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Abstract. We investigate when the Rees algebra of an integrally closed m-primary ideal in a
regular local ring is a Cohen–Macaulay normal domain. While this property always holds in
dimension two, it fails in general in higher dimensions, prompting a search for sufficient conditions
on the ideal. We show that if an integrally closed ideal contains a part of regular system of
parameters of length d−2, where d is the dimension of the regular local ring, then its Rees algebra
is Cohen–Macaulay and normal. We also extend results of Goto and Ciupercă by proving the same
conclusion when the minimal number of generators of an ideal is at most d + 2. Furthermore,
we treat the case of integrally closed zero-dimensional ideals generated by d + 3 homogeneous
polynomials. Finally, using generic Bourbaki ideals, we generalize these results to integrally closed
torsionfree modules of finite colength.

1. Introduction

In this paper, we investigate the conditions under which the Rees algebra of an integrally closed

m-primary ideal I in a regular local ring (R,m) of dimension d is a Cohen-Macaulay normal

domain. Since the statement holds trivially when d ≤ 1, our primary focus is on the case d ≥ 2.

Recall that the integral closure I of an ideal I in a commutative ring R is the set of all elements

r that are integral over I, that is, satisfy a polynomial equation of the form

rm + a1r
m−1 + · · ·+ ajr

m−j + · · ·+ am = 0,

where aj ∈ Ij. An ideal I is said to be integrally closed if I = I. Furthermore, I is called normal if

In = In for every positive integer n. Alternatively, we consider the Rees algebra R(I) of I, which

is the subalgebra of the polynomial ring R[t] defined by

R(I) =
⊕
n≥0

Intn.

The integral closure R(I) of R(I) in R[t] is also a graded algebra, and its graded components are

the integral closures of all powers of I:

R(I) =
⊕
n≥0

Intn.

Provided that R is a normal domain, the integral closure of R(I) in its field of fractions coincides

with R(I). Accordingly, the Rees algebra R(I) is said to be normal if R(I) = R(I). Therefore,

an ideal I is normal if and only if its Rees algebra is normal.
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Zariski demonstrated that in the polynomial ring with two variables over a field, the product

of any two integrally closed ideals is also integrally closed. This implies that the Rees algebra is

normal ([18, Part II, Section 12]). Although Zariski’s original result was stated for the polynomial

ring, the analogous property for two-dimensional regular local rings was established in [19, Appen-

dix 5, Theorem 2′]. Furthermore, Lipman and Teissier proved that the reduction number of any

integrally closed m-primary ideal is at most one ([13, Proposition 5.5]). Consequently, the Rees

algebra is Cohen-Macaulay. Therefore, if (R,m) is a two-dimensional regular local ring and I is an

integrally closed ideal, then the Rees algebra R(I) is indeed a Cohen-Macaulay normal domain.

In addition, Lipman showed that if R is a two-dimensional rational singularity with an infinite

residue field, then the Rees algebra R(I) is a Cohen-Macaulay normal domain ([11, Section 7]).

However, if the dimension of the ring is greater than 2, then the Rees algebra of an integrally

closed ideal is not necessarily a Cohen-Macaulay normal domain. For instance, consider the formal

power series ring R = k[[X,Y, Z]] over a field k, and examine the ideals

Q = (X7, Y 3, Z2) and I = Q = (X7, Y 3, Z2, X5Y,X4Z,X3Y 2, X2Y Z, Y 2Z).

In this case, I is integrally closed, but I2 ̸= I2, and I2 = QI. Thus, R(I) is Cohen-Macaulay but

not normal. While one might expect that normality implies the Cohen-Macaulay property, this

implication does not hold in general. Suppose further that the characteristic of k is not equal to

3, and consider

I = (X4, X(Y 3 + Z3), Y (Y 3 + Z3), Z(Y 3 + Z3)) +m5

where m = (X,Y, Z). Then, by [8, Theorem 3.11], the ideal I is normal, but the associated graded

ring grI(R) =
⊕

n≥0 I
n/In+1 is not Cohen-Macaulay. Therefore, R(I) is normal, but not Cohen-

Macaulay. These examples suggest that additional conditions on either the base ring or the ideal

are necessary for the Rees algebra to be a Cohen-Macaulay normal domain of dimension greater

than 2. As the base ring is assumed to be regular in our setup, we focus on imposing conditions

on the ideals.

