex of the object that
gives rise to the junction α. (Formally, there are some other vertices that
are on the background surface, but we now concentrate our attention on the
vertices on the object at the center of the scene.) There are exactly four
degrees of freedom in the choice of the object represented by the picture,
because we can arbitrarily locate three vertices on one face and one more
vertex that is not on this face. For example, if we give z values to v1, v3,
and v4, the left quadrilateral face is fixed in a space and consequently the
spatial position of v6 is also determined. Hence we get ρV ({v1, v3, v4}) =
ρV ({v1, v3, v4, v6}) = 3, and consequently {v1, v3, v4} is independent whereas
{v1, v3, v4, v6} is dependent. Next if we specify one more vertex, say v2, then
the other two quadrilateral faces are fixed and eventually v5 is also fixed in
the space. Thus, we can give arbitrarily z values to the vertices v1, v2, v3, v4

(provided that they do not violate the line labels), and once we do the object
is determined uniquely. Hence {v1, v2, v3, v4} is a base.

We have 4 degrees of freedom in the choice of the scene, but 1 degree of
freedom is due to the translation of the whole scene along the z axis. We
therefore have 3 degrees of freedom in the choice of the object shape itself.
In Fig. 5.1, (b) and (c) illustrate how the object deforms if we give different
z values to the base {v1, v2, v3, v4}. In (b), we choose the z coordinates of
the three vertices v1, v2, v3 in such a way that they are on a plane parallel
to the picture plane, and see how the object changes for different values of
the z coordinate of v4. In (c), on the other hand, the three vertices v1, v3, v4

are fixed, and v2 is changed.

Example 5.2. Let us consider the labeled hidden-part-eliminated line
drawing in Fig. 5.2. The picture has five junctions, which are numbered
1, 2, . . . , 5, as shown in the figure. For a junction α (α = 1, 2, . . . , 5), let
vα be the corresponding vertex on the surface of the object at the center
of the scene. Furthermore, let the four faces of the object be f1, f2, f3, f4,
as shown in the figure (here again we exclude the surrounding background
surface from our consideration). This picture can represent a pyramid seen
from above, but it can also represent many other objects because the four
vertices v1, v2, v3, and v4 need not be coplanar.

The parameter set {a1, b1, c1, a2}, for example, is independent. This can
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Figure 5.1. Ambiguity in interpretation of a labeled hidden-part-drawn line
drawing; a picture can represent many different objects.

be understood in the following way. We first choose any values for a1, b1,
and c1 in order to fix the face f1 in the three-dimensional space. When f1

is fixed, the three vertices on it are also fixed, and hence the face f2, which
shares the vertices v1 and v5 with f1, has only one degree of freedom due
to rotations around the line connecting v1 to v5. To remove this degree
of freedom, we can specify any one of the three parameters a2, b2, and c2

arbitrarily (provided that the edge v1-v5 be convex). Thus, {a1, b1, c1, a2} is
independent; that is,

ρH({a1, b1, c1, a2}) = 4.
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Figure 5.2. Picture of a four-face object.

The parameter set {a1, b1, a2, b2}, on the other hand, is dependent, be-
cause of the following reason. Recall that the jth surface is represented by
the equation ajx + bjy + z + cj = 0, which is perpendicular to the vector
(aj , bj , 1) and which intersects the z axis at (0, 0,−cj). Hence, the pair of
parameters aj and bj represents the normal to the surface, and if the normal
has been given, the other parameter cj corresponds to the degree of freedom
due to the translation along the z axis. Therefore, if the values of a1 and
b1 are given, the normal to the face f1 is determined, and consequently the
direction of the line v1-v5 is determined. Since the face f2 should be parallel
to this line, the normal to f2 cannot be chosen arbitrarily; if one of a2 and
b2 is given, the other is automatically determined. Thus, we have seen

ρH({a1, b1, a2, b2}) = 3.

The parameter set {a1, b1, c1, a2, a3} is a base. Indeed, giving any values
to a1, b1, c1, a2, we can fix the two faces f1 and f2 in the space, and con-
sequently fix the edge v2-v5. The face f3, therefore, has only one degree
of freedom corresponding to rotations around the line v2-v5. This degree
of freedom can be removed if we give a value to a3. Then, since both
the edges v3-v5 and v4-v5 have been fixed, the face f4 is also determined
uniquely. Thus, the shape of the whole object is specified when the values
of a1, b1, c1, a2, a3 are given; there are five degrees of freedom in the choice
of the object. This implies that if we want to determine the object shape by
specifying z values of vertices, we have to specify the z values of all the five
vertices. This can also be understood by noting that the faces are all trian-
gular, and consequently a spatial position of any vertex is not determined
by the spatial positions of the other vertices.
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The unknown set {z1, z3, z4, a1, b1} is an example of a base containing
both elements of HV and those of HF . This is because the pair of a1 and b1

determines the normal to the face f1, z1 determines where the face f1 inter-
sects the z axis (thus a1, b1, z1 define f1 uniquely), and z3 and z4 determine
the remaining part of the object.

In the above two examples we were able to find at a glance how many
degrees of freedom we have in the choice of the objects; we need not calculate
the rank of the matrix A. This is because we could find a “convenient”
base in the sense that once values of the unknowns in the base are fixed,
all the other unknowns are determined in a step-by-step manner. In the
case of Fig. 5.1(a), for example, if we give values to v1, v2, v3, v4, the left
quadrilateral face and the right upper quadrilateral face are determined first,
consequently v6 and v5, and finally the right lower quadrilateral face and the
triangular face at the center are determined. This corresponds to the fact
that if values of the unknowns in the base are given, the solution to (5.1) can
be obtained by substitution; we need not solve all of (5.1) simultaneously.
Sometimes, however, we cannot find such a convenient base. If there is no
such convenient base, we have to solve (5.1) “simultaneously” in order to
reconstruct a polyhedral scene from the line drawing on one hand, and we
must give nontrivial consideration (or must calculate the rank of the matrix
A directly) in order to understand how many degrees of freedom we have in
the choice of the object on the other hand. This case is illustrated in the
next example.

Example 5.3. Let us consider the line drawing shown in Fig. 5.3 (a),
which represents an object composed of four quadrilateral planar panels
connected in a cyclic manner along the four edges v1-v5, v2-v6, v3-v7, and
v4-v8 (where vi denotes the vertex arising at junction i).

The vertex set {v1, v2, v3, v5} is a base. This can be understood as fol-
lows. Let junction 9 be the intersection of the lines 1-5 and 4-8, and junction
10 be the intersection of the lines 2-6 and 3-7, as shown in (b). Then, the
line 9-10 represents the intersection of the two panels f1 and f4, where the
surface on which the panel fj lies is also referred to as the “panel” fj. Thus
we can say that the vertex v9, which corresponds to junction 9, is on the
panels f1, f3, f4, and the vertex v10 is on the panels f1, f2, f4. Now suppose
that we give z values to the vertices v1, v2, v3, v5. Then, since v1, v2, v5 are
fixed in the space, the panel f4 is fixed and consequently v6, v9, v10 are also
fixed. Next from v2, v3, v6, the panel f2 is fixed and so is v7. Finally from
v3, v9, v10, the panel f1 is fixed and hence v4, v8, f3 are all fixed. Therefore
{v1, v2, v3, v5} is a base.
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Figure 5.3. Picture of an object composed of four planar panels.

The above consideration tells us that if f2 and f4 are fixed in the space,
f1 and f3 are also determined uniquely. In other words, the determination
of spatial positions of v1, v3, v5, v7 results in the determination of spatial
positions of f1 and f3, because the substructure composed of f1 and f3

touches the substructure composed of f2 and f4 only at these four vertices.
This implies that the vertex set {v1, v3, v5, v7} is a base for the two-panel
object shown in (c). Moreover, the substructure composed of f2 and f4 has
essentially the same structure as that of f1 and f3, and hence {v1, v3, v5, v7}
is also a base for this substructure. Thus, the vertex set {v1, v3, v5, v7}
is a base for the original picture (a). Note that the two virtual panels
(v1, v2, v10, v9) and (v4, v3, v10, v9) in (b) form the same configuration as the
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object in (c). We see therefore that {v1, v2, v3, v4} is also a base of the
original picture (a).

We must note, however, that the distribution of the degrees of freedom
may change when the junctions are drawn in some “special” position. For
example, if picture (b) is drawn in such a way that the three lines 1-2, 3-4,
and 9-10 have a common point of intersection as shown in (d), then the four
vertices v1, v2, v3, v4 are coplanar in any object represented by the picture
and consequently the vertex set {v1, v2, v3, v4} is dependent, whereas the
vertex set {v1, v2, v3, v5} still remains a base.

On the other hand, consider the case in which the four lines 1-5, 2-6,
3-7, and 4-8 have a common point of intersection, as shown in (e) (note
that if any three out of the four lines have a common point of intersec-
tion, the other should also pass through the point because otherwise the
picture is incorrect). We can easily see that in any object that can be rep-
resented by picture (e) the four vertices v1, v3, v5, v7 and the four vertices
v2, v4, v6, v8 are respectively coplanar. Therefore, when the z values of the
vertices v1, v2, v3, v5 are given, the panels f2 and f4 only are fixed while f1

and f3 are not. We must give a z value to one more vertex (for example,
the vertex v4), in order to fix the whole structure. Thus, there are 5 degrees
of freedom in the choice of the object from picture (e), and the vertex set
{v1, v2, v3, v4, v5} is an example of a base.

Remark 5.1 In Example 5.3 we have introduced two new conventions.
First, though our object world is that of polyhedrons, we also consider
planar-panel scenes. This is because (5.1) essentially represents the con-
figuration composed of planar surfaces and points on them; it does not
depend on which sides of the surfaces are filled with material (whereas (5.2)
depends on them). We can present a polyhedron whose degrees-of-freedom
structure is essentially the same as the planar-panel object in Fig. 5.3(a).
Indeed, if we add four triangular faces (v1, v2, v3), (v1, v3, v4), (v5, v6, v7),
(v5, v7, v8) to Fig. 5.3(a), the resultant object is a polyhedron and the dis-
tribution of the degrees of freedom of this new object is the same as that of
the original planar-panel object (note that addition of triangular faces does
not change the essential structure of the degrees of freedom). Here we take
up the planar-panel object because otherwise the triangular faces will make
the picture unnecessarily complicated.

The second convention is that though we are considering labeled pictures,
we sometimes treat unlabeled pictures as if they were labeled. We shall use
this convention when the most natural spatial structure that the original
picture evokes in our mind seems unambiguous, or when we can express the
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associated spatial structure more simply by words than by labels. Fig. 5.3(a)
seems to evoke in our mind two kinds of objects; one is composed of the four
panels f1, f2, f3, f4, and the other has one more panel at the bottom, that
is, the panel (v5, v6, v7, v8). We are now considering the former because we
stated so at the beginning of Example 5.3.

We will hereafter adopt these two conventions whenever we can avoid
treating unnecessarily messy figures.

As we have seen in the last example, the distribution of the degrees of
freedom in the choice of objects depends on both which faces have which
vertices in the spatial structure and where the junctions are drawn in the
picture plane. Hence, if we treat line drawings in a purely geometrical
manner, we have to perform complicated figure-construction tasks (which
usually requires heuristic and analogical skills) in order to tell what sets of
vertices form bases. The function ρH defined by (5.4), on the other hand,
gives us a very powerful tool, by which a computer can tell the distribution
of the degrees of freedom in an analytical and systematic manner.

While in this section we have defined the degrees of freedom in terms
of the ranks of some row vector sets, we will present in the next chapter a
counting theorem by which we can find the degrees of freedom by integer
calculation only.

5.2 Matroids

Let E be a finite set and ρ be an integer-valued function on 2E . A pair
(E, ρ) is called a matroid if the following three conditions are satisfied for
any X,Y ⊆ E (Welsh, 1976):

0 ≤ ρ(X) ≤ |X|, (5.7a)
X ⊆ Y implies ρ(X) ≤ ρ(Y ), (5.7b)
ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ). (5.7c)

E and ρ are called a support set and a rank function, respectively, of the
matroid (E, ρ). A subset X of E is called independent if ρ(X) = |X| and
dependent otherwise. A maximal independent set is called a base of the
matroid.

The function ρH defined by (5.4) satisfies the above conditions (5.7a),
(5.7b), and (5.7c). For the proof we refer to textbooks such as the one by
Welsh (1976), but we can understand it intuitively in the following manner.
First for any set X of unknowns, the value of the degrees of freedom is
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neither negative nor greater than the size of X; hence ρH satisfies condition
(5.7a). Next, if X ⊆ Y , then Y can admit the same degrees of freedom
as, or greater degrees of freedom than, X can, and thus condition (5.7b) is
satisfied. Finally, let us consider how many degrees of freedom remain in
X − Y when values of some unknowns outside X − Y are given. If values of
the unknowns in Y are given, there remain in X−Y only ρH(X∪Y )−ρH(Y )
degrees of freedom; see Fig. 5.4. If on the other hand values of the unknowns
in X ∩ Y are given, then the degrees of freedom left to X − Y amount to
ρH(X)−ρH (X∩Y ). Less degrees of freedom remain in X-Y if values of more
unknowns outside X −Y are given (for example, less degrees of freedom are
left for us to choose z values of vertices in X − Y when we fix z values of
the vertices in Y than when we fix z values of the vertices in X ∩ Y .) Thus
we get

ρH(X ∪ Y ) − ρH(Y ) ≤ ρH(X) − ρH(X ∩ Y ),

which is equivalent to the condition (5.7c).

Figure 5.4. Third axiom in the definition of the matroid; smaller degrees of
freedom remain in X − Y if the degrees of freedom are removed
from a larger set outside X − Y .

Thus, the pairs (H, ρH), (HV , ρH), and (HF , ρH) are matroids, and con-
sequently so is the pair (V, ρV ).

One of the salient properties of a matroid (E, ρ) is that ρ(X) = ρ(E)
holds for any base X (⊆ E); that is, every base has the same cardinality
ρ(E). This can be seen in the following way. Let X be any subset of E,
and suppose that there exist Y1 and Y2 such that ρ(X) = ρ(Y1) = ρ(Y2),
X ⊆ Y1 ⊆ E, and X ⊆ Y2 ⊆ E. Then, on one hand, from (5.7b) we get
ρ(Y1 ∩ Y2) = ρ(X) and ρ(Y1 ∪ Y2) ≥ ρ(X). On the other hand, from (5.7c)
we get ρ(Y1 ∪ Y2) + ρ(Y1 ∩ Y2) ≤ ρ(Y1) + ρ(Y2), and consequently, using
ρ(Y1) = ρ(Y2) = ρ(Y1 ∩ Y2) = ρ(X), we get ρ(Y1 ∪ Y2) ≤ ρ(X). Therefore,
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we see ρ(Y1 ∪ Y2) = ρ(X), which implies that for any X ⊆ E there exists a
unique maximal subset Y such that ρ(X) = ρ(Y ) and X ⊆ Y ⊆ E. We call
this Y the closure of X, and denote it by Y = cl(X). X is called a flat if
cl(X) = X. Now suppose that X is independent and ρ(X) < ρ(E). Then,
E − cl(X) is not empty, and moreover, it follows from the definition of the
closure that ρ(X ∪ {x}) = ρ(X) + 1 for any x ∈ E − cl(X). Thus, X ∪ {x}
is also independent. In other words, any independent set can be augmented
without violating the independence until it becomes a base. Therefore, every
base has the same cardinality ρ(E).

This property is important from the viewpoint of computational com-
plexity, because we can obtain a base of a matroid efficiently in the following
way. Initially let X be an empty set. Next, choose and delete elements e from
E one by one, and add them to X if X∪{e} is independent and discard them
otherwise. Eventually X becomes large enough to satisfy ρ(X) = ρ(E), and
thus we get a base. This procedure is called a “greedy algorithm” (Edmonds,
1971).

The greedy algorithm can also find a minimum-weight base. Suppose
that each element of E has a nonnegative value called a weight. If the
element with the minimum weight is taken at every stage of the greedy
algorithm, the resultant base attains the minimum sum of the weight among
all the bases.

One application of a minimum-weight base arises in the use of a spot
range finder. A spot range finder is a device for measuring a range to a
point on the object from the observer. One method for this purpose is
triangulation; that is, a spot light is projected onto the object, the image
of the spot is observed from another angle, and the triangle formed by the
light source, the observer, and the point on the object is determined (Ishii
and Nagata, 1976). Another method is the measurement of time of flight;
that is, an amplitude modulated laser beam is projected on the object, the
reflected light is detected, and the phase difference is observed (Nitzan et al.,
1977). The measurement of range data is time consuming because a range of
only one point can be obtained at a time and the direction of the projection
of the light is usually changed by a mechanical manner (for example, by
the rotation of a mirror). It is therefore desired that a range finder be
used as few times as possible. Suppose that we have already obtained a
line drawing from an image originated with a real polyhedral object, and
that we want to measure ranges of a minimum number of points in order
to recover the three-dimensional shape of the object. Suppose, furthermore,
that we can estimate an expected error of measurement for each vertex of
the object. Then, the problem can be reduced to the problem of finding a
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base of the matroid (V, ρV ) with the minimum sum of weights, where the
weights denote the expected errors. Hence, we can solve the problem by the
greedy algorithm.

5.3 Pictures with Four Degrees of Freedom

Given a correct line drawing D and its spatial structure S, we have at least
four degrees of freedom in the choice of a polyhedral scene represented by
D and S unless the scene consists of only one face. This can be intuitively
understood when we note that we have to specify three parameters in order
to fix one face in the space and at least one more parameter to fix another
face. More formally, we get the following.

Theorem 5.2 (Lower bound of the degrees of freedom). Let D be
a labeled line drawing and S be a spatial structure associated with D. If D
together with S represents a polyhedral scene and S has two or more faces,
then there are at least four degrees of freedom in the choice of a polyhedral
scene from D and S.

Proof. Let P denote a set of three-dimensional points forming a poly-
hedral scene represented by D and S, and P ′ denote the set of all points
(x′, y′, z′) obtained by the affine transformation

⎡
⎢⎣ x′

y′

z′

⎤
⎥⎦ =

⎡
⎢⎣ 1 0 0

0 1 0
α β γ

⎤
⎥⎦
⎡
⎢⎣ x

y
z

⎤
⎥⎦+

⎡
⎢⎣ 0

0
δ

⎤
⎥⎦ , (5.8)

where α, β, and δ are any real numbers, γ is a positive real number, and
(x, y, z) moves over P . Since the transformation is affine, the edges and
the faces of P are transformed to some edges and faces, respectively, of P ′,
and hence P ′ also is a polyhedral scene. Moreover, P ′ admits the same line
drawing D and the same spatial structure S as P does, because, first, the
transformation does not change the x and y coordinates of the points, and
second, the determinant of the coefficient matrix of the transformation (5.8)
is positive (recall γ > 0) and hence the transformation does not change the
spatial orientation; that is, the outer normals to the faces are never reversed.
Thus, P ′ is a polyhedral scene represented by D and S. The transformation
(5.8) has the four parameters, and their values are determined uniquely
if the destinations of noncoplanar four points on P are specified. These
noncoplanar four points can always be chosen because the scene has two
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or more faces. Therefore, z values of at least four vertices can be chosen
arbitrarily when we want to reconstruct a polyhedral scene from D and S.

It may be interesting to note that if γ < 0, the transformation (5.8)
applied to a polyhedral scene P generates a polyhedral scene, say P ′, that
has the reversed orientation in the sense that any set of three noncoplanar
vectors forming a right hand system in P is transformed to the one forming
a left hand system. In terms of the labels, the category (a) in Fig. 2.6
is transformed to the category (h), the category (d) to the category (e).
Particularly, if α = β = 0 and γ = −1, then P ′ is a mirror image of P
with respect to a mirror parallel to the x-y plane. For (unlabeled) hidden-
part-drawn pictures whose hidden lines are also represented by solid lines,
a pair of interpretations that are mirror images of each other usually occurs
in human visual perception, and this phenomenon is called Necker’s reversal
(Gregory, 1971). In the case of hidden-part-eliminated pictures, on the
other hand, this phenomenon does not occur. This is probably because the
transformation (5.8) with a negative γ brings rear invisible faces to the front,
so that the corresponding line drawings must also be changed.

We have shown that there are at least four degrees of freedom when we
reconstruct a polyhedral scene from a correct line drawing. If the degrees of
freedom are exactly four, the corresponding polyhedral scenes possess the
following remarkable property.

Theorem 5.3 (Collinearity-coplanarity property). Let D and S
be a line drawing and the associated spatial structure, respectively, and
℘(D,S) be the set of all polyhedral scenes that can be represented by D
and S. If ρV (V ) = 4 (that is, there are exactly four degrees of freedom in
the choice of a polyhedral scene), then a vertex set X (⊆ V ) that is collinear
(resp. coplanar) in some scene P in ℘(D,S) is also collinear (resp. coplanar)
in any scene P ′ in ℘(D,S).

Proof. Let us choose from ℘(D,S) an arbitrary scene, say P , and fix
it. Without loss of generality, let {v1, v2, v3, v4} be a base of the matroid
(V, ρV ) (note that the cardinality of every base is 4 because ρV (V ) = 4),
and let z1, z2, z3, z4 be the real numbers representing the z coordinates of
the associated four vertices in the scene P . Any scene, say P ′, in ℘(D,S)
is specified uniquely if we choose four real numbers, say z1

′, z2
′, z3

′, and z4
′,

for the z coordinates of the vertices v1, v2, v3, and v4. On the other hand, we
can uniquely determine the transformation of the form (5.8) that transforms
the four points (xi, yi, zi) (i = 1, . . . , 4) to (xi

′, yi
′, zi

′). Let P ′′ be the result
of the transformation applied to P . However, since P ′′ is a polyhedral scene
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and {v1, v2, v3, v4} is a base, it follows that P ′ and P ′′ represent the same
scene. Thus, any two scenes in ℘(D,S) can be transformed to each other by
a transformation of the form (5.8). Since the transformation (5.8) preserves
both collinearity and coplanarity, we get the theorem.

Theorem 5.3 enables us to judge whether some classes of figure-construction
problems have unique solutions or not. Let D be a correct line drawing, S
be the associated spatial structure, and ℘(D,S) be the set of following all
polyhedral scenes D and S can represent. Let us consider the following.

Problem 5.1. Given S and D, find the intersection of a planar surface
passing through the three vertices v1, v2, v3 (∈ V ) and a straight line passing
through the two vertices v4, v5 (∈ V ), and draw it on the picture plane.

Problem 5.2. Given S and D, find the intersection of a planar surface
passing through the vertices v1, v2, v3 (∈ V ) and a planar surface passing
through the vertices v4, v5, v6 (∈ V ), and draw it on the picture plane.

These kinds of problems do not always make sense, because the intersec-
tion to be found usually depends on a polyhedral scene chosen from ℘(D,S),
and so does its projection on the picture plane. However, if ρV (V ) = 4, the
result of the figure construction is unique because collinearity and copla-
narity of any vertex set do not depend on the choice of a polyhedral scene
in ℘(D,S). Thus, we get the following.

Corollary 5.3.1 (Unique solvability of figure-construction prob-
lems). If ρV (V ) = 4, figure-construction problems of the types given by
Problems 5.1 and 5.2 admit unique solutions.

Note that we have obtained Theorem 5.3 and Corollary 5.3.1 by consider-
ing the pictures as orthographic projections of polyhedral objects, However,
as we saw in Section 3.7, the algebraic structure of pictures does not depend
on whether we consider the pictures as orthographic projections or perspec-
tive projections. The above theorem and corollary are therefore valid also
for perspectively drawn pictures.

Theorem 5.3 also gives us a general principle for solving the figure-
construction problems.

Principle 5.1. Choose any one polyhedral scene the picture can rep-
resent, find the intersection in a three-dimensional space, and project the
result on the picture plane.

Theorem 5.3 assures us that the result does not depend on the choice of
the polyhedral scene. This principle will also play an important role in the
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correction of incorrect pictures in Chapter 7.

Figure 5.5. Unique solvability of figure-construction problems: the figure-
construction problem (a) admits the unique solution shown in
(b), whereas the problem (c) does not and the problem (d) does
only partially.

Example 5.4. Let us consider this figure-construction problem: “Find
the intersection of the object represented in Fig. 5.5(a) and the plane pass-
ing through the three points p, q, r on the visible faces of the object (here
again we assume that the picture evokes a common spatial structure in every
reader, and hence we omit the labels; recall Remark 5.1).” Since this line
drawing can be a picture of a pentagonal prism, the picture is correct. More-
over, if we specify z values of some noncoplanar four vertices (for example,
v1, v2, v3, and v6), the whole structure is located uniquely in the space, and
therefore there are exactly four degrees of freedom. The above problem can
be decomposed into several problems of finding the intersections between the
object edges and the cutting plane (i.e., the plane passing through p, q, r),
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that is, the problem of finding the intersection between the cutting plane
and the edge v2-v7, that between the cutting plane and the edge v3-v8, and
so on. Hence from Corollary 5.3.1, the original figure-construction problem
admits a unique solution. The solution is shown in (b).

Next consider this problem: “Find the intersection between the object
represented in Fig. 5.5(c) and the cutting plane passing through the three
points p, q, r on the visible faces.” Since all the faces are triangular, the
degrees of freedom in the choice of the object amount to the number of
vertices, 5. Hence the solution is not unique. If, on the other hand, the
point r is on the left rear invisible face as shown in (d), then the problem
can be partially solved. This is because the left three triangular faces form
a substructure with exactly 4 degrees of freedom, so that the intersection
between the cutting plane and the three faces can be determined uniquely.
The partial solution is shown in (d).

Example 5.5. The last observation in Example 5.4 leads to an extreme
case. Consider this problem: “Find the intersection of the corner of a poly-
hedron shown in Fig. 5.6(a) and the cutting plane passing through the three
points p, q, r on the surface.” Without changing the degrees of freedom, we
can consider the picture as the picture of a tetrahedron, and hence there are
exactly 4 degrees of freedom in the choice of this partial structure. There-
fore, the problem has a unique solution.

Figure 5.6. Simplest example of a uniquely solvable figure construction prob-
lem.
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We can easily obtain the solution by employing Principle 5.1, but fig-
ure construction on a purely two-dimensional plane is also possible in the
following way (see also Crapo, 1981).

Let the three lines be l1, l2, and l3, and the three faces be f1, f2, and
f3, as shown in (b). First, choose an arbitrary point, say a, on the line l1,
and let b be the intersection of the line l2 and the line ap (here by ap we
denote the line passing through a and p), and c be the intersection of the
line l3 and the line aq. Then, the triangle abc can be interpreted as the
intersection of the three-dimensional corner and the plane passing through
p, q, and a. Next, let d be the intersection of the line pq and the line bc.
Since in the space the points b and c are on the face f1, the point d can
be interpreted as the intersection of the line pq and the face f1. Hence, the
line dr is also in the face f1. Finally, let b′ be the intersection of the line dr
and the line l2, c′ be the intersection of dr and l3, and a′ be the intersection
of b′p and l1. In the space the point d is both on the line pq and on the
face f1, and consequently the plane determined by the two lines pq and dr
passes through the three points p, q, and r, and this plane cuts the three
edges corresponding to l1, l2, l3 at a′, b′, c′, respectively. Thus, the triangle
a′b′c′ is the intersection of the corner and the plane passing through p, q, r.

It may be interesting to note that the result does not change even if we
change the interpretation from a convex corner to a concave corner such as a
corner of a room, that is, even if we change all the labels + in the picture (a)
to −. This is because the change of the interpretation merely corresponds
to the application of the transformation (5.8) with a negative γ, and hence
the collinearity and coplanarity are still preserved.

Example 5.6. Another class of figure-construction problems is shown in
Fig. 5.7. Line drawings (a), (b), and (c) are hidden-part-eliminated pictures,
and all three objects admit exactly four degrees of freedom. Suppose that
the rear side of the object represented in (a) consists of three faces, one
having the vertices v1, v2, v3, another having v3, v4, v5, and the still other
having v5, v6, v1. Then, from Corollary 5.3.1 the pairwise intersections of
the three invisible faces are determined uniquely on the picture plane, and
hence all the hidden lines can be recovered from the visible part, as shown
in (a’). Similarly if each rear face of the objects in (b) and (c) has at least
three visible vertices and we know them, we can uniquely recover all the
hidden lines, as shown in (b’) and (c’). The hidden lines in Fig. 5.7 were
found by a computer program, which employed Principle 5.1.

Pictures with exactly four degrees of freedom admit another important
property, which gives us a simple way to judge the correctness of the pictures.
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Figure 5.7. Uniqueness of figure construction of the hidden parts of the ob-
jects.

As has been seen in Theorem 3.3, the problem of judging the correctness of
a picture can be reduced to a problem of judging the existence of a feasible
solution to some linear programming problem. Though efficient methods
(such as the simplex method; see Dantzig; 1963) have been developed to
deal with linear programming problems, the time required is not negligible,
particularly when the complexity of the pictures grows. However, if the
pictures have exactly four degrees of freedom, we need not solve the linear
programming problem; instead we need to examine only two solutions to
(5.1).

In order to see this, let us first recall that a labeled picture is correct if
and only if a solution exists to the associated system of the equations Aw = 0
and the inequalities Bw > 0 defined by (5.1) and (5.2). Let Bw < 0 denote
the set of inequalities obtained from Bw > 0 by replacing every occurrence
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of ≥ with ≤ and > with <, and let Bw = 0 denote the set of equations
obtained by replacing all the inequalities with equalities. Then, we get the
next theorem.

Theorem 5.4. Let D be a labeled line drawing representing a polyhedral
scene correctly, and let Aw = 0 and Bw > 0 be the associated equations
and the inequalities defined by (5.1) and (5.2). If D admits exactly four
degrees of freedom in the choice of the scene (i.e., ρV (V ) = 4), any solution
w to Aw = 0 satisfies Bw > 0 or Bw < 0 or Bw = 0.

Proof. For any solution w = t(z1, · · · zna1b1c1 · · · ambmcm) to Aw = 0,
let P (w) be the corresponding configuration composed of the planes in the
space; that is,

P (w) = {(x, y, z) | ajx + bjy + z + cj = 0 for some fj ∈ F}.
Because of the same discussion as given in the proofs of Theorems 5.2 and
5.3, it can be shown that, for any solution w1 to Aw = 0, w2 is a solution
to Aw = 0 if and only if P (w1) is transformed to P (w2) by a transformation
of the form (5.8).

