NORMALITY OF IDEALS AND MODULES
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ABSTRACT. We investigate when the Rees algebra of an integrally closed m-primary ideal in a
regular local ring is a Cohen-Macaulay normal domain. While this property always holds in
dimension two, it fails in general in higher dimensions, prompting a search for sufficient conditions
on the ideal. We show that if an integrally closed ideal contains a part of regular system of
parameters of length d — 2, where d is the dimension of the regular local ring, then its Rees algebra
is Cohen—Macaulay and normal. We also extend results of Goto and Ciuperca by proving the same
conclusion when the minimal number of generators of an ideal is at most d 4+ 2. Furthermore,
we treat the case of integrally closed zero-dimensional ideals generated by d + 3 homogeneous
polynomials. Finally, using generic Bourbaki ideals, we generalize these results to integrally closed
torsionfree modules of finite colength.

1. INTRODUCTION

In this paper, we investigate the conditions under which the Rees algebra of an integrally closed
m-primary ideal I in a regular local ring (R, m) of dimension d is a Cohen-Macaulay normal
domain. Since the statement holds trivially when d < 1, our primary focus is on the case d > 2.
Recall that the integral closure I of an ideal I in a commutative ring R is the set of all elements
r that are integral over I, that is, satisfy a polynomial equation of the form

a4 ™ e ay, =0,

where a; € I’. Anideal I is said to be integrally closed if I = I. Furthermore, I is called normal if
I"™ = I" for every positive integer n. Alternatively, we consider the Rees algebra R(I) of I, which
is the subalgebra of the polynomial ring R[t] defined by

R(1) = DI
n>0

The integral closure R([) of R(I) in R[t] is also a graded algebra, and its graded components are
the integral closures of all powers of I:

R(I) = P17t

n>0

Provided that R is a normal domain, the integral closure of R(I) in its field of fractions coincides

with R(I). Accordingly, the Rees algebra R(I) is said to be normal if R(I) = R(I). Therefore,
an ideal [ is normal if and only if its Rees algebra is normal.
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Zariski demonstrated that in the polynomial ring with two variables over a field, the product
of any two integrally closed ideals is also integrally closed. This implies that the Rees algebra is
normal ([18, Part II, Section 12]). Although Zariski’s original result was stated for the polynomial
ring, the analogous property for two-dimensional regular local rings was established in [19, Appen-
dix 5, Theorem 2'|. Furthermore, Lipman and Teissier proved that the reduction number of any
integrally closed m-primary ideal is at most one ([13, Proposition 5.5]). Consequently, the Rees
algebra is Cohen-Macaulay. Therefore, if (R, m) is a two-dimensional regular local ring and I is an
integrally closed ideal, then the Rees algebra R(I) is indeed a Cohen-Macaulay normal domain.
In addition, Lipman showed that if R is a two-dimensional rational singularity with an infinite
residue field, then the Rees algebra R(I) is a Cohen-Macaulay normal domain ([11, Section 7]).

However, if the dimension of the ring is greater than 2, then the Rees algebra of an integrally
closed ideal is not necessarily a Cohen-Macaulay normal domain. For instance, consider the formal
power series ring R = k[X,Y, Z] over a field k, and examine the ideals

Q=(X"Y*Z% and I =Q = (X",Y? 2> X°Y, X' Z X*Y*, X?’YZ Y*7Z).
In this case, I is integrally closed, but 12 # I?, and I? = QI. Thus, R(I) is Cohen-Macaulay but
not normal. While one might expect that normality implies the Cohen-Macaulay property, this
implication does not hold in general. Suppose further that the characteristic of & is not equal to
3, and consider
I= (XY XY+ Z)Y (Y3 + 2%, Z2(Y* + Z%) + m®

where m = (X,Y, Z). Then, by [8, Theorem 3.11], the ideal I is normal, but the associated graded
ring gr;(R) = €D, I"/I""* is not Cohen-Macaulay. Therefore, R(I) is normal, but not Cohen-
Macaulay. These examples suggest that additional conditions on either the base ring or the ideal
are necessary for the Rees algebra to be a Cohen-Macaulay normal domain of dimension greater

than 2. As the base ring is assumed to be regular in our setup, we focus on imposing conditions
on the ideals.

