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ABSTRACT. We study finitely generated modules of minimal multiplicity, a notion introduced
by Puthenpurakal that extends the classical concept of minimal multiplicity from rings to mod-
ules. Our main result characterizes when trace ideals or reflexive ideals yield modules of min-
imal multiplicity over one-dimensional Cohen-Macaulay local rings. As a consequence, we
show that a one-dimensional non-Gorenstein reduced local ring with a canonical module has
minimal multiplicity if and only if its canonical module has minimal multiplicity as a mod-
ule. We also construct several examples and compare them with Burch and Ulrich modules,
highlighting cases where minimal multiplicity coincides with the Burch or Ulrich property.

1. INTRODUCTION

Throughout this paper, unless otherwise stated, R denotes a one-dimensional commutative
Noetherian Cohen-Macaulay local ring with maximal ideal m and residue field k. Moreover,
all R-modules are assumed to be finitely generated.

In this paper we are concerned with modules of minimal multiplicity, a class that was ini-
tially defined and studied by Puthenpurakal [23] over Cohen-Macaulay rings of arbitrary di-
mension. Various properties of modules of minimal multiplicity have been more recently in-
vestigated in [7] and [8].

Our main purpose is to investigate modules of minimal multiplicity with respect to ideals
that are either trace or reflexive. Note that, given a ring R, an m-primary ideal I of R is called
reflexive if (R :Q (R :Q I)) = I, and called trace if (I :Q I) = (R :Q I), where Q denotes the total
ring of fractions of R. In this direction, we prove the following:

Theorem 1.1. Let R be a one-dimensional generically Gorenstein non-Gorenstein ring with
canonical ideal ωR, and let I be an m-primary ideal of R. Assume I is either a trace ideal of R,
or reflexive as an R-module. Then the following conditions are equivalent:

(i) I is stable, that is, I2 = xI for some x ∈ I.
(ii) Every torsion-free R-module has minimal multiplicity with respect to I.

(iii) ωR has minimal multiplicity with respect to I.

Theorem 1.1 is a consequence of a more general result, namely Theorem 4.1, and is proved
as Corollary 4.2; see also Remark 2.8(i) and 3.5 for related details.

A (one-dimensional) Cohen-Macaulay local ring is said to have minimal multiplicity if its
multiplicity equals its embedding dimension [1]. Using Theorem 1.1 together with other re-
sults established in this paper, we characterize the minimal multiplicity of rings in terms of
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that of certain modules. Our result in this direction can be summarized as follows; see Propo-
sition 2.23, Lemma 2.28, and Corollary 4.3 for details.

Corollary 1.2. Let R be a one-dimensional generically Gorenstein non-Gorenstein ring with
canonical ideal ωR. Then the following conditions are equivalent:

(i) R has minimal multiplicity.
(ii) The idealization ring R⋉m has minimal multiplicity.

(iii) Every torsion-free R-module has minimal multiplicity.
(iv) ωR has minimal multiplicity.
(v) The endomorphism algebra HomR(m,m) has minimal multiplicity as an R-module.

Now we briefly discuss the organization of the paper. In Section 2, we give several examples
of modules of minimal multiplicity to illustrate various properties. For example, we use the
conductor of the ring to produce new examples, and exhibit a module M that does not have
minimal multiplicity, while its submodule mM does; see Examples 2.15 and 2.21. We provide
a characterization of the minimal multiplicity of idealizations and observe that (co)syzygies
of modules of minimal multiplicity do not necessarily have minimal multiplicity; see Propo-
sition 2.23 and Example 2.29. It is known that every Ulrich module has minimal multiplicity;
see, for example, [8, 2.8]. On the other hand, there are modules of minimal multiplicity that
are not Ulrich; see Example 2.17. As a related result, we show in Proposition 2.18 that, if
r is the reduction number of a given non-principal m-primary ideal I, then Ir−1 has minimal
multiplicity with respect to I, but it is not an I-Ulrich R-module. We also compare the class of
modules of minimal multiplicity with that of Burch modules and corroborate the fact that these
classes differ in general; see 2.30.

Section 3 is devoted to one of our contributions, namely, identifying certain classes of mod-
ules and ideals for which the Ulrich property and minimal multiplicity are equivalent; see
Theorem 3.8. In Section 4 we give a proof of Theorem 1.1; see also Theorem 4.1. In A.1
of the appendix, we establish an exact sequence involving modules of minimal multiplicity,
which appears to be new. Using this exact sequence, we provide an alternative proof of the
characterization of modules of minimal multiplicity stated in 2.6. A second application of the
same exact sequence, concerning the vanishing of certain Tor modules, is presented in A.2.

2. DEFINITIONS, EXAMPLES, AND REMARKS

We proceed by recalling our setup:

2.1. Throughout, unless otherwise stated, R denotes a one-dimensional commutative Noether-
ian Cohen-Macaulay local ring with maximal ideal m and residue field k. Moreover, we as-
sume all R-modules are finitely generated. We also assume that there is always a minimal
reduction of every m-primary ideal I of R; this holds, for example, if the residue field k of R is
infinite [16, 8.3.7].

Puthenpurakal [23] introduced the notion of minimal multiplicity for modules as follows:

2.2. Let R be a ring, I be an m-primary ideal of R, and let M be a nonzero torsion-free R-
module. Then M is said to have minimal multiplicity with respect to I if and only if the equality
eR(I,M) = lengthR(IM/I2M) holds. Here, eR(I,M) denotes the (Hilbert-Samuel) multiplicity
of M with respect to I, and lengthR(IM/I2M) denotes the length of IM/I2M over R; see [23,
Defn. 15]. If M has minimal multiplicity with respect to m, we simply say M has minimal
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multiplicity. Note that, if M = R and M has minimal multiplicity, then the multiplicity of R
equals its embedding dimension, that is, R is a ring of minimal multiplicity in the sense of
Abhyankar [1].

2.3. Let R be a ring, I be an m-primary ideal of R, and let M be a torsion-free R-module.
Assume (x) is a minimal reduction of I.

(i) It follows that M is a Cohen-Macaulay R-module, (x) is a parameter ideal for M, and
eR(I,M) = eR ((x),M) = lengthR(M/xM); see, for example, [4, 4.6.5, 4.7.9, and 4.7.11].

(ii) Note that M/IM has finite length and so eR(I,M/IM) = 0. Thus

eR(I,M) = eR(I, IM)+ eR(I,M/IM) = eR(I, IM).

Moreover, by part (i), we have that eR(I, IM) = lengthR(IM/xIM). Therefore,

eR(I,M) = eR(I, IM) = lengthR(IM/xIM).