Recall that, if the line drawing D is a hidden-part-eliminated one, an
inequality in Bw > 0 is of the form (3.3a), (3.3b), (3.3c), or (3.3d). In the
former two cases, the inequality represents the constraint that one of the
two vertices vα and vβ having the same x and y coordinates should have a
greater z coordinate than the other. In the latter two cases, it represents
the constraint that the vertex vα should be in one of the two half spaces
defined by the face fj. Similarly, as we have seen in Chapter 4, Bw > 0
driven from a hidden-part-drawn picture also consists of the same two types
of constraints as above. These two kinds of constraints are preserved by
the transformation (5.8) if γ > 0, and are reversed if γ < 0 (note that the
spatial orientation is preserved if the determinant of the matrix in (5.8) is
positive, and is reversed if negative).

Now, since D is a correct line drawing, there exists a solution, say w1,
to Aw = 0 and Bw > 0. Let w2 be any vector that satisfies Aw = 0. Then,
P (w2) is obtained from P (w1) by some transformation of the form (5.8).
According to whether the parameter γ in the transformation is positive,
zero, or negative, w2 satisfies Bw2 > 0, Bw2 = 0, or Bw2 < 0, respectively.
Thus we get the theorem.

From this theorem, we can construct a simple method for finding a so-
lution to Aw = 0 and Bw > 0. Suppose that there are exactly four degrees
of freedom in the choice of the solution to Aw = 0. Then, there exist four
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vertices, say v1, v2, v3, and v4, such that their z values z1, z2, z3, and z4

uniquely specify the solution w to Aw = 0 (a method for finding them will
be given in the next chapter). If we choose the z values in such a way that
the four vertices are coplanar, then the corresponding w satisfies Bw = 0.
Otherwise, we have these three cases: (1) w satisfies Bw > 0, (2) w satisfies
Bw < 0, or (3) w satisfies neither of them. In case (1), w is a solution
we want to get. In case (2), we can get a desired solution from w by the
transformation (5.8) with a negative γ. In case (3), there exists no solution.
Hence, we get the following algorithm for finding a solution to Aw = 0 and
Bw > 0.

Method 5.1 (Recovery of a polyhedral scene from a line drawing
with exactly four degrees of freedom).
Input: a labeled line drawing having four degrees of freedom in the choice of

the polyhedral scene. (Without loss of generality, let {z1, z2, z3, z4} form
a base of the matroid (V, ρV ); that is, specification of the values of these
four unknowns determines a solution to Aw = 0 uniquely.)

Output: a polyhedral scene represented by the line drawing.
Procedure:
Step 1. Assign any real numbers to z1, z2, and z3.
Step 2. Find the intersection of the plane passing through the three vertices

vα = (xα, yα, zα), α = 1, 2, 3, and the line that is parallel to the z
axis and that passes through the point (x4, y4). Let the intersection
be (x4, y4, z

(0)
4 ).

Step 3. Choose any real numbers z
(1)
4 and z

(2)
4 such that z

(1)
4 < z

(0)
4 <

z
(2)
4 . (Then, the orientation of (v1, v2, v3, v

(1)
4 ) is opposite to that of

(v1, v2, v3, v
(2)
4 ), where v

(k)
4 = (x4, y4, z

(k)
4 ), k = 1, 2.)

Step 4. If the vector, say w(1), specified by (z1, z2, z3, z
(1)
4 ) satisfies Bw > 0,

then return w(1). If the vector, say w(2), specified by (z1, z2, z3, z
(2)
4 )

satisfies Bw > 0, then return w(2). Otherwise return “false”.

By this method, we can judge the correctness of the picture D quickly.
If it returns “false”, D is incorrect, and otherwise D is correct.

5.4 Axonometric Projection

The line drawings we have considered so far give no quantitative information
about the thickness of the objects; they describe qualitative structures of the
objects, but do not specify lengths of edges or orientations of faces. There is,
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however, an exceptional class of engineering line drawings called axonometric
drawings. The axonometric drawings are the orthographic projection of
objects, and they contain scales in certain principal directions, so that we
can read real lengths of edges that are parallel to the scale axes. Thus
they specify objects more definitely than usual pictures. In this section we
study how many degrees of freedom are left to the objects represented by
the axonometric drawings.

Let (X,Y,Z) be a three-dimensional Cartesian coordinate system fixed
to an object. This coordinate system is supposed to be chosen in such a way
that a large number of the edges of the object are parallel to the coordinate
axes. Let eX ,eY , and eZ denote the unit vectors along the X,Y , and Z
axes, respectively.

As before, we consider another Cartesian coordinate system, say (x, y, z),
whose x-y plane is regarded to be a picture plane. The object and the unit
vectors eX ,eY ,eZ are projected orthographically on this plane, as shown
in Fig. 5.8. Contrary to the (X,Y,Z) coordinate system, the (x, y, z) co-
ordinate system is chosen in general position with respect to the object so
that no accidental alignment occurs in the picture plane. The projection
of the object together with that of the unit vectors eX ,eY ,eZ is called an
axonometric drawing of the object.

Figure 5.8. Axonometric projection.

Let lX , lY , lZ be the projection on the x-y plane of the unit vectors
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eX ,eY ,eZ , respectively. Since lX is the image of the unit vector, |lX | denotes
the ratio of the projected length to the real length (where |l| denotes the
length of the vector l). This ratio is common to all edges that are parallel
to the X axis in the space. Similarly, |lY | and |lZ | denote the ratios of the
projected lengths to the real lengths of edges that are parallel to the Y axis
and the Z axis, respectively. Moreover, since we have assumed that the
(x, y, z) coordinate system is in general position, we can easily find edges
that are parallel to the coordinate axes:

Heuristic 5.1. If a line segment is parallel to the projected axis lX [resp.
lY or lZ ], then the corresponding edge in the scene is also parallel to the X
axis [resp. the Y axis or the Z axis].

Using this heuristic together with ratios |lX |, |lY |, |lZ |, we can determine
real lengths of edges that are parallel to the coordinate axes. For example,
if there is a line segment in a picture that is parallel to lX and of length t,
then the line segment is an image of an edge that is parallel to the X axis
and of length t/|lX |.

In many practical line drawings, lX , lY , lZ are not drawn explicitly. This
is because, first, for engineering objects such as mechanical parts and build-
ings, the directions of the vectors lX , lY , lZ can often be found easily as
the directions of the three prevailing groups of mutually parallel edges, and
second, once the directions of lX , lY , lZ (on the picture plane) are found,
the ratios |lX |, |lY |, |lZ | can be calculated in a systematic manner (see, for
example, Kanatani, 1986). However, we assume for simplicity that the three
vectors lX , lY , lZ are given explicitly in the line drawing.

Note that from the vector lX in the picture we can determine the direc-
tion of the corresponding spatial vector eX up to the mirror-image reversal
with respect to a mirror parallel to the x-y plane. The ambiguity due to the
mirror-image reversal may be removed if we analyze the line drawing glob-
ally; in particular, important information is given by the distinction between
solid lines (visible edges) and broken lines (invisible edges) at junctions hav-
ing three lines that are respectively parallel to lX , lY and lZ (Kanatani,
1986). In what follows, however, we simply assume that all of the three spa-
tial vectors eX ,eY ,eZ face toward the viewer. Hence, given lX , lY , lZ , we
can determine the directions of eX ,eY ,eZ uniquely. Thus, if all the edges
are connected and are parallel to eX ,eY , or eZ , then the spatial structure
of the edges (i.e., the skeleton of the object) can be determined uniquely
from its axonometric drawing.

Let D be a labeled axonometric line drawing and S = (V, F,R, T ) be a
spatial structure associated with D. As we have seen, the associated three-
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dimensional structure should satisfy (5.1). Also, the axonometric axes give
additional constraints to the three-dimensional structure in the following
way.

Let EX , EY , and EZ be the sets of edges that are parallel to the X
axis, the Y axis, and the Z axis, respectively. Suppose that each edge in
EX , EY , EZ is represented by an ordered pair of the terminal vertices in
which the order coincides with the positive direction of the associated axis.
Hence for example, “(vα, vβ) ∈ EX” implies that there is an edge connecting
vα with vβ and that the direction from vα to vβ coincides with the positive
direction of the X axis.

Now suppose that (vα, vβ) is in EX . Recall that the ratio of the length
of the edge to the length of its image is 1/|lX |, which implies that if a point
moves along the image of the edge in the lX direction by distance |lX |, then
the corresponding spatial point moving along the edge itself increases its z
coordinate by

√
1 − |lX |2. Thus we get

zβ − zα =

√
1 − |lX |2

√
(xβ − xα)2 + (yβ − yα)2

|lX | . (5.9a)

The right hand side of (5.9a) is a constant determined by the line drawing
D, and hence (5.9a) is linear in the unknowns zα and zβ . In a similar way,
for an element (vα, vβ) in EY we get

zβ − zα =

√
1 − |lY |2

√
(xβ − xα)2 + (yβ − yα)2

|lY | , (5.9b)

and for an element (vα, vβ) in EZ we get

zβ − zα =

√
1 − |lZ |2

√
(xβ − xα)2 + (yβ − yα)2

|lZ | . (5.9c)

Collecting all the equations of the above three types (i.e., (5.9a), (5.9b),
and (5.9c)), we get a system of linear equations,

Cw = d, (5.10)

where w is the unknown vector w = t(z1 · · · zna1b1c1 · · · ambmcm), C is a
constant matrix of size |EX ∪EY ∪EZ |×(n+3m), and d is a |EX ∪EY ∪EZ |-
dimensional constant vector.

Thus, the object represented by the axonometric drawing D is con-
strained by (5.1) and (5.10). Hence, we have

n + 3m − rank({A} ∪ {C})
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degrees of freedom in choosing the object and locating it in the space.
For any subset X of the set of the unknowns H = {z1, . . . , zn, a1, b1, c1,

. . . , am, bm, cm}, let us define a function σH(X) by

σH(X) = rank({A} ∪ {C} ∪ {ei | ui ∈ X}) − rank({A} ∪ {C}), (5.11)

where ei denotes an (n + 3m)-dimensional vector whose ith component is
1 and the other components are 0’s. Then, by the same discussion as in
Sections 5.1 and 5.2, we see that (H,σH) is a matroid and σH(X) is the
maximum cardinality of a subset Y of X such that if we give values to the
unknowns in Y arbitrarily, the system consisting of (5.1) and (5.10) still
admits a solution. In other words, we can remove σH(X) degrees of freedom
in the choice of the object by selecting appropriate values for the unknowns
in X. Thus, the matroid (H,σH) represents how the degrees of freedom in
the choice of the object are distributed in the set H of the unknowns. We
call σH(X) the degrees of freedom of the set X.

Since one degree of freedom is due to the translation along the z axis, the
object shape itself admits σH(H)−1 degrees of freedom. That is, σH(H)−1
additional data (such as lengths of edges and angles between faces) are
required in order to specify the shape of the object uniquely.

Example 5.7. Consider the axonometric line drawing D shown in Fig. 5.9
together with the spatial structure

V = {v1, . . . , v6},
F = {f1, . . . , f5},
R = {(v1, f1), (v2, f1), (v3, f1), (v1, f2), (v2, f2), (v4, f2),

(v5, f2), (v1, f3), (v3, f3), (v4, f3), (v6, f3), (v2, f4),
(v3, f4), (v5, f4), (v6, f4), (v4, f5), (v5, f5), (v6, f5)},

EX = {(v3, v1), (v6, v4)},
EY = {(v3, v2), (v6, v5)},
EZ = {(v4, v1), (v5, v2), (v6, v3)}.

In the figure, the vertex vα (α = 1, . . . , 6) is denoted by the number α. The
face f1 corresponds to the top face of the object, f2 the front face, f3 the
left rear face, f4 the right rear face, and f5 the bottom face. From this
line drawing, we get the system of linear equations (5.1) and (5.10), whose
coefficient matrices satisfy rank({A} ∪ {C}) = 20. Hence

σH(H) − 1 = 6 + 3 × 5 − 20 − 1 = 0;
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Figure 5.9. Axonometric line drawing representing a unique shape.

that is, the shape is uniquely represented by this picture.
This result is reasonable for the following reason. First, note that, for

any edge in EX ∪EY ∪EZ , if we specify the spatial position of one terminal
vertex, then the position of the other terminal vertex is determined uniquely.
Second, note that the graph composed of the node set V and the arc set
EX ∪ EY ∪ EZ is connected. Therefore, if we specify the position of any
one vertex of the object (this corresponds to the removal of the degree
of freedom of the translation along the z axis), then the whole structure
is uniquely located in a three-dimensional space, which coincides with our
result σH(H) − 1 = 0.

Example 5.8. Next consider the line drawing D shown in Fig. 5.10,
where V, F,R,EZ are the same as those in Example 5.7, but EX = ∅ and
EY = ∅ (note that the object has the same topological structure as that in
Fig. 5.9, but unlike Fig. 5.9 no line segment is parallel to lX or lY ). The
system consisting of (5.1) and (5.10) satisfies rank({A} ∪ {C}) = 18, and
hence we get

σH(H) − 1 = 6 + 3 × 5 − 18 − 1 = 2;

that is, two more data are necessary to specify the shape uniquely. This
can be understood in the following way. Since the three side edges are
parallel to the Z axis, the three side faces are all parallel to the Z axis. The
three edges on the top face are respectively parallel to the three edges on
the bottom face, and consequently the top face is parallel to the bottom
face. However, no edge is parallel to the X axis or the Y axis, and hence
there is no information about the angles between the top face and the side
faces. The gradient of the top face (or, in other words, the direction of the
normal to the top face) has two degrees of freedom, and once these degrees
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of freedom are removed, the shape is determined uniquely. This is what our
result σH(H) − 1 = 2 means.

Figure 5.10. Axonometric line drawing admitting two degrees of freedom.

For example, U = {z1, z2, z3} is a base of the matroid (H,σH). Hence, if
we specify values of z1, z2, z3, then the shape and the position is determined.
Giving the first value, say the value of z1, corresponds to the removal of the
degree of freedom of the translation along the z axis, and consequently we
can give any value to z1 without affecting the shape of the object. We
put z1 = 0. Then, the shape of the object can be specified by selecting
appropriate values for z2 and z3.



Chapter 6

Combinatorial Structures of
Line Drawings

We have presented the two modules, the module for finding candidates for
spatial interpretations of a line drawing, and the module for discriminating
betwe6.1 en correct and incorrect interpretations. Indeed, they constitute
a theoretical solution to the problem of line drawing interpretation. In a
practical sense, however, they alone cannot enable a machine to interpret line
drawings as human beings do, because the algebraic treatment of pictures
in the second module is too strict to mimic flexible human perception; some
pictures are judged to be incorrect only because they contain slight errors
in the vertex positions. In order to overcome this difficulty we shall in this
and the succeeding two chapters present the third module, which makes a
machine more flexible in that it can extract the three-dimensional structures
even if the pictures contain vertex position errors and hence are incorrect in
a strict sense. For this purpose we study in this chapter some combinatorial
structures of line drawings that will play main roles in the third module.

6.1 Difficulties in the Algebraic Approach

Using Theorem 3.3 (or Theorem 4.1 in the case of hidden-part-drawn pic-
tures), we can judge whether an assignment of labels to a picture is a correct
interpretation of the picture or not. Indeed the theorem represents a nec-
essary and sufficient condition for a picture to be correct in terms of linear
algebra. However, this algebraic condition is too sensitive to numerical er-
rors in the following two points.

First, the system of equations (5.1) is not necessarily linearly indepen-

109
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dent. When it is linearly dependent, even small errors in numerical com-
putation cause the rank of A, the coefficient matrix of (5.1), to change, so
that it is not easy to judge the existence of a solution to (5.1) and (5.2) in a
stable manner. Therefore, before applying the linear programming method,
we have to check linear independence of the matrix A; if it is not linearly
independent, redundant equations should be deleted from the system of
equations (5.1) in order to make it independent.

Second, even if the system of equations (5.1) is linearly independent, the
theorem is too strict to be applied to practical data, which usually contain
numerical errors due to digitization, etc.

The superstrictness of the theorem can be illustrated by the typical ex-
ample shown in Fig. 6.1(a). This labeled line drawing corresponds to the
interpretation of the picture as a top view of a truncated pyramid. In a
strict sense, however, it does not represent any polyhedron; indeed, if it
were a truncated pyramid, the three quadrilateral faces would have a com-
mon point of intersection in the three-dimensional space (when they were
extended), and hence the three lines of pairwise intersections should meet at
a common point on the picture plane, but they do not, as has been shown
in Fig. 1.3. This implies that there is no solution to the system consisting
of (3.2) and (3.4) associated with this picture. Thus, Theorem 3.3 judges
that the picture is incorrect.

Figure 6.1. Sensitivity of correctness to vertex positions: the correctness of
picture (a) is sensitive to vertex-position errors, whereas that of
(b) is not.

It should be noted that this difficulty is not the same as the first point.
Indeed the system of equations (5.1) associated with the line drawing in
Fig. 6.1(a) is linearly independent, as will be shown later (see Example 6.1).
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What is important is that though the judgment based on Theorem 3.3
is correct, it is quite different from what we want. Line drawings drawn
by human beings or extracted from light intensity images almost always
contain vertex position errors, and in order to extract three-dimensional
structures from these line drawings, a machine should be tolerant of such
inevitable errors. Indeed the labeling scheme discussed in Chapter 2 is much
tolerant of quantitative errors; it treats line drawings in a symbolic manner.
However, recall that the labeling scheme alone is not enough for the picture
interpretation, because pictures of impossible objects often admit consistent
assignments of the labels (recall the pictures (e) and (f) in Fig. 2.15). Thus,
we have to search for some intelligent mechanism in order to make a machine
flexible in the sense that, like human beings, it can accept pictures even if
they contain errors in their vertex positions.

6.2 Generically Reconstructible Incidence Struc-

tures

We have seen that a picture of a truncated pyramid like Fig. 6.1 (a) becomes
incorrect when vertices (and consequently the lines incident to them) are
moved slightly on the picture plane. However, not all pictures are so sensitive
to the vertex positions. A picture of a tetrahedron shown in Fig. 6.1(b), for
example, represents a polyhedral object correctly even if the vertex positions
are perturbed. Thus, some pictures are sensitive to vertex position errors,
while others are not. Here we shall distinguish between these two kinds of
pictures more precisely. For this purpose we concentrate our attention upon
the equations (5.1), and introduce some new concepts.

Let D be a labeled line drawing, and let S = (V, F,R, T ) be its spatial
structure. Recall that an element of R is of the form (vα, fj), representing
the constraint that the vertex vα should be on the face fj. In what follows
we call elements of R incidence pairs, and the triple I = (V, F,R) composed
of the first three constituents of S the incidence structure associated with
the line drawing D. In a more formal manner, we can say that a triple
I = (V, F,R) is an incidence structure, if V and F are mutually disjoint
finite sets and R is a subset of V × F , where V × F denotes the set of all
ordered pairs whose first elements are taken from V and second elements
from F . The incidence structure I = (V, F,R) can also be regarded as a
bipartite graph having the two node sets V and F and the arc set R. If
(v, f) ∈ R, we say that “the vertex v is on the face f” and “the face f has
the vertex v.”



112 6. Combinatorial Structures

For an incidence structure I = (V, F,R), we use the following notation.
For any subset X of V , let F (X) be the set of faces that has at least
one vertex in X, and let R(X) be the set of incidence pairs whose first
components belong to X; that is,

F (X) = {f | (v, f) ∈ R for some v ∈ X} (X ⊆ V ),
R(X) = {(v, f) | (v, f) ∈ R and v ∈ X} (X ⊆ V ).

Similarly for any subset X of F , let V (X) be the set of vertices that are
on at least one face in X, and let R(X) be the set of incidence pairs whose
second components belong to X; that is,

V (X) = {v | (v, f) ∈ R for some f ∈ X} (X ⊆ F ),
R(X) = {(v, f) | (v, f) ∈ R and f ∈ X} (X ⊆ F ).

Furthermore, for any subset X of R, let V (X) and F (X) be the set of
vertices and that of faces, respectively, that appear in some elements of X;
that is,

V (X) = {v | (v, f) ∈ X} (X ⊆ R),
F (X) = {f | (v, f) ∈ X} (X ⊆ R).

　
The above notation may seem ambiguous. Indeed V (X), for example,

is used both for X ⊆ F and for X ⊆ R. In what follows, however, we use
the notation only when we can say from the context which it means; the
notation can save many symbols.

A triple I ′ = (V ′, F ′, R′) is called a substructure of the incidence structure
I = (V, F,R) if V ′ ⊆ V, F ′ ⊆ F , and R′ ⊆ R∩(V ′×F ′). For any subsets X ⊆
V, Y ⊆ F , and Z ⊆ R, the substructures (X,F (X), R(X)), (V (Y ), Y,R(Y )),
and (V (Z), F (Z), Z) are called the substructures induced by X,Y , and Z,
respectively.

Though the system of the equations (5.1) was originally introduced for
a polyhedral scene, it represents the constraints placed by the incidence
structure I, that is, the constraints placed by which vertices should be on
which planes. Other properties of the polyhedral scene (such as properties
of edges and thickness of objects) are all represented by the inequalities
(5.2). Hence, it seems natural to interpret a solution to (5.1) not as a
polyhedral scene itself but as a collection of planes in the space. That is,
with any solution w = t(z1 · · · zna1b1c1 · · · ambmcm) to (5.1), we associate
the collection, say P (w), of the planes defined by

P (w) = {(x, y, z) | ajx + bjy + z + cj = 0 for some fj ∈ F}. (6.1)
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A solution w = t(z1 · · · zna1b1c1 · · · ambmcm) to (5.1) is said to be nonde-
generate if aj �= ak or bj �= bk or cj �= ck holds for any j and k (1 ≤ j < k ≤
m), and degenerate otherwise. In other words, w is nondegenerate if and
only if no two distinct elements of F correspond to the same plane in P (w).
The system of equations (5.1) always has a degenerate solution; for example,
the (n + 3m)-dimensional null vector w = t(0 · · · 0) is a solution to (5.1).
On the other hand, the system does not necessarily have a nondegenerate
solution.

Whether or not the system of equations (5.1) admits a nondegenerate
solution depends on the vertex positions (x1, y1), . . . , (xn, yn), and the in-
cidence structure I = (V, F,R) because they define the system (recall that
A, the coefficient matrix of (5.1), contains x1, y1, . . . , xn, yn as its compo-
nents). For example, it seems at least intuitively obvious that the picture of
a tetrahedron in Fig. 6.1(b) admits a nondegenerate solution, whereas any
solution is degenerate for the picture of an “impossible truncated pyramid”
in Fig. 6.1(a); this picture has a nondegenerate solution only when it is
drawn in the way that the three edges have a common point of intersection.

What is important is that if the picture is sensitive to vertex positions,
the associated system of equations (5.1) has nondegenerate solution only
when the vertices are drawn in some special position. From this observation
we can introduce the following definition.

The n points (x1, y1), . . . , (xn, yn) are said to be in generic position if
the 2n real numbers x1, y1, . . . , xn, yn are algebraically independent over the
rational field. By the definition of the algebraic independence, if the points
are in generic position, any polynomial of x1, y1, . . . , xn, yn with coefficients
being rational numbers is 0 if and only if it is identically 0 when we consider
x1, y1, . . . , xn, yn as indeterminate symbols. Roughly speaking, therefore,
the vertices being in generic position means that there is no special depen-
dence among the vertex positions; for example, no three points are on a
common straight line or no three lines meet at a common point. In practi-
cal situations the vertices can almost always be regarded as being in generic
position because any special dependence, if exists, will be lost by digitization
errors, computation errors, and so on.

In particular, if the vertices are in generic position, a subdeterminant
of the coefficient matrix A in (5.1) does not vanish unless it is identically 0
when x1, y1, . . . , xn, yn are considered as indeterminate symbols, and hence
the existence of nondegenerate solutions depends on I only. Thus, we can
introduce the next definition.

Tue incidence structure I = (V, F,R) is said to be generically recon-
structible if and only if the system of the equations (5.1) has a nondegen-
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erate solution when the vertices are in generic position. In other words,
the incidence structure I is generically reconstructible if and only if for any
picture whose incidence structure is I and whose vertices are in generic posi-
tion, the associated system of equations (5.1) admits a solution w such that
the planar surfaces corresponding to elements of F are mutually distinct
in the configuration P (w). Therefore, if I is generically reconstructible,
the correctness of the picture is not affected by small errors in vertex posi-
tions. Note, however, that being generically reconstructible does not imply
that the corresponding picture represents a polyhedral scene, because the
generic reconstructibility depends only on (5.1) whereas the correctness of
the picture depends on both (5.1) and (5.2).

Now we can state the following theorems, which will play the most im-
portant role in the third module.

Theorem 6.1 (Linear independence of the equations (5.1)). Let
D be a labeled line drawing whose vertices are in generic position, and let
I = (V, F,R) be its incidence structure. Then, the equations (5.1) associated
with D are linearly independent if and only if, for any nonempty subset X
of R,

|V (X)| + 3|F (X)| ≥ |X| + 3. (6.2)

Theorem 6.2 (Recognition of the generic reconstructibility). For
any incidence structure I = (V, F,R), the following three statements are
equivalent.
(1) I is generically reconstructible.
(2) For any subset X of F such that |X| ≥ 2,

|V (X)| + 3|X| ≥ |R(X)| + 4. (6.3)

(3) For any subset X of R such that |F (X)| ≥ 2,

|V (X)| + 3|F (X)| ≥ |X| + 4. (6.4)

Corollary 6.2.1. Let D be a labeled line drawing, and let I be the asso-
ciated incidence structure. If the vertices of D are in generic position and
I is generically reconstructible, the equations (5.1) associated with D are
linearly independent.

Theorem 6.2 and Corollary 6.2.1 were first conjectured by Sugihara and
proved by him for special cases, including pictures of trihedral objects and
pictures of convex objects (Sugihara, 1979c, 1984c). Quite recently they
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were proved completely by Whiteley (1988). The proofs will be given in the
next section.

The important point of the theorems is that both the linear independence
and the generic reconstructibility can be recognized by integer calculation
only.

Example 6.1. Let us consider the labeled line drawing in Fig. 6.1(a)
again. If we regard it as a natural picture (i.e., a picture representing only
visible part of the object), the object has six vertices and four faces: |V | =
6 and |F | = 4. Since the three faces are quadrilateral and the other is
triangular, there are altogether 15 (= 3 × 4 + 1 × 3) incidence pairs: |R| =
15. Therefore, substituting X = F in the inequality (6.3), we see that
the left-hand side amounts to |V | + 3|F | = 6 + 3 × 4 = 18, whereas the
right-hand side to |R| + 4 = 15 + 4 = 19, falsifying the inequality. Hence,
from Theorem 6.2 the incidence structure associated with this picture is not
generically reconstructible, and consequently this picture does not represent
a polyhedral scene when the vertices are in generic position.

However, the incidence structure satisfies the inequality (6.2) in Theorem
6.1, and hence the equations (5.1) are linearly independent when the vertices
are in generic position. This shows that the two difficulties discussed in
Section 6.1 are not equivalent.

In the above counting we do not consider the background plane corre-
sponding to the surrounding region in the picture. Even if the background
plane and the vertices on it are added to the incidence structure, it is still
generically unreconstructible. We can see this from Theorem 6.2, because
the inequality (6.3) is falsified if we adopt as X the subset consisting of the
four visible faces of the truncated pyramid.

The generic unreconstructibleness can be seen also when we regard the
picture as a hidden-part-drawn one (i.e., when we count the invisible face
forming the base triangle of the truncated pyramid).

On the other hand, the object represented in Fig. 6.1(b) has four visible
vertices and three visible faces, which are all triangular, and hence has 9
(= 3×3) incidence pairs. Putting X = F , the left-hand side of the inequality
(6.3) equals |V |+ 3|F | = 4 + 3× 3 = 13 and the right-hand side also equals
|R| + 4 = 9 + 4 = 13. Thus, the inequality (6.3) is satisfied. In a similar
manner we can see easily that the inequality holds for any two-element
subset X of F . Hence the incidence structure associated with the picture in
Fig. 6.1(b) is generically reconstructible.

From the viewpoint of time complexity, Theorem 6.2 in its original form
is not very practical. If we check statement (2) in the theorem in a straight-
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forward manner, we have to check the inequality (6.3) for almost all subsets
of the face set F ; it will require O(2m) time in the worst case, where m
denotes the number of the faces. The check of statement (3) also requires
O(2|R|) time. Fortunately, however, the check can be done in O(|R|2) if we
modify the theorem. An efficient algorithm will be given in Chapter 8.

6.3 Proofs of the Main Theorems

Here we shall prove Theorems 6.1 and 6.2. The proofs below are due to
Whiteley (1988).

Let M = {1, 2, . . . , p} and N = {1, 2, . . . , q}, respectively, be the sets
of the first p and the first q natural numbers, and let W be a subset of
M × N . The triple G = (M,N,W ) can be regarded as a bipartite graph
having the left node set M , the right node set N , and the arc set W . We
call an element i of M the ith left node and an element j of N the jth right
node. An element (i, j) of W is called the arc connecting the ith left node
with the jth right node, and i and j are called the left terminal node and
the right terminal node, respectively, of the arc (i, j). For any subset M ′

of M , let N(M ′) denote the set of right nodes that are connected to some
elements of M ′; that is,

N(M ′) = {j | (i, j) ∈ W for some i ∈ M ′} (M ′ ⊆ M).

Then, the triple (M ′, N(M ′),W ∩ (M ′ × N(M ′))) also forms a bipartite
graph, which we call the subgraph of G induced by the left node set M ′.

A subset W ′ of W is called a matching of G = (M,N,W ) if the terminal
nodes of arcs in W ′ are all distinct. A matching W ′ of G is said to be
complete if any element of M is a terminal node of some arc in W ′. A
subset M ′ of M is said to have a complete matching if the subgraph induced
by M ′ has a complete matching.

Let G = (M,N,W ) be a bipartite graph having p left nodes and q right
nodes, and let X be a p by q matrix of indeterminates xij (1 ≤ i ≤ p, 1 ≤
j ≤ q). We define the p by q matrix Θ(G,X) with entities θij by

θij = xij if (i, j) ∈ W,

θij = 0 otherwise.

The next proposition is a well-known theorem .

Proposition 6.1. Let G = (M,N,W ) be a bipartite graph. For any
subset M ′ of M , the following three statements are equivalent.
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(1) M ′ has a complete matching.
(2) Any subset Z of M ′ satisfies |Z| ≤ |N(Z)|.
(3) The rows of Θ(G,X) corresponding to the elements of M ′ are linearly

independent.