We investigate such conditions from the perspective of the minimal number of generators, de-

noted by µR( ). Goto proved that when µR(I) = d – that is, when I is a complete intersection

ideal – the Rees algebra R(I) is a Cohen-Macaulay normal domain ([4, Corollary (1.3)]). In the

same work, it was also proved that an m-primary complete intersection ideal in a regular local ring

is integrally closed if and only if it contains a part of regular system of parameters of length d− 1

([4, Theorem (1.1)]); equivalently, this is the case if and only if v(R/I) ≤ 1, where v( ) denotes

the embedding dimension of a ring. Furthermore, Ciupercă proved that R(I) is a Cohen-Macaulay

normal domain also when µR(I) = d+ 1, that is, when I is an almost complete intersection ideal

([1, Theorem 1.1], [2, Section 4]). In this case, it is also shown that if I is integrally closed and

µR(I) = d+ 1, then I necessarily contains a part of regular system of parameters of length d− 2

([1, Corollary 3.3], [2, Section 4]). The latter condition is equivalent to v(R/I) ≤ 2.

Building upon these results, we broaden the scope by showing that the Rees algebra R(I)

remains a Cohen-Macaulay normal domain under the more general condition v(R/I) ≤ 2, even in

cases where µR(I) > d + 1 (See Theorem 2.1). Furthermore, we extend the results of Goto and

Ciupercă by showing that if µR(I) ≤ d + 2, then its Rees algebra is a Cohen-Macaulay normal

domain. Our main theorem is as follows:



NORMALITY OF IDEALS AND MODULES 3

Theorem 2.2 Let (R,m) be a regular local ring of dimension d ≥ 3 and I an integrally closed

m-primary ideal of R. If µR(I) ≤ d+ 2, then I contains a part of regular system of parameters of

length d− 2. In particular, the Rees algebra R(I) is a Cohen-Macaulay normal domain.

For ideals generated by at most d + 3 elements, we analyze a zero-dimensional ideal generated

by homogeneous polynomials and obtain the following result.

Theorem 3.4 Let k be a field of characteristic zero, R = k[X1, . . . , Xd] a polynomial ring, and I

a zero-dimensional R-ideal generated by d+ 3 homogeneous polynomials. If I is integrally closed,

then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Let R be a Noetherian ring and E a finitely generated R-module having a rank. The Rees

algebra R(E) of the module E is defined as the symmetric algebra S(E) modulo R-torsion. If

E is torsionfree, then it can be embedded into a free module Re. In this case, R(E) is the R-

subalgebra of the polynomial ring R[t1, . . . , te] generated by all linear forms a1t1+ · · ·+aete, where

(a1, . . . , ae) is the image of an element of E in Re under the embedding. In particular, when

E = I ⊆ R is an ideal, this definition of the Rees algebra coincides with the one given at the

beginning of Introduction. The integral closure E of E (in Re) is the largest submodule of Re

whose Rees algebra is integral over R(E). If E = E, then E is said to be integrally closed. Using

the notion of a generic Bourbaki ideal, we extend our results from ideals to those of modules. For

an R-module M , we denote the length of M by ℓR(M), and the deviation of M by d(M) (See [15,

Page 633]).

Theorem 4.2 Let (R,m) be a regular local ring of dimension d ≥ 3, and E a finitely generated

torsionfree R-module having a rank e > 0. Suppose that E is integrally closed and ℓR(R
e/E) < ∞.

If µR([E + mRe]/E) ≤ 2 or d(E) ≤ 2, then the Rees algebra R(E) is a Cohen-Macaulay normal

domain.

2. Cohen-Macaulay normal Rees algebras

A local ring (R,m) of dimension d is called regular if the maximal ideal m can be generated by

exactly d elements. In this case, a minimal system of generators for m is called a regular system

of parameters. Note that an R-ideal I contains a part of regular system of parameters of length

d− 2 if and only if ℓR((I +m2)/m2) ≥ d− 2.

Theorem 2.1. Let (R,m) be a regular local ring of dimension d ≥ 2 and I an integrally closed

m-primary ideal of R. Suppose that I contains a part of regular system of parameters of length

d− 2. Then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. By passing to the faithfully flat extension R → R[X]mR[X] if necessary, we may assume that

the residue field R/m is infinite. We prove the assertion by induction on d.

Let d = 2 and let Q be a parameter ideal that is a minimal reduction of I. By [13, Proposition

5.5] (see also [9, Theorem 5.1]), it follows that I2 = QI. Then by [16, Corollary 2.7] the associated

graded ring grI(R) is Cohen-Macaulay. Hence, by [5, Remark (3.10)], the Rees algebra R(I) is

Cohen-Macaulay. Moreover, by [19, Appendix 5, Theorem 2′] (see also [9, Theorem 3.7]), the Rees

algebra R(I) is normal.
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Now assume that d ≥ 3 and that the assertion holds true for d−1. Write I = (a1, a2, . . . , ad−2, . . . , an),

where a1, . . . , ad−2 forms a part of regular system of parameters of length d−2. LetR′ = R[z1, . . . , zn]

be a polynomial ring with indeterminates zi. Set

R′′ = R′
mR′ , I ′′ = IR′′, m′′ = mR′′, x =

n∑
i=1

ziai ∈ I ′′.