We investigate such conditions from the perspective of the minimal number of generators, de-
noted by pgr(—). Goto proved that when pgr(I) = d — that is, when I is a complete intersection
ideal — the Rees algebra R([) is a Cohen-Macaulay normal domain ([4, Corollary (1.3)]). In the
same work, it was also proved that an m-primary complete intersection ideal in a regular local ring
is integrally closed if and only if it contains a part of regular system of parameters of length d — 1
([4, Theorem (1.1)]); equivalently, this is the case if and only if v(R/I) < 1, where v(_—) denotes
the embedding dimension of a ring. Furthermore, Ciuperca proved that R(I) is a Cohen-Macaulay
normal domain also when pgr(I) = d + 1, that is, when [ is an almost complete intersection ideal
([1, Theorem 1.1], [2, Section 4]). In this case, it is also shown that if I is integrally closed and
ur(l) = d+ 1, then I necessarily contains a part of regular system of parameters of length d — 2
([1, Corollary 3.3], [2, Section 4]). The latter condition is equivalent to v(R/I) < 2.

Building upon these results, we broaden the scope by showing that the Rees algebra R([)
remains a Cohen-Macaulay normal domain under the more general condition v(R/I) < 2, even in
cases where pugr(l) > d + 1 (See Theorem 2.1). Furthermore, we extend the results of Goto and
Ciuperca by showing that if pur(l) < d+ 2, then its Rees algebra is a Cohen-Macaulay normal
domain. Our main theorem is as follows:
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Theorem 2.2 Let (R, m) be a reqular local ring of dimension d > 3 and I an integrally closed
m-primary ideal of R. If ur(l) < d+ 2, then I contains a part of reqular system of parameters of
length d — 2. In particular, the Rees algebra R(I) is a Cohen-Macaulay normal domain.

For ideals generated by at most d + 3 elements, we analyze a zero-dimensional ideal generated
by homogeneous polynomials and obtain the following result.

Theorem 3.4 Let k be a field of characteristic zero, R = k[ X1, ..., X4 a polynomial ring, and I
a zero-dimensional R-ideal generated by d 4+ 3 homogeneous polynomials. If I is integrally closed,
then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Let R be a Noetherian ring and F a finitely generated R-module having a rank. The Rees
algebra R(E) of the module E is defined as the symmetric algebra S(E) modulo R-torsion. If
E is torsionfree, then it can be embedded into a free module R°. In this case, R(E) is the R-
subalgebra of the polynomial ring R[t1,...,t.] generated by all linear forms ayt; +- - - + act., where
(ay,...,a.) is the image of an element of £ in R® under the embedding. In particular, when
E =1 C R is an ideal, this definition of the Rees algebra coincides with the one given at the
beginning of Introduction. The integral closure E of E (in R¢) is the largest submodule of R®
whose Rees algebra is integral over R(E). If E = E, then E is said to be integrally closed. Using
the notion of a generic Bourbaki ideal, we extend our results from ideals to those of modules. For
an R-module M, we denote the length of M by ¢r(M), and the deviation of M by d(M) (See [15,
Page 633)).

Theorem 4.2 Let (R, m) be a reqular local ring of dimension d > 3, and E a finitely generated
torsionfree R-module having a rank e > 0. Suppose that E is integrally closed and {r(R¢/E) < co.
If ur([E+mR°]/E) <2 or d(E) < 2, then the Rees algebra R(E) is a Cohen-Macaulay normal
domain.

2. COHEN-MACAULAY NORMAL REES ALGEBRAS

A local ring (R, m) of dimension d is called regular if the maximal ideal m can be generated by
exactly d elements. In this case, a minimal system of generators for m is called a regular system
of parameters. Note that an R-ideal I contains a part of regular system of parameters of length
d — 2 if and only if £z((I +m?)/m?) > d — 2.

Theorem 2.1. Let (R,m) be a regular local ring of dimension d > 2 and I an integrally closed
m-primary ideal of R. Suppose that I contains a part of regular system of parameters of length
d — 2. Then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. By passing to the faithfully flat extension R — R[X|np(x] if necessary, we may assume that
the residue field R/m is infinite. We prove the assertion by induction on d.

