HOW MANY IDEALS WHOSE QUOTIENT RINGS ARE GORENSTEIN EXIST?

NAOKI ENDO

ABSTRACT. This paper investigates a naive question of how many non-principal ideals whose
residue class rings are Gorenstein exist in a given Gorenstein ring. The main result provides
that the number of such graded ideals in a symmetric numerical semigroup ring R over a field
coincides with the conductor of the semigroup. We furthermore provide a complete list of non-
principal graded ideals I in R whose quotient rings R/I are Gorenstein.

1. INTRODUCTION

Let (A,m) be a Cohen-Macaulay local ring with d = dimA > 0. An m-primary ideal [ is
called Ulrich, if the associated graded ring gr;(A) = @,>I"/I""" is a Cohen-Macaulay ring
with a(gr;(A)) = 1 —d and I/I”? is free as an A/I-module, where a(gr;(A)) stands for the a-
invariant of gr;(A). When I contains a parameter ideal Q of A as a reduction, i.e., I'*! = QI"
for some r > 0, the ideal / is Ulrich if and only if 7 # Q, I>=0QlI,and I /Q is a free A /I-module
({4, Definition 1.1, Lemma 2.3]). The notion of Ulrich ideal is one of the modifications of
that of stable maximal ideal introduced in 1971 by his monumental paper [I1] of J. Lipman.
The present modification was formulated by S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe,
and K.-1. Yoshida [4] in 2014, where the authors developed and consolidated the basic theory
of Ulrich ideals. As an example, since //Q is free as an A/I-module, we have the inequality
(ua(l)—d)-r(A/I) <r(A) ([8, Corollary 2.6 (b)]), where 4 (—) and r(—) denote the number of
generators and the Cohen-Macaulay type, respectively. Subsequently, the authors of [§] studied
the structure of the complex RHomy (A /I, A) in the derived category of A, and proved that the
equality (ua(I) —d)-1(A/I) =r(A) holds ([5, Corollary 2.6]). Hence, A is Gorenstein if and
only if A/I is Gorenstein and s (I) = d + 1, if an Ulrich ideal I exists.

Motivated by this observation, in this paper we investigate the following question.

Question 1.1. Let A be a Gorenstien ring with d = dimA > 0. How many ideals I of A with
ht4/ = 1 which satisfy the ring A/ is Gorenstein and 4 (1) > 2 exist?

Every Ulrich ideal in a one-dimensional Gorenstein local ring satisfies the conditions stated
as in Queistion [C1l. Whereas, based on the past experience on analysis for Ulrich ideals ([IT,
2, B, B]), it is rather difficult to make a list of all the Ulrich ideals even for one-dimensional
Cohen-Macaulay local rings, especially for numerical semigroup rings; see e.g., [, Theorem
3.9, Theorem 4.1]. In light of the result that there are only finitely many Ulrich ideals generated
by monomials in numerical semigroup rings ([4, Theorem 6.1]), we start our investigation on
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Question [T by going over graded ideals. Still, it remains unclear the question even if we
restrict to graded ideals in numerical semigroup rings, which we will clarify in this paper.

Let N be the set of non-negative integers. A numerical semigroup is a non-empty subset H
of N which is closed under addition, contains the zero element, and whose complement in N is
finite. Every numerical semigroup H admits a finite minimal system of generators, i.e., there
exist positive integers aj,ay,...,ap € H (¢ > 1) such that

{
H = (ay,ay,...,a;) = {Zciai cieNforall 1 <i< E}.
i=1
For a field k, the ring k[H] = k[t*1,1%2, ... t%] is called the numerical semigroup ring of H over

k, where ¢ denotes an indeterminate over k. Then R = k[H| forms a one-dimensional Noetherian
graded integral domain; moreover the ring R enjoys a beautiful relation with its corresponding
semigroup H. A typical example is that the maximum integer f(H) in the set N\ H coincides
with the a-invariant a(R) of the ring R = k[H| ([6, Example (2.1.9)]). Besides, the semigroup H
is symmetric, i.e., the equality #{n € H | n < c¢(H)} = #(N\ H) holds, if and only if its semigroup
ring R = k[H] is Gorenstein, where #(—) denotes the cardinality of a set and ¢(H) = f(H) + 1
is the conductor of H. See [8, Proposition 2.21] or [0, Theorem] for the proof of this fact.
With this notation, the main result of this paper is stated as follows.