The equivalence of (1) and (2) was proved by Hall (1935), and the equiv-
alence of (1) and (3) was proved by Edmonds (1967) and Mirsky and Perfect
(1967) (see also Mirsky, 1971).

For a bipartite graph G = (M,N,W ) having p left nodes and q right
nodes and a p by q matrix X of indeterminates, we consider the following
system of linear equations:

Θ(G,X)u = 0, (6.5)

where u is a q-dimensional unknown vector. For any solutions u1 and u2 to
(6.5), αu1 +βu2 also is a solution to (6.5). Thus the solutions to (6.5) form
a linear space of the dimension q − rank(Θ(G,X)); the space is called the
kernel of θ(G,X) and its dimension the nullity of Θ(G,X). If the nullity
equals k, we can choose k out of q entities of the unknown vector u in such a
way that any entity of the solution vector to (6.5) can be expressed as a linear
combination of these k entities; the k-element subset of N corresponding to
these k entities is said to span the kernel.

Then, we get the next proposition.

Proposition 6.2. For a bipartite graph G = (M,N,W ) and a nonnega-
tive integer k, the following two statements are equivalent.
(1) |M | = |N |−k and, for any nonempty subset M ′ of M , |M ′| ≤ |N(M ′)|−

k.
(2) The nullity of Θ(G,X) is k and, for any k-element subset N ′ of N , N ′

spans the kernel of Θ(G,X).

Proof. Assume that statement (1) is true. Then, any subset M ′ of M sat-
isfies |M ′| ≤ |N(M ′)|, and from Proposition 6.1 the rows of Θ(G,X) are lin-
early independent. Thus, the nullity of Θ(G,X) equals |N |−rank(Θ(G,X)) =
|N | − |M | = k. Next, for any k-element subset N ′ = {j1, j2, . . . , jk} of N ,
let G∗ = (M∗, N∗,W ∗) be the bipartite graph obtained by adding to G
k new left nodes p + i, i = 1, . . . , k (where p = |M |), and k new arcs
(p + i, ji), i = 1, 2, . . . , k; that is,

M∗ = M ∪ {p + 1, . . . , p + k},
N∗ = N,

W ∗ = W ∪ {(p + 1, j1), . . . , (p + k, jk)}.
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Then, |M∗| = |N∗| and, for any subset M ′ of M∗, |M ′| ≤ |N∗(M ′)|. Hence
from Proposition 6.1 the rows of Θ(G∗,X∗) are linearly independent, where
X∗ is a p+k by p+k matrix of indeterminates. Since the k rows correspond-
ing to the added k left nodes have nonzero entities only on the k columns
corresponding to elements of N ′, N ′ spans the kernel.

Conversely, assume that statement (2) is true. Suppose, contrary to the
theorem, that there exists a nonempty subset M ′ of M such that |M ′| >
|N(M ′)| − k; let M ′ be minimal with this property. Then, we get |M ′| =
|N(M ′)| − (k − l) for some l > 0. Because of the minimalness of M ′, any
proper nonempty subset Z of M ′ satisfies |Z| ≤ |N(Z)|−k ≤ |N(Z)|−(k−l).
Hence, from the former half of the proof, the nullity of Θ(G′,X ′) is k − l,
where G′ is the subgraph of G induced by M ′ and X ′ is the submatrix of X
composed of the |M ′| rows corresponding to M ′ and the |N(M ′)| columns
corresponding to N(M ′). Thus, N(M ′) spans the kernel of Θ(G′,X ′), which
is of dimension k−l. Since Θ(G′,X ′) is a subgraph of Θ(G,X), N(M ′) spans
an at most (k− l)-dimensional subspace of the kernel of Θ(G,X). However,
N(M ′) has at least k − l + 1 elements. Hence, any k-element subset of N
containing N(M ′) can span at most (k − 1)-dimensional subspace of the
kernel of Θ(G,X). This contradicts the assumption.

A bipartite graph is said to be of degree k + 1 if every left node is
connected with exactly k + 1 right nodes. Let M = {1, 2, . . . , p} and N =
{1, 2, . . . , q}, and let G = (M,N,W ) be a bipartite graph of degree k + 1.
Note that in our notation the left nodes and the right nodes are ordered. For
an element (i, j) of W , we define sign(i, j) to be (−1)l−1 if the right node j
is the lth node connected with the left node i. Let Y be a k by q matrix with
entities yij such that yk1 = yk2 = · · · = ykq = 1 and the other entities are
distinct indeterminates, and, for any (i, j) ∈ W , let Y (i/j) denote the k by
k matrix composed of the columns of Y corresponding to the right nodes in
N({i}) except the right node j. Now, we define the p by q matrix Φ(G,Y )
with entities ϕij by

ϕij = sign(i, j)det(Y (i/j)) if (i, j) ∈ W,

ϕij = 0 otherwise.

Then, we get the next proposition.

Proposition 6.3. Let G = (M,N,W ) be a degree k + 1 bipartite graph
having p left nodes and q right nodes, and let Y be a k by q matrix whose last
row is (1 · · · 1) and whose other rows are composed of indeterminate entities.
For any subset M ′ of M , the following two statements are equivalent.
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(1) For any nonempty subset Z of M ′, |Z| ≤ |N(Z)| − k.

(2) The rows of Φ(G,Y ) corresponding to M ′ are linearly independent.

Proof. Note that whether statement (1) and/or (2) is true depends only
on the subgraph induced by M ′; it does not depend on the other part of
the underlying bipartite graph. Therefore, without loss of generality we can
assume that the left node set of G has been augmented so that, for any k+1
right nodes, there exists the left node that is connected to all of them and

to them only; hence p =

(
q

k + 1

)
.

First we assume that M ′ satisfies statement (1) and derive statement
(2). Since our goal here is to show linear independence of the corresponding
rows, it suffices to consider M ′ that is maximal with the required property.
Thus, without loss of generality we assume that |M ′| = |N(M ′)| − k. Let
G′ be the subgraph induced by M ′, and let us renumber the nodes in G′

in such a way that M ′ = {1, 2, . . . , |M ′|} and N(M ′) = {1, 2, . . . , |N(M ′)|}.
Furthermore, let X be an |M ′| by |N(M ′)| matrix of indeterminates xij.
Then, by Proposition 6.2, the nullity of Θ(G′,X) is exactly k (and hence the
rows of Θ(G′,X) are linearly independent), and the kernel is spanned by any
k-element subset of N(M ′). We choose as a basis for the kernel the rows of
a k by |N(M ′)| matrix U with entities uij (i = 1, . . . , k; j = 1, . . . , |N(M ′)|).

Without loss of generality we can choose (1 · · · 1) as the kth row of U
in the following way. First, since the row vectors of U span the kernel of
Θ(G′,X), any column of U has a nonzero entities in some row. Hence,
making an appropriate linear combination of the rows, we obtain a row
whose entities are all nonzero, and replace some row of U with this new row;
let us put this new row at the bottom (i.e., the kth row) of U . Next, without
changing the linear independence of the rows of Θ(G′,X), we multiply the
jth column of Θ(G′,X) by ukj and the jth column of U by 1/ukj . In
what follows let us denote the resultant two matrices by Θ(G′,X) and U ,
respectively. Thus modified matrix U has (1 · · · 1) as the kth row and the
set of rows of U still form a basis for the kernel of Θ(G′,X).

Now, let uj denote the jth column of U . Then, for any left node i in M ′,
we have

∑
j xijuj = 0, where the summation is taken over all right nodes

j connected with the left node i. For simplicity, if we assume that the left
node i is connected with the first k + 1 right nodes 1, 2, · · · , k + 1, then the
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equation can be expressed by

[
u1 u2 · · · uk+1

]
⎡
⎢⎢⎢⎢⎣

xi1

xi2
...

xi,k+1

⎤
⎥⎥⎥⎥⎦ = 0.

In other words,

[
u1 · · · uk

] ⎡⎢⎣
xi1
...

xik

⎤
⎥⎦ = −xi,k+1

[
uk+1

]
.

Since the coefficient matrix in the left-hand side is nonsingular, by Cramer’s
formula we get

xij =
(−1)k−j det[u1 · · ·uj−1uj+1 · · ·uk+1]

det[u1 · · ·uk]
xi,k+1 (i = 1, . . . , k).

If we put
xi,k+1 = (−1)k+1 det[u1 · · ·uk],

then we get

xij = (−1)j−1 det[u1 · · ·uj−1uj+1 · · ·uk+1] (j = 1, . . . , k).

Thus (xi1 · · · xi,k+10 · · · 0), the row of Θ(G′,X), coincides with the corre-
sponding row of the matrix Φ(G′,X), which is a specialization of Φ(G′, Y ).
Since these rows associated with M ′ are linearly independent in Θ(G′,X),
they remain independent in Φ(G′, Y ). The corresponding rows in Φ(G,Y )
can be obtained from the rows of Φ(G′, Y ) by inserting 0’s in some columns;
they still remain independent in Φ(G,Y ). Thus we get statement (2).

Conversely, assume that M ′ satisfies statement (2). For each left node i
in M ′ and each row, say the lth row, of Y , we have∑

j

ylj(−1)j−1 det(Y (i/j)) = 0,

where the summation is taken over all the right nodes connected with the left
node i. This is because the left-hand side is the determinant of a (k + 1) by
(k+1) matrix with two rows the same. Thus, the kernel of the submatrix of
Φ(G,Y ) composed of the rows corresponding to M ′ contains all the k rows
of Y . Hence, the kernel of the submatrix forms a k or more dimensional
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space, which together with statement (2) implies that |M ′| ≤ |N(M ′)| − k.
Since any subsets of a linearly independent set of rows are also linearly
independent, we get, for any nonempty subset Z of M ′, |Z| ≤ |N(Z)| − k.

Let I = (V, F,R) be an incidence structure. Recall that an element
(vα, fj) of R represents the constraint that the αth vertex should be on the
jth plane, and hence corresponds to a linear equation of the form (3.1). If
the plane fj has exactly three vertices in I (that is, |V ({fj})| = 3), the
plane places no essential constraint on the three-dimensional position of the
vertices; indeed we can construct the planar surface in the space for any
given position of the three vertices. If, on the other hand, the plane fj has
four vertices, say v1, v2, v3, and v4, then it constrains the vertices in such
a way that they should be coplanar in the space. This constraint can be
expressed by ∣∣∣∣∣∣∣∣∣

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1
z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣
= 0,

and consequently

∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

1 1 1

∣∣∣∣∣∣∣ z1−
∣∣∣∣∣∣∣

x1 x3 x4

y1 y3 y4

1 1 1

∣∣∣∣∣∣∣ z2+

∣∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4

1 1 1

∣∣∣∣∣∣∣ z3−
∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣∣ z4 = 0.

(6.6)
Thus, a set of four vertices on a common plane imposes one linear constraint
upon the z coordinates z1, . . . , zn of the vertices. Keeping this in mind, we
introduce the following definition.

For any incidence structure I = (V, F,R), we define a degree 4 bipartite
graph G(I) whose right nodes correspond to the elements of V and whose
left nodes correspond to the sets of four coplanar vertices specified as below,
that is, G(I) = (∪Mj , V,∪Wj) where, for each face fj with 3 + l vertices,
say v1, v2, . . . , v3+l,

Mj = {tj1, . . . , tjl},
Wj = {(tji, v1), (tji, v2), (tji, v3), (tji, v3+i) | i = 1, . . . , l},

and for fj with three or less vertices, both Mj and Wj are empty.
Then, each left node of G(I) corresponds to an equation of the form (6.6),

and the coefficients of the equation are the entities of the corresponding row



122 6. Combinatorial Structures

of the matrix Φ(G(I), Y ), where

Y =

⎡
⎢⎣ x1 x2 · · · xn

y1 y2 · · · yn

1 1 · · · 1

⎤
⎥⎦ . (6.7)

Proposition 6.4. Let D be a labeled line drawing having v vertices
drawn at (xi, yi), let I = (V, F,R) and G(I) = (M,N,W ) be the associated
incidence structure and the degree 4 bipartite graph, and let Y be a 3 by n
matrix of the form (6.7). If the vertices are in generic position, the following
four statements are equivalent.
(1) The rows of the coefficient matrix A in the equations (5.1) are linearly

independent.
(2) For any nonempty subset R′ of R, |R′| ≤ |V (R′)| + 3|F (R′)| − 3.
(3) The rows of Φ(G(I), Y ) are linearly independent.
(4) For any nonempty subset M ′ of M , |M ′| ≤ |N(M ′)| − 3.

Proof. Without loss of generality we can assume that in I any face has
at least three vertices and any vertex is at least on one face. This can be
understood in the following way. First, deletion of an isolated vertex from
I does not affect linear independence of the rows of A or the inequality in
statement (2). Second, if some face has less than three vertices, we can
add new vertices that are only on this face until the face has exactly three
vertices. The addition does not affect the linear independence of the rows
of A because it does not place any new constraint on the original vertices
and faces. It does not affect the inequality in statement (2) either, because
at each time one vertex and one incidence pair are added simultaneously.
Third, the above change of I does not concern faces having four or more
vertices; it does not change G(I) and consequently does not affect statement
(3) or (4).

Under this assumption we get |M | = |R| − 3|F |, and from the definition
we get |N | = |V |.

For each solution w = t(z1 · · · zna1b1c1 · · · ambmcm) to (5.1), the vec-
tor u = t(z1 · · · zn) composed of the first n entities of w is a solution to
Φ(G(I), Y )u = 0. Conversely, from each solution to Φ(G(I), Y )u = 0, we
can construct the unique solution w to (5.1), because every face has at
least three vertices and they determine the planar surface uniquely. Hence,
the two solution spaces have the same dimensionality, say d. Then we
get d = |V | + 3|F | − rank(A) = |V | − rank(Φ(G(I), Y )), and consequently
rank(A) = rank(Φ(G(I), Y )) + 3|F |. Since A has |M | + 3|F | (= |R|) rows
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and Φ(G(I), Y ) has |M | rows, the rows of A are linearly independent if and
only if the rows of Φ(G(I), Y ) are linearly independent. Thus, statements
(1) and (3) are equivalent.

Next suppose that statement (2) is true. This implies that no two faces
have four vertices in common, because if v1, v2, v3, and v4 are all on both fj

and fk, then R′ = {(vα, fj), (vα, fk) | α = 1, 2, 3, 4} falsifies the inequality
in statement (2). Therefore, any left node in M corresponds to the unique
face that generates the node. For any left node t in M , let f(t) be the
corresponding unique face and M̃(t) be the set of all left nodes generated by
the face f(t). By the definition of G(I), if f(t) has l vertices, M̃(t) contains
l−3 elements, one of which is t. Assume, contrary to the theorem, that some
subset M ′ of M satisfies |M ′| > |N(N ′)| − 3. Then, M̃ ′ defined by ∪M̃(t)
where the union is taken over all t in M ′ also satisfies |M̃ ′| > |N(M̃ ′)| − 3,
because the extension from M ′ to M̃ ′ adds at most one right node for each
added left node. Let F ′ = {f(t) | t ∈ M ′} and R′ = R(F ′). Then, we get

|M̃ ′| =
∑

fj∈F ′
(|V ({fj})| − 3) = |R′| − 3|F ′| = |R′| − 3|F (R′)|

≤ |V (R′)| − 3 = |N(M̃ ′)| − 3.

This is a contradiction. Thus, statement (2) implies statement (4).
Conversely, suppose that statement (4) is true, but that some subset R′

of R satisfies |R′| > |V (R′)| + 3|F (R′)| − 3. Let R1 = R(F (R′)). Then R1

also satisfies |R1| > |V (R1)| + 3|F (R1)| − 3, because the extension from R′

to R1 adds at most one vertex but no face for each added incidence pair.
Next let F0 be the set of faces in F (R′) that have exactly three vertices, and
let R2 = R1 − R(F0). Then R2 also satisfies |R2| > |V (R2)| + 3|F (R2)| − 3,
because the shrinkage from R1 to R2 deletes exactly three incidence pairs
for each deleted face in F0. Let F2 = F (R′) − F0 and M2 be the set of left
nodes in G(I) generated by faces in F2. Then

|R2| =
∑

fj∈F2

(|V ({fj})|) =
∑

fj∈F2

(|V ({fj})| − 3 + 3) = |M2| + 3|F2|

≤ |N(M2)| + 3|F2| − 3 = |V (R2)| + 3|F (R2)| − 3,

which is a contradiction. Thus statement (4) implies statement (2).
Hence, we get equivalence of statements (2) and (4). Since the equiva-

lence of statements (3) and (4) is a direct consequence of Proposition 6.3,
we have completed the proof.

Proof of Theorem 6.1. Theorem 6.1 is nothing but a paraphrase of the
equivalence of statements (1) and (2) in Proposition 6.4.
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Proof of Theorem 6.2. Assume that statement (3) in the theorem is
true. From Proposition 6.4 the equations (5.1) are linearly independent and
have a solution space of dimension |V |+3|F |− |R|. If we take any two faces
fj and fk and add a new common vertex v, this creates a new incidence
structure I∗ = (V ∗, F,R∗) with one more vertex and two more incidence
pairs. Hence, for any nonempty subset X of R∗, |V (X)|+3|F (X)| ≥ |X|+3.
From Proposition 6.4 again, the equations (5.1) associated with I∗ are also
linearly independent and have a solution space of dimension |V | + 3|F | −
|R| − 1. If fj and fk generate the same plane in P (w) for any solution w
to (5.1), this is impossible. So we conclude that, for some solution w, the
two faces are distinct in P (w). This is true for any pair of faces, and hence
some appropriate linear combination of these solutions gives a nondegenerate
solution to (5.1). This implies that statement (1) is true.

Next assume that statement (3) is false. Then, for some subset X of
R with |F (X)| ≥ 2, we have |V (X)| + 3|F (X)| ≤ |X| + 3. Without loss
of generality we choose as X a minimal subset with this property. Then,
|V (X)| + 3|F (X)| = |X| + 3 and, for every nonempty subset X ′ of X,
|V (X ′)|+ 3|F (X ′)| ≥ |X ′|+ 3 (note that if |F (X ′)| = 1, the equality holds).
From Proposition 6.4, the equations (5.1) associated with the substructure
(V (X), F (X),X) have a solution space of dimension 3, and hence the faces
in F (X) must be identical in P (w) for any solution w. Hence statement (1)
is false as well.

Thus we have shown equivalence of statements (1) and (3).
Assume that statement (2) is true. For any subset X of R, let us define

g(X) by g(X) = |X| − |V (X)|. Suppose that r = (v, f) is an element of
R − X. Then we get g(X ∪ {r}) = |X| + 1 − |V (X) ∪ {v}|, and hence

g(X ∪ {r}) = g(X) + 1 if v ∈ V (X),
g(X ∪ {r}) = g(X) if v ∈ V − V (X).

Therefore, g(X) is monotonically nondecreasing; that is, X1 ⊆ X2 ⊆ R
implies g(X1) ≤ g(X2). Now suppose that X is any subset of R with
|F (X)| ≥ 2, and let Y = F (X). Since X ⊆ R(Y ), we get

g(X) = |X| − |V (X)| ≤ g(R(Y )) = |R(Y )| − |V (R(Y ))|.

From V (R(Y )) = V (Y ), we get |V (X)| − |X| ≥ |V (Y )| − |R(Y )|. Hence,

|V (X)| + 3|F (X)| − |X| − 4 ≥ |V (Y )| + 3|Y | − |R(Y )| − 4 ≥ 0,

which implies that statement (3) is true.
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Conversely, assume that statement (3) is true. Suppose that Y is any
subset of F such that |Y | ≥ 2, and let Z = R(Y ). Then, Y = F (Z) and
V (Y ) = V (Z). Therefore, we get

|V (Y )| + 3|Y | − |R(Y )| − 4 = |V (Z)| + 3|F (Z)| − |Z| − 4 ≥ 0,

which means that statement (2) is true. Hence, statements (2) and (3) are
equivalent.

Proof of Corollary 6.2.1. An incidence structure that satisfies the
inequality (6.4) satisfies the inequality (6.2). Hence, the corollary is an
immediate consequence of Theorems 6.1 and 6.2.

6.4 Generic Degrees of Freedom

In Sections 5.1 and 5.2 we defined two functions ρH and ρV , the degrees of
freedom in the choice of the object represented by a line drawing, in terms
of ranks of some matrices (recall (5.4) and (5.5)). When the vertices are in
generic position, the functions are determined by the associated incidence
structure only, and hence the distribution of the degrees of freedom is char-
acterized by the combinatorial structures of line drawings. Here we study
the combinatorial aspects of the functions, which will be used in the fourth
module.

Theorem 6.3 (Combinatorial characterization of the matroid (V, ρV )).
Suppose that the vertices of a labeled line drawing D are in generic posi-
tion and its incidence structure I = (V, F,R) is generically reconstructible.
Then, a subset Y of V is an independent set of the matroid (V, ρV ) if and
only if

|V (X)| + 3|F (X)| ≥ |X| + |V (X) ∩ Y | (6.8)

is satisfied for any subset X of R.

Proof. Recall that the set of rows of the coefficient matrix A in (5.1)
is in one-to-one correspondence with the incidence pair set R. For any
subset X of R, let A(X) denote the submatrix of A composed of the rows
corresponding to X. From the hypothesis and Corollary 6.2.1 the rows of
A are linearly independent, and hence, for any subset X of R, the rows of
A(X) are also independent.

First, assume that a subset Y of V is an independent set of the ma-
troid (V, ρV ) but |V (X0)| + 3|F (X0)| < |X0|+ |V (X0) ∩ Y | for some subset
X0 of R. The solutions to (5.1) associated with the substructure S0 =
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(V (X0), F (X0),X0) form a linear space of dimension |V (X0)| + 3|F (X0)| −
rank(A(X0)), because it has |V (X0)| + 3|F (X0)| unknowns. Since the rows
of A(X0) are linearly independent, we get

|V (X0)|+3|F (X0)|−rank(A(X0)) = |V (X0)|+3|F (X0)|−|X0| < |V (X0)∩Y |;
that is, |V (X0)∩Y | is greater than the dimension of the linear space formed
by the solutions to (5.1) associated with S0. This contradicts the assumption
that Y is an independent set. Thus, if Y is independent, the inequality (6.8)
is satisfied for any subset X of R.

Next, suppose that a subset Y of V is a minimal dependent set and
v ∈ Y . Let V0 and F0 be the set of vertices and that of faces, respectively,
that are located uniquely in the space when the z coordinates of vertices in
Y − {v} are given. Obviously Y ⊆ V0 and V (F0) ⊆ V0.

Assume that there exists a vertex v0 in V0 − V (F0). Then, since v0

is not on any face in F0, the z coordinate of v0 must be specified directly
when we specify the z coordinates of the vertices in Y − {v}, and hence
v0 ∈ Y − {v}. However, since v0 is not on any face in F0, the specification
of the z coordinate of v0 does not constrain other variables. Thus, Y −{v0}
must also be dependent. This contradicts the minimalness of Y . Therefore,
V0 − V (F0) = ∅, that is, V0 = V (F0).

Let X0 = (V0 × F0) ∩ R. Because V (F0) = V0 (that is, each vertex
in V0 is on some face in F0), we get V0 = V (X0) and F0 = F (X0). Be-
cause the system of equations (5.1) associated with (V (X0), F (X0),X0) is
linearly independent and every variable in it can be expressed by a linear
combination of the variables in {zi | vi ∈ Y − {v}}, the matrix A(X0) can
be transformed by elementary transformations of rows and permutations of
columns into [A0 | A1], where A0 is an |X0| by |Y − {v}| matrix whose
columns correspond to the unknowns in {zα | vα ∈ Y −{v})}, and A1 is the
|X0| by |X0| identity matrix whose columns correspond to the unknowns in
{zα | vα ∈ V0 − (Y0 − {v0})} ∪ {aj , bj , cj | fj ∈ F0}. Hence we get

|V (X0)| + 3|F (X0)| − |X0| = |Y − {v}|,
and consequently

|V (X0)| + 3|F (X0)| − |X0| < |Y | = |Y ∩ V (X0)|.
Thus, if Y is not independent, X0 defined as above does not satisfy the
inequality (6.8).

Corollary 6.3.1. Suppose that the vertices of a labeled line drawing D
are in generic position and its incidence structure I = (V, F,R) is generically
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reconstructible. Then, for any subset Y of V , the matroid function ρV

satisfies

ρV (Y ) = max{|Y ′| : Y ′ ⊆ Y, |V (X)| + 3|F (X)|
≥ |X| + |V (X) ∩ Y ′| for any X ⊆ R}. (6.9)

Proof. From the definition of ρV , ρV (Y ) is the size of a maximal inde-
pendent subset of Y , and hence from Theorem 6.3 we get (6.9).

Figure 6.2. Pictures requiring nontrivial consideration in order for us to tell
how many degrees of freedom they have and which sets of vertices
form bases for the associated matroids.

Example 6.2. Fig. 6.2 shows pictures for which intuitive consideration is
not very helpful in telling how many degrees of freedom there are or which
sets of vertices form bases. However, these questions can be answered easily
if we employ Theorem 6.3.

Let us consider the hidden-part-eliminated picture in Fig. 6.2(a). In
a strict sense it is not easy to judge whether the vertices are in generic
position. However, we can expect that they are almost always in generic
position, particularly when the coordinates of the vertices are represented
by the floating point representation. So we assume that the vertices of the
picture are in generic position.

The object represented here has eight visible vertices (|V | = 8) and four
visible faces (|F | = 4), forming a ring structure. In the picture the αth
vertex vα is represented simply by the number α. Since the faces are all
quadrilateral, it has 4 × 4 = 16 incidence pairs (|R| = 16). Thus we get
|V | + 3|F | = |R| + 4 = 20. Since any set of two or more faces satisfies
the inequality (6.3), the incidence structure is generically reconstructible
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and the equations (5.1) are linearly independent. Consequently, there are
|V | + 3|F | − |R| = 4 degrees of freedom in the choice of the object in the
space. By elementary counting we can see from Theorem 6.3 that any four
vertices, unless they all are on a common face, form a base of the matroid
(V, ρV ). Hence the object is specified and fixed to the space if we give some
values to the z coordinates of the vertices in, for example, {v1, v2, v3, v4} or
{v1, v3, v5, v7}. Note that the incidence structure of this picture is the same
as that of the picture in Fig. 5.3(a). As we saw in Example 5.3, it requires
nontrivial consideration if we want to find the degrees of freedom of the
incidence structure intuitively. In contrast, Theorems 6.1, 6.2, and 6.3 give
us a systematic way of finding the degrees of freedom and of finding a base.

The hidden-part-eliminated picture in Fig. 6.2(b) also has a generically
reconstructible incidence structure and four degrees of freedom. Here again
the elementary counting leads to the conclusion that any four vertices that
are not all on the same face form a base. Hence, if we specify the z coor-
dinates of the vertices in, for example, {v1, v4, v7,10 } or {v1, v3, v5, v8}, then
the object shape and its spatial position are determined uniquely.



Chapter 7

Overcoming the
Superstrictness

We have found a counting method for judging whether an incidence struc-
ture is reconstructible in a generic sense, that is, reconstructible when the
vertices are in generic position. If the incidence structure is generically re-
constructible, the reconstructibility is not disturbed by small movements of
vertices on the picture plane, and hence the correctness of the picture can
be judged without worrying about digitization errors. If it is not generi-
cally reconstructible, on the other hand, the superstrictness of the algebraic
method prevents us from judging the correctness of the picture. The pur-
pose of this chapter is to remove the superstrictness. We shall first construct
a method for correcting vertex position errors automatically, and next, us-
ing it, establish a mechanism that can judge the correctness of the picture
flexibly in the sense that, even if it is mathematically incorrect, it is judged
“practically correct” if the incorrectness is only due to a small deviation of
vertex positions.

7.1 Correction of Vertex Position Errors

From the definition of generic reconstructibility it follows that if a picture
has a generically reconstructible incidence structure and the vertices are in
generic position, the associated spatial structure composed of planar surfaces
can be realized without any degeneracy. Because we use a digital computer,
we can regard the vertices as being almost always in generic position; any
special relationships among the vertices, if they exist, will be canceled out by
digitization and numerical computation. Therefore, if the incidence struc-
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ture is generically reconstructible, the reconstructibility is not disturbed by
small errors in vertex position, so that we can apply our algebraic method
(i.e., Theorem 3.3 or Theorem 4.1) directly to the judgment of the correct-
ness of the picture.

In this sense, our problem, the problem of discriminating between correct
and incorrect pictures flexibly, has been solved partially. Using Theorem
6.2, we first judge whether the associated incidence structure is generically
reconstructible or not. If it is, we next check directly the existence of a
feasible solution to the linear programming problem stated in Theorem 3.3
or 4.1. Thus, our next problem is how we should deal with pictures whose
incidence structures are not generically reconstructible.

If the incidence structure is not generically reconstructible, it can be
realized in the space only when the vertices are in some special position.
This means that the vertex positions are not independent; positions of some
vertices constrain the others. Using this kind of constraint, we can determine
the correct position of the vertices. This is the basic idea of the following
method for automatic correction of incorrect pictures.

Suppose that an incidence structure I = (V, F,R) is not generically
reconstructible. Then, the inequality (6.3) is falsified by some subset X of
F . However, if we delete incidence pairs one by one from R, the resultant
substructure eventually satisfies statement (2) in Theorem 6.2. This can be
understood if we note, first, that deletion of an element, say (v, f), from R
causes the left hand side of (6.3) to decrease by 1 if and only if f ∈ X and v
is not on other faces in X whereas, it causes the right hand side to decrease
by 1 if f ∈ X, and second, that, if R is empty, the inequality (6.3) holds
trivially. Thus, from any incidence structure I = (V, F,R), we can extract a
maximal subset, say R∗, of R such that the substructure I∗ = (V, F,R∗) is
generically reconstructible. If I itself is generically reconstructible, we get
R∗ = R, but in general R∗ is not unique.

At least in principle, a maximal generically reconstructible substructure
can be found by applying Theorem 6.2 to all substructures of the incidence
structure I, but this is obviously impractical because the number of sub-
structures is of the exponential order of |R|. In Chapter 8 we shall present a
more practical method, which can find a maximal generically reconstructible
substructure in O(|R|2) time.