Let d = 2 and let () be a parameter ideal that is a minimal reduction of /. By [13, Proposition
5.5] (see also [9, Theorem 5.1]), it follows that /2 = QI. Then by [16, Corollary 2.7] the associated
graded ring gr;(R) is Cohen-Macaulay. Hence, by [5, Remark (3.10)], the Rees algebra R(I) is
Cohen-Macaulay. Moreover, by [19, Appendix 5, Theorem 2'] (see also [9, Theorem 3.7]), the Rees
algebra R(I) is normal.
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Now assume that d > 3 and that the assertion holds true for d—1. Write I = (ay,as,...,a4-2, .- .,a,),
where ay, . .., aq_s forms a part of regular system of parameters of length d—2. Let R = R[z1, ..., 2,]
be a polynomial ring with indeterminates z;. Set

n
R'=Ryp, I"=IR", m'=mnR' 2= za el

=1

Since the natural map R(I) — R" ®g R(I) = R(I”) is faithfully flat, it is enough to show that
R(I") is a Cohen-Macaulay normal domain.

Since I € m*, x & (m")?. Therefore, (R"/(z),m"/(z)) is a regular local ring of dimension d — 1,
and the ideal I”/(x) is m”/(z)-primary. By [7, Corollary 2.3],

(" /(z)) =I"/(2) = I" /().

That is, I”/(z) is integrally closed. Also, we obtain the following.

i <]”/<x(t)nj/r/((:;/)/2(x))2) = lpr (%)

n
=l (17 + () (")) = L ()2 + () (m")?)

= Lo (RYJ(0")?) — L (RYJ(I" 4 (")) — L ()2 4 (2))/(m")?)
lr (R/m?) — g (R/(I +m?) — 1

— (T +m?)/m®) — 1

> d—3

By the induction hypothesis, the Rees algebra R(I”/(z)) is a Cohen-Macaulay normal domain.
Then, by [5, Remark (3.10)] the associated graded ring gr;» ) (R"/(x)) is Cohen-Macaulay.

Consider the integral closure A of the extended Rees algebra of I” in R"[t,t!]:

A=D1,

ne”L

By [7, Lemma 1.1 (c)], the element xt is regular on A/t~ A. Then the equality

T o 2 = 07
holds for all n > 1. Also, since R(I”/(z)) is normal, we have

(1" /(@) = (I" /()"
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Thus, (I")» C (I")" + (z) for all n > 1. Now, we prove that ([”)» = (I")" for all n > 1 by
induction. It is trivial if n = 1. Let n > 2 and assume that assertion holds true for n — 1. Then

(e = ()" + (@) n ()"

= ()" + (&) n ("))
= (I"Y"+z((I")" g )
= (I")"+ (1)t

= (I"Y'+z({I")"!
=y

Therefore, Rees algebra R(1”) is normal.

Since wt is regular on A/t 7' A = gr;,(R"), it follows that

grp(R)/ (wt)gr(R") = grpm ) (R"/(2)).
Since gryy ) (R"/(x)) is Cohen-Macaulay, gr;,(R") is Cohen-Macaulay. Therefore, by [12, Theo-
rem (5)], the Rees algebra R(I"”) is Cohen-Macaulay. O

The following theorem extends the theorem of Goto on complete intersection ideals ([4, Corollary
(1.3)]), as well as the result of Ciuperca on almost complete intersection ideals ([1, Theorem 1.1],
2, Section 4]).

Theorem 2.2. Let (R,m) be a regular local ring of dimension d > 3 and I an integrally closed
m-primary ideal of R. If ur(l) < d+ 2, then I contains a part of reqular system of parameters of
length d — 2. In particular, the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. Enlarging the residue class field R/m of R if necessary, we may assume R/m is infinite.
Suppose that I C m?. Because I is m-full ([4, Theorem (2.4)]), by [17, Theorem 3] (see also [4,
Lemma (2.2)]), we obtain the following.
d(d+1
d+2> pgp(l) > pp(m?) = %
After simplifying the inequality and using d > 3, we get
0>d*—d—4>2.
This is a contradiction. Therefore, I Z m?.
Now we prove the theorem by induction on d. Let d = 3. Since I € m?, the ideal I contains a
part of regular system of parameters of length 1.