Theorem 1.2. Suppose that R = k[H| is a Gorenstein ring. Then the equality
#{I | I is a graded ideal of R such that R/I is Gorenstein and Ug(I) > 2} = c(H)
holds.

Let us now explain how this paper is organized. To show Theorem 2, we need several
auxiliaries which we will prepare in Section 2. We actually provide them in a more general
setting, not only for numerical semigroup rings. We shall prove Theorem in Section 3
starting with the case where a(R/I) < a(R). In Section 4 we finally provide a complete list of
non-principal graded ideals  in R whose quotient rings R/I are Gorenstein. As an application
of Theorem [, we consider such ideals in the associated graded ring with respect to a certain
filtration of ideals. Examples are explored as well.

2. PRELIMINARIES

Let R = @,~( R, be a one-dimensional Noetherian graded integral domain. Throughout this
section, we assume k = Ry is a field, and R, # (0) and R, # (0) for some n > 0. Let W be
the set of non-zero homogeneous elements in R. Note that the localization W~!'R = K[t,t ']
of R with respect to W is a simple graded ring, i.e., every non-zero homogeneous element is
invertible, where ¢ is a homogeneous element of degree 1 which is transcendental over k, and
K = [W~IR]y is a field. There is an exact sequence

0—=R—K[t,r '] HL(R) =0

of graded R-modules, where m denotes the graded maximal ideal of R and H),(R) is the 1st
graded local cohomology module of R with respect to m. As Ry = k and [HL (R)]o is a finite-
dimensional k-vector space (remember that H! (R) is an Artinian R-module), the field extension
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K /k is finite. Hence k = K, if k is an algebraically closed field. Let R be the integral closure of
R in its quotient field Q(R).
We begin with the following which was pointed out by S. Goto.

Lemma 2.1. The equality R = K|t] holds in Q(R).

Proof. Note that R is a graded ring and R C W~ !'R = K[t,t7']; see e.g., [I4, page 157]. As
the field k is Nagata, so is the finitely generated k-algebra R. Thus R is a finite R-module. As
R, = (0) for all n < 0 and Ry = k, we see that [R], = (0) for all n < 0, L = [R] is a field, and
kCLCK. Set N=,-o[R]s Since the local ring Ry of R at the maximal ideal N is a DVR,
the ideal N is principal. We choose a homogeneous element f € R of degree g > 0 such that
N = fR. Hence R = L|N] = L[f] C W~ 'R = K|t,t~!]. Besides, because R[f ] = L[f,f '] isa
simple graded ring and R C R[f~!], we have W~ 'R C R[f~!] = L[f, f']. Therefore

Kle,o™') = L[f,f7]
so that K = L and ¢ = 1. This shows R = L[f] = K[f] = K[t], as claimed. O

For R-submodules X and Y of Q(R), let X : Y = {a € Q(R) | a¥ C X }. If we consider ideals
I,Jof R,wesetl :;gJ={ac€R|aJ CI}.Hencel :gJ=(I:J)NR.

Remark 2.2. Let I be a non-zero graded ideal of R. It is straightforward to check that R :
is a graded R-submodule of K[t,+~!] which contains R. In addition, the natural isomorphism
R:1 -5 Homg (I,R), @ — (x — o) is graded. Thus, provided k = K, every homogeneous
component of Homg(7, R) has dimension, as a k-vector space, at most 1.