Let D be a labeled line drawing, and let I = (V, F,R) be its incidence
structure. Suppose that I is not generically reconstructible, and hence it is
practically meaningless to judge its correctness directly by Theorem 3.3 (or
Theorem 4.1). Let R∗ be a maximal subset of R such that the substructure



7.1 Correction of Vertex Position Errors 131

I∗ = (V, F,R∗) is generically reconstructible, and let

A(R∗)w = 0 (7.1)

be the system of the equations of the form (5.1) generated from the elements
of R∗, where A(R∗) represents the submatrix of A composed of the rows
corresponding to elements of R∗. Thus, (7.1) is a subsystem of (5.1). Since
I∗ is generically reconstructible, we can find a nondegenerate solution, say
w∗, to the system (7.1) and construct the associated configuration P (w∗) of
the surfaces in the space. Note that the projection on the picture plane of
the points of intersection of the surfaces in P (w∗) coincides with the vertices
of the original picture D except for the vertices in V (R − R∗), where, for
any Y ⊆ R, V (Y ) denotes the set of vertices appearing in some elements
of Y . If vertices in V (R − R∗) are incident to three or fewer faces in the
original incidence structure I, their correct position in a three-dimensional
space can be found as intersections of the associated surfaces in P (w∗).
Projecting them on the picture plane, we obtain the correct position of the
vertices on the picture plane. Thus we get the following method.

Method 7.1 (Correction of vertex position errors).
Input: A labeled line drawing D and its incidence structure I = (V, F,R).
Output: A corrected line drawing.
Procedure:
Step 1. Find a maximal subset R∗ of R such that I∗ = (V, F,R∗) is generi-

cally reconstructible.
Step 2. Find a solution w∗ to (7.1) and (5.2’). If there is no solution, return

“false”.
Step 3. Find correct spatial positions of the vertices in V (R − R∗) as inter-

sections of the surfaces in the configuration P (w∗).
Step 4. Project the corrected positions onto the picture plane.
Step 5. See whether the corrected picture obeys the labeling rules. If it does

not, return “false”.
Step 6. Regenerate the system of inequalities (5.2) using the corrected po-

sitions of the vertices. If the new system of inequalities is satisfied by
w∗, return the corrected picture. Otherwise return “false”.

If there is no solution to (7.1) and (5.2’) in Step 2, it implies that the
system of inequalities (5.2’) contains contradictory propositions (note that
the system of the equations (7.1) always has a nondegenerate solution be-
cause I∗ is generically reconstructible). In this case it is usually impossible
to correct the picture by movements of vertices. So the method returns
“false”.
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Step 3 is not always possible. Let F0 be the set of faces in F that have
four or more vertices on them in I. Then, Step 3 is impossible if a vertex in
V (R−R∗) is on four or more faces in F0. This is because four or more faces
in general do not have any common point. Note that we need not consider
faces in F −F0, because a face with three or less vertices does not place any
essential constraint on I∗; that is, we can always add the faces in F − F0

after we construct a three-dimensional configuration of the other part of
I∗. In order to make Step 3 possible, therefore, we have to delete from R
those incidence pairs that contain vertices which are on at most three faces
when we construct R∗ in Step 1. In other words, Step 3 is possible only
when |({v} × F0) ∩ R| ≤ 3 for any v ∈ V (R − R∗). An efficient method of
constructing R∗ with this property will be presented in Chapter 8.

Steps 5 and 6 are necessary because displacement of the junctions on the
picture plane may disturb the labeling rules or the system of inequalities
(5.2). The labeling rules are usually kept undisturbed if the displacement
is small. However, if it is not so small, the rules may be disturbed. Dis-
placement of a junction sometimes cause the change of a junction type, for
example, from Y-type to W-type, and as a result the labels assigned to the
lines around the junction may violate the rules (recall Rules 2.5 and 2.5’).
The system of inequalities (5.2) may also be disturbed because the coeffi-
cient matrix B depends on the position of the junctions. Thus, the check in
Steps 5 and 6 is necessary.

Figure 7.1. Correction of vertex position errors: (a) is an incorrect picture,
(b) is a generically reconstructible substructure of the incidence
structure of (a), and (c) is a corrected picture.

Example 7.1 Consider the picture of the truncated pyramid in Fig. 7.1(a).
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As we have seen, the incidence structure I = (V, F,R) of this picture is
not generically reconstructible. Let v be a vertex incident to three faces
f1, f2, f3, as illustrated in the figure, and define R∗ as R∗ = R − {(v, f3)}.
That is, we delete from I the constraint that the vertex v must be on the
face f3, as shown in (b), where the double lines mean that the side faces
may form a gap along these lines. Since the substructure I∗ = (V, F,R∗) is
generically reconstructible, we find a nondegenerate solution w∗ and obtain
the correct position of v as the intersection of the three surfaces f1, f2, f3

in P (w∗). Projecting it onto the picture plane, we correct the picture; the
result of the correction is as shown in (c).

It seems interesting to note that the result of the correction does not
depend on the choice of the solution w∗. This can be understood in the
following way. The picture in Fig. 7.1(b) has exactly four degrees of freedom
in the choice of the spatial structure. Hence from Corollary 5.3.l there exists
a unique solution to the figure construction problem: “Find the intersection
of the plane f3 and the line shared by f1 and f2”, which is a problem of the
type given by Problem 5.1 (see Section 5.3).

Example 7.2. Let I = (V, F,R) be an incidence structure of the hidden-
part-drawn picture shown in Fig. 7.2(a). The picture has eight vertices, six
faces, and 24 incidence pairs (because each of the six faces has exactly four
Vertices on it). Consequently, if we put X = F , the left hand side of (6.3)
amounts to |V | + 3|F | = 8 + 3 × 6 = 26 whereas the right hand side to
|R|+4 = 24+4 = 28. Thus, I is not generically reconstructible, and indeed
the picture is incorrect. If we remove any two incidence pairs associated
with an arbitrary vertex, the structure becomes generically reconstructible.
Therefore, we can correct this picture by the displacement of any one ver-
tex. Examples of the correction are shown in Fig. 7.2(b), (c), (d), where
the circles denote the vertices that were displaced for the correction. The
system of equations (7.1) associated with this picture admits exactly four
degrees of freedom in the choice of the solution, and hence it follows from
Corollary 5.3.1 that, once we choose a vertex to be displaced; the result of
the correction is unique.

Remark 7.1. Method 7.1 contains a great deal of arbitrariness in Steps 1,
2, and 3. We have to refine these steps in order to obtain a precise computer
algorithm.

There is almost no problem in Steps 2 and 3. As we have seen in Ex-
amples 7.1 and 7.2, usually the arbitrariness in Step 2 does not affect the
result of the correction. Tue arbitrariness in Step 3 is easily resolved by a
natural criterion: “Move each vertex to the nearest correct position.”
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Figure 7.2. Correction of a hidden-part-drawn picture of a hexahedron: (a)
is an incorrect picture, and (b) , (c) , (d) are corrected pictures,
where the circles denote the vertices moved for the correction .

On the contrary, it is not so easy to resolve the arbitrariness in Step
1. There is in general great freedom in the choice of R∗, and the result of
the correction (i.e., the output of Method 7.1) depends on R∗. Probably
the theoretically most complete way is to apply Method 7.1 to all possible
R∗’s and to select among all the outputs the “best” one as the result of the
correction. However, this is not practical; indeed the number of possible
R∗’s is usually very large; and hence the check of all the possibilities would
result in a combinatorial explosion.

One practical way is to employ some heuristic to choose a “good” subset
as R∗. An example of such heuristics is the following.

Heuristic 7.1. Correct vertices with shorter edges first, where the lengths
of edges are to be measured on the picture plane.

This heuristic is natural because shorter edges are more likely to contain
errors in their positions if the picture is drawn by a human hand or is
obtained by computer processing of a light intensity image. Now recall
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that the correction of the picture is carried out by displacing vertices in
V (R − R∗). Hence Heuristic 7.1 implies that vertices with shorter edges
should be in V (R−R∗); that is, the maximal subset R∗ should be searched
for in such a way that incidence pairs containing vertices with longer edges
are included in R∗ as much as possible. An efficient algorithm for finding
R∗ with this property will be given in Chapter 8.

7.2 Set of All Scenes Represented by a Picture

The set of all scenes a labeled line drawing can represent is specified as the
set of all solutions to the system consisting of (5.1) and (5.2). However, in
Method 7.1 we use not (5.1) but (7.1) to reconstruct a spatial configuration of
planar surfaces, from which the correct positions of vertices are determined.
In other words, we regard (7.1) as an essential part of (5.1) and the other
equations in (5.1) as a redundant part. Indeed what is done in Method 7.1
is to adjust the x and y coordinates of the vertices in V (R − R∗) in such a
way that the equations contained in (5.1) but not in (7.1) become linearly
dependent on (7.1). Thus, for any corrected picture, (5.1) and (7.1) are
equivalent. Using this fact, we can express the set of all scenes that the
picture can represent more simply.

Let D be a correct, or corrected, line drawing, let I = (V, F,R) be its
incidence structure, and let I∗ = (V, F,R∗) be the maximal generically re-
constructible substructure of I that has been used for the correction based
on Method 7.1. Since the system of the equations (7.1), the equations asso-
ciated with I∗, is linearly independent, the coefficient matrix A(R∗) can be
transformed by some permutation of the columns into [A1 | A2], where A1

is an |R∗| × |R∗| nonsingular matrix. Let η and ξ be the unknown vectors
corresponding to the columns of A1 and those of A2, respectively, so that
(7.1) can be expressed by

A1η + A2ξ = 0.

Since A1 is nonsingular, we get

η = −(A1)−1A2ξ. (7.2)

This expression represents the solutions to (7.1) as a linear combination
of the unknown variables in ξ. In other words, the set of vectors w subject
to (7.1) is identical with the set of vectors (−(A1)−1A2ξ, ξ) without any
constraints. Moreover, it should be noted that in Method 7.1 the equations
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in (7.1) alone are used for the reconstruction of the polyhedral scene and the
other equations in (5.1) are changed so that they become linearly dependent
on (7.1). Therefore, (7.2) can be interpreted in the following way: the values
of the unknowns in ξ can be given arbitrarily, but once they are given, a
solution to (7.1) is specified uniquely. Thus, the unknowns in ξ form a base
of the matroid (H, ρH) defined by (5.4). This means that we can find the set
of columns corresponding to A2 by choosing a base of the matroid. If, for
example, we want a base consisting of z coordinates of vertices only, we can
find one by Theorem 6.3 or Corollary 6.3.1; we need not check nonsingularity
of submatrices of A(R∗) numerically.

From (7.2), the vector w subject to (7.1) can be represented by

w = h(ξ), (7.3)

where h(ξ) is the vector obtained by a certain permutation of the entities of
the vector (−(A1)−1A2ξ, ξ). Substituting (7.3) in (5.2) and (5.2’), we get,
respectively,

Bh(ξ) > 0 (7.4)

and

Bh(ξ) ≥ e. (7.4’)

The set of solutions to (5.1) and (5.2) is identical with the set of solutions to
(7.4), and the set of solutions to (5.1) and (5.2’) is identical with the set of
solutions to (7.4’). Consequently, the set of all scenes that the picture can
represent is identical with the set of all solutions to (7.4), and the picture is
correct if and only if there exists a solution to (7.4’).

The system (7.4) (or (7.4’)) is much smaller than the original system;
it has n + 3m − |R∗| unknowns and |T | inequalities, whereas the system
consisting of (5.1) and (5.2) (or (5.1) and (5.2’)) has n + 3m unknowns, |R|
equations, and |T | inequalities. In order to judge the correctness of a picture
we only need to check whether the system (7.4’) has a solution; we need not
check directly the existence of a solution to the larger system consisting of
(5.1) and (5.2’). Hence, for example, Step 2 in Method 7.1 can be replaced
by this simpler step:

Step 2’. Find a solution ξ∗ to (7.4’), and put w∗ = h(ξ∗).

7.3 Practical Judgment of the Correctness

Now we are ready to construct a practical method for judging the correctness
of labeled pictures. The outline of the method is shown by the flow chart in
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Fig. 7.3.

Figure 7.3. Flow chart for a practical judgment of correctness of pictures: if
an input picture comes out through Exit 1 or 5, the picture is
judged correct, and otherwise it is judged incorrect.

Suppose that a labeled line drawing D and its spatial structure S =
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(V, F,R, T ) are given. Our aim is to judge the correctness of the picture D
“flexibly” in the sense that the picture should be judged correct even if the
strict correctness is disturbed by a small deviation of the vertices.

Using Theorem 6.2, we judge whether the incidence structure I = (V, F,R)
is generically reconstructible. If so, we next check the existence of a solution
to the system defined by (5.1) and (5.2’). This can be done by a method
for finding a feasible solution to a linear programming problem whose con-
straint set is given by (5.1) and (5.2’). Finally we judge the correctness by
Theorem 3.3 (or Theorem 4.1) directly; that is, if a solution exists, D is
judged correct (Exit 1 in Fig. 7.3), and otherwise incorrect (Exit 2).

If, on the other hand, I is not generically reconstructible, we cannot ap-
ply Theorem 3.3 directly, because Theorem 3.3 judges the correctness ’super-
strictly’. Therefore, using Theorem 6.2, we choose a subset R∗ of R in such
a way that the substructure I∗ = (V, F,R∗) is generically reconstructible
and R∗ is maximal with this property, and construct the associated system
of the equations (7.1) and consequently the system of the inequalities (7.4’).
Since I∗ is generically reconstructible, we can search for a solution to the
system (7.4’) without fearing numerical errors. If the system does not have
any solution, we conclude that D is incorrect (Exit 3). If it has a solution,
we try to correct vertex position errors by Method 7.1. If the correction is
impossible, we conclude that D is incorrect (Exit 4). If it can be corrected,
then we compare the corrected line drawing with the original one, and judge
whether the vertex position errors are “permissible” or not by some criterion
depending on applications. (For example, we can judge that the errors are
permissible if the maximum distance between the original positions and the
corrected positions of vertices is smaller than a prespecified threshold, or,
alternatively, if the sum of lengths of vertex displacements is smaller than
a threshold, etc.). If the errors are permissible, we conclude that D can be
considered as being practically correct (Exit 5), and otherwise, we conclude
that D is incorrect (Exit 6).

Thus, a machine can judge the correctness flexibly as human beings do.
The point is that we do not judge directly whether the picture is correct but
judge whether the incorrectness is permissible.

7.4 A Classification of Line Drawings

We have considered labeled line drawings from several points of view, that is,
whether they are, or are not, correct, correctable, and/or generically recon-
structible. These points of view naturally form a framework for classifying
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labeled line drawings.
First, labeled line drawings have the associated incidence structures, and

hence can be divided into generically reconstructible drawings and generi-
cally unreconstructible ones according to whether the incidence structures are
generically reconstructible or not. The class of generically reconstructible
line drawings is characterized by Theorem 6.2.

Second, labeled line drawings are divided into correctable drawings and
uncorrectable ones according to whether they can be corrected by displace-
ments of some vertices together with the lines incident to them. Here, we
adopt the convention that correct pictures belong to the class of correctable
pictures, because they can be “corrected” by displacing an empty set of ver-
tices. Thus, correctable line drawings are subdivided into correct drawings
and incorrect ones; the class of correct drawings is characterized by Theorem
3.3 or Theorem 4.1.

Thus, labeled line drawings are divided into the six classes as shown in
Fig. 7.4, where to each class is attached an example picture.

Figure 7.4. Classification of labeled line drawings: picture 3 is adapted from
Draper(1978), picture 5 from Huffman(1971), and picture 6 from
Penrose and Penrose (1958).

Pictures 1, 2, and 3 in the figure have generically reconstructible inci-



140 7. Overcoming the Superstrictness

Figure 7.5. Correction of the correctable pictures in Fig. 7.4.

dence structures, but pictures 2 and 3 are not correct.
We can understand the incorrectness of picture 2 in the following way

(see Fig. 7.5(a)). Let p be an intersection of the face f1 and the line l0
(the position of p on the picture plane can be obtained as the intersection
of the two lines l0 and l = 1). Let Lp be the line that passes through p
and is perpendicular to the picture plane. Furthermore, let z1, z2, and z3

be the z coordinates of the points at which Lp meets the faces f1, f2, and
f3, respectively, when the faces are extended. Recall that the picture is
assumed to be in the x-y plane and the positive direction of the z axis faces
toward the viewer. Therefore, a larger value of z means that the point is
nearer to the viewer. We get z1 > z2 because f1 and f2 share the convex
edge l2. Similarly, we get z2 > z3 because f2 and f3 share the convex edge
l3. On the other hand, p is on both the faces f1 and f3 (note that p, is on l0,
which is on f3), and hence we get z1 = z3, which is a contradiction. That is,
picture 2 in Fig. 7.4 is incorrect. An example of the correction is shown in
Fig. 7.5(b), where p is on the lower side of l3 in the picture plane and hence
the convex edge l3 gives the inequality z3 > z2; there is no contradiction.

Picture 3 is uncorrectable, because it cannot be corrected unless we
change it drastically by interchanging the visible part and the invisible part.

Pictures 4, 5, and 6 in Fig. 7.4 have generically unreconstructlble inci-
dence structures. Picture 5 is not correct because the top face and the front
face should meet at one line, but the two edges are not collinear , as shown
in Fig. 7.5(c). It can be corrected, for example, as shown in Fig. 7.5(d).
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Picture 6 is not correct and cannot be corrected because its incorrectness
is mainly due to contradictory inequalities caused by occluding edges, and
the contradiction cannot be resolved even if the positions of the vertices are
changed.

There is an intimate relationship between this classification framework
and the procedures: for discrimination between correct and incorrect pic-
tures shown in Fig. 7.3. Suppose that a labeled line drawing is given to the
procedure. Which exit it comes out of depends on which category it belongs
to. For example, picture 1 in Fig. 7.4 comes out of Exit 1, and pictures
2 and 3 out of Exit 2. Picture 4 comes out of Exit 5 unless the threshold
for the permissible errors is not very small, because the picture represents a
polyhedron correctly only up to digitization errors. Picture 5 will come out
of Exit 6 unless the threshold is not very large, and otherwise it comes out
of Exit 5. Picture 6 comes out of Exit 3, because its incorrectness is due to
inconsistency in the inequalities (3.4).

Example 7.3. In visual psychology, there is a class of pictures called
“anomalous pictures” or “pictures of impossible objects” (Penrose and Pen-
rose, 1958; Gregory, 1971; Robinson, 1972), and some of them have been dis-
cussed also from a mathematical point of view (Huffman, 1971; Cowan, 1974,
1977; Draper 1978; Térouanne, 1980; Kulpa, 1983; Thro, 1983). It seems
interesting to classify these pictures from the viewpoint of our classification
framework (Sugihara, 1982a). Fig. 7.6 shows some examples of anomalous
pictures. From our point of view, various categories of pictures are included:
(a), (b), (f), (g), and (i) are generically unreconstructible, uncorrectable pic-
tures; (c), (j), (k), and (l) are generically reconstructible, correct pictures;
(d) is an unlabelable picture; (e) is a generically reconstructible, incorrect,
correctable picture; and (h) is a generically reconstructible, uncorrectable
picture.
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Figure 7.6. Anomalous pictures: a, b, f, i, j, k, and l are adapted from
Draper (1978), and g and h from Huffman (1971).



Chapter 8

Algorithmic Aspects of
Generic Reconstructibility

The concept of generic reconstructibility has played the main role in the third
module, the module for judging the correctness of pictures flexibly. Though
we found a counting theorem for judging whether an incidence structure is
generically reconstructible or not, it is not efficient from the time complexity
point of view. In the present chapter we shall construct an efficient algo-
rithm for checking the generic reconstructibility of an incidence structure
and for finding a maximal generically reconstructible substructure; the time
complexity of the algorithm is of the order of the square of the number of
incidence pairs. Thus we complete the third module.

8.1 Network Flow Theory

A polynomially bounded algorithm for checking generic reconstructibility
was first found by Sugihara (1979c); here the problem was reduced to the
problem of finding complete matchings of a certain family of bipartite graphs
and an O(|R|3.5) algorithm was constructed, where R denotes the set of inci-
dence pairs. The algorithm was improved by Imai (1985), who found an algo-
rithm for finding a maximal generically reconstructible substructure, which
runs in O(|R|2) time. This algorithm includes the checking of generic re-
constructibility, because an incidence structure is generically reconstructible
if and only if its maximal generically reconstructible substructure coincides
with the original structure itself.

This chapter presents Imai’s algorithm for finding a maximal generically
reconstructible substructure, which makes our third module more efficient.

143



144 8. Generic Reconstructibility

To this end we first review some basic results in network flow theory.
Let R denote the set of real numbers, and let R+ be the set of nonneg-

ative real numbers. For a finite set E, a function from E to R is called a
vector on E, and a vector on E is called nonnegative if it is a function from
E to R+. A vector is called integral if its value is an integer for any element
of E. For a vector g on E and a subset U of E, let g|U denote the restriction
of g to U ; that is, g|U is a vector on U and, for any e ∈ U , g|U (e) = g(e).
For a vector g on E and a subset U of E, we define g(U) =

∑
e∈U g(e). For a

subset U of E, the characteristic vector χU is defined by χU (e) = 1 if e ∈ U
and χU (e) = 0 if e /∈ U . A characteristic function of a singleton, sayχ{e}, is
abbreviated as χe.

A network is a triple Q = (NQ,WQ, cQ) where NQ is a finite set, WQ is a
subset of NQ ×NQ, and cQ is a nonnegative vector on WQ. Elements of NQ

are called nodes, those of WQ arcs, and cQ is the capacity. An alternating
sequence of nodes and arcs p = (u0, e1, u1, e2, u2, . . . , en, un), where ui ∈ NQ

(i = 0, 1, . . . , n) and ei ∈ WQ (i = 1, 2, . . . , n), is called a path from the
node u0 to the node un if for each i = 1, 2, . . . , n either ei = (ui−1, ui) or
ei = (ui, ui−1). The arc ei is said to be positive in p if ei = (ui−1, ui) and
negative if ei = (ui, ui−1). A vector g on WQ is called a flow on the network
Q if

0 ≤ g(e) ≤ cQ(e) for any e ∈ WQ.

Intuitively, the network Q = (NQ,WQ, cQ) can be regarded as a directed
graph having the node set NQ and the arc set WQ together with the capacity
constraint such that for any arc e the amount of commodity that flows
through the arc e in the positive direction in a unit time interval should be
nonnegative and should not be greater than the capacity cQ(e).

For any node u in NQ, let us denote by W+(u) and W−(u) the set of
arcs going out of u and the set of arcs coming into u, respectively. For a
vector g on WQ, we define a vector ∂g on NQ by

∂g(u) =
∑

e∈W+(u)

g(e) −
∑

e∈W−(u)

g(e).

For a flow g on the network Q, a node u (∈ NQ) is called a source if
∂g(u) > 0, a sink if ∂g(u) < 0, and an intermediate node if ∂g(u) = 0.
Intuitively, ∂g(u) denotes the difference in the amounts of flow going out of
u and coming into u. Consequently, ∂g(u) = 0 implies that the commodity
passes through u without stagnation, whereas ∂g(u) �= 0 implies that the
amount of commodity is not preserved at u; ∂g(u) > 0 implies that the
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commodity is supplied at u, and ∂g(u) < 0 implies that the commodity is
consumed at u.

In what follows, we restrict our consideration to a network with a single
sink, that is, a network in which a unique node, say t, is distinguished as the
sink. A vector g on WQ is called a flow on the network Q = (NQ,WQ, cQ)
with the sink t if ∂g(t) ≤ 0 and ∂g(u) ≥ 0 for u ∈ NQ − {t}.

Let g be a flow on the network Q = (NQ,WQ, cQ) with the sink t. A
path p = (u0, e1, u1, . . . , en, un) from a node u0 to the sink t (un = t) is
said to be flow augmentable if for each i = 1, 2, . . . , n either both ei is
positive in p and g(ei) < cQ(ei) or both ei is negative in p and 0 < g(ei).
Suppose that the path p is flow augmentable. Let us define Δ(ei) by Δ(ei) =
cQ(ei) − g(ei) if ei is positive in p and Δ(ei) = g(ei) if ei is negative in p,
and let Δ(p) = minΔ(ei) where the minimum is taken over all arcs on the
path p. Furthermore let us define the vector Δgp on WQ by Δgp(e) = Δ(p)
if e is positive in the path p, Δgp(e) = −Δ(p) if e is negative in p, and
Δgp(e) = 0 if e is not on p. Then the vector g + Δgp is a flow on Q; that
is, the flow g + Δgp is obtained from the flow g by augmenting the amount
Δ(p) of additional flow of commodity through the path p. Thus, for a flow
augmentable path p, we can increase the total amount of net flow coming
into the sink t by Δ(p). A node u is said to be flow augmentable if there is
a flow augmentable path from u to the sink t.

For a given flow g on the network Q = (NQ,WQ, cQ) with the sink t, an
auxiliary graph G(Q, g) = (NG,WG) having a node set NG and an arc set
WG is defined by NG = NQ and

WG = {e | e ∈ WQ and g(e) < cQ(e)} ∪ {er | e ∈ WQ and g(e) > 0},

where er denotes the reversal of e. That is, in the auxiliary graph G(Q, g),
an arc from u to u′ exists if and only if there is an arc connecting u and
u′ in WQ (note that the direction of the arc in the original network is not
necessarily from u to u′; it may be from u′ to u) and the flow is augmentable
along the arc in the direction from u to u′. Let Gr(Q, g) be the directed
graph obtained by reversing the directions of all the arcs in G(Q, g). Then,
the problem of finding a flow augmentable path from a given node u to the
sink t is reduced to the problem of searching for a directed path from u to t
in the auxiliary graph G(Q, g), and the problem of finding the set of all flow
augmentable nodes is reduced to the problem of finding the set of all nodes
reachable from t in Gr(Q, g). Both of them can be solved in O(|WQ|) time
by a standard graph search technique such as the depth-first search or the
breadth-first search (Aho et al., 1974).
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Note that, for any network Q, the null vector g (i.e., g(e) = 0 for any
e ∈ WQ) is a flow on Q. So, starting with a g that is initially a null vector,
we can augment the flow step by step by finding a flow augmentable path,
say p, and replacing the flow g with the new flow g + Δgp until we cannot
find a flow augmentable path any more. Moreover, if the capacity cQ(e)
is an integer at any arc e ∈ WQ, the flow g obtained at any stage of the
above flow-augmenting process is an integral vector. This is first because
the initial null vector is integral, and second because if g is integral, Δgp

is also integral for any flow augmentable path p. Thus, each time a flow
augmentable path is found, the total amount of flow reaching the sink t can
be augmented by at least one unit.

8.2 Extraction of Generically Reconstructible Sub-

structures

For an incidence structure I = (V, F,R), we associate a network Q(I) =
(NI ,WI , cI) with the sink t such that

NI = V ∪ F ∪ R ∪ {t},
WI = {(r, v), (r, f) | r = (v, f) ∈ R} ∪ {(v, t) | v ∈ V } ∪ {(f, t) | f ∈ F},
cI(e) = ∞ if e = (r, v) or e = (r, f) (r = (v, f) ∈ R),
cI(e) = 1 if e = (v, t) (v ∈ V ),
cI(e) = 3 if e = (f, t) (f ∈ F ).

Then, for any subset X of R,V (X) and F (X) coincide with the sets of
nodes in V and F , respectively, that are connected with some nodes in
X. In what follows, we consider R as the set of potential source nodes,
whereas we consider V ∪ F as the set of intermediate nodes. Hence by
a flow g we refer to a vector g on WI that satisfies ∂g(r) ≥ 0 (r ∈ R),
∂g(v) = ∂g(f) = 0 (v ∈ V, f ∈ F ), and ∂g(t) ≤ 0. The next proposition
is an immediate consequence of the so-called demand-supply theorem in
network flow theory (Ford and Fulkerson, 1962; Iri, 1969a).

Proposition 8.1. For any nonnegative vector h on R, there is a flow g
on the network Q(I) such that ∂g |R= h if and only if, for any subset X of
R,

h(X) ≤ 3|F (X)| + |V (X)|.

Now, we can state the next theorem.
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Theorem 8.1. Let I = (V, F,R) be an incidence structure and X ⊆ R.
Suppose that the substructure (V, F,X) is generically reconstructible. Then,
for any r ∈ R − X, the following three statements are equivalent.
(1) (V, F,X ∪ {r}) is generically reconstructible.
(2) For any Y such that r ∈ Y ⊆ X ∪ {r} and |F (Y )| ≥ 2, the inequality

|Y | + 4 ≤ |V (Y )| + 3|F (Y )| holds.
(3) For any x ∈ X such that |F ({x, r})| = 2, the network Q(I) = (NI ,WI , cI)

admits a flow g such that ∂g |R= χX + χx + 4χr.

Proof. The equivalence of statements (1) and (2) follows immediately
from Theorem 6.2.

Now assume that statement (2) is true. Let x be an element of X
such that |F ({x, r})| = 2, and let h be the vector on R defined by h =
χX + χx + 4χr. Let Z be any subset of X ∪ {r}. Case 1: Suppose that
x /∈ Z. Then, h(Z) ≤ |Z|+ 3. If |F (Z)| ≥ 2, it follows from the assumption
and Theorem 6.2 that |Z|+3 ≤ |Z|+4 ≤ 3|F (Z)|+|V (Z)|. If |F (Z)| = 1, we
get |V (Z)| = |Z| and consequently |Z|+3 = |V (Z)|+3 = |V (Z)|+3|F (Z)|.
Thus, we get h(Z) ≤ |V (Z)| + 3|F (Z)|. Case 2: Suppose that x ∈ Z. If
|F (Z)| ≥ 2, then h(Z) = 2 + h(Z − {x}) ≤ 2 + |Z| − 1 + 3 = |Z| + 4 ≤
|V (Z)| + 3|F (Z)|. If |F (Z)| = 1, then |Z| = |V (Z)| and r /∈ Z, and hence
h(Z) = |Z| + 1 ≤ |V (Z)| + 3|F (Z)|. Thus, for any subset Z of X ∪ {r},
h(Z) ≤ |V (Z)| + 3|F (Z)|. Hence from Proposition 8.1, we get statement
(3).

Conversely, assume that statement (3) is true. Let Y be a subset of
X ∪ {r} such that r ∈ Y and |F (Y )| ≥ 2. Then, there exists an element x
of X such that |F ({x, r})| = 2. From our assumption it follows that there
exists a flow g on Q(I) = (NI ,WI , cI) such that ∂g |R= χX + χx + 4χr, and
hence from Proposition 8.1 χX(Y ) + χX(Y ) + 4χr(Y ) ≤ |V (Y )| + 3|F (Y )|.
Since Y contains both r and x, χX(Y ) = |Y |−1, χx(Y ) = 1 and 4χr(Y ) = 4;
thus we get |Y | + 4 ≤ |V (Y )| + 3|F (Y )|.