Let d > 4 and assume that the assertion holds true for d — 1. Choose x € I with x € m?. By [2,
Lemma 4.2], we obtain

(I/(x)) = I/(x) = I/(x).
Now, R/(x) is a regular local ring of dimension d — 1 and the ideal I/(z) is integrally closed and
m/(z)-primary. Moreover,

g (I/(@) = (D) =1 < (d+2) — 1= (d— 1) + 2.
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By the induction hypothesis, I/(z) contains a part of regular system of parameters of length d — 3.
Equivalently, ¢z (( + m*)/(m® + (z))) > d — 3. Therefore,

lr((I+m?)/m?) = (g ((I+m?)/(m®+ (2))) + (g (M + (z))/m?)
> (d—3)+1=d-2,

which proves that I contains a part of regular system of parameters of length d — 2. 0

Example 2.3. Let R = k[ X, Y, Z] be the formal power series ring over a field k and m = (XY, 7)
the maximal ideal of R. The Rees algebras of the following ideals are Cohen-Macaulay normal
domains.
(1) Let I = (X3,Y3,7) = (X3 X%, XY? Y3 Z). Then [ is an integrally closed m-primary
ideal of R and pugr(I) = 5.
(2) Let [ = (X4, Y4 7)) = (X4, X3, X?Y?, XY3 Y4 Z). Then [ is an integrally closed m-
primary ideal of R and pug(l) =6 > d+ 2, but v(R/I) = 2.
(3) Let I = (f)+m" for each f € m\ m? and n > 1. Then [ is an integrally closed m-primary
ideal of R and v(R/I) < 2.

Corollary 2.4. Let R be a reqular ring of dimension d, and let I be an integrally closed ideal of
R with htg(I) = d. If pr(l) < d + 2, then the Rees algebra R(I) is a Cohen-Macaulay normal
domain.

Proof. Localizing at a maximal ideal m in R containing I, we may assume that (R, m) is a regular
local ring and that [ is m-primary. Enlarging the residue class field R/m of R if necessary, we may
further assume that R/m is infinite. The assertion is immediate from the definition when d < 1.
In the case d = 2, it follows from [19, Appendix 5, Theorem 2] together with [13, Proposition
5.5]. When d > 3, it is a consequence of Theorem 2.2. [l

3. HOMOGENEOUS IDEALS [ WITH ug(l) =d+ 3

In this section, we investigate the normality of a particular class of ideals, namely homoge-
neous ideals in a polynomial ring. By leveraging the algebraic structure inherent in homogeneous
ideals, we aim to characterize conditions under which they are normal. It is well known that the
integral closure of a monomial ideal is itself a monomial ideal. For a real number r, we denote
(7] =min{n € Z | r < n}.

Lemma 3.1. Let R = k[X, Z] be a polynomial ring over a field k. Let J = (X* XZ* Z°) be an
R-ideal, where a > 1 and ¢ > 2 are integers such that a < E-‘ Then J is normal.

Proof. Tt is enough to show that J is integrally closed ([18, Part II, Section 12]). Let f = X*Z”
be a monomial in the integral closure J, where o, 3 > 0. We show that f € J by cases.
Suppose that &« = 0 or § = 0. Then

f=2e€(Z9)=(2°CJ, or f=X"€(X?)=(X?Cl

Suppose that o > 2. Then
f=XxZ0 =X x*?7% e J.



NORMALITY OF IDEALS AND MODULES 7
Suppose that a =1 and 5 > a. Then
f=XzP=X2z 75" ¢ J.
Suppose that « =1 and 1 < 8 < a — 1. Then there exists positive integer p such that
(XZ°)" =h- (X2)" (XZ%)" (Z2°)"™,

where h is a monomial in R, and ny, no, n3 are nonnegative integers such that ny + ny + ng = p.

Therefore,
XPZﬁP — J . X2mitne yanztens
Then
p>2n1+ny = ni+ne+ng>2n+ny, = ng>ng.
Also,

Bp > any+cng = [(ng +ny+mn3) > ang + cng
This means that

0> —pni+ (a— B)ng + (¢ — PB)nsg > (¢ — 28)n1 + (a — B)ns.