(iii) Assume I2M = xIM. Then lengthR(IM/xIM) = lengthR(IM/I2M) and so, due to part (ii),
M has minimal multiplicity with respect to I.

(iv) Assume M has minimal multiplicity with respect to I. Then, in view of Definition 2.2 and
part (ii), we have that lengthR(IM/I2M) = eR(I,M) = lengthR(IM/xIM). So, I2M = xIM.

Parts (iii) and (iv) of 2.3 yield the following useful characterization of when a torsion-free
module has minimal multiplicity with respect to an ideal:

2.4. Let R be a ring, I be an m-primary ideal of R, and let M be a torsion-free R-module.
Then M has minimal multiplicity with respect to I if and only if I2M = xIM for every minimal
reduction (x) of I if and only if I2M = yIM for some minimal reduction (y) of I.

In the following, we discuss how our interest in studying modules of minimal multiplicity
developed, including the initial motivation and key inspirations.

Discussion 2.5. Our motivation to study modules of minimal multiplicity comes from the
notion of Arf property. Recall that R is called an Arf ring if every integrally closed m-primary
ideal I of R is stable, that is, I2 = xI for some x ∈ I; see [20, 2.2]. Our aim was to extend the
Arf property from rings to modules, and for that we defined an Arf module1 as follows: Given
a nonzero torsion-free R-module M and an m-primary ideal I of R, we say M is I-Arf (or Arf
with respect to I) provided that there exists a minimal reduction (x) of I such that I2M = xIM.
According to our definition, the following implications hold: R is an Arf ring if and only if
R is an I-Arf R-module for each integrally closed m-primary ideal I of R if and only if each
torsion-free R-module is an I-Arf R-module for each integrally closed m-primary ideal I of R.

It is clear by 2.4 that M is I-Arf if and only if M has minimal multiplicity with respect to I.
In case the ideal I in question has no minimal reductions, these two definitions do not agree.
For example, if R = Z2[[x,y]]/(xy(x+ y)) and M = mn for some n ≫ 0, then M has minimal
multiplicity (since it is Ulrich), but m has no reductions so Arf module property is undefined;
see [3, 2.1], [16, 8.3.2], and Remark 2.12. As we will need to assume the existence of minimal
reductions simply to define Arf-modules with respect to m-primary ideals, we will be working
with nothing but modules of minimal multiplicity. For this reason, we will keep using the
previously defined terminology, namely modules of minimal multiplicity [23].

1We initially defined Arf modules independently of [23], before its relevance to our work became apparent, and
prior to the appearance of the manuscripts [7, 8].



4 ELA CELIKBAS, OLGUR CELIKBAS, NAOKI ENDO, AND SHINYA KUMASHIRO

When we introduced the notion of an Arf module with respect to an ideal I, we argued that
the defining equality is independent of the choice of a minimal reduction of I. This can be seen
from [24, Thm. 2.9 (4)⇔(5)] (we make use of the theorem by setting J = (x), M1 = IM, and
M2 = I2M). On the other hand, it is worth noting that the equality I2M = xIM may depend on
the choice of a minimal reduction of I over higher dimensional rings. For example, there exists
a two-dimensional Cohen-Macaulay local ring R and parameter ideals q and q′ of R such that
q and q′ are reductions of I, I3 = qI2, I3 ̸= q′I2, and I4 = q′I3. Thus, the equality I3M = qI2M
depends on the choice of q; see [21, 3.3].

The following fact can be seen from [7, 4.1, 4.2, and 4.4]; see also 2.2 and 2.4.

2.6. Let M be a nonzero torsion-free R-module. Then the following conditions are equivalent:
(i) miM has minimal multiplicity for all i ≥ 0.

(ii) M has minimal multiplicity.
(iii) eR(M) = µR(mM).
(iv) m2M ∼=mM.

An independent proof of 2.6 is given in Appendix A, using a certain short exact sequence
established in A.1. The characterization presented in 2.6 is used in Lemma 2.28, Example 2.29,
and 2.30. We proceed by recording an example of a module of minimal multiplicity using 2.6;
several further such examples will be constructed later in the sequel.

Example 2.7. Let R = k[[t5, t6, t7]] and consider the ideal M = (t10, t11, t12, t13) of R. It follows
that mM = (t15, t16, t17, t18, t19) and hence µR(mM) = 5. Since eR(M) = e(R) = 5, we conclude
by 2.6 that the R-module M has minimal multiplicity.

The next remark gathers some useful observations about stable ideals and minimal multi-
plicity for torsion-free modules, which will come up again later.

Remark 2.8. Let R be a ring.
(i) Let I be an m-primary ideal of R and let M be a torsion-free R-module. Assume I is a

stable ideal, that is, I2 = yI for some y ∈ I; see [20, 1.3]. Then (y) is a minimal reduction
of I and I2M = yIM. Thus, M has minimal multiplicity with respect to I.

(ii) Note that m is stable if and only if R has minimal multiplicity, that is, e(R) = µR(m).
Thus, if R has minimal multiplicity, then every torsion-free R-module has minimal mul-
tiplicity; see part (i).

(iii) Assume R is Arf, for example, e(R)≤ 2. Then R has minimal multiplicity, and thus every
torsion-free R-module has minimal multiplicity; see [20, page 664] and part (ii).

(iv) If R has minimal multiplicity as an R-module, then it follows from the definition that m is
stable, and hence R has minimal multiplicity as a ring; see part (ii). So, every torsion-free
R-module has minimal multiplicity if and only if R has minimal multiplicity (as a ring).

The following result can be used to obtain stable ideals and modules of minimal multiplicity:

2.9. Let R be a ring and let I be an m-primary ideal of R. Assume In is generated by n-elements
for some n ≥ 2. Then In−1 is a stable ideal; see [10, Cor. 1].

Example 2.10. Let R = k[[t5, t6, t7, t8]] and I = (t5, t7). Then I3 = (t15, t17, t19). Thus, I2 is a
stable ideal so that every torsion-free R-module has minimal multiplicity with respect to I2; see
Remark 2.8(i) and 2.9.
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Next, we recall the definition of Ulrich modules and record a few related facts. We study the
relation between Ulrich modules and those of minimal multiplicity in Section 3 in more detail.

2.11 ([6, 4.1]). Let R be a ring, I be an m-primary ideal of R, and let M be a nonzero torsion-
free R-module. Then M is called an I-Ulrich provided that eR(I,M) = lengthR(M/IM). If M
is m-Ulrich, we simply say M is an Ulrich R-module. Note that m is an Ulrich R-module if
and only if e(R) = eR(m,m) = lengthR(m/m2) = µR(m). Therefore, m is an Ulrich R-module
if and only if R has minimal multiplicity (as a ring).