Since the natural map R(I) → R′′ ⊗R R(I) ∼= R(I ′′) is faithfully flat, it is enough to show that

R(I ′′) is a Cohen-Macaulay normal domain.

Since I ̸⊆ m2, x ̸∈ (m′′)2. Therefore, (R′′/(x),m′′/(x)) is a regular local ring of dimension d − 1,

and the ideal I ′′/(x) is m′′/(x)-primary. By [7, Corollary 2.3],

(I ′′/(x)) = I ′′/(x) = I ′′/(x).

That is, I ′′/(x) is integrally closed. Also, we obtain the following.

ℓR′′

(
I ′′/(x) + (m′′/(x))2

(m′′/(x))2

)
= ℓR′′

(
I ′′ + (m′′)2

(m′′)2 + (x)

)
= ℓR′′

(
(I ′′ + (m′′)2)/(m′′)2

)
− ℓR′′

(
((m′′)2 + (x))/(m′′)2

)
= ℓR′′

(
R′′/(m′′)2

)
− ℓR′′

(
R′′/(I ′′ + (m′′)2)

)
− ℓR′′

(
((m′′)2 + (x))/(m′′)2

)
= ℓR

(
R/m2

)
− ℓR

(
R/(I +m2)

)
− 1

= ℓR
(
(I +m2)/m2

)
− 1

≥ d− 3

By the induction hypothesis, the Rees algebra R(I ′′/(x)) is a Cohen-Macaulay normal domain.

Then, by [5, Remark (3.10)] the associated graded ring grI′′/(x)(R
′′/(x)) is Cohen-Macaulay.

Consider the integral closure A of the extended Rees algebra of I ′′ in R′′[t, t−1]:

A =
∑
n∈Z

(I ′′)ntn.

By [7, Lemma 1.1 (c)], the element xt is regular on A/t−1A. Then the equality

(I ′′)n :R′′ x = (I ′′)n−1

holds for all n ≥ 1. Also, since R(I ′′/(x)) is normal, we have

(I ′′/(x))n = (I ′′/(x))n.
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Thus, (I ′′)n ⊆ (I ′′)n + (x) for all n ≥ 1. Now, we prove that (I ′′)n = (I ′′)n for all n ≥ 1 by

induction. It is trivial if n = 1. Let n ≥ 2 and assume that assertion holds true for n− 1. Then

(I ′′)n =
(
(I ′′)n + (x)

)
∩ (I ′′)n

= (I ′′)n +
(
(x) ∩ (I ′′)n

)
= (I ′′)n + x

(
(I ′′)n :R′′ x

)
= (I ′′)n + x(I ′′)n−1

= (I ′′)n + x(I ′′)n−1

= (I ′′)n

Therefore, Rees algebra R(I ′′) is normal.

Since xt is regular on A/t−1A = grI′′(R
′′), it follows that

grI′′(R
′′)/(xt)grI′′(R

′′) ∼= grI′′/(x)(R
′′/(x)).

Since grI′′/(x)(R
′′/(x)) is Cohen-Macaulay, grI′′(R

′′) is Cohen-Macaulay. Therefore, by [12, Theo-

rem (5)], the Rees algebra R(I ′′) is Cohen-Macaulay. □

The following theorem extends the theorem of Goto on complete intersection ideals ([4, Corollary

(1.3)]), as well as the result of Ciupercă on almost complete intersection ideals ([1, Theorem 1.1],

[2, Section 4]).

Theorem 2.2. Let (R,m) be a regular local ring of dimension d ≥ 3 and I an integrally closed

m-primary ideal of R. If µR(I) ≤ d+ 2, then I contains a part of regular system of parameters of

length d− 2. In particular, the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. Enlarging the residue class field R/m of R if necessary, we may assume R/m is infinite.

Suppose that I ⊆ m2. Because I is m-full ([4, Theorem (2.4)]), by [17, Theorem 3] (see also [4,

Lemma (2.2)]), we obtain the following.

d+ 2 ≥ µR(I) ≥ µR(m
2) =

d(d+ 1)

2
.

After simplifying the inequality and using d ≥ 3, we get

0 ≥ d2 − d− 4 ≥ 2.

This is a contradiction. Therefore, I ̸⊆ m2.

Now we prove the theorem by induction on d. Let d = 3. Since I ̸⊆ m2, the ideal I contains a

part of regular system of parameters of length 1.

Let d ≥ 4 and assume that the assertion holds true for d− 1. Choose x ∈ I with x ̸∈ m2. By [2,

Lemma 4.2], we obtain

(I/(x)) = I/(x) = I/(x).