By assumption, a — 3 > 0. Also, Since a < [g—‘, we get

ﬁSa—1<g = c—28>0.
Therefore n; = 0 = ny. This means that p = n3 and Sp > cng. Then § > ¢. Therefore,
f=XzP=2°.XZP*eJ O

In the following theorem, we consider a very specific monomial ideal in a polynomial ring with
three variables. Although this case may appear highly specialized, it serves as a key building block
for the more general results established later. Analyzing this ideal in detail allows us to identify
structural properties and techniques that will be instrumental in extending our arguments to
broader classes of homogeneous ideals.

Theorem 3.2. Let R = k[X,Y, Z] be a polynomial ring over a field k. Let
I=(X?% XY, Y2 7z¢ XZ° YZ,

where a, b, ¢ are integers such that 1 < a < b and ¢ > 2. Suppose that I is integrally closed. Then
b < E-‘ and I s normal.

Proof. Let d = E—‘ and suppose that b > d. Let f = YZ% Then f cannot be a multiple of Y Z°.
Note that c
d < 5 +1<¢,

where the last inequality follows from ¢ > 2. Then f cannot be a multiple of Z¢ either. Therefore,
f ¢ I. However, since ¢ < 2d, we get

Z2d — 7c. Z2dfc cl.
Then

(YZ4)* —v?. 7% =,
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where Y2 . Z%% € I?. Thus, f € 1. This is a contradiction.

To prove I is normal, by [14, Proposition 3.1], it is enough to prove that I? is integrally closed. Let
f=X*Y?Z" be a monomial in the integral closure 12, where «, 3,7 > 0. We show that f € I?
by cases.

Case 1. Suppose that o = 0 or = 0. First, we consider the case where § = 0. Note that, since
a<band b < [; , we have a < E—‘ By Lemma 3.1, we obtain

f=X7" e (X2, X270, 7°) = (X?, X2 Z°) C I,
Similarly, if & = 0, then f € I*.
Case 2. Suppose that o > 2 and g > 2. Then
f=XoYPz7 = X?. V2. X 2yP277 ¢ 2.

Case 3. Suppose that « =1 and 8 > 3. Then
f=XYPZV=XY - Y?.YP 327 e 2
Similarly, if 5 =1 and o > 3, then f € I%

Case 4. Suppose that f = XY ZVor f = XY?*ZVor f = X?YZ". Let p: R=k[X,Y,Z] — S = k[t]
be an arbitrary k-algebra map, where k[t] is a polynomial ring. Since S is a PID, we obatin,

o(f) € p(I%) C (128 = (I?)S.
Note that 2a —1<2b—1 <.

Case 4-1. Suppose that a = b and ¢ > 2a. Let ¢ : R — S = kl[t] be a k-algebra map given by
o(X) =1 p(Y) =1t and p(Z) =t. Then since ¢ > 2a, we get

p(I)S = (£, t°) = (¢**) and (I*)S = ().
If f=XYZ7, then o(f) =t**7 € (t*). Thus, 2a + v > 4a, which means v > 2a. Therefore,
f=XYZ'=XZ%.YZ% - 207 =X7%. Y70 777 ¢ 2
If f=XY?Z"or f=X?YZ", then o(f) = t**7 € (+**), which means v > a. Therefore,
f=XY?Z"=X2Z*Y*. 727 cI* or f=XYZ2"=XZ" XY -Z""cI”
Case 4-2. Suppose that a = b and ¢ = 2a — 1. Let ¢ : R — S = klt] be a k-algebra map given
by o(X) =1, p(Y) = t, and p(Z) = t*. Then since 2¢ < ¢ + 2a, we get
p(I)S = (t*, t*) = () and  @(I*)S = (t%).
If f=XYZ7, then o(f) = t*™ € (t*). Thus, 2¢ + 2y > 4c, which means v > c. Therefore,
f=XYZ' =XY . -Z° 72" eI

If f=XY?*ZVor f = X?YZ", then (f) = t37 ¢ (+*). Thus, 3¢ + 2y > 4c, which means v > a.
Therefore,

f=XY?Z"=X27°Y*.727c*? or f=X*Y7Z"=XZ" XY -Z""¢cI’
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Case 4-3. Suppose that a < b. If f = XY Z7 then we consider the k-algebramap ¢ : R — S = k[t]
given by p(X) =11, p(Y) = t¢, and ¢(Z) = t*, where ¢ = 2(b — a) + ¢ — 1. Then

(1)S = (12, tate, 2, pat2e get2by
Note that ¢ > ¢+ 1. Then
2¢>2c+2>2c and q+c>2c+1>2c

On the other hand,
qg+2a=2b—14c < 2c.