As pointed out in [8, 2.8], every Ulrich module has minimal multiplicity:

Remark 2.12. Let R be a ring, I be an m-primary ideal of R, and let M be a torsion-free
R-module. Assume (x)⊆ I is a minimal reduction of I. It follows from 2.3(i) that:

M is I-Ulrich ⇐⇒ lengthR(M/IM) = eR(I,M) = lengthR(M/xM)⇐⇒ IM = xM.

Therefore, if M is I-Ulrich, then I2M = xIM so that M has minimal multiplicity with respect to
I; see 2.3(iv).

Remark 2.13. Let R be a ring and let M be a nonzero torsion-free R-module. If (x) is a minimal
reduction of m, then the following implications hold:

M has minimal multiplicity ⇐⇒m2M = xmM ⇐⇒m(mM) = x(mM)(2.13.1)

⇐⇒mM is Ulrich ⇐⇒m2M ∼=mM.

Here, in (2.13.1), the last implication is due to [6, 4.6]. Next, we use (2.13.1) and note:

M has minimal multiplicity =⇒mM is Ulrich =⇒m2M is Ulrich(2.13.2)
...

=⇒miM has minimal multiplicity.

In what follows, we note that the R-module m has minimal multiplicity (with respect to m)
whenever the multiplicity of R is at most three.

Remark 2.14. Let R be a ring and set e = e(R).
(i) It follows that me−1 is an Ulrich R-module; see [3, 2.1]. Thus, by 2.3, me−1 has minimal

multiplicity.
(ii) If e = 3, then m2 is an Ulrich R-module so that m has minimal multiplicity; see part (i)

and (2.13.2). For example, if R = k[[t3, t5]], then e = 3 and m has minimal multiplicity,
but R does not have minimal multiplicity.

(iii) If e ≤ 3, then m has minimal multiplicity; see parts (i) and (ii).

In contrast to Remark 2.14, there exist rings of multiplicity four whose maximal ideal does
not have minimal multiplicity. For example, if R = k[[t4, t5, t11]], then m2 = (t8, t9, t10) and
e(R) = 4 = eR(m) ̸= 3 = µR(m

2) so that R-module m does not have minimal multiplicity.
Here, R is not Gorenstein; see 2.30(iv) for a similar example involving a Gorenstein ring.

The converse of the fact stated in (2.13.2) may fail; that is, even if a torsion-free R-module
M does not have minimal multiplicity, mM still can have minimal multiplicity.

Example 2.15. Let R = k[[t4, t5, t6]].
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(i) Set q= (t4). Then m= q+(t5, t6) so that m2 is equal to

qm+(t5, t6)q+(t5, t6)2 = qm+(t5, t6)2 = (t8, t9, t10)+(t10, t11, t12) = (t8, t9, t10, t11).

Also, m2 = qm+(t11) so that m3 = qm2+(t11)m. Note that (t11)m= (t15, t16, t17)⊆ qm2.
Thus, m3 = qm2, that is, q is a minimal reduction of m. So, mn+2 = qmn+1 for all n ≥ 1.
Thus, if M is a torsion-free R-module, then m2(mnM) = qm(mnM), and hence mnM has
minimal multiplicity for all n ≥ 1; see (2.13.1). In particular, letting M = R and n = 1,
we conclude that m has minimal multiplicity.

(ii) Let M = R+Rt7. Then M is not a free R-module. Note that m⊆ mM ⊆ M since 1 ∈ M.
Moreover, we see mM = (t4, t5, t6)(1, t7) ⊆ m so that mM = m. Thus, mM has minimal
multiplicity by part (i). On the other hand, if M has minimal multiplicity, then (2.13.2)
implies that mM =m is Ulrich, and hence R has minimal multiplicity. As R does not have
minimal multiplicity, we conclude that M does not have minimal multiplicity.

Remark 2.16. Recall that, if R is a ring and an m-primary ideal I of R is stable, then every
torsion-free R-module has minimal multiplicity with respect to I; see 2.8(i). The converse of
this fact is not necessarily true. In Example 2.15, m is not a stable ideal, but the R-module m
has minimal multiplicity; see 2.8(ii).

It is noted in 2.12 that every Ulrich module has minimal multiplicity. On the other hand, as
we point out by the next example, there exist nonzero modules of minimal multiplicity that are
not Ulrich.

Example 2.17. Let R= k[[t4, t5, t6]]. We know by Example 2.15 that m has minimal multiplicity
(with respect to m). On the other hand, since R does not have minimal multiplicity, m is not an
Ulrich R-module; see Remark 2.11.

We can construct various examples of modules as in Example 2.17; our next result shows
how to do this.

Proposition 2.18. Let R be a ring, I be a non-principal m-primary ideal of R, and let (x) be a
minimal reduction of I. Set r = min{n ≥ 0 : In+1 = xIn}. If M is a torsion-free R-module, then
Ir−1M has minimal multiplicity with respect to I. Moreover, Ir−1 is not an I-Ulrich R-module.

Proof. As I is not principal, we have that r ≥ 1. So Ir+1 = xIr, that is, I2Ir−1 = xIIr−1, and so
Ir−1M is an I-Arf module. On the other hand, if Ir−1 is an I-Ulrich R-module, then 2.3 implies
that Ir = IIr−1 = xIr−1. However, this equality contradicts the minimality of r. Therefore, Ir−1

is not an I-Ulrich module. □

In general, a torsion-free module M over a ring R may have minimal multiplicity (with
respect to m), but not necessarily with respect to other m-primary ideals. We give such an
example next:

Example 2.19. Let R = k[[t3, t7, t11]].

(i) Let I = (t6) be the integral closure of the ideal of R generated by t6. It follows from [16,
1.5.2 and 1.6.1] that

I = (t6) = (t6)R∩R = (t6)R∩R = t6k[[t]]∩R = (t6, t7, t11).

Moreover,
I2 = (t12, t13, t14, t17, t18, t22) ̸= (t12, t13, t17) = t6I.
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This implies that I is not a stable ideal of R.
(ii) If J is an m-primary ideal of R, then R has minimal multiplicity with respect to J if and

only if J is a stable ideal. So, if I is as in part (i), then R does not have minimal multiplicity
with respect to I. On the other hand, R has minimal multiplicity with respect to m because
the ring R has minimal multiplicity.

Remark 2.20. Let R be a generically Gorenstein non-Gorenstein ring with a canonical ideal
ωR and total ring of fractions Q. Pick a minimal reduction (x) of ωR and set K = x−1ωR ⊆ Q.
Then K is the fractional canonical ideal of R. Now, consider the conductor c of R in R[K],
namely c= (R :Q R[K]). Note that c= cR ⊆ cK since R ⊆ K. Also, cK ⊆ (R :Q R[K]) = c. Thus,
cK = c, and hence c ·ωR = c · x. So, c is ωR-Ulrich. Therefore, c has minimal multiplicity with
respect to ωR; see Remark 2.12.