For a Cohen-Macaulay graded ring A = @,>(A, such that A is a local ring, we set a(A) =
max{n € Z | [H%;(A)], # (0)} which is called the a-invariant of A ([6, Definition (3.1.4)]).
Here, 901 denotes the unique graded maximal ideal of A, d = dimA, and {[Hg,(A)]x}nez is
the homogeneous components of the d-th graded local cohomology module Hgﬁ (A) of A with
respect to 1. When A admits the graded canonical module K4, one has a(A) = —min{n € Z |
[KA]n 7£ (O)}

Let M be a graded R-module and / an integer. Let M(¢) denote the graded R-module whose
underlying R-module is the same as that of the R-module M and the grading is given by
M(0)], = My, for all n € Z. When M is finitely generated, we denote by tg(M) the mini-
mal number of generators of M.

With this notation, we furthermore assume R admits a graded canonical module K. Let
(—)Y = Homg(—,Kg) denote the canonical dual functor. We then have the following.

Lemma 2.3. Suppose that R is a Gorenstein ring. Let I be a graded ideal of R such that R/ is
Gorenstein and Ug(I) > 2. Then the following assertions hold true.

(1) [IV]_ar) # (0) and [IV] _yr /1y # (0).

(2) min fn & z [[1V], # (0)} = min{—a(R), —a(R/I)}.
(3) ur(l) =

543 k=K, en a(R) # a(R/1).

5) IY = Rf +Rg for some f € [I']_ygy and g € [I']_yr /1.
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Proof. We seta=a(R), b=a(R/I), and n=min{n € Z | [I"], # (0)}. By taking the functor
(—)V to the exact sequence 0 — I — R — R/I — 0, we get the sequence
(%) 0— R(a) = 1" — (R/I)(b) — 0

of graded R-modules, because Kz = R(a) and Exth(R/I,Kg) = K(g/r) = (R/I)(b). This shows
[1V]_4 # (0), [IV]_p # (0), and n = min{—a, —b}. Besides, the exact sequence (x) implies
UR(1V) <2. AsIVV = [ and ug(I) > 2, we get ug(I¥) = 2. This proves the assertions (1), (2),
and (3).

If k = K, then all the homogeneous components of 1V = Homg(I,R)(a), as a k-vector space,
have dimension at most 1. Thus a # b, and the assertion (4) holds.

Recall that m is the graded maximal ideal of R. By applying the functor R/m ®g — to the
sequence (x), we have the exact sequence of the form:

(R/m)(a) 51V /mlY 5 (R/m)(b) — 0.

As ug(I1') =2, the map £ is injective. We choose f € [IV]_, and g € [IV]_;, such that f = &(1)
and 1(g) = 1, where * denotes the image in IV /m/I". Then the images of f,g form a k-basis of
IV /mIV. Hence IV = Rf + Rg by Nakayama’s lemma. O

Remark 2.4. If R is a numerical semigroup ring over a field k, then k = K. Whereas, if k = K,
e.g., k is an algebraically closed field, then the ring R is isomorphic to a semigroup ring of a
numerical semigroup ([6, Proposition (2.2.11)]).

3. PROOF OF THEOREM
We first fix the notation on which all the results in this section are based.

Setup 3.1. Let N be the set of non-negative integers and ay,ay,...,ay € Z (¢ > 1) be positive
integers such that gcd(ay,ay,...,ay) = 1. We set

H = <a1,a2,...,ag> :{

l
cia; | ¢; € Nforall 1 Sigﬁ}
i=1

and call it the numerical semigroup generated by {a;}<;<¢. The reader may consult the book
[12] for the fundamental results on numerical semigroups. Let S = k[t] denote the polynomial
ring over a field &, and define

k[H] = k[t* %, ..., t"] C S

which we call the semigroup ring of H over k. The ring R = k[H] forms a Noetherian integral
domain with dimR = 1 and is a Z-graded subring of S whose grading {R, },cz is given by

kt" if neH,
R, = .
(0) otherwise.