Moreover, we have
c+2b—(¢q+2a)=c+20—2(b—a)—c+1—2a=1,

which shows that ¢ + 2a < ¢+ 2b. Therefore,

P(1)S = (14 and p(17)9 = (£2r+4)
Then ¢(f) = t97t* ¢ (#2774%). Thus, q + ¢ + 27y > 2q + 4a, which means v > a + b. Therefore,

f=XYZ'=X2Z°-YZb - 279t e 2
Finally, we consider the k-algebra map ¢ : R — S = k[t] given by o(X) =1t% ¢(Y) =1t and
o(Z) =t. Then

o(1)S = (129, €, 17+0).
Note that 2a < a+ b < 2b—1 < ¢. Thus,
p(I)S = (t*), and @(I*)S = (t*).
If f=XY?Z"or f=X2YZ", then o(f) = t**7 € (t**). Thus, v > a. Hence,
F=XY2Z'=XZ°-Y2. 20 %c? and f=XYZ'=XZ°-XY.-Z'"c®. 0O

Before addressing the normality of more general homogeneous ideals, we first establish the
following lemma. It gives a precise characterization of homogenous ideals that do not contain a
quadratic form of rank three. This characterization will serve as a key tool in our subsequent
analysis, providing a foundation for the results on normality that follow.

Lemma 3.3. Let k be an algebraically closed field, R = k[X,Y, Z] a polynomial ring over k, and
m the homogeneous mazimal ideal of R. Let I be an integrally closed m-primary ideal such that
I Cm? and pug(l) = 6. Then grade(IyR) > 2, where Iy is the set of all quadratic forms in I.

Proof. Suppose grade(loR) = 0. Then, since R is an integral domain, IR = (0). Therefore,
I C m®. Because I is mR,full, we obtain the following:

6 Z /J’Rm(]—m) 2 NRm(mSRm) = 107
which is a contradiction.

Suppose grade(loR) = 1. Then there exists p € Spec(R) such that ht(p) = 1 and IbR C p. Since
R is a UFD, p is a principal ideal, say p = (g) for some nonzero nonunit ¢ € R. Since k is
algebraically closed, g = g1¢2 - - - ¢;, where each g; is an irreducible polynomial of degree 1 in R.



10 NAOKI ENDO, SHIRO GOTO, JOOYOUN HONG, AND BERND ULRICH

Since p is a prime ideal, g; € p for some t = 1,...,1. Then (0) C (g¢) C p and (g;) € Spec(R).
Since ht(p) = 1, we get p = (g;). We denote the set of all quadratic forms in R by Rs. Then

ICLRNRy+m* CpNRy+m?® C gm+m?
Since [, is mRy,-full, we obtain the following:

6 > pip,(In) = by ((gm +m®) Ru) =17,

which is a contradiction. O

Theorem 3.4. Let k be a field of characteristic zero, R = k[X7, ..., X4] a polynomial ring over k,
and I a zero-dimensional R-ideal generated by d + 3 homogeneous polynomaials. If I is integrally
closed, then the Rees algebra R(I) is a Cohen-Macaulay normal domain.

Proof. We may assume that k is algebraically closed. Moreover, it is enough to show that [ is
normal due to [6, Theorem 1]. We can further suppose that d > 3 and pgr(/) = d + 3. Write m
for the homogeneous maximal ideal of R. If d > 4, then using the mR-fullness of I, and the
same techniques given in the proof of Theorem 2.2, we may assume that Xy, ..., X  is a part of
regular system of parameters of length d —3 in I. Then we can write I = (J, Xy, ..., Xy) for some
zero-dimensional ideal J of k[ X7, X5, X3]. Since [ is integrally closed (or normal) if and only if J
is integrally closed (or normal respectively), we may assume that I = J and d = 3.