Now, R/(x) is a regular local ring of dimension d− 1 and the ideal I/(x) is integrally closed and

m/(x)-primary. Moreover,

µR/(x)(I/(x)) = µR(I)− 1 ≤ (d+ 2)− 1 = (d− 1) + 2.
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By the induction hypothesis, I/(x) contains a part of regular system of parameters of length d−3.

Equivalently, ℓR
(
(I +m2)/(m2 + (x))

)
≥ d− 3. Therefore,

ℓR
(
(I +m2)/m2

)
= ℓR

(
(I +m2)/(m2 + (x))

)
+ ℓR

(
(m2 + (x))/m2

)
≥ (d− 3) + 1 = d− 2,

which proves that I contains a part of regular system of parameters of length d− 2. □

Example 2.3. Let R = k[[X,Y, Z]] be the formal power series ring over a field k and m = (X,Y, Z)

the maximal ideal of R. The Rees algebras of the following ideals are Cohen-Macaulay normal

domains.

(1) Let I = (X3, Y 3, Z) = (X3, X2Y,XY 2, Y 3, Z). Then I is an integrally closed m-primary

ideal of R and µR(I) = 5.

(2) Let I = (X4, Y 4, Z) = (X4, X3Y,X2Y 2, XY 3, Y 4, Z). Then I is an integrally closed m-

primary ideal of R and µR(I) = 6 > d+ 2, but v(R/I) = 2.

(3) Let I = (f)+mn for each f ∈ m \m2 and n ≥ 1. Then I is an integrally closed m-primary

ideal of R and v(R/I) ≤ 2.

Corollary 2.4. Let R be a regular ring of dimension d, and let I be an integrally closed ideal of

R with htR(I) = d. If µR(I) ≤ d + 2, then the Rees algebra R(I) is a Cohen-Macaulay normal

domain.

Proof. Localizing at a maximal ideal m in R containing I, we may assume that (R,m) is a regular

local ring and that I is m-primary. Enlarging the residue class field R/m of R if necessary, we may

further assume that R/m is infinite. The assertion is immediate from the definition when d ≤ 1.

In the case d = 2, it follows from [19, Appendix 5, Theorem 2′] together with [13, Proposition

5.5]. When d ≥ 3, it is a consequence of Theorem 2.2. □

3. Homogeneous ideals I with µR(I) = d+ 3

In this section, we investigate the normality of a particular class of ideals, namely homoge-

neous ideals in a polynomial ring. By leveraging the algebraic structure inherent in homogeneous

ideals, we aim to characterize conditions under which they are normal. It is well known that the

integral closure of a monomial ideal is itself a monomial ideal. For a real number r, we denote

⌈r⌉ = min {n ∈ Z | r ≤ n}.

Lemma 3.1. Let R = k[X,Z] be a polynomial ring over a field k. Let J = (X2, XZa, Zc) be an

R-ideal, where a ≥ 1 and c ≥ 2 are integers such that a ≤
⌈ c
2

⌉
. Then J is normal.

Proof. It is enough to show that J is integrally closed ([18, Part II, Section 12]). Let f = XαZβ

be a monomial in the integral closure J , where α, β ≥ 0. We show that f ∈ J by cases.

Suppose that α = 0 or β = 0. Then

f = Zβ ∈ (Zc) = (Zc) ⊆ J, or f = Xα ∈ (X2) =
(
X2

)
⊆ J.

Suppose that α ≥ 2. Then

f = XαZβ = X2 ·Xα−2Zβ ∈ J.
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Suppose that α = 1 and β ≥ a. Then

f = XZβ = XZa · Zβ−a ∈ J.

Suppose that α = 1 and 1 ≤ β ≤ a− 1. Then there exists positive integer ρ such that(
XZβ

)ρ
= h ·

(
X2

)n1 (XZa)n2 (Zc)n3 ,

where h is a monomial in R, and n1, n2, n3 are nonnegative integers such that n1 + n2 + n3 = ρ.

Therefore,

XρZβρ = h ·X2n1+n2Zan2+cn3 .

Then

ρ ≥ 2n1 + n2 ⇒ n1 + n2 + n3 ≥ 2n1 + n2 ⇒ n3 ≥ n1.

Also,

βρ ≥ an2 + cn3 ⇒ β(n1 + n2 + n3) ≥ an2 + cn3

This means that

0 ≥ −βn1 + (a− β)n2 + (c− β)n3 ≥ (c− 2β)n1 + (a− β)n2.

By assumption, a− β > 0. Also, Since a ≤
⌈ c
2

⌉
, we get

β ≤ a− 1 <
c

2
⇒ c− 2β > 0.