In addition, S is a birational module-finite extension of R, so that R = S, where R denotes the
integral closure of R in its quotient field Q(R). Let

c(H) =min{n € Z | m € H for all m € Z such that m > n},
and set f(H) = max (Z \ H) which is called the Frobenius number of H. By [6], we get
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R:S=rUg and f(H)=c(H)—1=a(R).
Note that, for each non-zero ideal I in R, we have a(R/I) € H, whence a(R/I) # a(R); see also
Lemma 3 (4). We set a = a(R) and ¢ = c(H).

The following plays a key in our argument.
Proposition 3.2. Suppose that R = k|H| is a Gorenstein ring. Then the equality
#{I |1 is a graded ideal of R such that a(R/I) < a and ug(I) > 2} = %
holds.

Proof. Let % be the set of graded ideals I of R such that R/I is Gorenstein, a(R/I) < a, and
Ug(I) > 2. To show the required equality, we may assume R # R. Thus % # 0. For each
I € %, since a(R/I) < a, we then have R,, C [ forallm > c¢=a+ 1. By setting J =R : I, we
see that J is a graded ideal of R and
RCJCR:c=R:(R:R)=R
where the second inclusion follows from ¢ C [ and the last equality holds by [9, Bemerkung
2.5] (remember that R is a Gorenstein ring). This shows J = (1, #"") for some m € N\ H. So we
can consider the map
d: % - N\H

defined by ®(I) = m for each I € %, where R : [ = (1,1™).

Conversely, for each m € N\ H, we set J = (1,#™). Then R C J C R = k[t]. By setting
I =R :J, we have

¢c=R:RCR:J=ICR

which yield that a(R/I) < a, ug(I) > 2, and the ring R/I is Gorenstein. Indeed, since 1R =¢ C I
and a(R/I) € H, we have a(R/I) < a. The Kg-dual (—)" of the exact sequence 0 — I — R —
R/I — 0 induces the sequence

0— R(a) > 1Y — Exth(R/I,Kg) — 0

of graded R-modules, because Kg = R(a). Let f = ¢(1). Then f € [I]_, forms a part of a min-
imal basis of 1V. As IV 22 J and ug(J) = 2, we get ug(I) > 2; while the R-module Exth(R/I,Kg)
is cyclic, so that R/I is a Gorenstein ring, because Exth(R/I, Kg) = K(g/r is the canonical mod-
ule of R/I. Here, the proof of above especially shows that if a(R/I) < a then R/I is Gorenstein.
Hence, we define the map

Y:N\H— %, m—R:(1,1")

and it is straightforward to check the composite maps ® oW and W o ® are identity. In particular,
the map @ is bijective. Therefore

#{I |1 is a graded ideal of R, a(R/I) < a, and pig(I) > 2} = #% = #(N\ H) = %
where the last equality follows from the fact that H is symmetric, i.e., R is Gorenstein. This
completes the proof. 0

We are ready to prove Theorem 2.
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Proof of Theorem [[2. Let 2 be the set of graded ideals I of R such that R/I is Gorenstein and
Ug(I) > 2. Similarly as in the proof of Proposition B2, we may assume R # R. So 2k # 0. By
Proposition B2, it suffices to show that the number of ideals I € 2k with a(R/I) > a is a half
of the conductor ¢ of H.

For each I € 2%, we have pg(IV) = 2, so we can write

IY =Rf+Rg forsome fec[I'] yand g€ [I']_yr/p).