Let R=Ek[X,Y, Z], m=(X,Y,Z), and let f1,..., fs be a homogeneous minimal generating set of
I. If I ¢ m2, then I contains a part of regular system of parameters of length 1. By Theorem 2.1,
I is normal. Therefore, we suppose that I C m?.

We first treat the case where I, contains a quadratic form of rank 3. Consider the purely tran-
scendental field extension k C k" = k(T1, ..., Tg), and let f = 30 Tif; be a generic element for
I'in the ring R" = k"[X,Y, Z](xv,z). Write m” for the maximal ideal of R”. Then

grm”/(f)(R”/(f)) =k'[X,Y, Z]/(f),

where f* is the homogeneous component of degree 2 of f. Notice that f* is a generic element for
I5. Since [, contains a quadratic form of rank 3, we then conclude that f* has rank 3 as well.
In other words, gry. s (R"/(f)) is an isolated singularity. Since the a-invariant of this standard
graded k"-algebra is —1, gry s (R"/(f)) is a rational singularity (See [3, Satz 3.1]). Then R"/(f)
is a 2-dimensional rational singularity according to [3, Satz 3.5]. On the other hand, [7, Theorem
2.1] shows that IR"/(f) is still integrally closed. By [11, Theorem 7.1], IR"/(f) is normal. Now
the proof of Theorem 2.1 shows that [ is normal.

We now assume that I, does not contain a quadratic form of rank 3. We claim that I contains a
quadratic form of rank 2. To prove the claim, suppose that every nonzero element of I has rank
1. Then every such element is the square of a linear form. Since gradel; R > 2 by Lemma 3.3, two
of those linear forms have to be linearly independent and then the sum of their squares has rank
2. This is a contradiction. Thus, /5 contains a quadratic form ¢ of rank 2. After a linear change
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of variables we may assume that ¢ = 2XY. Since gradelo R > 2, there exists an element h of I,
such that g and h form a regular sequence. The quadratic form h is represented by a matrix

a B v
M=|p8 0 €
Y € Vv

whose entries are in k. By our assumption, rank(Ag + h) < 2 for every A € k. Equivalently,

« T+p5 ~
det | T+ 1) e | =0
o e p

for a variable T'. Considering the coefficients of 72 and T in this polynomial, we obtain v = 0 and
ey = 0. Without loss of generality we may assume that v = 0. Then

0 = det(M) = —ae’.

If « = 0, then h = 26XY + §Y? + 2¢Y Z, contradicting the assumption that g and h form a regular
sequence. It follows that e = 0. In other words, h € k[X,Y].

Thus, ¢g and h form a regular sequence of quadrics in k[X,Y]. Therefore,
(X, Y)2k[X, Y] = (g, kX, V] C T = I.

Then we may assume that f; = X2, fo = XY, and f3 = Y2, and that the remaining generators of
I are of the form

f4:ZC+l4ZC—1’ f5:l5Zaa f6:l62b7

where 1y, l5, lg are linear forms in k[X,Y], ¢ > 1 and a < b. As ugr(Il) = 6, it follows that l5 and
l¢ are linearly independent. Thus, after a linear change of variables in k[X, Y], we obtain

fs=XZ" and fo= Yz
If a > ¢, then
fo=XZ0Cf, — X1,Z2°V e (X2, XY, Y2, f)),

contradicting the assumption pgr(l) = 6. Thus, a < ¢, and likewise b < ¢. Now, adding suitable
multiples of f5 and fg to f4, we achieve that f; = Z¢. In conclusion, we have proved that

I= (X% XY, Y% 2ZX7°YZ",
where 1 < a <b<c—1. By Theorem 3.2, [ is normal. O

Example 3.5. Let R = k[X,Y, Z] be the formal power series ring over a field k of characteristic
zero. We consider [ = (X2,Y2 74) = (X?, XY, Y? Z* XZ?,YZ*) C m? Then I is an integrally
closed m-primary ideal of R and ug(I) = 6, where m = (X,Y, 7). Theorem 3.4 shows that the
Rees algebra R(I) is a Cohen-Macaulay normal domain.
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4. REES ALGEBRA OF MODULES

Let (R, m) be a Noetherian local ring. Let F be a finitely generated torsionfree R-module having
arank e > 0. Suppose that E is free for all p € Spec(R) with depth(R,) < 1. Then by [7, Lemma
4.1], there exists an embedding E C R° such that (R°/E), is cyclic whenever depth(R,) < 1.