In fact, this argument remains valid not only for ωR, but for all m-primary ideals I of R.
More precisely, if I is such an ideal of R, (x) is a minimal reduction of I, and K = x−1I ⊆ Q,
then (R :Q R[K]) is I-Ulrich, and thus has minimal multiplicity with respect to I.

We use Remark 2.20 and compute new examples of modules of minimal multiplicity.

Example 2.21.
(i) Let R = k[[t3, t7, t8]]. Note that K = R+Rt ∼= ωR and so R[K] = R[t] = k[[t]] = R, the

integral closure of R in Q. Then c= (R :Q R) = t6R = (t6, t7, t8)R. Therefore, by Remark
2.20, the ideal (t6, t7, t8)R is ωR-Ulrich, and hence has minimal multiplicity with respect
to ωR.

(ii) Let R = k[[t4, t9, t11, t14]]. Then

K = R+Rt3 +Rt5 ∼= ωR and R[K] = R+Rt3 +Rt5 +Rt6.

It follows that (R :R Rt3) = (t8, t9, t11, t14)R and (R :R Rt5) = (R :R Rt6) = (t4, t9, t11, t14)R.
This implies that:

c= (R :Q R[K]) = (R :R Rt3)∩ (R :R Rt5)∩ (R :R Rt6)

= (t8, t9, t11, t14)R∩ (t4, t9, t11, t14)R

= (t8, t9, t11, t14)R

Therefore, by Remark 2.20, the ideal (t8, t9, t11, t14)R is ωR-Ulrich, and has minimal mul-
tiplicity with respect to ωR.

It seems worth noting that, R[K] = R for the ring R in part (i); on the other hand, for the ring R
in part (ii), we have that R[K] ̸= R and c ̸= (R :Q R) = (t11, t12, t13, t14)R.

Minimal multiplicity over idealizations. In this subsection, we provide a characterization of
the minimal multiplicity of idealizations A = R⋉M in terms of the minimal multiplicity of the
ring R and the R-module M. Furthermore, we point out that an idealization may fail to have
minimal multiplicity, even when M does as an R-module.

We recall the relevant definition: Given an R-module M, we denote by R⋉M the idealization
of M over R. As an abelian group, R⋉M is just R⊕M, but the multiplication is defined
by (a,x) · (b,y) = (ab,ay+ bx) for all (a,x),(b,y) ∈ R⋉M. Note that 0⋉M is an ideal of
R ⋉ M, (0 ⋉ M)2 = 0, and R ∼= (R ⋉ M)/(0 ⋉ M). As we assume R is a one-dimensional
Cohen-Macaulay local ring, if M is a torsion-free R-module, then R⋉M is a one-dimensional
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Cohen-Macaulay local ring with maximal ideal m⋉M and (R⋉M)/(m⋉M)∼= R/m; see, for
example, [22, Page 2].

The following properties follow from the definitions:

2.22. Let R be a ring, M be a torsion-free R-module, and let A = R⋉M be the idealization of
M over R. Then the following hold:

(i) embdim(A) = embdim(R)+µR(M).
(ii) e(A) = e(R)+ eR(M).

Proposition 2.23. Let R be a ring, M be a torsion-free R-module, and let A = R⋉M be the
idealization of M over R. Then the following conditions are equivalent:

(i) The ring A has minimal multiplicity.
(ii) Each torsion-free A-module has minimal multiplicity.

(iii) The ring R has minimal multiplicity and M is an Ulrich R-module.

Proof. The equivalence of parts (i) and (ii) follow by Remark 2.8(ii).
To show part (i) implies part (iii), we assume that A has minimal multiplicity (as a ring).

Then, by 2.22, we have:

embdim(R)+µR(M) = embdim(A) = e(A) = e(R)+ eR(M).

This yields:

0 ≤ e(R)− embdim(R) = µR(M)− eR(M)≤ 0.

Therefore, embdim(R) = e(R) and µR(M) = eR(M), that is, the ring R has minimal multiplicity
and the R-module M is Ulrich.

Next, assume part (iii) holds. Then 2.22 implies that

e(A) = e(R)+ eR(M) = embdim(R)+µR(M) = embdim(A).

Therefore, the ring A has minimal multiplicity. □

In the next remark, we use Proposition 2.23 to construct idealizations with minimal multi-
plicity and to emphasize that an idealization may fail to have minimal multiplicity, even when
the module M does as an R-module.

Remark 2.24. Let R be a ring and set A = R⋉R. Assume R has minimal multiplicity. Then,
by Proposition 2.23, the ring A has minimal multiplicity if and only if R is an Ulrich R-module,
or equivalently, R is regular. Thus, if R is not regular, then A does not have minimal multiplicity
as a ring, but it does have minimal multiplicity as an R-module; see Remark 2.8(ii).

Recall that m is an Ulrich R-module if and only if R has minimal multiplicity; see Re-
mark 2.11. So, Proposition 2.23 shows that, the ring R has minimal multiplicity if and only if
the ring R⋉m has minimal multiplicity. More generally, if R has minimal multiplicity, then
Ωi

R(k) is an Ulrich R-module for all i ≥ 1; see [3, 2.5]. Thus, we conclude by Proposition 2.23
that:

2.25. Let R be a ring. Then R has minimal multiplicity if and only if the idealization ring
R⋉Ωi

R(k) has minimal multiplicity for all i ≥ 1.
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Syzygies of modules of minimal multiplicity. In this subsection, we show, by means of an
example, that the (co)syzygy of a module of minimal multiplicity need not have minimal mul-
tiplicity in general. We observe this phenomenon in Example 2.29 after some preparation.
Recall that, given an R-module M, we set M∗ = HomR(M,R).

Remark 2.26. Let R be a ring with total ring of fractions Q, and let I be a fractional ideal of
R, that is, I is a finitely generated R-submodule of Q and I contains an element of R which is a
non zero-divisor on R. If µR(I) = 2, then I∗ ∼= ΩR(I). This fact follows, for example, from [15,
3.1] for the case where I is an ideal of R. To establish the general case, pick an element s ∈ R
such that s is a non zero-divisor on R and sI ⊆ R. Set J = sI. Then J is an ideal of R such that
µR(J) = 2. Moreover, since I contains a non zero-divisor on R, and s is a non zero-divisor on R,
we conclude that J contains a non zero-divisor on R. Therefore, there is a short exact sequence
of R-modules 0 → J∗ → R⊕2 → J → 0; see, for example, [15, the proof of 3.1]. Since I ∼= J
as an R-module, we obtain a short exact sequence of R-modules 0 → I∗ → R⊕2 → I → 0. This
implies that I∗ ∼= ΩR(I).