When a generically reconstructible substructure, say (V, F,X), of an
incidence structure I = (V, F,R) is given, statement (3) in the theorem
affords us an efficient way for augmenting the incidence pair set X one by
one while preserving generic reconstructibleness. Suppose that (V, F,X) is
generically reconstructible. Then, for any subset Y ⊆ X, we have |Y | ≤
|V (Y )| + 3|F (Y )|. Consequently, from Proposition 8.1, the network Q(I)
has a flow g such that ∂g |R= χX . Moreover, since the capacities of arcs
are all integers, we can find as g a flow whose value is integral at every
arc. Using the flow g, we can check, for an element r of R − X, generic
reconstructibility of (V, F,X ∪ {r}) in the following way.
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First, we search for flow augmentable paths from r to the sink t. If they
are found, we augment the flow until the total amount of supply of the com-
modity at r reaches 4. Since the capacity at each arc is integral, at least one
unit of flow can be augmented along each path; hence the flow augmenta-
tion is accomplished by finding at most four flow augmentable paths. If such
paths do not exist, the substructure (V, F,X ∪{r}) is not generically recon-
structible. Otherwise, we obtain the flow g′ such that ∂g′ |R= χX + 4χr. In
order to check statement (3) in the theorem, we need not augment the flow
any more; instead we only need to check whether every node x in X such
that |F ({x, r})| = 2 is a flow augmentable node or not. If it is, statement
(3) is true because at least one unit of flow can be added to g′ along any
flow augmentable path (recall that the capacities are integral); we conclude
that (V, F,X ∪ {r}) is generically reconstructible. Otherwise, it is not.

From this observation, we can construct the following method, in which
an initially empty set X is augmented one by one while preserving generic
reconstructibleness of (V, F,X).

Method 8.1 (Maximal generically reconstructible substructure).
Input: Incidence structure I = (V, F,R).
Output: A maximal generically reconstructible substructure of I.
Procedure:
Step 1. Let X = ∅, and let Y = R and g be a null flow on Q(I).
Step 2. While Y is not empty, choose and delete an element r from Y and

do the following.
2.1. Find a flow h such that h = g + g′ and ∂g′ |R= 4χr. If such an h

does not exist, go to Step 2.
2.2. On the network Q(I) with the flow h, find the set Z of flow aug-

mentable nodes.
2.3. If {x | x ∈ X and |F ({x, r})| = 2} ⊆ Z, then add r to X and

augment the flow g so that ∂g |R= χX∪{r}.
Step 3. Return (V, F,X).

The number of arcs in the network Q(I) is of O(|R|), because each el-
ement of R is connected to exactly one element of V and to exactly one
element of F . Hence, the search for a flow augmentable path p from a given
node, the augmentation of the flow by Δgp along the path p, and the con-
struction of the set of flow augmentable nodes all require O(|R|) time. It
is therefore obvious that Steps 2.2 and 2.3 require O(|R|) time. Step 2.1
can also be done in O(|R|) time, because it consists of at most four times
of repeatitions of finding a flow augmentable path and augmenting the flow
along this path. Since Steps 2.1, 2.2. and 2.3 are repeated |R| times, the
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total amount of time required by Step 2 is of O(|R|2). Steps 1 and 3 can
be done in, respectively, O(|R|) and O(1) time. Thus, Method 8.1 runs in
O(|R|2) time.

(a) (b) (c)

Figure 8.1. Three different types of incidence structures used for checking
the performance of Method 8.1: (a) is a top view of an n-gonal
pyramid, (b) is a side view of a 2n-gonal prism, and (c) is a top
view of a truncated pyramid with an n-gonal base; the pictures
are regarded as hidden-part-eliminated pictures.

Example 8.1. The efficiency of Method 8.1 was examined using various
sizes of incidence structures. Fig. 8.1 shows the incidence structures used as
input, and Fig. 8.2 plots the times required for finding maximal generically
reconstructible substructures. Fig. 8.1(a) is a top view of a pyramid with an
n-gonal base, whose incidence structure has 4n incidence pairs (recall that
we also count the background face, which has n incidence pairs; see Chapter
3), (b) is a picture of a prism with a 2n-gonal base and n visible side faces,
whose incidence structure has 8n+2 incidence pairs, and (c) is a top view of
a truncated pyramid with an n-gonal base, whose incidence structure has 6n
incidence pairs. The incidence structures associated with pictures (a) and
(b) are generically reconstructible, whereas that associated with picture (c)
is not. These three types of the incidence structures with various values
of n were used as the input to Method 8.1, and the times required were
measured. The results are plotted in Fig. 8.2, where the horizontal axis
represents the size of the incidence pair set, |R|, in a linear scale, and the
vertical axis represents the time required in an algorithmic scale. The broken
line shows the slope for O(|R|2). We can see that for large values of |R| (i.e.,
for |R| greater than 250), Method 8.1 runs in O(|R|2). The computer used
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in the experiment was M-382 of Fujitsu Ltd., and the computer program
was written in Fortran77.

Figure 8.2. Times required for finding maximal generically reconstructible
substructures for various sizes of the incidence structures shown
in Fig. 8.1.

Method 8.1 has freedom in the order in which elements of Y are chosen in
Step 2. Indeed different orders create different substructures as the output.
Even the size of the incidence pair set in the output substructure depends
on this order. To check all such substructures is not practical because we
come up against the problem of the combinatorial explosion. In practical
implementation, therefore, we must define some appropriate order in which
elements of Y are chosen.

One natural order is the following. Recall that our purpose in finding
a maximal generically reconstructible substructure R∗ is the correction of
vertex position errors in the picture; the correction is made by displacing
vertices in V (R−R∗). As was shown in Section 7.1, the correction is possible
only when each vertex to be corrected is on at most three faces in F0, where
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F0 is the set of faces having four or more vertices in the original incidence
structure. Thus our first criterion is that incidence pairs containing the
vertices that are on more than three faces in F0 should be chosen first.
Next, as we pointed out in the discussion of Heuristic 7.1, it seems that
vertices incident to shorter edges are more likely to have greater errors in
their positions; they should be displaced first in the correction. Thus, our
second criterion is that incidence pairs containing vertices that are on longer
edges should be chosen as early as possible. On the basis of these two criteria,
we can define the order of the incidence pairs in the following way.

First, R is partitioned into R0 and R1 in such a way that R consists of
incidence pairs containing the vertices that are on four or more faces in F0

(i.e., R0 = {(v, f) | (v, f) ∈ R, |F (v) ∩F0| ≥ 4}) and R1 = R −R0. In other
words, vertices appearing in R1 can be used for the correction whereas those
in R0 cannot. Next, with each element (v, f) of R is associated the maximum
length of the line segments connected to the vertex v as its weight. Then,
the order is defined by arranging elements of R0 in the decreasing order
of the weights and next elements of R1 also in the decreasing order of the
weights. When the incidence pairs are chosen in this order in Step 2, the
resultant maximal generically reconstructible substructure, say (V, F,R∗), is
more likely to have the property that vertices in V (R − R∗) are on at most
three faces in F0 and that they are on only shorter edges . This is what we
want.

Example 8.2. The line drawing shown in Fig. 8.3 represents a planar-
panel object consisting of five panels, four of them forming a ring and the
other in the diagonal. The line drawing has the incidence structure I =
(V, F,R) where

V = {1, 2, . . . , 8},
F = {1, 2, . . . , 5},
R = {(1,1), (1, 2), (1, 5), (2, 2), (2.3), (3, 1), (3, 3), (3, 4), (4, 4), (4, 5),

(5, 1), (5, 2), (5, 5), (6, 2), (6, 3), (7, 1), (7, 3), (7, 4), (8, 4), (8, 5)},

in which the vertex vα (α = 1, . . . , 8) and the face fj (j = 1, . . . , 5) are
abbreviated as α and j, respectively. It can be shown by primitive counting
that both R∗

1 = R − {(1,1)} and R∗
2 = {(2,2), (4, 4)} give maximal generi-

cally reconstructible substructures. Thus, the size of a maximal generically
reconstructible substructure is not necessarily unique. Imai (1985) presented
another example of an incidence structure that has maximal generically re-
constructible substructures of different sizes.
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Figure 8.3. Planar-panel object whose incidence structure has two different
sizes of maximal generically reconstructible substructures.



Chapter 9

Specification of Unique
Shape

The three modules established so far have enabled a machine to extract
three-dimensional structures of objects from line drawings. However, what
can be extracted are qualitative structures only; for example, the machine
can tell which faces share an edge but cannot tell at what angle. From our
mathematical point of view, a correct line drawing can represent infinitely
many different objects. In the present and the next chapters, we consider
methods for selecting from the set of all possible objects the one that is most
consistent with additional information such as lengths of edges given by a
designer or surface texture given in an image. Thus we shall construct the
fourth module of our mechanism. This chapter considers the case where the
additional data are accurate, whereas the next chapter treats the case where
the additional data may contain noises.

9.1 Object Specification Using Precisely Drawn
Pictures

First let us assume that a line drawing is a precise description of an object,
that is, it is not a rough sketch, and hence the vertices are in correct position
up to digitization errors. Then, the set of all objects the line drawing can
represent is identical with the set of all solutions to the system consisting
of (7.1) and (5.2). Therefore, to specify a unique shape is nothing but to
remove the degrees of freedom in the choice of the solution to (7.1) and (5.2).
As we have seen, the distribution of the degrees of freedom is characterized
by the matroid (H, ρH) defined by (5.4). In other words, an appropriate
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assignment of values to the unknowns in a certain subset of the unknown
set H ′ = {z1, . . . , zn, a1, b1, c1, . . . , am, bm, cm} determines the unique shape
if and only if the subset forms a base, where “appropriate” means that the
assignment of values does not violate the inequality (5.2).

Using the structure of the matroid (H, ρH), a machine can check the
insufficiency or the redundancy of additional information. Suppose that a
designer gives some values to unknowns in a subset, say X, of H in order to
select one of the solution to (7.1). If X is a dependent set of the matroid,
the given values are in general inconsistent with (7.1); there is no solution to
(7.1) that has the given values for the unknowns in X. If X is an independent
set, on the other hand, the given values are always consistent with (7.1), but
the solution to (7.1) having the given values for the unknowns in X is not
necessarily unique. It is unique if and only if X is a maximal independent
set, that is, a base.

On the basis of this observation, we can construct the following two
strategies for a machine to guide a designer in specifying the unique shape
of the object.

In the first strategy, the machine shows to the user a set of unknowns
that should be specified simultaneously for the unique reconstruction of
the object. That is, after constructing (7.1) and (5.2) and correcting the
input line drawing, the machine finds a base of the matroid (H, ρH) and
shows it to the user. Then, the user gives values to the unknowns in the
base, by which he can specify the polyhedral object uniquely. In order to
find a base, we can use Theorem 6.3. Let I = (V, F,R) be the maximal
generically reconstructible substructure of the original incidence structure
that is used in the picture correction. Then, the size of a base must be
equal to |V |+3|F |− |R|. Since a base can be obtained by the greedy type of
search, we can find one by scanning the elements of V and adding them to an
initially empty set Y if the resultant set satisfies the condition in Theorem
6.3 until the size of Y reaches |V | + 3|F | − |R|. Once a base is chosen and
the user gives values to the unknowns in the base, the associated unique
solution can be obtained by (7.2) where ξ is the vector consisting of the
given values of the unknowns in the base; thus the machine can construct
the object shape quantitatively.

In the second strategy, on the other hand, a user selects the unknowns
whose values should be given, and the machine guides the user not to select
an inconsistent set of unknowns. At each step the machine shows to the user
the set of unknowns any one of which can still be specified independently, and
the user selects one of them. For simplicity, let us consider the case where
the user specifies z values of some vertices. As before, let I = (V, F,R) be
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the maximal generically reconstructible substructure used for the picture
correction. For any subset Y of V , let us define T (Y ) by

T (Y ) = {v | v ∈ V − Y, ρV (Y ) < ρV (Y ∪ {v})}.
That is, v is an element of T (Y ) if and only if Y ∪ {v} has greater degrees
of freedom than Y has. Hence, if the user has given z coordinates to the
vertices in Y , the z coordinate of the vertex v can still be given independently
if and only if v belongs to T (Y ). Note that the set T (Y ) can be constructed
from Corollary 6.3.1. Therefore, the user and the machine can communicate
in the following manner. After the machine corrects an input line drawing,
the machine shows T (∅) to the user. The user first chooses from T (∅) any
one vertex, say v1, and gives a value to its z coordinate. Then, the machine
constructs T ({v1}) and shows it to the user. The user next chooses one of
its elements, say v2, and gives its z coordinate. Then, the machine shows
T ({v1, v2}) to the user, and so on. They repeat the communication until
the object shape is specified uniquely.

9.2 Object Specification Using Roughly Drawn Pic-
tures

It has been assumed in Section 9.1 that the line drawings are drawn precisely
within digitization errors; hence the x and y coordinates of vertices were
regarded as given constants, and the problem was to determine only the
z coordinates. In human communication, on the other hand, pictures are
often drawn only roughly; they represent only qualitative aspects of the
objects. In that case vertex positions in the picture plane are not reliable,
and consequently the exact shape of the object to be recovered does not
necessarily belong to the set of solutions to (7.1) and (5.2). Hence, the
mathematical structures as to the degrees of freedom in the choice of the
objects will be quite different from that for the case of precisely drawn
pictures.

Here we consider roughly drawn axonometric line drawings. This class
includes usual line drawings in the sense that the usual line drawings can
be regarded as axonometric line drawings in which no edges are parallel to
the axonometric axes.

As is seen in Section 5.4, an axonometric line drawing is an orthographic
projection of an object in which the axonometric axes are also drawn. The
axonometric axes are three mutually orthogonal unit vectors, say eX ,eY ,eZ ,
which are usually chosen in such a way that many edges and faces of the
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object become parallel to them. Since the axonometric axes eX ,eY ,eZ are
of unit length, their projections, say lX , lY , and lZ , respectively, represent
the ratios of compression of the lengths of edges that are parallel to the ax-
onometric axes. In the axonometric projection the object posture is usually
chosen so that no edge that is not parallel to an axonometric axis becomes
accidentally parallel on the picture plane. Therefore, if a line segment in
the picture is parallel to lX , lY , or lZ , the orientation and the exact length
of the corresponding three-dimensional edge is determined uniquely (recall
Heuristic 5.1).

In practical situations of engineering, we often use “axonometriclike” line
drawings (instead of precise ones) to represent rough shapes of objects, where
the line drawings are read with the following convention. Like axonometric
line drawings, line segments that are nearly parallel to lX , lY , or lZ are
regarded as the projections of edges that are precisely parallel to the X,Y , or
Z axis. However, unlike axonometric line drawings, lengths of line segments
drawn in the pictures are regarded as merely rough approximations to the
true lengths of the projections of the edges. With this convention, the line
drawing in Fig. 5.9 is thought of as a picture of a triangular prism whose side
faces are perpendicular to the base triangle, but neither the precise shape
of the base triangle nor the height is known. Thus, this convention allows
us much greater degrees of freedom in the choice of the shape of the object
than when the line drawings are drawn precisely. In the present section we
consider line drawings with this convention.

Here, the algebraic approach taken in Section 5.4 seems useless. Indeed
a position of a vertex vα on the picture plane, (xα, yα), may contain errors
so that we must treat xα and yα as unknown variables instead of given
constants. Consequently, (3.1) becomes nonlinear, and hence the resulting
system of equations seems intractable.

However, if we restrict our objects to trihedral ones (i.e., the objects in
which vertices lie on exactly three faces), we can reduce the problems to
purely combinatorial problems.

One simple way to define the precise shape of an object represented by a
line drawing D and its spatial structure S is to fix face planes one by one to
the (X,Y,Z) coordinate system. That is, we first choose an arbitrary face,
say f1, and specify the plane on which f1 should lie, next choose another
face, say f2, and specify the associated plane, and so on. As we add new
face planes, edges and vertices of the object are gradually generated as
intersections of the planes.

This method is simple but does not always succeed in defining the shape.
Recall that every face of a polyhedron must be planar. Hence, when we add
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a new face plane to the already constructed substructure, the plane must be
chosen so that it passes through every vertex the face should have. However,
if four or more vertices that a new face should have are already located in
the substructure and are not coplanar, then it is impossible to add the new
face plane; thus the method fails in defining the whole shape of the object.

The situation is quite different when we restrict our objects to trihedral
ones. A trihedral vertex is shared by exactly three faces, and consequently
the position of the vertex is determined only when all of the three face
planes are given. Therefore, at each step of adding a new face to the already
constructed substructure, any vertex that should be on the new face has
not yet been located; we can always add a new face plane and augment the
substructure. Thus, the method is always successful. This observation leads
us to the following solution to the problem.

Suppose that we are given an axonometriclike line drawing D. As in
Section 5.4, let EX , EY , and EZ denote the sets of edges that are parallel to
eX ,eY , and eZ , respectively. Furthermore, let FXY , FY Z , and FZX denote
the sets of faces that are parallel to the X-Y plane, the Y -Z plane, and the
Z-X plane, respectively, and let FX , FY , and FZ denote the sets of faces
that are parallel only to the X axis, the Y axis, or the Z axis, respectively.
These sets can be constructed from the labeled line drawing D; for example,
a face fi belongs to FX if and only if fi has an edge in EX but no edge in
EY ∪ EZ , and fi belongs to FXY if and only if fi has both an edge in EX

and one in EY . Let F0 be the set of faces that are parallel to neither the X
axis, the Y axis, nor the Z axis. Thus, {FXY , FY Z , FZX , FX , FY , FZ , F0} is
a partition of F .

A face in FXY is parallel to the X-Y plane, and hence it can be rep-
resented by the equation Z = a, which contains only one parameter: a.
Similarly, faces in FY Z and in FZX are represented by one-parameter equa-
tions. A face in FX , which is parallel to the X axis, can be represented by
the equation Z = aY +b. Faces in FY and in FZ are also represented by two-
parameter equations. A face in F0, on the contrary, is on a general plane,
and is represented by a three-parameter equation aX + bY + cZ = 1 (this
equation cannot represent a plane that passes through the origin of the
(x, y, z) coordinate system; however, note that the line drawing does not
specify the absolute position of the object in the space, and consequently we
can assume without loss of generality that no face is on the plane passing
through the origin). Thus, the total number of parameters is

|FXY ∪ FY Z ∪ FZX | + 2|FX ∪ FY ∪ FZ | + 3|F0|,
which is equal to the degrees of freedom in the choice of the object repre-
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sented by D. Note, however, that the degrees of freedom include the freedom
in the choice of the position and the posture of the object. Therefore, the
degrees of freedom in the choice of the shape itself, which shall be denoted
by τ(D), is obtained in the following equation:

τ(D) = |FXY ∪ FY Z ∪ FZX | + 2|FX ∪ FY ∪ FZ | + 3|F0| − p(D), (9.1)

where p(D) is the degrees of freedom in the choice of the position and the
posture of the object, that is,

p(D) = 3 if at least two of EX , EY , EZ are nonempty,
p(D) = 4 if exactly one of EX , EY , EZ is nonempty,
p(D) = 6 if EX , EY , EZ are all empty.

The value of p(D) can be interpreted in the following way. There are 6
degrees of freedom for us to fix a rigid object to the coordinate system:
three for translation and three for rotation. Suppose first that EX and EY

are nonempty. Then, the edges in EX and EY are constrained to be parallel
to the associated axes; the object can admit translation, but not rotation.
Thus, p(D) = 3. Next suppose that only EX is nonempty. Then, the edges
in EX are constrained to be parallel to the X axis, and hence the object
admits translation in any direction and rotation about axes parallel to the
X axis. Thus, p(D) = 4. If EX , EY , EZ are all empty, the object can admit
any translation and any rotation, and hence p(D) = 6.

Note that in the case of an axonometriclike line drawing the degrees
of freedom in the choice of the shape, τ(D), depend only on the face sets
FXY , FY Z , FZX , FX , FY , FZ , F0, and the edge sets EX , EY , EZ , whereas the
degrees of freedom for an axonometric line drawing, σH(H) − 1, defined in
Section 5.4, depend also on the positions of the vertices in the picture D.
This is because, unlike an axonometric line drawing, the positions of ver-
tices on the picture plane are regarded as rough estimates about the precise
positions, and consequently the degrees of freedom depend only on which
faces contain which vertices and which edges are parallel to the coordinate
axes.

Now we have seen that τ(D) additional data are required for us to define
uniquely the shape of the object. The next question is which data are
required. This can be answered easily in the following way. Assign a linear
order to the faces such that the first three faces share a common vertex and,
for 4 ≤ i ≤ |F |, the ith face has two edges in common with the substructure
consisting of the first i−1 faces (this is always possible for a trihedral object).
Give mutual angles between the first three faces, if they have not yet been
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given, and next for i = 4, 5, . . . , |F |, give appropriate data in order to fix the
ith face with respect to the substructure consisting of the first i − 1 faces.
Thus we can completely specify the shape of the object.

(a)

(b) (c)

Figure 9.1. Axonometriclike line drawing of a trihedral object: (a) is a line
drawing, and (b) and (c) show two sets of additional data defin-
ing the unique shape of the object.

Example 9.1. Consider the line drawing D shown in Fig. 9.1. The object
has eight faces, and they are numbered as shown in the figure. The face f1

is bounded by edges parallel to the X axis and edges parallel to the Z axis,
and consequently belongs to FZX . The face f7 has edges parallel to the Z
axis but no edges parallel to the X axis or the Y axis, and hence belongs to
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FZ . The face f8 belongs to F0 because it has no edge that is parallel to the
coordinate axes. Other faces are classified similarly, and we get

FXY = {f3, f4}, FY Z = {f2, f5}, FZX = {f1, f6}
FX = FY = ∅, FZ = {f7}, F0 = {f8}.

Moreover, since the line drawing has edges parallel to the X axis and those
parallel to the Y axis, rotation of the object is not allowed; p(D) = 3. Hence
we see

τ(D) = 6 + 2 × 1 + 3 × 1 − 3 = 8;

that is, eight additional data are necessary to define the shape of the object.
In order to find a set of eight additional data, let us consider the linear

order of the faces (f1, f2, . . . , f8). Since the mutual angles of the first three
faces are given (i.e., they meet at right angles), we need not add any data
for the specification of the relative position of these three faces. Since f4 is
parallel to f3, f4 is fixed to the substructure consisting of f1, f2, f3 by giving
the distance between f3 and f4 (the length d1 in (b)). Similarly, since f5

and f6 are parallel to f2 and f1, respectively, they are fixed by the distances
d2 and d3 in (b). The face f7 is parallel to the Z axis, and hence is fixed
by giving two points through which the face should pass, which is done by
lengths d4 and d5. Finally, since f8 is not parallel to any coordinate axes,
its definition requires three additional data; for example, d6, d7, d8 in (b).
Thus, the eight additional data d1, . . . , d8 in (b) all together define the shape
of the object uniquely.

Let us consider another linear order of the faces (f1, f2, f3, f4, f5, f8, f7, f6).
The first five faces are the same as in the previous order, so that the sub-
structure consisting of these five faces is defined by d1 and d2. Next, in
order to define f8, three new data are necessary, and an example of the set
of the three data is {d3, d4, d5} in (c), where d5 is the angle between f4 and
f8. The other faces, f7 and f6, are defined, for example, by d6, d7, d8 in (c),
where d7 denotes the angle between f5 and f7. Thus, (c) represents another
set of eight additional data.

Example 9.2. The method in this subsection is valid in the trihedral
object world; it is not necessarily valid for objects outside this world. A
counterexample is shown in Fig. 9.2. This line drawing represents an object
bounded by nine quadrilateral faces forming a shape that is topologically
equivalent to a torus. Note that every vertex of this object is shared by
four faces. Therefore, when eight face planes are fixed in the space, the
positions of all the vertices are determined, and in general the four vertices
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that should be on the ninth face are not coplanar. Thus, we cannot specify
the face planes in the one-by-one manner.

Figure 9.2. Non-trihedral object whose faces cannot be specified in the step-
by-step manner.





Chapter 10

Recovery of Shape from
Surface Information

Visual information on the surfaces of objects, such as shading and texture,
affords us fruitful cues for recovering the three-dimensional structures of
the objects. This chapter presents a method of using these cues as the addi-
tional information in order to determine the object structures quantitatively.
While in the previous chapter the additional data are assumed to be accu-
rate, surface cues extracted from real images are not always very accurate.
Hence the shape recovery is considered as an optimization in the sense that
among all the possible objects represented by a line drawing, the shape to
be recovered is the one that is most consistent with the additional surface
cues.

10.1 Shape Recovery as an Optimization

If line drawings are those extracted from photographic images of the out-
side world, surface information in the images is also available for the re-
covery of three-dimensional shape (Brady, 1982). There are exactly three
degrees of freedom in the choice of a planar surface or a small portion of
a curved surface that can be regarded as planar. These degrees of freedom
can be lessened by various kinds of visual information, such as light inten-
sity under a priori known illumination conditions (Horn, 1975; Woodham,
1977, 1981; Ikeuchi, 1981; Coleman and Jain, 1982), apparent distortion of
known patterns (Kender, 1979; Kanade, 1981; Ikeuchi, 1984), surface con-
tour (Stevens, 1981; Barrow and Tenenbaum, 1981; Marr, 1982), statistical
properties of texture (Bajcsy and Lieberman, 1976; Witkin, 1981), vanishing

163



164 10. Shape from Surface Information

points (Nakatani and Kitahashi, 1984), and the distribution of small pattern
sizes (Ohta et al., 1981).

In general each of these cues alone is not enough to determine the surface
completely; they can remove the degrees of freedom only partially. However,
if we combine the surface information with the algebraic structure of line
drawings, we can determine the object shape uniquely from single-view im-
ages; that is, from all the scenes that the line drawing can represent we can
choose the one that is most consistent with the surface information. This
is the basic idea of the shape recovery presented in this chapter (Sugihara,
1984a).

One general principle in computer vision is, “If surface information is
not enough to determine each surface locally, use global constraints that
constrain relative configuration of the surfaces so that the total degrees
of freedom decrease” (Horn, 1975, 1977; Ikeuchi and Horn, 1981; Kanade,
1981). The shape recovery method presented here is another example of
this principle, where the algebraic structure of line drawings is used as the
global constraint.

In the previous chapter the additional data were assumed to be precise,
and consequently the problem was to find a minimum set of additional data
that is sufficient to specify the object shape. In the case of surface informa-
tion obtained from real images, on the other hand, we cannot expect that
the data are always very accurate; they usually contain noises. Therefore,
instead of searching for a minimum set of additional data, we must search
for the shape that is most consistent with all of the additional information.
Keeping this in mind, we formulate the problem of shape recovery as a kind
of an optimization problem.

Let D be a labeled line drawing extracted from a given image, and let
I∗ = (V, F,R∗) be a maximal generically reconstructible substructure of
the incidence structure of D. Then, there is a one-to-one correspondence
between the set of all solutions to the system consisting of (7.1) and (5.2)
and the set of all scenes that the picture D can represent. Hence the problem
of shape recovery can be regarded as the problem of selecting a solution to
(7.1) and (5.2) that is most consistent with surface information.

We consider any cue that can lessen the degrees of freedom of the faces.
Let dk denote an observed value of the kth cue, and for any w satisfying (7.1)
and (5.2), let d∗k(w) denote a theoretical value of the kth cue that should
be observed if the exact scene is w. For example, if a face is covered with
a grain texture of a known uniform density, we can adopt as dk and d∗k(w),
respectively, the observed value and the theoretical one of the apparent
grain density on the surface; if the illumination condition and the surface
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reflectance are known, we can adopt as dk and d∗k(w) the observed value
and the theoretical one of light intensity on the face.

Let gk(w) be the difference of the two values:

gk(w) = dk − d∗k(w). (10.1)

If there is no error in observation, the true scene w must satisfy gk(w) = 0;
this condition lessens the degrees of freedom of the face by 1. Since noises
are inevitable in real image data, we cannot expect gk(w) = 0 exactly.
However, if enough cues are available, we can seek a solution to the following
optimization problem:

Problem 10.1. Minimize
∑

k sk(gk(w))2, subject to (7.1) and (5.2),
where sk denotes a positive weight of the kth cue, and the summation is
to be taken over all available cues.

A solution w̄ to the optimization problem can be thought of as a scene
that is most consistent with the surface cues under the quadric error crite-
rion. Thus, the fundamental scheme of our shape recovery is to adopt the
solution to the optimization problem as the shape to be recovered.

As we have seen in Section 7.2, the set of all solutions w to (7.1) and
(5.2) coincides with the set of all vectors of the form w = h(ξ) satisfying
(7.4). Hence, Problem 10.1 can be paraphrased by the next problem:

Problem 10.2 Minimize ϕ(ξ) =
∑

k sk(gk(h(ξ)))2, subject to (7.4).

Note that the size of the vector ξ equals n + 3m − |R∗| (where as before n
and m denote the number of vertices and the number of faces, respectively),
whereas the size of the vector w equals n + 3m. The size of w increases as
the scene becomes complicated, but the size of ξ usually does not increase
so rapidly as w; it often remains four or a little greater than four. Hence,
Problem 10.2 is much more tractable than Problem 10.1 in the sense that
the number of variables is very small.

Thus our problem of shape recovery has been reduced to the constrained
optimization problem, where the constraints are expressed by the linear in-
equalities (7.4) and the objective function to be minimized is ϕ(ξ). However,
in order to solve the problem we have to consider one more point.

In Problem 10.2 the constraint set, the set of solutions ξ to (7.4), is
not a closed set, because some of the inequalities in (7.4) do not allow
equalities (i.e., some inequalities are of the form > but not ≥). Generally a
constrained optimization problem does not necessarily have a solution when
its constraint set is not closed (Gill et al., 1981). In this sense Problem 10.2
seems unsound.
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However, the unclosedness of the constraint set is a natural consequence
of the properties of pictures of polyhedral scenes. For example, some of the
inequalities represent the condition that faces bend along edges. An edge
shared by two faces implies that the two faces meet at some angle other
than π. This angle may be near to π, but is not equal to π because, if so,
the edge would disappear. Consequently, such inequalities do not include
equalities.

The unclosedness of the constraint set seems unsound only when we
consider Problem 10.2 as a “general” optimization problem. For our spe-
cific problem, the absence of equalities merely means that the shape to be
recovered does not lie on the boundary of such constraints.