Therefore n1 = 0 = n2. This means that ρ = n3 and βρ ≥ cn3. Then β ≥ c. Therefore,

f = XZβ = Zc ·XZβ−c ∈ J. □

In the following theorem, we consider a very specific monomial ideal in a polynomial ring with

three variables. Although this case may appear highly specialized, it serves as a key building block

for the more general results established later. Analyzing this ideal in detail allows us to identify

structural properties and techniques that will be instrumental in extending our arguments to

broader classes of homogeneous ideals.

Theorem 3.2. Let R = k[X,Y, Z] be a polynomial ring over a field k. Let

I = (X2, XY, Y 2, Zc, XZa, Y Zb),

where a, b, c are integers such that 1 ≤ a ≤ b and c ≥ 2. Suppose that I is integrally closed. Then

b ≤
⌈ c
2

⌉
and I is normal.

Proof. Let d =
⌈ c
2

⌉
and suppose that b > d. Let f = Y Zd. Then f cannot be a multiple of Y Zb.

Note that

d <
c

2
+ 1 ≤ c,

where the last inequality follows from c ≥ 2. Then f cannot be a multiple of Zc either. Therefore,

f /∈ I. However, since c ≤ 2d, we get

Z2d = Zc · Z2d−c ∈ I.

Then (
Y Zd

)2 − Y 2 · Z2d = 0,
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where Y 2 · Z2d ∈ I2. Thus, f ∈ I. This is a contradiction.

To prove I is normal, by [14, Proposition 3.1], it is enough to prove that I2 is integrally closed. Let

f = XαY βZγ be a monomial in the integral closure I2, where α, β, γ ≥ 0. We show that f ∈ I2

by cases.

Case 1. Suppose that α = 0 or β = 0. First, we consider the case where β = 0. Note that, since

a ≤ b and b ≤
⌈ c
2

⌉
, we have a ≤

⌈ c
2

⌉
. By Lemma 3.1, we obtain

f = XαZγ ∈ (X2, XZa, Zc)2 =
(
X2, XZa, Zc

)2 ⊆ I2.

Similarly, if α = 0, then f ∈ I2.

Case 2. Suppose that α ≥ 2 and β ≥ 2. Then

f = XαY βZγ = X2 · Y 2 ·Xα−2Y β−2Zγ ∈ I2.

Case 3. Suppose that α = 1 and β ≥ 3. Then

f = XY βZγ = XY · Y 2 · Y β−3Zγ ∈ I2.

Similarly, if β = 1 and α ≥ 3, then f ∈ I2.

Case 4. Suppose that f = XY Zγ or f = XY 2Zγ or f = X2Y Zγ. Let φ : R = k[X,Y, Z] → S = k[t]

be an arbitrary k-algebra map, where k[t] is a polynomial ring. Since S is a PID, we obatin,

φ(f) ∈ φ(I2) ⊆ φ(I2)S = φ(I2)S.

Note that 2a− 1 ≤ 2b− 1 ≤ c.

Case 4-1. Suppose that a = b and c ≥ 2a. Let φ : R → S = k[t] be a k-algebra map given by

φ(X) = ta, φ(Y ) = ta, and φ(Z) = t. Then since c ≥ 2a, we get

φ(I)S = (t2a, tc) = (t2a) and φ(I2)S = (t4a).

If f = XY Zγ, then φ(f) = t2a+γ ∈ (t4a). Thus, 2a+ γ ≥ 4a, which means γ ≥ 2a. Therefore,

f = XY Zγ = XZa · Y Za · Zγ−2a = XZa · Y Zb · Zγ−2a ∈ I2.

If f = XY 2Zγ or f = X2Y Zγ, then φ(f) = t3a+γ ∈ (t4a), which means γ ≥ a. Therefore,

f = XY 2Zγ = XZa · Y 2 · Zγ−a ∈ I2 or f = X2Y Zγ = XZa ·XY · Zγ−a ∈ I2.

Case 4-2. Suppose that a = b and c = 2a− 1. Let φ : R → S = k[t] be a k-algebra map given

by φ(X) = tc, φ(Y ) = tc, and φ(Z) = t2. Then since 2c < c+ 2a, we get

φ(I)S = (t2c, tc+2a) = (t2c) and φ(I2)S = (t4c).

If f = XY Zγ, then φ(f) = t2c+2γ ∈ (t4c). Thus, 2c+ 2γ ≥ 4c, which means γ ≥ c. Therefore,

f = XY Zγ = XY · Zc · Zγ−c ∈ I2.

If f = XY 2Zγ or f = X2Y Zγ, then φ(f) = t3c+2γ ∈ (t4c). Thus, 3c+ 2γ ≥ 4c, which means γ ≥ a.