Write E = Ray + -+ + Ra, and let R' = R[{z;; |1 <i<n, 1<j<e—1}] be a polynomial
ring with indeterminates z;;. Set
n e—1
R’ = :nR’7 E"=R' ®Qr E, T; = Zzzjai S EN, F= ZRHZEJ'.
i=1 j=1
Then F is a free R”’-module of rank e — 1 and E”/F ~ I for some R"-ideal I with grade(I) > 0.
This ideal I = I(FE) is called a generic Bourbaki ideal of E (|15, Proposition 3.2, Definition 3.3]).

Suppose that (r(R¢/E) < co. Then the deviation of F is d(E) = ur(E) — e + 1 — d. For more
general definition of the deviation, see [15, Page 633|. In particular, a module E is called a com-
plete intersection (respectively almost complete intersection) if d(E) = 0 (respectively d(E)=1).
Consider the commutative diagram

0 F E" E"JF=]—0
0—> (R//)e—l . (R//>e Rl/ 0

Then lr/(R"/I) = lgn (R")?/E") = (g(R°/E) < co. Thus, I is m”-primary.

Remark 4.1. Let (R, m) be a Cohen-Macaualy local ring of dimension d > 3. Let E be a finitely
generated torsionfree R-module having a rank e > 0. Suppose that E, is free for all p € Spec(R)
with depth(R,) < 1 and that {g(R°/E) < co. Let I >~ E”/F be the generic Bourbaki ideal of E.
Then grade(/) > 3, and E” ~ F' & I (See the proof of [15, Remark 3.4-(d)].)

Let (R,m) be a regular local ring of dimension 2. Let E be a finitely generated torsionfree
R-module. If E is integrally closed, then the Rees algebra R(F) is a Cohen-Macaulay normal
domain (See [7, Corollary 3.8] and [10, Theorem 5.2]). Now we consider a regular local ring of
dimension greater than 2.

Theorem 4.2. Let (R,m) be a regular local ring of dimension d > 3. Let E be a finitely generated
torsionfree R-module having a rank e > 0. Suppose that E is integrally closed and {r(R¢/E) < co.
If ur([E+mR°]/E) <2 or d(E) < 2, then the Rees algebra R(E) is a Cohen-Macaulay normal
domain.

Proof. Let I ~ E"/F be the generic Bourbaki ideal of E. By [7, Theorem 4.4], I is integrally closed.
By Remark 4.1, E” ~ F @ I. Suppose that ugr([F + mR¢]/E) < 2. Consider the isomorphism:
[E// +m<R//>e]/E// ~ (F// EBm)/(F” EB ]’) ~ m///[.

Then pgrs(m”/I) < 2. Equivalently, I contains a part of regular system of parameters of length
d — 2. Then, by Theorem 2.1, the Rees algebra R(I) is a Cohen-Macaulay normal domain. By
[15, Theorem 3.5, the Rees algebra R(F) is a Cohen-Macaulay normal domain.
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Suppose that d(E) < 2. Then
dE)=pr(E)—e+1l—d=e—14+pup(I)—e+1—d=pugr/(I)—d<2.

By Theorem 2.2, the Rees algebra R([) is a Cohen-Macaulay normal domain. By [15, Theorem
3.5], the Rees algebra R(FE) is a Cohen-Macaulay normal domain. O

Example 4.3. Let R = k[X,Y, Z] be the formal power series ring over a field k. Let I = (f)+m"
for each f € m\ m? and n > 1. For each e > 0, let E = I ® m®~Y, Then E is integrally closed,
(r(R°/FE) < 00, and pgr([E+mR°|/E) < 2. Hence, R(F) is a Cohen-Macaulay normal domain.

Recall that a R-module F is called a parameter module if there is an embedding £ C R¢ with
(r(R°/FE) < 00, and pgr(E)=d+e—1 (or d(E) = 0).

Corollary 4.4. Let (R, m) be a regular local ring of dimension d > 2 and E a parameter module.
If E is integrally closed, then R(E) is a Cohen-Macaulay normal domain.
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