Let
B1h(ξ) ≥ 0 (10.2)

be the set of all improper inequalities (i.e., inequalities including equalities)
in (7.4), and let

B2h(ξ) > 0 (10.3)

be the set of all proper inequalities (inequalities excluding equalities). Then,
the shape to be recovered may lie on the boundary of the constraints (10.2),
but never lies on the boundary of the constraints (10.3). That is, the inequal-
ities in (10.3) are not “active” at the optimal point. In fact, this property
is not a difficulty, but makes the problem easier in the following manner.

An optimization problem is usually solved by an iterated process; start-
ing with a certain initial point in a solution space, we repeatedly seek for a
better point until we reach the optimal point. One of the greatest difficulties
in solving a constrained optimization problem is to control each step in such
a way that the replaced point does not go out of the constraint set (Gill et
al., 1981). This control is especially important when the optimal point lies
on the boundary of the constraint set.

In our problem the optimal point does not lie on the boundary of the
constraints (10.3). Hence, if an initial point is chosen near enough to the
optimal point, we can ignore the inactive constraints (10.3). Thus we can
lessen the number of constraints in the optimization.

Moreover, we can also ignore the other constraints (10.2) in the follow-
ing sense. Note that our objective function to be minimized is the sum of
quadric differences between the observed values and the theoretical values of
the available cues. Hence the objective function is nonnegative, and if there
is no error in observation, it becomes zero at the optimal point. This means
that the optimal point remains optimal even if we remove active constraints.
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That is, the optimal point attains the local minimum of the objective func-
tion whether the constraints in (10.2) are considered or ignored. Hence if an
initial point is chosen sufficiently near to the optimal point, we can reach the
optimal point by any local optimization method (such as a steepest descent
method) even if we skip the control for preventing the point from going out
of the constraint set. Therefore, instead of solving Problem 10.2 directly,
we search for the solution in the following manner. Starting with a certain
initial point ξ0 that satisfies (7.4), we search for the point ξ̄ which yields
the local minimum of the objective function of Problem 10.2. If ξ̄ satisfies
(7.4), we adopt ξ̄ as a candidate of the shape to be recovered. Otherwise,
we choose a new initial point and repeat the process. Thus, we can establish
the next method for shape recovery.

Method 10.1 (Shape recovery).
Input: Image of a polyhedral scene and the corresponding labeled line draw-

ing with an incidence structure I = (V, F,R).
Output: Three-dimensional shape represented in the image.
Procedure:
Step 1. Find a maximal generically reconstructible substructure I∗ = (V, F,R∗)

of I, where R∗ ⊆ R.
Step 2. Construct Problem 10.2.
Step 3. Choose a vector ξ = ξ0 that satisfies (7.4).
Step 4. Find, starting with ξ0, the locally minimum point ξ = ξ̄ of the

objective function ϕ(ξ).
Step 5. If ξ = ξ̄ satisfies (7.4) and ϕ(ξ̄) is smaller than a certain prespecified

threshold, go to Step 6. Otherwise, replace ξ0 with a new initial
point satisfying (7.4) and go to Step 4.

Step 6. Construct a three-dimensional scene using vector w̄ = h(ξ̄) (whose
components represent the z coordinates of the vertices and the
surface equations of the faces).

Step 7. If R∗ = R end the processing. If R∗ �= R (note that, in this case,
the scene constructed in Step 6 does not necessarily satisfy the in-
cidence constraints in R − R∗ because these constraints have been
removed), correct the positions of the vertices associated with ele-
ments in R−R∗ by finding intersections of the surfaces constructed
in Step 6, and end the processing.

Step 1 can be done by Method 8.1. Step 2 consists of finding a set of
vertices whose z coordinates can be given independently (a method for this
is given in Theorem 6.3), calculating (7.2), and constructing an objective
function that depends on the cues available in the image. Since (7.4) is
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linear with respect to ξ, ξ0 in Step 3 can be found, for example, by linear
programming methods (Dantzig, 1963). Moreover, this step can be executed
by Method 5.1 very quickly if there are exactly four degrees of freedom in
the solutions to (7.4). Step 4 is an unconstrained local optimization; it can
be done by any method (such as a steepest descent method). Steps 5 and 6
are obvious. Step 7 is the same as Step 3 in Method 7.1.

10.2 Some Examples

Here we shall show some examples in which Method 10.1 is applied to various
kinds of objects and surface cues.

Example 10.1 (Computer simulation for ideal images). In the first
example Method 10.1 is applied to ideal light intensity data of a scene gen-
erated by a computer. This example is intended to illustrate basic behavior
of the method for a typical scene with typical surface information.

Fig. 10.1(a) shows a scene constructed in a computer, where a truncated
pyramid lies on a desk surface. Seen from above, it is projected orthograph-
ically on the x-y plane as shown in Fig. 10.1(b). Since this picture is also
generated by a computer, the vertex positions are correct up to digitiza-
tion errors. It has ten visible vertices and five visible faces, and they are
numbered as in the figure.

(a) (b)

Figure 10.1. Scene used in the computer simulation in Example 10.1: (a)
shows an object on the floor that can be obtained by cutting
off the upper part of a pyramid with a slant cutting plane, and
(b) is a top view of the scene.
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Let I = (V, F,R) be the incidence structure of the picture. Then, we
get

V = {1, 2, . . . , 10},
F = {1, 2, . . . , 5},
R = {(1,1), (2, 1), (3, 1), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4), (5, 2), (5, 4), (5, 5),

(6, 1), (6, 2), (6, 5), (7, 3), (7, 4), (7, 5), (8, 1), (8, 3), (8, 5), (9, 1), (10, 1)},

where vα and fj are abbreviated to α and j (α = 1, . . . , 10, j = 1, . . . , 5)
because it is obvious from the context whether a number denotes the vertex
number or the face number. Since |V | + 3|F | = 25 < |R| + 4 = 26, I is not
generically reconstructible (see Theorem 6.2). If we delete from R any one in-
cidence pair containing f2, f3, or f5, then we get a generically reconstructible
substructure I∗ = (V, F,R∗). Let us put R∗ = R − {(5,5)}. From R∗ we
construct the system of equations (7.1), consisting of 21 equations, with
respect to 25 unknowns w = t(z1, · · · , z10, a1, b1, c1, · · · , a5, b5, c5). Corol-
lary 6.2.1 assures us that the equations in (7.1) are linearly independent,
and hence the solutions to (7.1) can be expressed as a linear combination
of 4 free variables. According to the systematic way for finding a set of
free variables (Theorem 6.3), we can, for example, put ξ = t(z1, z2, z3, z4).
For the present example we easily see that when we specify ξ, the shape is
determined uniquely. Thus we get the general form of solutions to (7.1) as

w = h(ξ), where ξ = t(z1, z2, z3, z4).

Substituting this expression in (5.2), we get (7.4) and thus obtain the
constraint set of Problem 10.2 explicitly.

A light intensity image of the scene is also generated by a computer. The
scene is assumed to be illuminated by a parallel light. Let −l be a direction
vector along which the light is projected; that is, l is a vector from a point
on the surface toward the light source. Furthermore, it is assumed that the
scene is covered with a Lambertian surface; light intensity at a point on the
surface is L cos θ where L is a constant depending on the light source and
surface reflectance, and θ is the incident angle, that is, the angle between
a surface normal n and the light source direction l. Then, when we have
fixed the light source direction l, the light intensity on the surface depends
only on its normal, and hence each planar face of the object has a constant
intensity.

Let us define nk = (ak, bk, 1); that is, nk is a vector normal to the kth
surface akx + bky + z + ck = 0. Then, we obtain the light intensity dk on
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this surface:

dk = L · cos θ =
L · l · nk

|l| · |nk| =
L · l · (ak, bk, 1)

|l|√(ak)2 + (bk)2 + 1
.

In the present experiment we put L = 1, l = (−1, 1, 3), and thus get the
observed value dk of the light intensity on the kth face (k = 1, . . . , 5):

dk =
−ak + bk + 3√

11((ak)2 + (bk)2 + 1)
, k = 1, . . . , 5,

where ak and bk are fixed real numbers given in the scene in Fig. 10.1(a).
Similarly, the theoretical value d∗k(w) of the light intensity on the kth face
(k = 1, . . . , 5) in a scene w = t(z1, · · · , z10, a1, b1, c1, · · · , a5, b5, c5) is given by
the right-hand side of the above equation in which ak and bk are regarded as
variables. Thus we obtain the objective function in Problem 10.2 explicitly:

ϕ(ξ) =
5∑

k=1

sk(dk − d∗k(w))2

=
5∑

k=1

sk(dk − d∗k(h(ξ)))2, ξ = t(z1, z2, z3, z4),

where as the weight sk we adopt the area of the kth face on the picture
plane.

Because of our assumption concerning the illumination condition, the
light intensity data are invariant under the translation of the scene along
the z axis. Hence, without loss of generality we can fix one of the free
parameters; we put z1 = 0. Then, our problem has only three unknowns
(i.e., z2, z3, and z4), whereas the number of available cues is five, one for
each face. We have thus enough cues to recover the shape uniquely.

Now, we start solving the optimization problem. In order to illustrate the
behavior of the method, we have to display the recovered three-dimensional
shape. For this purpose we use, in what follows, the light stripe representa-
tion. Suppose that a virtual light source is set to the left of the viewpoint
and light is projected through a narrow vertical slit onto the scene, as is
shown in Fig. 10.2. Then, an image of the slit on the surface of the scene
forms a piecewise linear polygonal line. Changing the direction of the slit
light and superimposing the resultant slit images upon each other, we get a
light stripe image which reflects the shape of objects in the scene. While the
light stripe image was originally used for range finding (Shirai and Suwa,
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Figure 10.2. Light stripe image.

(a) (b)

Figure 10.3. Result of the recovery: (a) shows an initial shape, and (b) shows
the recovered shape that corresponds to the optimal point.

1971 ; Oshima and Shirai, 1979), it is also suitable for shape display in that
we can illustrate a three-dimensional shape without changing eye position.

Fig. 10.3(a) shows an initial shape satisfying (7.4), with which we start
the optimization. The result of recovery is shown in Fig. 10.3(b). We can
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see that the initial shape (a) is not very near to the optimal shape (b). In
our experience we find that the correct shape can be recovered from almost
any initial shape provided that the initial shape satisfies (7.4). Hence, we
need not repeat Steps 4 and 5 in Method 10.1 more than once.

On the other hand, if we start with the initial shape shown in Fig. 10.4(a),
which does not satisfy (7.4), then we reach a local minimum that corresponds
to the shape shown in Fig. 10.4(b), in which the edges forming ridges and
those forming valleys are all interchanged with each other when compared
with Fig. 10.3(b). Even if we come across this shape as a local minimum of
the objective function, we can easily reject it in Step 5 because it does not
satisfy the constraint (7.4). The interesting point is that Fig. 10.4(b) is very
similar to what is called Necker’s reversal (Gregory, 1971) or a “negative”
object (Kanade, 1981), in which the relative depths are all reversed. It
should be noted, however, that Fig. 10.4(b) is not the same as Necker’s
reversal in the following sense. A primal shape and its Necker’s reversal are
both correct interpretations of a picture, whereas Fig. 10.4(b) is incorrect
because it does not make the objective function zero. Indeed, the value of the
objective function at the local minimum point corresponding to Fig. 10.4(b)
is equal to ϕ(ξ) = 7.21.

(a) (b)

Figure 10.4. Reversed shape associated with a locally optimal point: (a)
shows an initial shape, and (b) shows the shape that corre-
sponds to a locally optimal point.

The situation is revealed more clearly when we plot the values objective
function ϕ(ξ) for various ξ = t(z1, z2, z3, z4). We put z1 = z2 = z3 = 0 and
move z4 (that is, we fix the desk surface to the correct position and alter one
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Figure 10.5. Profile of the objective function.

of the top vertices of the truncated pyramid). Then, ϕ(0,0, 0, z4) changes
its value as shown in Fig. 10.5. When z4 > 0, ξ = t(0, 0, 0, z4) satisfies
(7.4), whereas all of the inequalities in (7.4) are reversed if z4 < 0 (note
that this fact corresponds to the property stated in Theorem 5.4). As is
easily seen, ϕ(0,0, 0, z4) has two locally minimum points denoted by P and
Q. P corresponds to the correct shape (Fig. 10.3(b)), and Q corresponds
to a reversed shape like Fig. 10.4(b) (note that Q does not correspond to
Fig. 10.4(b) exactly; in Fig. 10.4(b), z2 and z3 also have nonzero values).
Fig. 10.5 seems to suggest that the correct optimal point can be attained by
any local optimization method for a very large range of initial points in the
constraint set.

In the above observation it is not very easy for us to understand the ef-
fect of the extraction of the generically reconstructible substructure I∗ from
I. This is because our data do not contain vertex-position errors. Now we
perturb the vertex position; we change the position on the picture plane
of the vertex 7 from (6.6,2.6) to (6.5,2.5), and apply our method to the
new picture. The shape corresponding to the optimal point is shown in
Fig. 10.6(a). We can observe that the surface has gaps along the edges 5-6
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(a) (b)

Figure 10.6. Shape recovery from a picture containing vertex-position er-
rors: (a) shows the shape corresponding to the optimal point,
where the surface has discontinuity, and (b) shows the finally
recovered shape, where the discontinuity is repaired.

and 5-7 (where the edge connecting i and j is denoted by i − j). This is
because we deleted the incidence pair (5, 5) when we constructed the gener-
ically reconstructible substructure I∗. The incidence pair (5, 5) represents
the constraint that the vertex 5 should be on the face 5. Since this constraint
has been deleted, it is not satisfied by the recovered shape in Fig. 10.6(a).
It should be noted that, if we did not delete this constraint, we could not
reconstruct any shape. Indeed, the picture is incorrect and hence Problem
10.1 has no solutions due to the superstrictness of the system of equations
(5.1) associated with I.

All we have to do in order to repair the gaps in Fig. 10.6(a) is to find
the exact point of intersection of the three recovered faces, the faces 2, 4,
and 5. The result of the repair is shown in Fig. 10.6(b). This is the reason
why Step 7 in Method 10.1 is necessary.

Example 10.2 (Recovery of the shape from light intensity). The
second example is an application of Method 10.1 to real shading images of
plaster objects.

The scenes were set on a desk surface in an ordinary room. The desk
surface was covered with light gray cloth, and objects made of plaster were
put on it. Photographs were taken by a camera with a 50-mm lens, which
was about 1.3m distant from the scenes. The scenes were illuminated by
six 40-watt fluorescent lights on the ceiling together with a 300-watt bulb
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(a) (b)

Figure 10.7. Calibration of the illumination condition: (a) is a light inten-
sity image of a sphere, and (b) shows the contours of the light
intensity plotted in the gradient space.

to the left of the camera.

In order to register the theoretical values, d∗k(w) in (10.1), of the light
intensity cue, we first placed a sphere on the desk and took a photograph
(Fig. 10.7(a)). In the real world, the light intensity of a point on the surface is
not determined only by the direct light from the sources toward the point;
it also depends on secondary light that reaches the point after reflecting
from other surfaces, and hence depends on the shape around. As a rough
approximation, however, we assumed in this example that the light intensity
depends only on the surface normal. Since a sphere has a surface point for
any normal direction, we can read from Fig. 10.7(a) the light intensity value
on a surface of any given normal.

The surface equation ax+ by + z + c = 0 represents a family of mutually
parallel planes when we regard a and b as constants and c as a variable. This
family is specified by the two parameters a and b. Thus the pair (a, b) can
represent the orientation of the surface. Regarding a and b as the horizontal
and vertical coordinates, we can represent each orientation by a point in
a two-dimensional space. This space is called the gradient space. Since
we assume that the light intensity on the surface is determined only by its
orientation, the light intensity can be considered a two-variable function
defined on the gradient space. Fig. 10.7(b) shows contours (i.e., the curves
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on which the value does not change) of the light intensity plotted on the
gradient space. The smallest closed curve denotes a contour of the highest
light intensity, and the light intensity descends as we go outward. The
intensity descends rather slowly in the left lower direction in Fig. 10.7(b).
This is mainly because secondary light reflected on the desk surface was
stronger in the left lower part of the sphere.

Then, a scene to be recovered was set under the same illumination con-
dition. Fig. 10.8(a) is an image of a scene in which a dodecahedron lay on
the desk. Using an interactive system, we processed this image. The sys-
tem extracted edges as in (b), and an operator chose important lines as in
(c). Then, the system organized the lines and constructed a line drawing
as shown in (d), where the edge 7-8 was added according to an instruction
given by the operator.

The incidence structure of this line drawing is not generically recon-
structible. In order to get a generically reconstructible substructure we
deleted the constraint that vertex 8 lies on face 5 (see (e) for the face num-
bers). We chose this constraint because the position of vertex 8 was deter-
mined as the intersection of only two lines, the lines 8-4 and 8-12, and hence
it seems less reliable (recall that a vertex associated with a deleted incidence
pair may be displaced in Step 7 of Method 10.1).

Since the distance from the scene to the camera was not large enough,
we formulated the algebraic structure of the line drawing on the basis of the
perspective projection model in Section 3.7, and obtained the constraint set
(7.4).

From the line drawing in (d) the system also found face regions as shown
in (e). For a face k (k = 1, . . . , 6), the system computed the average intensity
dk and the region area sk; they are used in the objective function ϕ(ξ) of
Problem 10.2 as the observed value and the weight, respectively, of the kth
cue.

The scene had four free parameters (we can, for example, choose ξ =
t(z1, z2, z3, z4)). However, in a way similar to that in Example 10.1, the
present cues are invariant under scaling: (x, y, z) → (px, py, pz) (recall that
the eye was at the origin). Hence, one of the free parameters can be fixed
arbitrarily, and consequently the number of unknowns is three whereas the
number of cues is six. Thus, we have enough cues to recover the shape
uniquely.

Starting with an initial shape shown in (f), we got the optimal shape as
shown in (g), where the surface has discontinuity along the edges 7-8 and
8-12. Discontinuity was repaired and the final result was obtained, as shown
in (h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.8. Recovery from light intensity data, I: (a) is an image, (b) ex-
tracted edges, (c) selected edges, (d) a line drawing, (e) face
regions, (f) an initial shape, (g) the shape corresponding to the
optimal point, and (h) the finally recovered shape.
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(a) (b)

(c) (d)

Figure 10.9. Recovery from light intensity data, II: (a) is an image, (b) is
a line drawing, (c) is the shape corresponding to the optimal
point, and (d) is the recovered shape.

Another example is shown in Fig. 10.9. The object is composed of a rect-
angular cone and a rectangular prism penetrating each other . Fig. 10.9(a)
is a light intensity image, and (b) is a line drawing extracted from (a). If we
ignore the background, the line drawing has six faces (they were numbered
as shown in (b)), but the system was told that faces 3 and 4 and faces 5 and
6 are, respectively, coplanar. Therefore, its incidence structure has 16 ver-
tices, 4 distinct planar surfaces, and 28 incidence pairs, and, consequently,
four incidence pairs were deleted for the construction of a generically recon-
structible substructure (note that |R| + 4 − |V | − 3|F | = 4). The optimal
shape is shown in (c). We can see surface gaps along several edges, which are
due to the deletion of some incidence pairs. Repairing the gaps, we obtained
the final result, as shown in (d).
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Example 10.3 (Recovery of the shape from texture density). In
the present example, Method 10.1 was applied to orthographic images of
scenes in which objects were covered with a grain texture of a known uniform
density.

Scenes were composed of polyhedral objects covered with a grain texture.
Sizes of the objects were about 180mm∼230mm in their maximum diame-
ters. Photographs were taken by a camera with a 200-mm telephoto lens
that was about 5 m distant from the objects, which allows us to assume, as
a rough approximation, that the photographs are orthographic projections
of the scenes.

Fig. 10.10(a) shows an image of a textured object. The object chosen
here was what produces an “anomalous picture” (see Section 7.4). Fig. 10.10(b)
is an image of the same object seen from another angle. This image is pre-
sented only to help readers to understand the shape of the object; it was not
used for shape recovery. A rectangular plate covered with the same texture
was also put in the scene. The normal to the plate faced toward the camera
so that an apparent density might coincide with the real density. From the
image of this plate we calculated the theoretical value of the grain density
of a planar surface with any given gradient.

A line drawing of the object is shown in (c). The incidence structure
of this picture is not generically reconstructible. Starting with an initial
shape in (d), we got the optimal shape, as shown in (e), in which the surface
had discontinuity along some edges. Finding the correct intersections of the
recovered faces, we got the final result of the recovery, as shown in (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 10.10. Recovery from texture density: (a) is an input image, (b)
shows the same scene viewed from another angle, (c) is a line
drawing, (d) is an initial shape, (e) is the shape corresponding
to the optimal point, and (f) is the recovered shape.



Chapter 11

Polyhedrons and Rigidity

All the preceding chapters are devoted to one goal, machine extraction of
polyhedral structures from plane pictures; we have studied only those as-
pects of line drawings that are necessary to attain this goal. However, line
drawings of polyhedrons have many other interesting characteristics. In par-
ticular, it has been known for more than a century that there is a beautiful
and useful correspondence between line drawings of polyhedrons and the
rigidity of plane skeletal structures. This aspect has a close relationship to
the notions of “dual pictures” and the “gradient space”, which are familiar
in scene analysis. In this chapter we study this correspondence from our
combinatorial point of view, and establish generic versions of the correspon-
dence between two objects.

11.1 Gradient Space and Reciprocal Diagrams

In our computational mechanism we took an algebraic approach to checking
the correctness of labeled line drawings; the problem of judging the correct-
ness of a picture was reduced to the problem of judging the satisfiability of
certain linear constraints (recall Chapters 3 and 4). In previous works on
interpretation of line drawings, on the other hand, this approach was not
taken widely; instead , another approach , a gradient space approach, has
prevailed (Huffman, 1971 , 1977a, 1977b; Mackworth, 1973; Whiteley, 1979,
1982; Kanade, 1980, 1981; Draper, 1981). The algebraic approach is more
powerful than the gradient space approach in that the former can give a
necessary and sufficient condition for correctness, whereas the latter gives in
general only a necessary condition (Sugihara, 1984b). However, the gradi-
ent space approach seems useful for understanding incorrectness of pictures

181
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“intuitively”. Here, we review the basic idea of the gradient space approach.
In addition to Assumptions 2.1 to 2.5, we put forth two more assumptions

for polyhedrons considered in this chapter. For a polyhedron P , let Int(P )
denote the set of interior points of P ; that is, Int(P ) consists of those points
of P that are not on the surface of P . Next, for a point p in R3 and a
positive real number r, let Ball(p, r) denote the ball with the radius r and
the center at p, that is, Ball(p, r) = {q | q ∈ R3, d(p, q) ≤ r} where d(p, q) is
the Euclidean distance between p and q.

Assumption 11.1. For any point p on the surface of a polyhedron
P , there exists a positive real number r0 such that, for any 0 < r ≤ r0,
Ball(p, r) ∩ Int(P ) is simply connected.

This assumption includes Assumption 2.2. Indeed, if a point p is on
the edge e in Fig. 2.1, Ball(p, r) ∩ Int(P ) consists of two mutually discon-
nected portions; thus, under Assumption 11.1 every edge is shared by ex-
actly two faces. Moreover, this assumption enables us to exclude “patholog-
ical” vertices such as a vertex v in Fig. 11.1(a), because, for this vertex v,
Ball(v, r) ∩ Int(P ) consists of two mutually disconnected portions. Thus, if
Assumption 11.1 is valid, at every point on the surface of a polyhedron the
neighboring space is partitioned into two connected portions, one occupied
with material and the other vacant. Hence in particular, one can visit all
edges and faces incident to a vertex in a certain cyclic order when one moves
on the surface around the vertex.

(a) (b)

Figure 11.1. A vertex and a face inhibited by the assumptions. The vertex
v in (a) does not satisfy Assumption 11.1, and the face f in (b)
does not satisfy Assumption 11.2.

Assumption 11.2. Every face of a polyhedron is simply connected.
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This assumption implies that every face is a polygon and has no holes.
Hence, the polyhedron shown in Fig. 11.1(b), for example, is excluded, be-
cause the face f has a hole. This assumption assures us that the boundary
of a face is connected in a graph theoretical sense, and hence one can visit
all the edges and vertices on the boundary of a face in a certain cyclic order
when one travels on the boundary.

Suppose that a viewer at an infinite distance in the positive direction of
the z axis sees a planar surface represented by an equation ax+by+z+c = 0.
We can consider that the surface equation defines −z as a function of the
two variables x and y: −z = ax + by + c. Partially differentiating it by x
and y, respectively, we get

−∂z

∂x
= a, −∂z

∂y
= b. (11.1)

Hence, a and b represent the distances by which a point on the surface
goes away from the viewer when it moves by unit length in the x or the
y direction without departing from the surface. The ordered pair (a, b) is
called the gradient of the surface. The gradient represents how the surface
tilts and slants. If a = b = 0, the surface faces precisely toward the viewer.
A surface with a �= 0 slants in the x direction; if a > 0, the surface faces
toward the right of the viewer, whereas if a < 0, it faces toward the left
(note that this is true only for a right hand coordinate system; in the case
of a left hand coordinate system, the surface faces toward the left of the
viewer if a > 0, and toward the right if a < 0). Similarly, a surface with
b �= 0 slants in the y direction; if b > 0, the surface slants upward, whereas
if b < 0, it slants downward.

The gradient (a, b) can be considered as a point on a plane whose first
and second coordinates are represented by a and b, respectively. The plane
with the (a, b) coordinate system defined as above is called the gradient
space. Each point in the gradient space corresponds to some orientation
of the surface, and hence it corresponds to a family of mutually parallel
surfaces.

The use of the gradient space for line drawing interpretation is based
on the following observation. Let ajx + bjy + z + cj = 0 (j = 1, 2) be
equations of two surfaces. If they are not parallel, they intersect at a line
and the orthographic projection of the line of intersection onto the x-y plane
is represented by

(a1 − a2)x + (b1 − b2)y = −(c1 − c2), (11.2)
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which is obtained if we eliminate the variable z from the two surface equa-
tions. Eq. (11.2) shows that the image of the line of intersection is perpen-
dicular to the vector (a1 − a2, b1 − b2). In other words, if the gradient space
is superposed on the picture plane in such a way that the a axis and the b
axis are parallel to the x axis and the y axis, respectively, then the image
of the line of intersection is perpendicular to the line connecting the two
associated gradients (a1, b1) and (a2, b2).

Let (V,E) denote an undirected graph having the node set V and the
arc set E without self-loops. A triple (V,E, h) is called a diagram if h is a
mapping from the node set V to the two-dimensional plane R2. Intuitively,
the diagram (V,E, h) can be considered as a picture of the underlying graph
(V,E); the nodes are plotted at the positions specified by the mapping h,
and the arcs are represented by straight line segments connecting the two
terminal nodes. For the diagram (V,E, h), elements of V are called points
and elements of E line segments. Note that in the diagram two line segments
may cross each other, and moreover two distinct nodes may occupy the same
position.

Let P be a polyhedron fixed to an (x, y, z) Cartesian coordinate system,
and let V,E, and F be the sets of vertices, edges, and faces, respectively,
of P . Furthermore, let (xα, yα, zα) denote the coordinates of the αth vertex
vα ∈ V , and let hV be the mapping from V to R2 such that hV (vα) =
(xα, yα). Then, V D(P ) = (V,E, hV ) is a diagram obtained by projecting P
orthographically onto the x-y plane; that is, V D(P ) is a diagram composed
of |V | points and |E| solid line segments where the points are the images
of the vertices and the line segments are the images of the edges. V D(P )
is called the vertex-edge diagram of P . The vertex-edge diagram V D(P ) is
slightly different from a hidden-part-drawn line drawing, considered in the
previous chapters, in that in V D(P ) visible edges and hidden edges are not
distinguished and accidental crossings of line segments are not counted in the
node set. Intuitively, the introduction of the diagram V D(P ) corresponds
to considering P as an object made of transparent material.

For the polyhedron P fixed in the space, let ajx+bjy+z+cj = 0 denote
the surface containing the jth face fj ∈ F , and let hF be the mapping from
F to R2 such that hF (fj) = (aj , bj); that is, hF (fj) denotes the gradient of
the surface fj. The ordered pair (F,E) can be considered as an undirected
graph if an element e of E is regarded as a pair of the side faces of the
associated edge e of the polyhedron P . Hence, we get another diagram
FD(P ) = (F,E, hF ); it is obtained from P by first plotting the gradients
of the faces on the gradient space and next connecting two gradients by a
line segment if and only if the two associated faces share a common edge
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in P . FD(P ) is called the face-edge diagram of P . Note that FD(P ) can
always be defined because the object P is assumed to be in general position
(Assumption 2.4). The diagram FD(P ) has |F | points and |E| line segments,
and there is a natural one-to-one correspondence between the line segments
in V D(P ) and those in FD(P ). Recall that the gradient represents the
orientation of the surface; accordingly, if P has mutually parallel faces, the
corresponding points occupy the same position in the diagram.

Two diagrams are said to be reciprocal if there is a one-to-one correspon-
dence between their line segments, so that one diagram can be superimposed
on the other in such a way that corresponding line segments are perpendicu-
lar, and corresponding line segments that converge to a point in one diagram
form a closed path in the other.

Now we get the next theorem, which has been known for a long time
(Maxwell, 1864, 1870; see also Mackworth, 1973).

Theorem 11.1. For any polyhedron P , the vertex-edge diagram V D(P ) =
(V,E, hV ) and the face-edge diagram FD(P ) = (F,E, hF ) are reciprocal.

Proof. The line segments in both of the diagrams come from the same
edge set E, and hence there is a natural one-to-one correspondence between
the two line segment sets. As has been observed in (11.2), the corresponding
line segments become perpendicular if the two diagrams are superimposed in
such a way that the a and b axes are parallel to the x and y axes, respectively.