Therefore,

f = XY 2Zγ = XZa · Y 2 · Zγ−a ∈ I2 or f = X2Y Zγ = XZa ·XY · Zγ−a ∈ I2.
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Case 4-3. Suppose that a < b. If f = XY Zγ, then we consider the k-algebra map φ : R → S = k[t]

given by φ(X) = tq, φ(Y ) = tc, and φ(Z) = t2, where q = 2(b− a) + c− 1. Then

φ(I)S = (t2q, tq+c, t2c, tq+2a, tc+2b).

Note that q ≥ c+ 1. Then

2q ≥ 2c+ 2 > 2c and q + c ≥ 2c+ 1 > 2c.

On the other hand,

q + 2a = 2b− 1 + c ≤ 2c.

Moreover, we have

c+ 2b− (q + 2a) = c+ 2b− 2(b− a)− c+ 1− 2a = 1,

which shows that q + 2a < c+ 2b. Therefore,

φ(I)S = (tq+2a) and φ(I2)S = (t2q+4a)

Then φ(f) = tq+c+2γ ∈ (t2q+4a). Thus, q + c+ 2γ ≥ 2q + 4a, which means γ ≥ a+ b. Therefore,

f = XY Zγ = XZa · Y Zb · Zγ−a−b ∈ I2.

Finally, we consider the k-algebra map φ : R → S = k[t] given by φ(X) = ta, φ(Y ) = ta, and

φ(Z) = t. Then

φ(I)S = (t2a, tc, ta+b).

Note that 2a < a+ b ≤ 2b− 1 ≤ c. Thus,

φ(I)S = (t2a), and φ(I2)S = (t4a).

If f = XY 2Zγ or f = X2Y Zγ, then φ(f) = t3a+γ ∈ (t4a). Thus, γ ≥ a. Hence,

f = XY 2Zγ = XZa · Y 2 · Zγ−a ∈ I2 and f = X2Y Zγ = XZa ·XY · Zγ−a ∈ I2. □

Before addressing the normality of more general homogeneous ideals, we first establish the

following lemma. It gives a precise characterization of homogenous ideals that do not contain a

quadratic form of rank three. This characterization will serve as a key tool in our subsequent

analysis, providing a foundation for the results on normality that follow.

Lemma 3.3. Let k be an algebraically closed field, R = k[X,Y, Z] a polynomial ring over k, and

m the homogeneous maximal ideal of R. Let I be an integrally closed m-primary ideal such that

I ⊆ m2 and µR(I) = 6. Then grade(I2R) ≥ 2, where I2 is the set of all quadratic forms in I.

Proof. Suppose grade(I2R) = 0. Then, since R is an integral domain, I2R = (0). Therefore,

I ⊆ m3. Because Im is mRm–full, we obtain the following:

6 ≥ µRm(Im) ≥ µRm(m
3Rm) = 10,

which is a contradiction.

Suppose grade(I2R) = 1. Then there exists p ∈ Spec(R) such that ht(p) = 1 and I2R ⊆ p. Since

R is a UFD, p is a principal ideal, say p = (g) for some nonzero nonunit g ∈ R. Since k is

algebraically closed, g = g1g2 · · · gl, where each gi is an irreducible polynomial of degree 1 in R.



10 NAOKI ENDO, SHIRO GOTO, JOOYOUN HONG, AND BERND ULRICH

Since p is a prime ideal, gt ∈ p for some t = 1, . . . , l. Then (0) ⊊ (gt) ⊆ p and (gt) ∈ Spec(R).

Since ht(p) = 1, we get p = (gt). We denote the set of all quadratic forms in R by R2. Then

I ⊆ I2R ∩R2 +m3 ⊆ p ∩R2 +m3 ⊆ gtm+m3.

Since Im is mRm-full, we obtain the following:

6 ≥ µRm(Im) ≥ µRm

((
gtm+m3

)
Rm

)
= 7,

which is a contradiction. □

Theorem 3.4. Let k be a field of characteristic zero, R = k[X1, . . . , Xd] a polynomial ring over k,

and I a zero-dimensional R-ideal generated by d + 3 homogeneous polynomials. If I is integrally

closed, then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. We may assume that k is algebraically closed. Moreover, it is enough to show that I is

normal due to [6, Theorem 1]. We can further suppose that d ≥ 3 and µR(I) = d + 3. Write m

for the homogeneous maximal ideal of R. If d ≥ 4, then using the mRm-fullness of Im and the

same techniques given in the proof of Theorem 2.2, we may assume that X4, . . . , Xd is a part of

regular system of parameters of length d− 3 in I. Then we can write I = (J,X4, . . . , Xd) for some

zero-dimensional ideal J of k[X1, X2, X3]. Since I is integrally closed (or normal) if and only if J

is integrally closed (or normal respectively), we may assume that I = J and d = 3.