Remark 2.27. Let R be a ring and set M =m∗.
(i) As m contains a non zero-divisor on R, we have that M = HomR(m,R) ∼= (R :Q m) as

R-modules, where (R :Q m) is a fractional ideal of R; see [16, 2.4.2].
(ii) If R is not regular, then (R :Q m) = (m :Q m)∼= HomR(m,m).

(iii) If R is not regular, it follows from parts (i) and (ii) that

M = HomR(m,R)∼= (m :Q m) =⇒mM =mHomR(m,R)∼=m(m :Q m) =m.

Lemma 2.28. Let R be a ring. The following conditions are equivalent:
(i) R has minimal multiplicity.

(ii) Every torsion-free R-module has minimal multiplicity.
(iii) m∗ has minimal multiplicity.

Proof. It is enough to assume m∗ has minimal multiplicity and see that R has minimal multi-
plicity; see Remark 2.8(ii). Set M = m∗. The rank of M equals the rank of m, which is one.
Thus, eR(M) = e(R); see [4, 4.7.9]. So, it follows from 2.6 and Remark 2.27(iii) that the R-
module M has minimal multiplicity if and only if e(R) = eR(M) = µR(mM) = µR(m) if and
only if the ring R has minimal multiplicity. □

Example 2.29. Let R be a ring such that e(R) = 3 and embdim(R) = µR(m) = 2. For example,
we can pick R = k[[t3, t4]]. Note that m has minimal multiplicity; see 2.14(iii). Set M = m∗.
Since µR(m) = 2, there is a short exact sequence of R-modules 0 → M → R⊕2 → m→ 0; see
Remark 2.26. This exact sequence implies that eR(M) = 2e(R)− eR(m) = 3. Since R is not
regular, we have that mM ∼=m; see Remark 2.27(iii). Thus, µR(mM) = 2. This implies that M
does not have minimal multiplicity; otherwise, 2.6 would imply that 2= µR(mM)= eR(M)= 3.

We know that m∗∗ ∼= m; see 3.12. Assume R is a (one-dimensional) Gorenstein domain.
Then a result of Bass [2, 6.3] shows that µR(M)≤ 2. If M is cyclic, then m is also cyclic (since
m∼=m∗∗ = M∗), and hence R is regular. Thus, M is not cyclic, that is, µR(M) = 2. Recall that
R⊆ (R :Q m)∼=M, see Remark 2.27(i). Since (R :Q m) is a fractional ideal of R containing a non
zero-divisor on R, there is a short exact sequence of R-modules 0 → m→ R⊕2 → M → 0; see
Remark 2.26. Therefore, even though the R-module m has minimal multiplicity, its co-syzygy
module M does not have minimal multiplicity.
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Modules of minimal multiplicity versus Burch modules. We have already noted that each
Ulrich module has minimal multiplicity, and the converse of this fact is not necessarily true;
see Proposition 2.18. There is another class of modules, a subclass of Ulrich modules, which
we want to touch upon, namely, Burch modules. A torsion-free R-module M is called Burch if
there is an x ∈ m such that x is a non zero-divisor on M and k is a direct summand of M/xM;
see [9] for examples and details.

In the following, we point out that the class of modules of minimal multiplicity and that of
Burch modules (over one-dimensional Cohen-Macaulay rings) are distinct, in general. We also
remark that Burch modules of minimal multiplicity need not be Ulrich.

2.30. Let R be a ring.
(i) The R-module m is always a Burch module; see [9, 3.4].

(ii) If M is a torsion-free R-module such that M is Burch and idR(M)< ∞, then R is regular;
see [9, 3.19].

(iii) Assume R is not Gorenstein, has minimal multiplicity, and admits a canonical module ωR.
Then ωR also has minimal multiplicity since every torsion-free R-module has minimal
multiplicity; see Remark 2.8(ii). On the other hand, ωR is not a Burch R-module; see
part (ii). For example, if R = k[[t3, t4, t5]], the canonical module ωR fails to be Burch, yet
it has minimal multiplicity as an R-module.

(iv) Let R = k[[t4, t5]] and set M = m. Then M is a Burch R-module, but it does not have
minimal multiplicity since e(R) = 4 ̸= 3 = µR(m

2); see part (i) and 2.6.
(v) If R = k[[t4, t5, t6]] and M =m, then M is Burch and has minimal multiplicity, but it is not

Ulrich; see Example 2.15.

3. MODULES OF MINIMAL MULTIPLICITY VERSUS ULRICH MODULES

Recall that, unless otherwise stated, R denotes a one-dimensional commutative Noetherian
Cohen-Macaulay local ring with maximal ideal m and residue field k. Moreover, all R-modules
are assumed to be finitely generated.

A torsion-free R-module with minimal multiplicity with respect to an m-primary ideal I of
R is not necessarily I-Ulrich; see Example 2.17 and Proposition 2.18. In this section, we prove
Theorem 3.8 and identify certain classes of modules and ideals for which the Ulrich property
and minimal multiplicity are equivalent; see also Corollary 3.11. Before proving Theorem 3.8,
we establish several preliminary results. We begin by setting (−) =−⊗R R/xR for a given ring
R and an element x ∈ R.

Lemma 3.1. Let R be a ring, I be an m-primary ideal of R, (x)⊆ I be a minimal reduction of
I, and let M be a torsion-free R-module. Then the following conditions are equivalent:

(i) M has minimal multiplicity with respect to I.
(ii) IM is I-Ulrich.

(iii) I ⊆ AnnR
(
IM

)
.

Proof. We have by 2.4 that I2M = xIM if and only if M has minimal multiplicity with respect
to I. Also, Remark 2.12 shows that I · IM = x · IM if and only if IM is I-Ulrich. So, the
equivalences hold. □

We leave the proof of the following observation to the reader.
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Lemma 3.2. Let R be a ring and let M and N be torsion-free R-modules. If x ∈ m is a non
zero-divisor on R, then there is an injective R-module homomorphism as follows:

HomR(M,N) ↪−→ HomR
(
M,N

)
.

The next proposition plays an important role in the proof of Theorem 3.8.

Proposition 3.3. Let R be a ring, I be an m-primary ideal of R, and let M be a torsion-free R-
module. Assume M has minimal multiplicity with respect to I. Then HomR(IM,N) is I-Ulrich
for each torsion-free R-module N.