For any vertex v (∈ V ), let (e0, f1, e1, f2, e2, . . . , fk, ek) (where ei ∈ E,
fj ∈ F, e0 = ek) be an alternating sequence of edges and faces that are
incident to the vertex v and are found in this order when one moves on
the surface counterclockwise around the vertex v. Note that because of
Assumption 11.1 this alternating sequence is unique up to the choice of the
starting edge e0. Then, the edge set {e1, e2, . . . , ek} forms the line segments
converging to the point hV (v) in the diagram V D(P ), and simultaneously
it forms a closed path connecting k points hF (f1), hF (f2), . . . , hF (fk) in this
order in the other diagram, FD(P ). Conversely, for any face f (∈ F ), let
(e0, v1, e1, v2, e2, . . . , vk, ek) (where ei ∈ E, vα ∈ V, e0 = ek) be an alternating
sequence of edges and vertices surrounding the face f counterclockwise in
this order. This sequence is also unique up to the choice of the initial edge
e0 (recall Assumption 11.2). Then, the edge set {e1, e2, . . . , ek} results in
the line segments converging to the point hF (f) in FD(P ) on one hand, and
it results in a closed path connecting the points hV (v1), hV (v2), . . . , hV (vk)
in this order in V D(P ) on the other hand. Therefore, the two diagrams are
reciprocal.
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 11.2. Reciprocal pairs of diagrams.
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Example 11.1. Three pairs of mutually reciprocal diagrams are shown in
Fig. 11.2. The diagrams (a), (b), and (c) are the projection of a tetrahedron,
a tapered prism, and a hexahedron, respectively, and the diagrams (a’), (b’),
and (c’) are reciprocal to them. The same numbers are assigned to mutually
corresponding line segments.

Since the incidence structure of a tetrahedron is generically reconstructible,
diagram (a) continues to represent a tetrahedron correctly even if the four
points are moved arbitrarily, provided that they are in generic position, and
hence from Theorem 11.1 it always has a reciprocal figure. This observation
leads to the following theorem: “Let pi (i = 1, . . . , 4) and qi (i = 1, . . . , 4)
be two groups of points in generic position on a plane. If five out of six
conditions pipj⊥qiqj (1 ≤ i < j ≤ 4; ⊥ represents that the two lines are
perpendicular to each other) are fulfilled, then the other one is also ful-
filled.” This theorem is called Reidemeister’s theorem (Gurevich, 1960; see
also Maxwell, 1864).

On the other hand, the incidence structure of a tapered prism and that
of a hexahedron are not generically reconstructible; if the points of diagrams
in (b) and (c) are displaced so that they are in generic position, they will
not represent any polyhedrons. Indeed, in diagram (b) the three lines 1,
2, 3 are concurrent (this implies that the three side faces have a common
point of intersection in the space), and in diagram (c) these four pairs of
lines——1, 9; 2, 10; 3, 11; 4, 12——intersect at a common line (this implies
that the top face and the bottom face intersect at a line). If these conditions
are disturbed, they do not have reciprocal diagrams.

Theorem 11.1 implies that a diagram obtained as a projection of a poly-
hedron has a reciprocal diagram; in other words, a diagram having no recip-
rocal diagram cannot be a projection of any polyhedron. Moreover, as we
have seen in Theorem 3.4, whether a diagram is a projection of a polyhedron
does not depend on whether the projection is orthographic or perspective.
Thus we get the following corollary.

Corollary 11.1.1. A diagram having no reciprocal diagram cannot be
an orthographic or perspective projection of any polyhedron.

This corollary provides a graphical method for checking inconsistency in
line drawings of polyhedrons. Given a hidden-part-drawn line drawing, we
try to find its reciprocal diagram, and if it does not exist, we can conclude
that the line drawing is not correct. This is the basic scheme adopted in the
gradient space approach to checking inconsistency in interpretation of line
drawings.
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Note that the reciprocity stated in Theorem 11.1 holds only when all
the edges of an object are drawn in the diagrams. If a line drawing repre-
sents only the visible part of a polyhedron P , it is in general a subdiagram
of V D(P ) and consequently the last condition for the reciprocity (i.e., the
condition that corresponding line segments that converge to a point in one
diagram form a closed path in the other) cannot be expected. Thus, Corol-
lary 11.1.1 cannot be applied directly to hidden-part-eliminated line draw-
ings. However, a weaker condition, that is, the condition that corresponding
lines are perpendicular, is still valid; it was widely used for checking incon-
sistency in line drawings (Huffman, 1971, 1977a, 1977b; Mackworth, 1973;
Kanade, 1980, 1981).

It should be noted that even if the hidden part is drawn in the line
drawing, Corollary 11.1.1 is not perfect for recognizing inconsistency. To
have a reciprocal diagram is a necessary, but not sufficient, condition for
a line drawing to represent a polyhedral scene. Indeed, diagram (c’) in
Fig. 11.2 has a reciprocal diagram, that is, (c), but obviously it does not
represent any polyhedron. This is one of reasons why we have not taken the
gradient space approach but have taken the algebraic approach, which gives
us a necessary and sufficient condition for correctness, as shown in Theorems
3.3 and 4.1.

11.2 Rigidity of Plane Skeletal Structures

We have considered two-dimensional diagrams as projections of three-dimen-
sional polyhedral objects. Here we introduce quite another way of interpret-
ing the diagrams, namely, as two-dimensional frameworks composed of rigid
rods and rotatable joints.

Let D = (V,E, h) be a diagram whose underlying graph (V,E) has n
nodes and l arcs (n = |V | and l = |E|). The diagram D is called a plane
skeletal structure (or a skeletal structure in short) when the line segments
(the elements of E) are considered as rigid rods and the points (the elements
of V ) as rotatable joints. A joint connects end points of two or more rods in
such a way that the mutual angles of the rods can change freely if the other
ends are not constrained. This kind of a joint can be realized physically by
a pin joint at which the rods are connected by a pin that is perpendicular
to the plane on which the structure lies. The graph (V,E) is called the
underlying graph of the skeletal structure D.

Now let us consider how a skeletal structure can move and deform. Let
D = (V,E, h) be a plane skeletal structure, and let h(vα) = (xα, yα) for a
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joint vα ∈ V . A rod connecting vα and vβ constrains the movement of D in
such a way that the distance between the joints is constant:

(xα − xβ)2 + (yα − yβ)2 = const.

Differentiating it by time parameter t, we get

(xα − xβ)(ẋα − ẋβ) + (yα − yβ)(ẏα − ẏβ) = 0, (11.3)

where the dot denotes the differentiation by t. This equation implies that
the relative velocity of the two terminal joints should be perpendicular to
the rod; that is, the rod should not be stretched or compressed. Gathering
all such equations, we get a system of linear equations

Hd = 0, (11.4)

where d is the unknown vector d = t(ẋ1, ẏ1, . . . , ẋn, ẏn), and H is an (l×2n)-
dimensional matrix whose entities, say hij , are defined by hi,2α−1 = xα −xβ

and hi,2α = yα − yβ if one of the terminal joint of the ith rod is vα where vβ

denotes the other joint, and hi,2α−1 = hi,2α = 0 otherwise (i = 1, 2, . . . , l and
α = 1, 2, . . . , n). A vector d that satisfies (11.4) is called an infinitesimal
displacement of the skeletal structure D. The infinitesimal displacements of
D form a linear subspace of R2n, and its dimension is equal to 2n−rank(H).
The rigid motions in a plane yield a three-dimensional subspace of this linear
space. The skeletal structure D is called infinitesimally rigid (or rigid in
short) if 2n−rank(H) = 3, that is, if the dimension of the linear space formed
by the infinitesimal displacements equals the dimension of the linear space
yielded by the rigid motions (this definition of rigidity is due to Laman, 1970;
there are several other definitions of rigidity, such as “continuous rigidity”
by Asimow and Roth, 1978, and “second order rigidity” by Connelly, 1980).

The rigidity of a structure depends on the positions of joints. The struc-
ture shown in Fig. 11.3(a) is rigid while the one in (b), which has the same
underlying graph, is not rigid; the assignment of velocities indicated by the
arrows (the vertices without arrows are assumed to have zero velocities)
forms an infinitesimal displacement because the relative velocity of two ter-
minal points of any rod is perpendicular to the rod. Similarly, though the
structures in (c) and (d) have the same underlying graph, (c) is rigid and
(d) is not. An infinitesimal displacement does not always correspond to an
actual movement of a structure; the structure in (b) deforms mechanically,
whereas the structure in (d) does not. The structure in (d) is categorized
as nonrigid only because our definition of rigidity requires the absence of
infinitesimal deformations.
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(a) (b) (c) (d)

Figure 11.3. Rigid and nonrigid structures.

For each rod ei (∈ E), let us consider a real-valued quantity, say ui, that
satisfies the next two equations for any joint vα (∈ V ):

∑
ei∈{vα,vβ}

(xα − xβ)ui = 0, (11.5a)

∑
ei∈{vα,vβ}

(yα − yβ)ui = 0, (11.5b)

where the summations are taken over all rods that are incident to the joint
vα. If the two-dimensional vector ((xα − xβ)ui, (yα − yβ)ui) (where ei =
{vα, vβ} ∈ E) is regarded as force which the joint vα receives from the
rod ei, then the equations (11.5a) and (11.5b) together represent that the
forces acting on vα are in the state of equilibrium; (11.5a) represents the
equilibrium in the x components of the forces, and (11.5b) represents that
in the y components.

Gathering all the equations of the forms (11.5a) and (11.5b), we get 2n
equations which can be written as

uH = 0, (11.6)

where H is the same coefficient matrix as in (11.4), and u is the row vector
u = (u1, u2, . . . , ul). A vector u that satisfies (11.6) shall be called an
equilibrium vector. For an equilibrium vector u, if ui > 0, the force acts
in such a way that the two terminal joints of the rod ei are pushed away
from each other, and at its reaction the rod suffers compression. If ui < 0,
on the other hand, the force acts so that the two terminal joints are pulled
together, and the rod suffers tension. The equilibrium vectors form a linear
subspace of Rl and its dimension is l − rank(H).
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From the definition of the matrix H, each row of H corresponds to a
rod. For any subset X of E, let H(X) be the submatrix of H formed by the
rows that correspond to the rods in X, and let us define a function τE by

τE(X) = rank(H(X)). (11.7)

Then, (E, τE) forms a matroid defined by the ground set E and the rank
function τE (Welsh, 1976). If E is an independent set of this matroid, there
is no redundancy in the rods and deletion of any rod from the structure
results in an increase in the dimension of the linear space formed by the
infinitesimal displacements. Moreover, E being independent implies that
the matrix H is of row full rank and hence the only equilibrium vector
is u = 0; the structure admits nonzero equilibrium vectors only when E
is dependent in the matroid (E, τE). The matroid (E, τE) was studied by
Crapo (1979), Rosenberg (1980), Lovász (1980), Lovász and Yemini (1982),
Sugihara (1983), Whiteley (1984a), Recski (1984a, 1984b, 1984c), and Tay
and Whiteley (1984).

The joints of the skeletal structure D = (V,E, h) are said to be in generic
position if x1, y1, . . . , xn, yn are algebraically independent over the rational
field (where h(vα) = (xα, yα), vα ∈ V, |V | = n). In the case that the joints
are in generic position, any polynomial of x1, y1, . . . , xn, yn with rational co-
efficients, and hence in particular the determinant of any submatrix of H,
is 0 if and only if it is identically 0 when we consider x1, y1, . . . , xn, yn as
indeterminate symbols. Therefore, if the joints are in generic position, the
linear independence of the rows of H depends only on the underlying graph
(V,E), and consequently the rigidity also depends only on the graph. For
any subset X of the edge set E of the graph (V,E), X is called generically
independent if τE(X) = |X| for a skeletal structure D = (V,E, h) whose
joints are in generic position, and generically dependent otherwise. The
graph (V,E) is called generically independent if E is generically indepen-
dent. Furthermore, the graph (V,E) is called generically rigid if a skeletal
structure D = (V,E, h) with the joints in generic position is rigid. The
generic independence is characterized by the next theorem, which was first
proved by Laman (1970) (other proofs are also given by Asimow and Roth,
1979, and Lovász and Yemini, 1982).

Theorem 11.2 (Laman’s theorem). A graph (V,E) is generically
independent if and only if

2|V (X)| − 3 ≥ |X| (11.8)

holds for any nonempty subset X of E, where V (X) (⊆ V ) denotes the set
of nodes that are terminals of arcs in X.
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Since the motions on a plane have three degrees of freedom, the dimen-
sion of the linear space formed by the infinitesimal displacements is at least
three. Consequently, the size of a generically independent subset of E can-
not be greater than 2n − 3, where n = |V |. Thus, the condition stated in
Theorem 11.2 is obviously necessary for E to be generically independent.
The theorem says that the condition is also sufficient.

Remark 11.1. Characterization of the rigidity as stated in Theorem 11.2
was considered by Laman (1970), Asimow and Roth (1979), and Lovász and
Yemini (1982). There are, however, differences not only in their approaches
but also in their results. What Laman proved is that there exists at least
one skeletal structure (V,E, h) such that rank(H) = |E| if and only if the
underlying graph (V,E) satisfies the condition in Theorem 11.2. Asimow and
Roth said that the joints of the skeletal structure (V,E, h) are in general
position if every submatrix of H has the possible maximum rank over all
skeletal structures with the same underlying graph, and proved that, for any
skeletal structure (V,E, h) with the joints in general position, rank(H) = |E|
is equivalent to the condition stated in Theorem 11.2. Thus, they stated
more clearly the case when the condition implies independence of the rows
of H. Lovász and Yemini proved what is just stated in Theorem 11.2 as a
corollary of a certain more general result. If the joints are in generic position,
no polynomial of x1, y1, . . . , xn, yn vanishes unless it is identically equal to
0, and hence in particular the determinant of any submatrix of H is not 0
unless it is identically 0. Thus, being in generic position implies being in
general position; Asimow and Roth proved the strongest case.

From an engineering point of view, however, their results are almost
equivalent, because they all imply that, for a point (x1, y1, . . . , xn, yn) almost
anywhere in R2n, the condition stated in Theorem 11.2 is equivalent to
rank(H) = |E|.

Here we follow the Lovász-Yemini generic version simply because we have
considered realizability of polyhedrons also in the generic sense.

A generically rigid graph with n nodes should have 2n − 3 generically
independent arcs, and hence the next corollary results directly from Theorem
11.2.

Corollary 11.2.1. A graph (V,E) having n nodes and 2n − 3 arcs
(|V | = n, |E| = 2n − 3) is generically rigid if and only if (11.8) holds for
any nonempty subset X of E.

For a skeletal structure D = (V,E, h), if E is independent in the matroid
(E, τE), that is, if τE(E) = |E|, then the only solution to (11.6) is a zero
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vector. Thus, the structure admits nonzero equilibrium vectors only when
the rod set E is dependent. In particular, if the arc set E is generically
dependent in the underlying graph (V,E), the associated skeletal structure
with the joints in generic position admits nonzero equilibrium vectors. How-
ever, whether components of an equilibrium vector are positive or negative
(i.e., whether the forces are compression or tension) cannot be determined
by the underlying graph only; it depends on the positions of the joints.

Example 11.2. For the diagram in Fig. 11.4(a), the condition in Theorem
11.2 is not fulfilled, and hence the arc set is generically dependent. One of
the sign patterns of the equilibrium vectors is shown by the labels + and −,
where + implies that the force along the edge is compression and − implies
tension. If u is an equilibrium vector, −u is also an equilibrium vector; thus
the pattern obtained by exchanging all the + and − labels in (a) is also a
sign pattern of an equilibrium vector. The structure satisfies rank(H) = 5,
because the deletion of any one rod from the structure results in a structure
that satisfies the condition in Theorem 11.2. Hence the dimension of the
linear space formed by the equilibrium vectors equals l−rank(H) = 6−5 = 1,
and therefore the sign pattern of an equilibrium vector is unique up to the
exchange of all the signs simultaneously.

The structure in Fig. 11.4(b) has the same underlying graph as that in (a)
but joint positions are different. As a result, it has a different sign pattern of
an equilibrium vector, as shown in (b). Since the equilibrium vectors of this
structure form a one-dimensional linear space, the sign pattern is unique up
to the simultaneous exchange of all the signs. Thus, even if structures have
the same underlying graph, in general they give different sign patterns of
equilibrium vectors.

A structure with a nonzero equilibrium vector has the remarkable prop-
erty that the structure remains rigid when the tensed rods are replaced with
cables and the compressed rods are replaced with struts, where a cable is a
structure element that provides an upper bound for the distance between
the two terminal points and a strut gives a lower bound for the distance be-
tween the two terminal points. A structure composed of rigid rods, cables,
and struts is called a tensegrity structure. From the sign patterns shown
in (a) and (b) in Fig. 11.4 we get the rigid tensegrity structures shown in
(a’) and (b’), where the broken lines represent cables and the double lines
represent struts. The tensegrity structures are studied by Connelly (1980)
and Roth and Whiteley (1981).
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(a) (a’)

(b) (b’)

Figure 11.4. Sign patterns of equilibrium vectors and tensegrity structures.
In (a) and (b) the label + represents force of compression and
the label − represents force of tension, and the structures in
(a’) and (b’) are the tensegrity structures obtained from the
sign patterns in (a) and (b).

11.3 Graphical Correspondence

We have considered the two ways of interpreting plane diagrams: the inter-
pretation as line drawings of polyhedrons and the interpretation as plane
skeletal structures . Here we establish a correspondence between the two
ways of interpretation, which has been known for more than a century
(Maxwell, 1864, 1870; Cremona, 1890; Whiteley, 1982).

For a polyhedron P , we define two graphs. First let V G(P ) = (V,E) be
the graph having the vertex set V as the node set and the edge set E as the
arc set; an arc in E connects the two terminal vertices of the corresponding
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edge. The graph V G(P ) is called the vertex-edge graph of P . Next, let
FG(P ) = (F,E) be the graph having the face set F as the node set and
the edge set E as the arc set; an arc connects the two side faces of the
corresponding edge of P . The graph FG(P ) is called the face-edge graph of
P . Obviously, the underlying graph of the vertex-edge diagram V D(P ) and
that of the face-edge diagram FD(P ) of a polyhedron P are identical to the
vertex-edge graph V G(P ) and the face-edge graph FG(P ), respectively, of
the polyhedron P .

The vertex-edge graph V G(P ) comes from vertices and edges of the
polyhedron P . Hence, the original vertices and edges can be regarded as the
graph embedded on the surface of the object P , that is, as the graph drawn
on the surface of P in such a way that the arcs do not cross except at nodes.

The face-edge graph FG(P ) can also be drawn on the same surface.
Indeed, we can choose an arbitrary point on each face and connect it with the
midpoint of each edge on the boundary of the face by a (if necessary curved)
line, where the lines do not cross each other, as shown in Fig. 11.5. All
together, these lines give an embedding of the face-edge graph FG(P ). Note
that the above embedding in general is not equivalent to the embedding on a
plane, because the polyhedron P is not necessarily topologically equivalent
to a sphere. If P is topologically equivalent to, for example, a torus, then
the vertex-edge graph or the face-edge graph cannot necessarily be drawn
on a plane unless arcs cross each other.

Figure 11.5. Part of arcs of the face-edge graph FG(P ) drawn on a face of
the polyhedron P .

For a vertex v (∈ V ), let C(v) = (e0, f1, e1, . . . , fk, ek) be the alternating
sequence of arcs (= edges) and nodes (= faces) in the embedding of FG(P )
that surrounds the vertex v counterclockwise in this order when seen from
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the outside of the polyhedron P , where e0 = ek. From Assumption 11.1,
C(v) is unique up to the choice of the starting arc e0.

In the embedding of FG(P ) each arc ei (∈ E) forms the common bound-
ary of the two side regions that contain the terminal vertices of the corre-
sponding edge ei of V G(P ). Therefore, every edge e (∈ E) appears exactly
twice in some C(v), and the two appearances are in the opposite direction.
This observation can be summarized in the next lemmma.

Lemma 11.1. Let e be an edge of a polyhedron P , vα and vβ be the
two terminal vertices of e, and fj and fk be the two side faces of e. Then,
the edge e appears in C(vα) and C(vβ), and in them only, once in the order
. . . , fj , e, fk, . . . and the other time in the opposite order, . . . , fk, e, fj , . . ..

Now we are ready to prove the next theorem, which is a slightly gener-
alized version of what was proved by Maxwell (1864, 1870).

Theorem 11.3. If a diagram D is obtained as an orthographic or per-
spective projection of a polyhedron, the corresponding skeletal structure D
admits an equilibrium vector whose components are all nonzero.

Proof. It follows from Theorem 3.4 that if D is a perspective projection
of a polyhedron, then D is an orthographic projection of some other poly-
hedron. Therefore, without loss of generality we assume that D is given as
an orthographic projection of a polyhedron P ; that is, D is the vertex-edge
diagram V D(P ) = (V,E, hV ). Then, from Theorem 11.1, the face-edge dia-
gram FD(P ) = (F,E, hF ) of the same polyhedron P is a reciprocal diagram
of D. Turning the reciprocal diagram FD(P ) round by the amount of π/2
in the picture plane, we get the diagram, say FD∗(P ), whose line segments
are parallel to the corresponding line segments in V D(P ).

Now, we can interpret line segments in FD∗(P ) as force in equilibrium
in the following way. First, from the definition of reciprocity, line segments
converging to a vertex v in V D(P ) form a closed path in FD∗(P ). Indeed,
the closed path is given by C(v). Next, since the corresponding line seg-
ments in V D(P ) and FD∗(P ) are parallel to each other, the line segments in
FD∗(P ) can be regarded as forces that the vertex v receives from the corre-
sponding rods in D; the force acts in the direction in which the line segment
is traversed when one travels along the closed path C(v). Since the path is
closed, all the forces that the vertex v receives are in a state of equilibrium.
Finally, from Lemma 11.1 an edge e appears in exactly two closed paths,
and moreover it is contained in mutually opposite directions; consequently
the force along the rod e is either the “pushing” at both the terminal joints
or the “pulling” at both the terminal joints. Thus, the collection of all the
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forces represented by FD∗(P ) is in a state of equilibrium.
Let us consider signed lengths of line segments in FD∗(P ) where the sign

is defined as + if the corresponding force pushes the two terminal vertices
away and as − if the force pulls them together. Dividing the signed lengths of
line segments in FD∗(P ) by the lengths of the corresponding line segments
in D, we get an equilibrium vector. Adjacent faces on P have different
orientations, and hence they are plotted in different positions on the gradient
space. Consequently, every line segment in FD(P ) has a nonzero length, so
that every component of the equilibrium vector is nonzero.

(a) (b)

Figure 11.6. Interpretation of a reciprocal diagram as force in equilibrium
in the original diagram.

Example 11.3. Fig. 11.6(a) shows one interpretation of the diagram in
Fig. 11.2(a) as a line drawing of a polyhedron P . Indeed the polyhedron P
is a tetrahedron, and the broken line represents a hidden edge. Fig. 11.6(b)
is the corresponding FD∗(P ), which is obtained if we rotate the diagram
in Fig. 11.2(a’) by π/2 counterclockwise. For the line segments 1 to 6 in
(a), the corresponding line segments in FD∗(P ) are assigned the numbers
1∗ to 6∗, respectively. Let v be one vertex on P as shown in (a). If one
moves on the surface of P around the vertex v counterclockwise, one crosses
the three edges 1, 3, 2 cyclically in this order. The corresponding three
line segments in FD∗(P ) form a closed path on which they appear in the
order 1∗, 3∗, 2∗, as shown in (b). Copying the direction of the closed path
to the corresponding line segments in (a), we see that on the line segment
1 or 3 it goes away from v whereas on the line segment 2 it comes toward
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v. Therefore, the designated force is tension on the rods 1 and 3 and is
compression on the rod 2. In this way, the rotated reciprocal diagram in (b)
gives the sign pattern of force shown in Fig. 11.4(a).

The converse of Theorem 11.3 does not hold. A counterexample is given
in Fig. 11.2(c’). Diagram (c’) has a reciprocal diagram, (c), and indeed the
reciprocal diagram gives an equilibrium vector whose components are all
nonzero; obviously, however, the diagram in (c’) cannot be a projection of
any polyhedron. (Whiteley, 1982, introduced a new concept, named “ori-
ented polyhedrons”, so that the converse of the theorem may hold. However,
the oriented polyhedrons include physically unrealizable objects, because
the surface is allowed to penetrate itself and consequently we cannot pack
material inside the surface while preserving its orientation.)

A quite different type of a correspondence between line drawings of poly-
hedrons and rigidity of structures is also studied by Whiteley (1984b) (see
also Crapo and Whiteley, 1982).

11.4 Generic Correspondence

The correspondence established in the previous section is metrical, or in
other words graphical, in the sense that the correspondence was established
through diagrams whose nodes are definitely given on the picture plane.
In this section, on the other hand, we see that a similar but nonmetrical
correspondence also holds. We establish a correspondence between a class
of line drawings whose vertices are in generic position and a class of skeletal
structures whose joints are in generic position.

Let I = (V, F,R) be an incidence structure, that is, V and F are mutually
disjoint finite sets and R is a subset of V ×F ; elements of V and F are called
vertices and faces, respectively. If (v, f) ∈ R for v ∈ V and f ∈ F , then we
say that v is on f and f has v. As in the previous chapters, we assume that
any element of V is on at least one element of F , and any element of F has
at least three elements of V . Here, we concentrate our attention upon the
class of incidence structures that satisfy the next condition.

Condition 11.1. (a) |V | + 3|F | = |R| + 4 and (b) |V (X)| + 3|X| ≥
|R(X)| + 4 for any X ⊆ F such that |X| ≥ 2.

The condition implies the following. From Theorems 6.1 and 6.2, an
incidence structure that satisfies Condition 11.1(b) is generically recon-
structible and the associated coefficient matrix A in (5.1) is of row full
rank. Therefore, Condition 11.1(a) together with (b) implies that there are



11.4 Generic Correspondence 199

ρV (V ) = |V | + 3|F | − rank(A) = 4 degrees of freedom in the choice of a
solution to (5.1) when the projected vertices are in generic position. That
is, Condition 11.1 is fulfilled if and only if the incidence structure I is gener-
ically reconstructible and admits exactly four generic degrees of freedom.
As we have seen in Corollary 5.3.1, a picture with an incidence structure
having exactly 4 degrees of freedom has the remarkable property that the
images of intersections of faces do not depend on the choice of a solution to
(5.1).

Next consider a graph G = (V,E) satisfying the following condition
where, for any X ⊆ V , E(X) denotes the set of arcs connecting nodes in X.

Condition 11.2. (a) 2|V | = |E| + 2 and (b) 2|X| ≥ |E(X)| + 3 for any
proper subset X of V such that |X| ≥ 2.

From Condition 11.2(a), the graph G is generically dependent (recall
Theorem 11.2). For any arc e (∈ E), however, the graph (V,E−{e}) satisfies
the condition in Theorem 11.2, and hence is generically independent. Thus,
among all the subsets of E, E only is generically dependent. Moreover,
it follows from Corollary 11.2.1 that (V,E − {e}) is generically rigid and
consequently G is also generically rigid.

Let D = (V,E, h) be a plane skeletal structure whose underlying graph
is G and whose joints are in generic position. Then, Condition 11.2 implies
the following.

First, the structure D has one more rod than is necessary to make the
structure rigid (recall Corollary 11.2.1, which states that n points in generic
position can be connected rigidly by 2n − 3 rods), and the redundancy is
used most effectively in the sense that the structure D remains rigid even if
any one rod is broken. Second, since D is rigid, rank(H) = 2|V |−3 = |E|−1
(where H is the coefficient matrix in (11.6)) and hence the equilibrium
vectors form a one-dimensional linear space. Moreover, all components of
the vectors are nonzero, because E is the only dependent set (note that the
equilibrium vector represents the coefficients of a linear combination of row
vectors in H that results in a zero vector). Thus, the structure D admits an
internal force in equilibrium that is unique up to scalar multiplication and
that is nonzero on every rod.

For a polyhedron P , let V G(P ) = (V,E) be the vertex-edge graph of P ,
and let I(P ) = (V, F,R) be the incidence structure associated with P . Our
purpose here is to show that, under some condition, I(P ) satisfies Condition
11.1 if and only if V G(P ) satisfies Condition 11.2. For this purpose we need
some preparation.

For convenience let μI be the integer-valued function on 2F defined, for
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any X ⊆ F , by

μI(X) = |V (X)| + 3|X| − |R(X)| − 4. (11.9)

Similarly let μG be the integer-valued function on 2E such that, for any
X ⊆ V ,

μG(X) = 2|X| − |E(X)| − 3. (11.10)

A graph G is said to be 2-connected if it remains connected when any
one node and the incident arcs are deleted from G.

Figure 11.7. Polyhedron whose vertex-edge graph is not 2-connected.

Lemma 11.2. Let P be a polyhedron. If Condition 11.1 is fulfilled by
the incidence structure I(P ) = (V, F,R), the vertex-edge graph V G(P ) is
2-connected.

Proof. From Assumption 11.2 it follows that V G(P ) is connected. Let us
assume, contrary to the lemma, that V G(P ) is not 2-connected. Then there
exists a vertex, say v, such that deletion of v makes the graph disconnected.
Moreover, from Assumption 11.1 it follows that there is a face, say f , whose
boundary touches the vertex v twice or more, as shown in Fig. 11.7. Hence,
the face f divides the other part of the surface of P into at least two con-
nected regions. Let F1 be the set of faces that belong to any one connected
region, and let F2 = F − F1 ∪ {f}. Then, F1, F2, and {f} form a partition
of F ; hence in particular we get

|F | = |F1| + |F2| + 1. (11.11a)

Let V1 [resp. V2] be the set of vertices that are on some faces in F1 [resp. F2].
Since v is the only vertex that is common to V1 and V2, we get

|V | = |V1| + |V2| + 1. (11.11b)
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Let R1 [resp. R2] be the set of incidence pairs whose second entities are in
F1 [resp. F2]. Let, furthermore, k1 [resp. k2] be the number of vertices in
V1 − {v} [resp. V2 − {v}] that are on the face f . Then, we get

|R| = |R1| + |R2| + k1 + k2 + 1. (11.11c)

Now we get

|V | + 3|F | − |R| − 4
= |V1| + k1 + 3(|F1| + 1) − (|R1| + k1 + k2 + 1) − 4

+|V2| + k2 + 3(|F2| + 1) − (|R2| + k1 + k2 + 1) − 4 − 1 − 3 × 1 + 1 + 4
= μI(F1 ∪ {f}) + μI(F2 ∪ {f}) + 1 ≥ 1,

where the first equality comes from (11.11a), (11.11b), and (11.11c), and the
inequality comes from Condition 11.1(b). The above inequality contradicts
Condition 11.1(a), and consequently V G(P ) is 2-connected.

Now we can state the next theorem.

Theorem 11.4. Let P be a polyhedron that is topologically equivalent
to a sphere. Then, the incidence structure I(P ) satisfies Condition 11.1 if
and only if the vertex-edge graph V G(P ) satisfies Condition 11.2.

Proof. First, Condition 11.1(a) is equivalent to Condition 11.2(a), be-
cause μI(F ) = −μG(V ) − 1 follows directly from |R| = 2|E| and Euler’s
formula |V | + |F | − |E| = 2.