Let R = k[X,Y, Z], m = (X,Y, Z), and let f1, . . . , f6 be a homogeneous minimal generating set of

I. If I ̸⊂ m2, then I contains a part of regular system of parameters of length 1. By Theorem 2.1,

I is normal. Therefore, we suppose that I ⊆ m2.

We first treat the case where I2 contains a quadratic form of rank 3. Consider the purely tran-

scendental field extension k ⊂ k′′ = k(T1, . . . , T6), and let f =
∑6

i=1 Tifi be a generic element for

I in the ring R′′ = k′′[X,Y, Z](X,Y,Z). Write m′′ for the maximal ideal of R′′. Then

grm′′/(f)(R
′′/(f)) = k′′[X,Y, Z]/(f ∗),

where f ∗ is the homogeneous component of degree 2 of f . Notice that f ∗ is a generic element for

I2. Since I2 contains a quadratic form of rank 3, we then conclude that f ∗ has rank 3 as well.

In other words, grm′′/(f)(R
′′/(f)) is an isolated singularity. Since the a-invariant of this standard

graded k′′-algebra is −1, grm′′/(f)(R
′′/(f)) is a rational singularity (See [3, Satz 3.1]). Then R′′/(f)

is a 2-dimensional rational singularity according to [3, Satz 3.5]. On the other hand, [7, Theorem

2.1] shows that IR′′/(f) is still integrally closed. By [11, Theorem 7.1], IR′′/(f) is normal. Now

the proof of Theorem 2.1 shows that I is normal.

We now assume that I2 does not contain a quadratic form of rank 3. We claim that I2 contains a

quadratic form of rank 2. To prove the claim, suppose that every nonzero element of I2 has rank

1. Then every such element is the square of a linear form. Since gradeI2R ≥ 2 by Lemma 3.3, two

of those linear forms have to be linearly independent and then the sum of their squares has rank

2. This is a contradiction. Thus, I2 contains a quadratic form g of rank 2. After a linear change
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of variables we may assume that g = 2XY . Since gradeI2R ≥ 2, there exists an element h of I2
such that g and h form a regular sequence. The quadratic form h is represented by a matrix

M =

 α β γ
β δ ϵ
γ ϵ ν


whose entries are in k. By our assumption, rank(λg + h) ≤ 2 for every λ ∈ k. Equivalently,

det

 α T + β γ
T + β δ ϵ
γ ϵ µ

 = 0

for a variable T . Considering the coefficients of T 2 and T in this polynomial, we obtain ν = 0 and

ϵγ = 0. Without loss of generality we may assume that γ = 0. Then

0 = det(M) = −αϵ2.

If α = 0, then h = 2βXY + δY 2 + 2ϵY Z, contradicting the assumption that g and h form a regular

sequence. It follows that ϵ = 0. In other words, h ∈ k[X,Y ].

Thus, g and h form a regular sequence of quadrics in k[X,Y ]. Therefore,

(X,Y )2k[X,Y ] = (g, h)k[X,Y ] ⊆ I = I.

Then we may assume that f1 = X2, f2 = XY , and f3 = Y 2, and that the remaining generators of

I are of the form

f4 = Zc + l4Z
c−1, f5 = l5Z

a, f6 = l6Z
b,

where l4, l5, l6 are linear forms in k[X,Y ], c ≥ 1 and a ≤ b. As µR(I) = 6, it follows that l5 and

l6 are linearly independent. Thus, after a linear change of variables in k[X,Y ], we obtain

f5 = XZa, and f6 = Y Zb.

If a ≥ c, then

f5 = XZa−cf4 −Xl4Z
a−1 ∈ (X2, XY, Y 2, f4),

contradicting the assumption µR(I) = 6. Thus, a < c, and likewise b < c. Now, adding suitable

multiples of f5 and f6 to f4, we achieve that f4 = Zc. In conclusion, we have proved that

I = (X2, XY, Y 2, Zc, XZa, Y Zb),

where 1 ≤ a ≤ b ≤ c− 1. By Theorem 3.2, I is normal. □

Example 3.5. Let R = k[[X,Y, Z]] be the formal power series ring over a field k of characteristic

zero. We consider I = (X2, Y 2, Z4) = (X2, XY, Y 2, Z4, XZ2, Y Z2) ⊆ m2. Then I is an integrally

closed m-primary ideal of R and µR(I) = 6, where m = (X,Y, Z). Theorem 3.4 shows that the

Rees algebra R(I) is a Cohen-Macaulay normal domain.
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4. Rees Algebra of Modules

Let (R,m) be a Noetherian local ring. Let E be a finitely generated torsionfree R-module having

a rank e > 0. Suppose that Ep is free for all p ∈ Spec(R) with depth(Rp) ≤ 1. Then by [7, Lemma

4.1], there exists an embedding E ⊂ Re such that (Re/E)p is cyclic whenever depth(Rp) ≤ 1.