Proof. Let N be a torsion-free R-module. Then HomR(IM,N) is a torsion-free R-module.
Moreover, IM is torsion-free since it is a submodule of the torsion-free R-module M. Pick a
minimal reduction (x)⊆ I; see 2.1. Then, since x is a non zero-divisor on R, there is an injection
HomR(IM,N) ↪→ HomR

(
IM,N

)
due to Lemma 3.2. Since M has minimal multiplicity with

respect to I, Lemma 3.1 shows that I ⊆ AnnR
(
IM

)
. Therefore, we have

I ⊆ AnnR
(
IM

)
⊆ AnnR

(
HomR(IM,N)

)
.

This implies that I ·HomR(IM,N) = 0, that is, I ·HomR(IM,N) = x ·HomR(IM,N). Conse-
quently, by Remark 2.12, HomR(IM,N) is I-Ulrich. □

An application of Proposition 3.3 with I =m and N = R yields:

Corollary 3.4. Let R be a ring and let M be a nonzero torsion-free R-module. If M has minimal
multiplicity, then (mM)∗ is an Ulrich R-module.

We recall some properties which will be used, for example, in the proofs of Theorems 3.8
and 4.1.

3.5. Let R be a ring with total ring of fractions Q, and let I be an m-primary ideal of R. Then
the following hold:

(i) I (I :Q I) = I.
(ii) I is reflexive, that is, I ∼= I∗∗ as R-modules, if and only if (R :Q (R :Q I)) = I; see, for

example, [19, 2.4(4)].
(iii) Recall that I is called stable if and only if I2 = zI for some z ∈ I. If I = x(I :Q I) for some

x ∈ I, then (x−1I)2 = x−1I so that I2 = xI, that is, I is stable; see [20, 1.11].
(iv) I is called a trace ideal if it is equal to the trace of an R-module. It follows that I is a trace

ideal of R if and only if (I :Q I) = (R :Q I); see [13, 2.2]. For example, if R is not regular,
then m is a trace ideal of R; see [14, 3.15]. Moreover, each Ulrich ideal is a trace ideal;
see [11, Page 4].

3.6. Let R be a ring with total ring of fractions Q.
(i) If I, J, and K are fractional ideals of R, then (I :Q JK) = ((I :Q J) :Q K).

(ii) If I is an ideal of R containing an element which is a non zero-divisor on R, and J is an
R-submodule of Q, then (J :Q I)∼= HomR(I,J); see, for example, [16, 2.4.2].

The observation we give next is key for the proofs of Theorems 3.8 and 4.1.

3.7. Let R be a non-Gorenstein ring with a canonical ideal ωR and let I be an m-primary ideal
of R. The following equality and isomorphisms hold:

HomR(I ·ωR,ωR)∼= (ωR :Q I ·ωR) = ((ωR :Q ωR) :Q I)∼= (R :Q I)∼= I∗.(3.7.1)
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Here, the isomorphisms follow from 3.6(ii) since both I and ωR are m-primary ideals of R, and
therefore contain non zero-divisors on R. Moreover, the equality is due to 3.6(i).

Next is the main result of this section:

Theorem 3.8. Let R be a generically Gorenstein non-Gorenstein ring with a canonical ideal
ωR and let I be an m-primary ideal of R.

(i) If the R-module I has minimal multiplicity with respect to ωR, then I∗ is ωR-Ulrich.
(ii) Assume I is a trace ideal of R. If I∗ is ωR-Ulrich, then I is ωR-Ulrich.

Proof. For part (i), assume I has minimal multiplicity with respect to ωR. It follows from
Proposition 3.3 that HomR(I ·ωR,ωR) is ωR-Ulrich. Thus, (3.7.1) shows that I∗ is ωR-Ulrich
and establishes part (i).

For part (ii), assume I is a trace ideal of R and I∗ is ωR-Ulrich. Then, since (R :Q I)∼= I∗, it
follows that (R :Q I) ·ωR = (R :Q I) · x for some minimal reduction (x) ⊆ ωR; see (3.7.1) and
Remark 2.12. This yields the equality I ·ωR = I · x since

I · (R :Q I) ·ωR = I · (R :Q I) · x =⇒ I · (I :Q I) ·ωR = I · (I :Q I) · x =⇒ I ·ωR = I · x.
Here, the first and second implications hold by 3.5(iv) and 3.5(i), respectively. Therefore, I is
ωR-Ulrich; see Remark 2.12. □

If I is ωR-Ulrich, then, by Remark 2.12, I has minimal multiplicity with respect to ωR. When
I is a trace ideal, Theorem 3.8 immediately gives the converse of this fact.

Corollary 3.9. Let R be a generically Gorenstein non-Gorenstein ring with a canonical ideal
ωR and let I be an m-primary trace ideal of R. Then I has minimal multiplicity with respect to
ωR if and only if I is ωR-Ulrich.

We proceed and give further consequences of Theorem 3.8. As in the theorem, assume R
is a generically Gorenstein non-Gorenstein ring with total ring of fractions Q and a canonical
ideal ωR. Recall that the conductor of R, namely c = (R :Q R[K]), has minimal multiplicity
with respect to ωR; see Remark 2.20. Thus, Theorem 3.8(i) shows that c∗ is ωR-Ulrich. As
c∗ ∼= (R :Q c)∼= R[K], we obtain by Remark 2.12 that:

Corollary 3.10. Let R be a generically Gorenstein non-Gorenstein ring with a canonical ideal
ωR. Then the R-module R[K] has minimal multiplicity with respect to ωR.

In the following, we point out that an m-primary ideal I – which is reflexive as a module –
over a generically Gorenstein non-Gorenstein ring has minimal multiplicity with respect to ωR
if and only if its algebraic dual I∗ does.

Corollary 3.11. Let R be a generically Gorenstein non-Gorenstein ring with canonical ideal
ωR, and let I be an R-ideal. Consider the following conditions:

(i) I is ωR-Ulrich.
(ii) I has minimal multiplicity with respect to ωR.

(iii) I∗ is ωR-Ulrich.
(iv) I∗ has minimal multiplicity with respect to ωR.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv). Furthermore, if I is a reflexive R-module, then

(i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv).
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Proof. The implications (i)=⇒ (ii) and (iii)=⇒ (iv) hold due to Remark 2.12, and Theo-
rem 3.8(i) yields (ii)=⇒ (iii).

Now assume I is a reflexive R-module. It is enough to establish the implication (iv)=⇒ (i).
For that, assume I∗ has minimal multiplicity with respect to ωR. Set J = I∗ = HomR(I,R).
Recall that J ∼= (R :Q I) is a fractional ideal of R; see 3.6(ii). So, Theorem 3.8(i) implies that
J∗ is ωR-Ulrich. Since I is reflexive, we have that J∗ = I∗∗ ∼= I. This completes the proof. □

The following fact is used in the proofs of Corollaries 3.13 and 4.3.