Suppose that I(P ) satisfies Condition 11.1. Let X be any proper subset
of V such that |X| ≥ 2.

Case 1: Suppose that the graph (X,E(X)) is connected. Let F1 (⊆ F )
be the set of faces whose vertices are all in X, and let F2 = F − F1. Let
V0 be the set of vertices in X that belong to the boundaries of the faces in
F2, and let V1 = X − V0 and V2 = V − X. Furthermore, let E0 be the set
of edges in E(X) that belong to the boundaries of the faces in F2, and let
E1 = E(X) − E0 and E2 = E − E(X). Then, {F1, F2}, {V0, V1, V2}, and
{E0, E1, E2} are partitions of F, V , and E, respectively.

Suppose that the polyhedral surface P is topologically deformed to a
sphere, say K, and that the vertex-edge graph V G(P ) is drawn on K as the
vestiges of vertices, edges, and faces of P . Regions on K bounded by the
edges correspond to the faces in F . If we delete the vertices in V2 and the
edges incident to them, the faces in F2 are merged into connected regions,
say Ai (i = 1, . . . , k), on K. Note that k ≥ 1 because X �= V .
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Let F i
2 (⊆ F2) be the set of the faces constituting Ai, and let us define

Ei
2 = E(F i

2)∩E2, E
i
0 = E(F i

2)∩E0 (i = 1, . . . , k), where, for any face set Y ,
E(Y ) denotes the set of edges belonging to the boundaries of the faces in
Y . Similarly, let us define V i

2 = V (F i
2) ∩ V2, V

i
0 = V (F i

2) ∩ V0 (i = 1, . . . , k).
Note that |F i

2| ≥ 2 for any i (1 ≤ i ≤ k), and F i
2 ∩ F j

2 = ∅, Ei
2 ∩ Ej

2 = ∅,
V i

2 ∩ V j
2 = ∅, for any i and j (1 ≤ i < j ≤ k).

A connected region Ai (1 ≤ i ≤ k) is bounded by edges in Ei
0; the edges

in Ei
0 form a closed path surrounding Ai. If one travels along the closed path

around Ai, one passes through each vertex in V i
0 at least once. Hence we

get |V i
0 | ≤ |Ei

0|, where the equality holds when every vertex in V i
0 appears

exactly once in the closed path.
Let Ri be the set of incidence pairs concerned with faces in F i

2. Each
face fj ∈ F i

2 had |V ({fj})| vertices, and |Ri| equals the sum of such numbers
of vertices over all faces in F i

2: |Ri| =
∑ |V ({fj})| where the summation is

taken over all faces fj in F i
2. From Lemma 11.2, no vertex appears twice or

more on the boundary of any face in F i
2. Consequently, |V ({fj})| equals also

the number of edges on the boundary of fj. Thus, we get |Ri| = 2|Ei
2|+ |Ei

0|,
because in the summation elements of Ei

2 are counted twice and those in Ei
0

are counted once.
Then, we get

μG(X) = 2(|V0| + |V1|) − (|E0| + |E1|) − 3
= 3(|V0 ∪ V1| − |E0 ∪ E1| + |F1| + k) − |V0 ∪ V1| + 2|E0 ∪ E1|

−3|F1| − 3k − 3
= −(|V | + 3|F | − |R| − 4) + |V2| + 3|F2| − 3k − 2|E2| − 1

=
k∑

i=1

(|V i
2 | + 3|F i

2| − 2|Ei
2| − 3) − 1

≥
k∑

i=1

(|V i
2 ∪ V i

0 | + 3|F i
2| − 2|Ei

2| − |Ei
0| − 3) − 1

≥
k∑

i=1

(|V i
2 ∪ V i

0 | + 3|F i
2| − 2|Ei

2| − |Ei
0| − 4)

=
k∑

i=1

μI(F i
2) ≥ 0,

where the first equality is the definition of μG, the second one comes from
simple counting, the third one follows from Euler’s formula |V0 ∪V1|− |E0 ∪
E1| + |F1| + k = 2 for the subgraph (V0 ∪ V1, E0 ∪ E1) and |R| = 2|E| =
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2(|E0|+ |E1|+ |E2|), the fourth one comes from Condition 11.1(a), the next
inequality follows from |V i

0 | ≤ |Ei
0| for 1 ≤ i ≤ k, and the last equality comes

from |Ri| = 2|Ei
2| + |Ei

0|.
Case 2: Suppose that the graph (X,E(X)) is not connected. Then,

Condition 11.2(b) can be derived easily from the fact that every connected
component of (X,E(X)) satisfies μG(Xj) ≥ 0, where Xj represents the set
of vertices belonging to the jth connected component of (X,E(X)).

Therefore, Condition 11.2(b) is satisfied in both the cases.
Conversely, suppose that V G(P ) satisfies Condition 11.2. Let X be

any subset of F such that |X| ≥ 2. Let us define F1 = X, F2 = F − F1,
V0 = V (F1)∩V (F2), V1 = V (F1)−V0, V2 = V (F2)−V0, E0 = E(F1)∩E(F2),
E1 = E(F1)−E0, E2 = E(F2)−E0. Let GX = (V0∪V1, E0∪E1) denote the
subgraph of V G(P ) having the vertex set V0 ∪ V1 and the edge set E0 ∪E1.

Case 1: Suppose that GX is connected. Suppose that the graph V G(P )
is drawn on the sphere K. If we delete the edges in E2 from the graph,
the faces in F2 are merged into connected regions, say A1, . . . , Ak, on K.
Let F i

2 (⊆ F2) be the set of the faces belonging to Ai, and let us define
V i

0 = V (F i
2)∩ V0, V i

2 = V (F i
2)∩ V2, Ei

0 = E(F i
2)∩E0, Ei

2 = E(F i
2)∩E2 (i =

1, . . . , k). Note that V i
2 ∩ V j

2 = ∅ and Ei
2 ∩ Ej

2 = ∅ for 1 ≤ i < j ≤ k.
Moreover, note that for every edge in E0, one side face belongs to F1 and
the other belongs to F0, so that first we have Ei

0 ∩Ej
0 = ∅ for 1 ≤ i < j ≤ k,

and second we have |V i
0 | = |Ei

0| for 1 ≤ i ≤ k. If k = 0, then X = F and
hence μI(X) = 0. If k ≥ 1, then |V (F i

2)| ≥ 3 for any i (1 ≤ I ≤ k) and
hence we get

μI(X) = |V0| + |V1| + 3|F1| − (2|E1| + |E0|) − 4
= 3(|V0 ∪ V1| + |F1| + k − |E0 ∪ E1|) + |E1| + 2|E0| − 2|V0 ∪ V1|

−3k − 4
= |E| − 2|V | + 2 − |E2| + |E0| + 2|V2| − 3k

=
k∑

i=1

(2|V i
2 ∪ V i

0 | − |Ei
2 ∪ Ei

0| − 3)

=
k∑

i=1

μG(V (F i
2)) ≥ 0.

In the above equations, the third equality follows from Euler’s formula for
the graph (V0∪V1, E0∪E1), and the fourth equality from Condition 11.2(a)
and |V i

0 | = |Ei
0|.

Case 2: Suppose that the graph GX is not connected. Then Condition
11.1(b) can be derived from the fact that each connected component of GX
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satisfies μI(Xj) ≥ 0, where Xj denotes the subset of X bounded by edges
belonging to the jth connected component of GX .

Therefore, Condition 11.1(b) is fulfilled in both the cases.

The next corollary follows directly from Theorem 11.4 and the physical
meanings of Conditions 11.1 and 11.2.

Corollary 11.4.1. Let P be a polyhedron that is topologically equivalent
to a sphere. Then, the following three statements are equivalent.
(1) The incidence structure I(P ) is generically reconstructible and admits

exactly four degrees of freedom.
(2) The vertex-edge graph V G(P ) is generically rigid, and remains generi-

cally rigid if any one arc is deleted, but deletion of any two arcs yields
a graph that is not generically rigid.

(3) For any plane skeletal structure whose underlying graph is V G(P ) and
whose joints are in generic position, the equilibrium vector is unique up
to scalar multiplication and its component is nonzero at every rod.

A graph G is called planar if G can be drawn on a plane in such a way
that the nodes correspond to distinct points and the arcs correspond to
(curved, if necessary) line segments and no line segments intersect except
at nodes. A graph G is called 3-connected if it remains connected when any
two nodes and the incident arcs are deleted from G.

If a polyhedron P is topologically equivalent to a sphere, the vertex-edge
graph V G(P ) is planar. Conversely, Steinitz’s theorem says that if a graph
G having at least four nodes is planar and 3-connected, then there exists a
convex polyhedron whose vertex-edge graph is isomorphic to G (Grünbaum
1967; Barnette and Grünbaum, 1969). Hence, from Theorem 11.4, we get
the following corollary.

Corollary 11.4.2. Let G be a planar 3-connected graph with four or
more nodes. Then, the following three statements are equivalent.
(1) There is a line drawing with the underlying graph G such that

(1a) it represents a convex polyhedron, and there are exactly 4 degrees
of freedom in the choice of the heights of the vertices,

(1b) the property (1a) remains true even if the vertex positions are
changed slightly in any direction.

(2) There is a plane skeletal structure with the underlying graph G such
that
(2a) it is rigid, and remains rigid if any one rod is removed, but becomes

flexible if any two rods are removed,
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(2b) the property (2a) remains true even if the joint positions are changed
slightly in any direction.

(3) There is a plane skeletal structure with the underlying graph G such
that
(3a) it admits a nonzero equilibrium vector, and the vector is unique up

to scalar multiplication and nonzero at every rod,
(3b) the property (3a) remains true even if the joint positions are changed

slightly in any direction.

It is also known that, for any planar 3-connected graph G, there are ex-
actly two “different” ways of embedding G in the surface of a sphere, where
“different” means that one embedding cannot be deformed to the other while
the arcs are kept uncrossed (Whitney, 1933). Moreover , the two ways of
embedding are mirror images of each other. Therefore, any convex polyhe-
dron that can be represented by any line drawing specified by statement (1)
in Corollary 11.4.2 yields one and the same incidence structure.

It may be interesting to note that, if a polyhedron P is topologically
equivalent to a sphere and its incidence structure I(P ) satisfies Condition
11.1(a), then the number of the faces is equivalent to the number of the
vertices. Indeed |V | − |F | follows immediately from |V | + 3|F | = |R| +
4, |V | − |E| + |F | = 2, and |R| = 2|E|.
Example 11.4. In Fig. 11.8, the line drawing in (a) represents a polyhe-
dron (a cone with a quadrilateral base) and there are exactly 4 degrees of
freedom in the choice of the polyhedron. Moreover, the property is preserved
if one changes the positions of vertices slightly on the picture plane. Thus,
statement (1) in Corollary 11.4.2 is fulfilled. The corresponding skeletal
structure shown in (a’) is rigid, and remains rigid if any one rod is removed,
but becomes flexible if two or more rods are removed. The property is pre-
served if the joint positions are perturbed. Thus, statement (2) in Corollary
11.4.2 is fulfilled.

In contrast, the line drawing in (b) does not represent any polyhedron,
and the corresponding skeletal structure shown in (b’) becomes flexible when
only one rod, the rod e for instance, is deleted. Next, the line drawing
in (c) represents a polyhedron, but there are 5 degrees of freedom in the
choice of the object; indeed all the faces are triangular so that we have to
specify the z coordinates of all the vertices in order to fix the object in
the space. The corresponding skeletal structure shown in (c’) remains rigid
even if we delete two edges, the edges e and e′ for example. Finally, the line
drawing in (d) represents a polyhedron and there are exactly 4 degrees of
freedom in the choice of the object, but the property is not preserved when
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(a) (a’) (b) (b’)

(c) (c’) (d) (d’)

Figure 11.8. Generic correspondence between interpretation as polyhedrons
and interpretation as skeletal structures.

some vertices are displaced on the picture plane; it represents a polyhedron
correctly only when the two edges e and e′ are collinear. The corresponding
skeletal structure shown in (d’) becomes flexible if only one rod, the rod e
for instance, is removed.

11.5 Principal Partitions and Submodular Decom-

positions

In addition to the correspondences stated in the previous sections, line draw-
ings of polyhedrons and plane skeletal structures admit several other com-
mon mathematical properties. These common properties enable us to treat
the two objects in a unifying manner; in particular, some internal structures
of the objects can be recognized in terms of principal partitions of matroids
and decompositions of submodular systems, which we summarize in this
section.

Let us reconsider the system of equations (5.1). Each row of the coeffi-
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cient matrix A represents the constraint that a vertex should be on a face.
Hence, there is a natural one-to-one correspondence between the set of rows
of A and the incidence pair set R. For any subset X of R, let A(X) be the
submatrix formed by the rows corresponding to elements in X, and let us
define a function τR by

τR(X) = rank(A(X)). (11.12)

Then, (R, τR) forms a matroid (Welsh, 1976).
This matroid and the matroid (E, τE) associated with a plane skeletal

structure defined by (11.7) are analogous in the following sense. First, they
both come from linear dependence of row vectors in matrices, A in (5.1)
and H in (11.4). Second, the ground sets, R and E, both correspond to
constraints about geometrical configurations: an element of E represents
the constraint that a vertex should be on a face, and an element of E rep-
resents the constraint that the distance between two points should be kept
unchanged. Hence, for either matroid, if the ground set is dependent, the
constraints are redundant and consequently deletion of some constraints
does not change the linear space formed by the solutions to the system of
(5.1) or (11.4).

The redundancy is in general distributed nonuniformly in the structure;
the redundancy is dense in one part but sparse in another part. Let (M, τ)
be a matroid. For any X ⊆ M , the density of redundant constraints can
be defined by (|X| − τ(X))/|X|. We shall concentrate our attention on the
numerator and consider a parametric form defined by

f(X) = τ(X) − α|X|, (11.13)

where α ∈ [0, 1]. If the redundancy is dense in the substructure associated
with X, τ(X) is relatively small and |X| is relatively large. Therefore, the
subset X that minimizes f(X) can be expected to give some information
about the distribution of the redundancy.

The family of subsets that minimize (11.13) generates a partially ordered
structure of M , which is called the principal partition of the matroid. The
theory of principal partitions of matroids was developed by Iri (1979a) as a
unifying generalization of apparently different results found in several fields
of mathematics and engineering, such as Dulmage-Mendelsohn decomposi-
tions of bipartite graphs (Dulmage and Mendelsohn, 1958, 1959), maximally
distant tree-pairs of a graph (Kishi and Kajitani, 1967; Baron and Imrich,
1968), the minimum-rank maximum-term-rank theorem on matrices (Iri,
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1969b), and strong irreducibility of matroids (Tomizawa, 1976). This the-
ory provides a decomposition of a matroid based on nonuniform distribution
of dependence, and has been applied to system analysis in various fields of
engineering (Iri, 1979b; Iri and Fujishige, 1981). It is also applicable to our
systems, as the following outline indicates.

Let (M, τ) be a matroid and let D(α) be the family of subsets X of
M such that X minimizes f(X) in (11.13) for α ∈ [0, 1]. Furthermore, let
D =

⋃D(α), where the union is taken over all α such that 0 ≤ α ≤ 1. Then
D is closed under union and intersection and D contains ∅ and M . Therefore,
any longest chain X0 = ∅ ⊆ X1 ⊆ · · · ⊆ Xn = M (Xi ∈ D) defines the same
family of difference sets F(D) = {X1 −X0,X2 −X1, . . . ,Xn −Xn−1}, which
is a partition of M (Iri and Han, 1977). Partial order � is defined on F(D)
in such a way that Mi � Mj (Mi,Mj ∈ F(D)) if and only if Mj ⊆ X implies
Mi ⊆ X for any X ∈ D. Matroid (M, τ) itself is partitioned into “principal
minors” (Mi, τi), where Mi ∈ F(D) and

τi(X) = τ(X ∪ {Y | Y ∈ F(D), Y � X,X �= Y })
−τ({Y | Y ∈ F(D), Y � X,X �= Y }) (11.14)

for any X ⊆ Mi.
Applying the above principal partition to the matroids (R, τR) and (E, τE),

we can partition the structures according to nonuniform distribution of re-
dundant constraints and obtain partial orders among the partitioned sub-
structures.

Example 11.5. Let (R, τR) be the matroid defined by (11.12) associated
with the line drawing of a polyhedron shown in Fig. 11.9(a). The incidence
structure of this picture is not generically reconstructible, and R is depen-
dent in the matroid. We get

D(α) = {∅} if α ∈ [0, 29/32),
D(α) = {R5} if α ∈ (29/32,12/13),
D(α) = {R2 ∪ R5} if α ∈ (12/13,29/31),
D(α) = {R1 ∪ R2 ∪ R5} if α ∈ (29/31,19/20),
D(α) = {R1 ∪ R2 ∪ R3 ∪ R5} if α ∈ (19/20,29/30),
D(α) = {R} if α ∈ (29/32,1],

and D(α) for a “critical” value of α is a simple union of D(α)’s in both sides
of the critical value (for example, D(29/32) = {∅,R5}), where R1, . . . , R5

are sets of incidence pairs, shown in Fig. 11.9(a). Family D and the princi-
pal partition are shown in (b) and (c), respectively. In this accidental case,
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(a) line drawing (b) D (c) partition

Figure 11.9. Principal partition of a line drawing of a polyhedron.

the result of the principal partition coincides with the partition of the ma-
troid into “nonseparable” components (see Welsh, 1976, for “nonseparable”
components). Hence, the order among components represents nothing but
the difference of ratios of the ranks to the sizes of the support sets; redun-
dant incidence pairs are denser in upper components in (c) than in lower
components.

Example 11.6. Fig. 11.10 shows an example of the principal partition
for the plane skeletal structure. Let (E, τE) be the matroid defined by (11.7)
associated with a plane skeletal structure shown in (a). For this matroid we
get

D(α) = {∅} if α ∈ [0, 3/5),
D(α) = {∅,E3, E5, E3 ∪ E5} if α = 3/5,
D(α) = {E3 ∪ E5} if α ∈ (3/5,3/4),
D(α) = {E3 ∪ E5, E2 ∪ E3 ∪ E5, E2 ∪ E3 ∪ E4 ∪ E5} if α = 3/4,
D(α) = {E2 ∪ E3 ∪ E4 ∪ E5} if α ∈ (3/4,4/5),
D(α) = {E2 ∪ E3 ∪ E4 ∪ E5, E} if α = 4/5,
D(α) = {E} if α ∈ (4/5,1],

where E1, . . . , E5 are the sets of rods shown in (a). Family D and the prin-
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(a) plane structure (b) D (c) partition

Figure 11.10. Principal partition of a plane skeletal structure.

cipal partition are shown in (b) and (c), where hatches represent additional
rigid objects to which skeletal structures are fixed (this is the physical mean-
ing of the principal minors defined in (11.14)). Redundant rods are more
crowded in upper elements in (c) than in lower elements, and hence upper
substructures are stronger than lower ones. For instance, the lowest compo-
nent in (c) remains rigid when any one rod is deleted, and becomes flexible
when any two rods are deleted. On the other hand, the second lowest com-
ponent remains rigid even if some two rods are deleted (for example, the
two slant rods), and so on.

Now let us turn our attention to another analogy between line drawings
and skeletal structures. The analogy we concentrate on here is the combi-
natorial characterization of generic properties stated in Theorems 6.2 and
11.2. The conditions stated in those theorems are very similar to each other.
The similarity can be represented clearly in terms of the functions μI and
μG defined by (11.9) and (11.10), respectively.

For a finite set M and a function μ on 2M , consider a condition of the
next form.

Condition 11.3. For any subset X of M such that |X| ≥ p, the inequality
μ(X) ≥ 0 holds.
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The equivalence of statements (1) and (2) in Theorem 6.2 can be para-
phrased as follows: “An incidence structure I = (V, F,R) is generically
reconstructible if and only if Condition 11.3 is fulfilled, where M = R,
μ = μI , and p = 2”. Theorem 11.2 can be paraphrased in this way: “A
graph G = (V,E) is generically independent if and only if Condition 11.3
is fulfilled, where M = R,μ = μG, and p = 1”. Thus, both the generic
reconstructibility of an incidence structure and the generic independence of
a graph are characterized by a combinatorial, condition of the same “form”.

Moreover, the two functions μI and μG are analogous in the following
way. A function μ on 2M is said to be submodular if, for any subsets X and
Y of M , the inequality

μ(X ∪ Y ) + μ(X ∩ Y ) ≤ μ(X) + μ(Y ) (11.15)

holds. The functions μI and μG are not exactly submodular, but are almost
submodular in the sense that (11.15) is satisfied for any subset X and Y
such that |X ∩ Y | ≤ p, where p = 2 for μ = μI , and p = 1 for μ = μG.

The inequality (11.15) is of the same form as (5.7c), the third condition
that should be satisfied by a rank function of a matroid. A submodular func-
tion generates a certain decomposition of the ground set (Fujishige, 1980).
Although rank functions of matroids should be submodular, a certain sub-
class of almost submodular functions also defines matroids (Imai, 1983; see
also Edmonds, 1970; Sugihara, 1985). Moreover, Fujishige’s decomposition
based on submodular functions can be modified so that almost submodular
functions also define decompositions. The modified decomposition is useful
for the analysis of our present systems.

Let M be a finite set, and let μ be a function on 2M that is almost
submodular in the sense that (11.15) is fulfilled by any X,Y ⊆ M such that
|X ∩ Y | ≥ p, where p is a positive constant. Let q be another constant such
that q ≥ p, and let us define β∗ by

β∗ = min{μ(Y ) | Y ⊆ M, |Y | ≥ q}.

We define, for each x ∈ M ,

K(x) =
⋂

{X | x ∈ X ⊆ M, |X| ≥ q, μ(X) = β∗} (11.16)

with the convention that K(x) = {x} if there is no X that satisfies the
conditions stated on the right of (11.16).

Let G = (M,A) be a directed graph having M as the node set and
A = {(x, y) | y ∈ K(x), x, y ∈ M} as the arc set. Decomposing G into
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strongly connected components, we get the partition of M and the partial
order in it. Fujishige’s decomposition corresponds to the case where p = q =
0. If we choose q appropriately, the above partition and partial order help
us to understand internal structures of generically reconstructible incidence
structures and generically independent skeletal structures, as in the following
examples.

(a) line drawing (b) partition

Figure 11.11. Partition based on the almost submodular function μI associ-
ated with a line drawing of a polyhedron.

Example 11.7. Let us consider the incidence structure I = (V, F,R)
associated with the line drawing of a polyhedron shown in Fig. 11.11(a).
I is generically reconstructible, and hence the constraints represented by
incidence pairs are not redundant. Let us consider the almost submodular
function μI defined by (11.9). Putting M = R,μ = μI , and q = 3, we get
β∗ = 0 and

K(1) = K(3) = {1, 3}, K(2) = {1, 2, 3}, K(4) = {1, 3, 4},
K(5) = {5}, K(6) = {6, 7, 10}, K(7) = {7, 10}, K(8) = {8, 10},
K(9) = {9}, K(10) = {10}, K(11) = {6, 7, 8, 10, 11, 12},
K(12) = {8, 10, 12},

and consequently obtain the partition and the partial order as shown in
(b). This partition represents the distribution of subsets X of F such that
μI(X) = 0. Therefore, for any component of this partition, the union of
all upper components together with this component constitutes a minimal
substructure with exactly 4 degrees of freedom that includes this component.



11.5 Principal Partitions 213

Example 11.8. Another example is shown in Fig. 11.12. Let (V,E)
be the underlying graph of the plane structure illustrated in (a), which is
generically independent and generically rigid. Putting M = E and μ = μG

and q = 3, we get β∗ = 0 and

K(1) = {1}, K(2) = K(3) = {1, 2, 3}, K(4) = K(5) = {1, 4, 5},
K(6) = {1, 2, 3, 4, 5, 6, 7}, K(7) = {7}, K(8) = {7, 8, . . . , 21},
K(9) = {9}, K(10) = K(11) = {9, 10, 11}, K(12) = K(13) = {9, 12, 13},
K(14) = K(15) = · · · = K(21) = {9, 10, . . . , 21},

and hence obtain the partition and the partial order as shown in (b). The
partition and the partial order represent the distribution of rigid and gener-
ically independent substructures, and also represent which part of the struc-
ture supports the rigidity of which part. If a rod in a certain component is
removed from the structure, all the rods belonging to the same component
or the lower components become flexible, while the substructure composed
of rods in the upper components remains rigid. The chosen value of q (i.e.,
3) is equal to the minimum number of rods that form a nontrivial rigid
structure.

(a) plane structure (b) partition

Figure 11.12. Partition based on the almost submodular function μG asso-
ciated with a plane skeletal structure.
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anomalous picture, 141, 179
apparent distortion, 163
arc (of a graph), 116
arc (of a network), 144
assumption, 13, 15, 66
auxiliary graph, 145
axonometric drawing, 103
axonometric line drawing, 155
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base, 84, 91
bipartite graph, 116
boundary of shadow, 34
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capacity, 144
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classification of line drawings, 138
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collinearity-coplanarity property, 95
combinatorial explosion, 134
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complete matching, 116

compression, 190
concave line, 43
consistent assignment of labels , 32
consistent face-layer structure, 69
constrained optimization problem,
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constraint propagation method, 36
constraint set, 167
continuous rigidity, 189
convenient base, 88
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correct, 139
correctable, 139
correction of vertex position error,
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degree of freedom (of an unknown
set), 84

demand-supply theorem, 146
dependent, 84, 91
diagram, 184
dodecahedron, 176
dual picture, 181
dual representation, 35
Dulmage-Mendelsohn decomposition,
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edge (of a panel), 43
edge (of a polyhedron), 13
embedding, 195
equilibrium vector, 190

face, 13
face-edge diagram, 185
face-edge graph, 195
face-layer structure, 69
feasible solution, 60
figure-construction approach, 9
figure-construction problem, 96
flat, 93
flow, 144
flow augmentable, 145
force in equilibrium, 199

general position, 67, 192
generic correspondence, 198
generic degrees of freedom, 125
generic position, 113, 191
generically dependent, 191
generically independent, 191
generically reconstructible, 113, 139
generically rigid, 191
generically unreconstructible, 139
global constraint, 164
gradient, 183
gradient space, 9, 35, 175, 183
grain texture, 179

graphical calculus, 9
greedy algorithm, 93

heuristic, 104, 134
hexahedron, 187
hidden-part-drawn line drawing, 16
hidden-part-drawn picture, 66
hidden-part-eliminated line draw-

ing, 16
Huffman-Clowes labeling scheme,

8

impossible object, 141
impossible truncated pyramid, 113
in-arrow, 48
incidence pair, 111
incidence structure, 111
incorrect, 139
independent, 84, 91
independent set, 191
indeterminate, 117
induced subgraph, 116
induced substructure, 112
infinitesimal displacement, 189
infinitesimally rigid, 189
initial junction, 44
integral vector, 144
intermediate node, 144

joint, 188
junction, 14, 44

kernel, 117

L-type junction, 28
labeled, 20
labeled picture, 44
Laman’s theorem, 191
Lambertian surface, 169
left node, 116
light intensity, 163, 169
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light stripe image, 170
line, 14, 44
line drawing, 14
line segment, 184
linear order, 158
linear programming problem, 60
locally consistent, 36
lower bound of the degrees of free-

dom, 94

matching, 116
matroid, 91, 191
maximal generically reconstructible

substructure, 148
maximally distant tree-pair, 207
minimum-rank maximum-term-rank

theorem, 207
minimum-weight base, 93
multi-view drawing, 7

natural line drawing, 16
Necker’s reversal, 172
negative arc, 144
negative object, 172
network, 144
network flow theory, 146
node, 144
non-trihedral object, 32, 161
nonaccidentalness assumption, 16
nondegenerate, 113
nonnegative vector, 144
nonpolyhedral object, 34
nonseparable, 209
nullity, 117

objective function, 165
occluded part, 62
occluding line, 43
octant, 23
optimization, 163
oriented polyhedron, 198

Origami world, 34
orthographic projection, 41
out-arrow, 48

panel, 43
paper-made object, 8
partial order, 208
path, 144
pathological, 58
pathological object, 13
pathological panel, 43
pathological vertex, 182
pentagonal prism, 97
perspective projection, 60
picture (of a planar-panel scene),

43
picture of impossible object, 141
picture(of a polyhedral scene), 14
pin joint, 188
planar graph, 204
planar-panel object, 35
planar-panel scene, 43
plane skeletal structure, 188
point (of a diagram), 184
polygon, 69
polyhedral scene, 57
polyhedron, 13
positive arc, 144
precisely drawn picture, 153
principal minor, 208
principal partition of matroid, 206
prism, 149
prototype-based interpretation, 7
prototype-free interpretation, 7
pyramid, 149

quadrant, 18
quadric error criterion, 165
quadric surface, 8

range finding, 170
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rank function, 91, 191
reciprocal, 185
reciprocal figure, 9, 35
reciprocal-figure approach, 10
Reidemeister’s theorem, 187
relative distance, 42, 78
relaxation method, 36
right node, 116
right-angled object, 8
rigid, 189
rod, 188
roughly drawn axonometric line draw-

ing, 155
rule, 21, 22, 24, 27, 29, 35

scene, 14
second order rigidity, 189
shadow, 63
shape recovery, 163, 164
side, 48
sidedness reasoning, 9, 35
sign pattern, 193
signed length, 197
sink, 144
skeletal structure, 188
slit light, 170
source, 144
span, 117
spanning angle, 9, 35
spatial structure, 46
special position, 90
spot range finder, 93
statistical property of texture, 163
Steinitz’s theorem, 204
strong irreducibility, 208
strut, 193
subgraph, 116
submodular, 211
substructure, 112
superstrictness, 110

support, 91
surface contour, 163
surface information, 164
symbolic aspect, 3

T-type junction, 27
tapered prism, 187
telephoto lens, 179
tensegrity structure, 193
tension, 190
terminal junction, 44
tetrahedron, 113, 187, 197
texture density, 179
theory of braid, 35
thickness, 35
time of flight, 93
torus, 160
triangular panel, 58
triangulation, 34, 93
trihedral, 22
truncated pyramid, 113

uncorrectable, 139
underlying graph, 188
unique shape, 153
unique solvability, 96
unusual interpretation, 3

vanishing point, 164
vector, 144
vertex (of a polyhedron), 13
vertex (of a spatial structure), 46
vertex-edge diagram, 184
vertex-edge graph, 195
visual psychology, 141

W-type junction, 23
weight, 93
weld, 58

X-type junction, 22
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Y-type junction, 23