Write E = Ra1 + · · ·+Ran and let R′ = R[{zij | 1 ≤ i ≤ n, 1 ≤ j ≤ e− 1}] be a polynomial

ring with indeterminates zij. Set

R′′ = R′
mR′ , E ′′ = R′′ ⊗R E, xj =

n∑
i=1

zijai ∈ E ′′, F =
e−1∑
j=1

R′′xj.

Then F is a free R′′-module of rank e− 1 and E ′′/F ≃ I for some R′′-ideal I with grade(I) > 0.

This ideal I = I(E) is called a generic Bourbaki ideal of E ([15, Proposition 3.2, Definition 3.3]).

Suppose that ℓR(R
e/E) < ∞. Then the deviation of E is d(E) = µR(E)− e+ 1− d. For more

general definition of the deviation, see [15, Page 633]. In particular, a module E is called a com-

plete intersection (respectively almost complete intersection) if d(E) = 0 (respectively d(E)=1).

Consider the commutative diagram

0 // F //

≃
��

E ′′ //

i
��

E ′′/F ∼= I

��

// 0

0 // (R′′)e−1 // (R′′)e // R′′ // 0

Then ℓR′′(R′′/I) = ℓR′′ ((R′′)e/E ′′) = ℓR(R
e/E) < ∞. Thus, I is m′′-primary.

Remark 4.1. Let (R,m) be a Cohen-Macaualy local ring of dimension d ≥ 3. Let E be a finitely

generated torsionfree R-module having a rank e > 0. Suppose that Ep is free for all p ∈ Spec(R)

with depth(Rp) ≤ 1 and that ℓR(R
e/E) < ∞. Let I ≃ E ′′/F be the generic Bourbaki ideal of E.

Then grade(I) ≥ 3, and E ′′ ≃ F ⊕ I (See the proof of [15, Remark 3.4-(d)].)

Let (R,m) be a regular local ring of dimension 2. Let E be a finitely generated torsionfree

R-module. If E is integrally closed, then the Rees algebra R(E) is a Cohen-Macaulay normal

domain (See [7, Corollary 3.8] and [10, Theorem 5.2]). Now we consider a regular local ring of

dimension greater than 2.

Theorem 4.2. Let (R,m) be a regular local ring of dimension d ≥ 3. Let E be a finitely generated

torsionfree R-module having a rank e > 0. Suppose that E is integrally closed and ℓR(R
e/E) < ∞.

If µR([E + mRe]/E) ≤ 2 or d(E) ≤ 2, then the Rees algebra R(E) is a Cohen-Macaulay normal

domain.

Proof. Let I ≃ E ′′/F be the generic Bourbaki ideal of E. By [7, Theorem 4.4], I is integrally closed.

By Remark 4.1, E ′′ ≃ F ⊕ I. Suppose that µR([E +mRe]/E) ≤ 2. Consider the isomorphism:

[E ′′ +m(R′′)e]/E ′′ ≃ (F ′′ ⊕m)/(F ′′ ⊕ I) ≃ m′′/I.

Then µR′′(m′′/I) ≤ 2. Equivalently, I contains a part of regular system of parameters of length

d − 2. Then, by Theorem 2.1, the Rees algebra R(I) is a Cohen-Macaulay normal domain. By

[15, Theorem 3.5], the Rees algebra R(E) is a Cohen-Macaulay normal domain.
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Suppose that d(E) ≤ 2. Then

d(E) = µR(E)− e+ 1− d = e− 1 + µR′′(I)− e+ 1− d = µR′′(I)− d ≤ 2.

By Theorem 2.2, the Rees algebra R(I) is a Cohen-Macaulay normal domain. By [15, Theorem

3.5], the Rees algebra R(E) is a Cohen-Macaulay normal domain. □

Example 4.3. Let R = k[[X,Y, Z]] be the formal power series ring over a field k. Let I = (f)+mn

for each f ∈ m \m2 and n ≥ 1. For each e > 0, let E = I ⊕m⊕(e−1). Then E is integrally closed,

ℓR(R
e/E) < ∞, and µR([E +mRe]/E) ≤ 2. Hence, R(E) is a Cohen-Macaulay normal domain.

Recall that a R-module E is called a parameter module if there is an embedding E ⊆ Re with

ℓR(R
e/E) < ∞, and µR(E) = d+ e− 1 (or d(E) = 0).

Corollary 4.4. Let (R,m) be a regular local ring of dimension d ≥ 2 and E a parameter module.

If E is integrally closed, then R(E) is a Cohen-Macaulay normal domain.
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