3.12. If R is a (one-dimensional Cohen-Macaulay local) ring, then the maximal ideal m of R is
a reflexive R-module; see, for example [12, 4.1].

Corollary 3.11, in view of 3.12, immediately yields:

Corollary 3.13. Let R be a generically Gorenstein non-Gorenstein ring with a canonical ideal
ωR. Then the following conditions are equivalent:

(i) m is ωR-Ulrich.
(ii) m has minimal multiplicity with respect to ωR.

(iii) m∗ is ωR-Ulrich.
(iv) m∗ has minimal multiplicity with respect to ωR.

Corollary 3.13 provides a characterization of almost Gorenstein rings. Although we do
not define almost Gorenstein rings or discuss their properties in detail, we refer the reader
to [14] for the definition and further information regarding this class of rings. In particular, a
generically Gorenstein, non-regular ring with a canonical ideal ωR is almost Gorenstein if and
only if its maximal ideal m is ωR-Ulrich; see [14, 3.11]. This fact and Corollary 3.13 imply:

Corollary 3.14. Let R be a generically Gorenstein non-regular ring with a canonical ideal ωR.
Then R is almost Gorenstein if and only if m has minimal multiplicity with respect to ωR if and
only if m∗ has minimal multiplicity with respect to ωR.

4. PROOF OF THEOREM 1.1

The aim of this section is to study cases in which the canonical module has minimal multi-
plicity with respect to a trace or reflexive ideal. Our main result, Theorem 4.1, requires some
preliminary work and leads to several consequences, including part of the results announced in
the introduction; see Corollaries 4.2 and 4.3.

Recall that, if R is a ring, an m-primary ideal I is called reflexive if (R :Q (R :Q I)) = I, and
called trace if (I :Q I) = (R :Q I), where Q is the total ring of fractions of R; see 3.5.

Theorem 4.1. Let R be a generically Gorenstein non-Gorenstein ring with canonical ideal
ωR, and let I be an m-primary ideal of R. Suppose I is either a trace ideal or reflexive as an
R-module. If ωR has minimal multiplicity with respect to I, then I is a stable ideal.

Proof. Assume ωR has minimal multiplicity with respect to I, and pick a minimal reduction (x)
of I. Using Proposition 3.3 with M = N = ωR, we see that HomR(IωR,ωR) is I-Ulrich. Thus,
(3.7.1) implies that (R :Q I) is I-Ulrich, and so x(R :Q I) = I(R :Q I); see Remark 2.12.

Suppose I is a trace ideal. Then (I :Q I) = (R :Q I), and hence the following equalities hold:

x(I :Q I) = x(R :Q I) = I(R :Q I) = I(I :Q I) = I.

Here, the fourth equality is due to 3.5(i). Therefore, I is stable; see 3.5(iii).
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Next suppose I is reflexive, that is, (R :Q (R :Q I)) = I. The following equalities hold:

x−1I = x−1(R :Q (R :Q I)
)
=
(
R :Q x(R :Q I)

)
=
(
R :Q I(R :Q I)

)
=
(
(R :Q (R :Q I)) :Q I

)
=(I :Q I).

Here, the first and fifth equalities hold since I is reflexive; the second and fourth equalities
follow from the definition of colon ideals; and the third equality holds because (R :Q I) is I-
Ulrich, as noted earlier. So, we have that x−1I = (I :Q I), that is, I = x(I :Q I). This implies
that I is stable; see 3.5(iii). □

Corollary 4.2. Let R be a generically Gorenstein non-Gorenstein ring with canonical ideal
ωR, and let I be an m-primary ideal of R. Suppose I is either a trace ideal or reflexive as an
R-module. Then the following conditions are equivalent:

(i) I is stable.
(ii) Every torsion-free R-module has minimal multiplicity with respect to I.

(iii) ωR has minimal multiplicity with respect to I.

Proof. The implication (i) =⇒ (ii) follows from Remark 2.8(i), and the one (ii) =⇒ (iii) is
clear. Moreover, Theorem 4.1 yields (iii) =⇒ (i). □

The following special case of Corollary 4.2 yields a new characterization of rings of minimal
multiplicity.

Corollary 4.3. Let R be a generically Gorenstein non-Gorenstein ring with canonical ideal
ωR. Then the following conditions are equivalent:

(i) R has minimal multiplicity.
(ii) Every torsion-free R-module has minimal multiplicity.

(iii) ωR has minimal multiplicity.

Proof. It suffices to observe that the implication (iii) =⇒ (i) holds; see Remark 2.8(ii). Re-
call that m is a reflexive R-module; see 3.12. Thus, if ωR has minimal multiplicity, then by
Corollary 4.2 applied to the case I =m, we see that m is stable. However, the stability of m is
equivalent to R having minimal multiplicity; see Remark 2.8(ii). □

Section 3 investigates the case of m-primary ideals I having minimal multiplicity with re-
spect to ωR. In light of this, it is worth noting, however, that this condition, if it holds, does not
imply that ωR has minimal multiplicity with respect to I.

Remark 4.4. Let R = k[[t4, t5, t7]]. Then R is an almost Gorenstein ring; see [5, 4.7]. Thus, by
Corollary 3.14, m has minimal multiplicity with respect to ωR. On the other hand, ωR does not
have minimal multiplicity (with respect to m) since R does not have minimal multiplicity; see
Corollary 4.3.

APPENDIX A. AN EXACT SEQUENCE INVOLVING MODULES OF MINIMAL MULTIPLICITY

The main purpose of this appendix is to prove the existence of a certain short exact sequence
induced by modules of minimal multiplicity; see A.1(1). We illustrate two applications of
this exact sequence. First, it allows us to provide a proof of 2.6 from Section 2, restated here
as A.1(2) for the reader’s convenience. Second, our argument can be used to establish results on
the vanishing of TorR

i (M,N) when M is a module of minimal multiplicity; such a demonstration
is provided in A.2.
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Recall that we assume R is a one-dimensional Cohen-Macaulay local ring, and all R-modules
are assumed to be finitely generated. We also assume that minimal reductions of m-primary
ideals of R exist; see 2.1.

A.1. Let M be a nonzero torsion-free R-module. Set e = eR(M) and v = µR(M).

(1) Assume M has minimal multiplicity (with respect to m). Then e= µR(mM). If, in addition,
(x) is a minimal reduction of m, then there exists an exact sequence of R-modules

0 → k⊕(e−v) → M/xM → k⊕v → 0.

(2) The following conditions are equivalent:
(i) miM has minimal multiplicity for all i ≥ 0.

(ii) M has minimal multiplicity.
(iii) e = µR(mM).
(iv) m2M ∼=mM.

Proof. (1) Pick a minimal reduction (x) of m, and consider the following commutative dia-
gram:

0 // mM //

x
��

M //

x
��

M/mM //

x
��

0

0 // mM // M // M/mM // 0

As the multiplication by x on M/mM is the zero map, the snake lemma applied to the diagram
yields the following exact sequence:

(A.1.1) 0 → M/mM →mM/xmM
ϕ−→ M/xM → M/mM → 0.

As we assume M has minimal multiplicity, it follows that xmM =m2M; see 2.4. Therefore,

mM/xmM ∼= k⊕µR(mM). Thus, since M/mM ∼= k⊕v, (A.1.1) implies that im(ϕ)∼= k⊕
(

µR(mM)−v
)

.
Hence, (A.1.1) yields the following short exact sequence

(A.1.2) 0 → k
⊕(

µR(mM)−v
)
→ M/xM → k⊕v → 0,

which shows that lengthR(M/xM) = µR(mM). Moreover, we know e = lengthR(M/xM). Con-
sequently, we obtain e = µR(mM) so that (A.1.2) is the exact sequence we seek.

(2) It follows from (2.13.1) and (2.13.2) in Remark 2.13 that the conditions in parts (i),
(ii), and (iv) are equivalent. Moreover, if M has minimal multiplicity, then Part (1) yields the
equality e = µR(mM). We therefore assume e = µR(mM) and proceed to show that M has
minimal multiplicity.

Let (y) be a minimal reduction of m. Then y is a non zero-divisor on R, and hence is
a non zero-divisor on the torsion-free R-modules M and mM. Thus, we have the following
commutative diagram:

0 // mM //

∼= y

��

M //

∼= y

��

M/mM //

y
��

0

0 // ymM // yM // yM/ymM // 0
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This diagram implies, by the Snake Lemma, that M/mM ∼= yM/ymM. So,

(A.1.3) lengthR(M/mM) = lengthR(yM/ymM).

Part (1) shows the existence of an exact sequence 0 → k⊕(e−v) → M/yM → k⊕v → 0, which
yields, by the additivity of length, that lengthR(M/yM) = (e−v)+v = e. Thus, the assumption
e = µR(mM) implies:

(A.1.4) lengthR(M/yM) = e = µR(mM) = lengthR(mM/m2M).

Note that we have:

(A.1.5) lengthR(M/ymM) = lengthR(yM/ymM)+ lengthR(M/yM).

We now use (A.1.3) and (A.1.4), and deduce from (A.1.5) that

(A.1.6) lengthR(M/ymM) = lengthR(M/mM)+ lengthR(mM/m2M) = lengthR(M/m2M).

We also have the following equality, once again by the additivity of length:

lengthR(M/ymM) = lengthR(M/m2M)+ lengthR(m
2M/ymM).

Therefore, we use (A.1.6) and deduce that lengthR(m
2M/ymM) = 0, that is, m2M = ymM.

Consequently, M has minimal multiplicity; see 2.4. □

The vanishing of Ext and Tor functors over rings of arbitrary dimension, involving modules
of minimal multiplicity, is studied in detail in [7]. For example, if M is a nonzero torsion-free
R-module with minimal multiplicity such that eR(M) > 2µR(M), or equivalently µR(mM) =
eR(M) > 2µR(M), and N is an R-module, then ExtiR(N,M) = 0 for all i ≫ 0 if and only if
pdR(N) < ∞; see [7, Thm. B(1)(iii)]. The short exact sequence constructed in A.1(1) can be
used to obtain similar results. Although it has potential applications in a variety of contexts
beyond those considered here, in this appendix we focus on a particular instance: we examine
the vanishing of TorR

i (M,N) for the case where µR(mM) = eR(M)> 2µR(M), providing a brief
application of A.1(1) motivated by [7].

In the following, β R
n (N) denotes the nth Betti number of a given R-module N.

A.2. Let M be a nonzero torsion-free R-module. Assume M has minimal multiplicity and
eR(M) > 2µR(M). If there exists an R-module N such that TorR

i (M,N) = 0 for all i ≫ 0, then
either pdR(N)< ∞, or β R

i+1(N)> β R
i (N) for all i ≫ 0.

Proof. Assume there exists an R-module N such that TorR
i (M,N) = 0 for all i ≫ 0. Let (x) be a

minimal reduction of m. Then x is a non zero-divisor on R, and hence is a non zero-divisor on
M since M is a nonzero torsion-free R-module. Thus, there is an exact sequence of R-modules

0 → M x−→ M → M/xM → 0,

which yields TorR
i (M/xM,N) = 0 for all i ≫ 0. Set e = eR(M), v = µR(M), and consider the

following exact sequence obtained from A.1(1):

(A.2.1) 0 → k⊕(e−v) → M/xM → k⊕v → 0.

Suppose pdR(N) = ∞. Then TorR
i (k,N) ̸= 0 for all i ≥ 0. So, tensoring the exact sequence

(A.2.1) with N, we obtain the following isomorphism of nonzero R-modules:

(A.2.2) TorR
i (k,N)⊕(e−v) ∼= TorR

i+1(k,N)⊕v for all i ≫ 0.
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These isomorphisms (A.2.2) give the equality (e−v) ·β R
i (N) = v ·β R

i+1(N) for all i ≫ 0. Since
e > 2v, it follows that

β R
i+1(N)

β R
i (N)

=
e− v

v
>

2v− v
v

= 1.

This shows that β R
i+1(N)> β R

i (N) for all i ≫ 0, as claimed. □

We conclude the section by noting that the hypothesis eR(M)> 2µR(M) is necessary in A.2;
see also [7, Thm. A(1)(i,ii)].

Example A.3. Let R = k[[x,y,z]]/(xz− y2,xy− z2). Then R is a one-dimensional complete
intersection of codimension two. Let T =R/(x,y), M =ΩRT = (x,y)⊆R, and let N =R/(x,z).
Then mM = (x2,z2,xz,zy) and hence µR(mM) = 4. Also, (x) is a minimal reduction of m since
m3 = (x)m2. So, e(R) = lengthR(R/xR) = 4. Thus, 4 = 2µR(M) = eR(R) = e(M) = µR(mM).
This shows that M has minimal multiplicity; see 2.6. Also, it follows that TorR

i (M,N) = 0 for
all i ≥ 1, where pdR(N) = ∞ and β R

i (N) = 2 for all i ≥ 1; see [17, 1.3] and [18, 4.2].
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