Set b =a(R/I). Since (0) :g g = (0), we get the exact sequence

0—>R(b)£>lv—>C—>0

of graded R-modules, where & (1) = g and C = Coker&. We consider the graded ideal J = (0) :z
C of R. As C has a finite length and C = IV /Rg # (0), we get (0) # J C R. Besides, we have
the isomorphism

C=Rf = (R/J)(a)
as a graded R-module, where * denotes the image in /¥ /Rg. Hence we obtain the sequence
0—R(b)—=1"— (R/J)(a) =0
of graded R-modules. By applying the functor (—)" to the above sequence, we have
0— 11— R(a—b) — Exth(R/J,Kg)(—a) = 0

because 1YV =] and R(b)Y = Homg(R(b),Kg) = Homg(R(b),R(a)) = R(a — b). In particular,
Ky & Exth(R/J,Kg) is cyclic; hence R/J is Gorenstein. By letting o = a(R/J), we have
Kr/7) = (R/J) (). Therefore, by changing the shift by b — a, we get the exact sequence

0—1(b—a) B R— (R/I)(@—a+b—a)— 0
of graded R-modules. The degree O part of the following isomorphism
R/Imy = (R/J)(a—2a+Db)

induces o —2a+ b = 0; while I(b —a) = Imy = J. Hence, a(R/J) = o =2a—b and I =
J(a—b) as a graded R-module. In particular, tg(J) > 2. Thus J € Zk.

Let W be the set of non-zero homogeneous elements in R. Consider the simple graded ring
W~!R = k[t,t~'], where ¢ is a homogeneous element of degree 1 which is transcendental over
k. Hence we have the commutative diagram below:

kit,t (a—b) =W (J(a—b)) —= W =k[t,t7 1]

| T

J(a—Db) — [=1tb=9g

Note that the induced isomorphism k[t,t~!](a — b) = k[t,t~1] is given by the homothety of
homogeneous element of degree b — a. Therefore I = t*=%J.
To sum up this argument, for each I € 2%, there exists a graded ideal J € 2y satisfying

a(R/J) =2a—a(R/I) and I=r*R/N-aj,
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This shows, if a(R/I) > a (resp. a(R/I) < a), then a(R/J) < a (resp. a(R/J) > a). So, there is
a one-to-one correspondence between the set of ideals I € 2 with a(R/I) > a, and the set of
ideals J € 2k with a(R/J) < a. Finally we conclude that

#2r=#{I € Zr|a(R/I) >a}+#{I € Zr|a(R/])<a}==+==c

SN
N o

as desired. O

4. COROLLARIES AND EXAMPLES

We summarize some consequences of Theorem 2. In this section we maintain the notation
as in Setup 3.1. Let 2% be the set of graded ideals I of R such that R/I is Gorenstein and
Ugr(I) > 2. Recall that a = a(R) and ¢ = c¢(H).

The direct consequence of the proof of Theorem is stated as follows, which is useful to
compute concrete examples.

Corollary 4.1. Suppose that R = k[H| is a Gorenstein ring. For each I € Zg, we set J =
19=2R/DI Then the following assertions hold true.

(1) Je€ Zrand a(R/J) =2a—a(R/I). Hence, ifa(R/I) < a (resp. a(R/I) > a), then a(R/J) >
a (resp. a(R/J) < a).

(2) a(R/I) € H,a#a(R/I),anda—a(R/I) € Z\ H.

(3) Ifa(R/I) < a, then a—a(R/I) € N\ H.

(4) Ifa(R/I) > a, then a(R/I) —a € N\ H.

Proof. We already proved the assertion (1) in the proof of Theorem 2. Recall that a(R/I) € H
and a € H. So a # a(R/I). As H is symmetric and a(R/I) € H, we see that a —a(R/I) €
Z\ H. In particular, if a(R/I) < a, then a —a(R/I) € N\ H. On the other hand, we assume
a(R/I) > a. Since J € Zg and a(R/J) < a, we conclude that a(R/I) —a=a—a(R/J) € N\ H,
as claimed. UJ

The next provides a complete list of graded ideals in Z.
Corollary 4.2. Suppose that R = k[H| is a Gorenstein ring. Then the equality
2r={R:gt" "(R:gt") |meN\H}

holds. Moreover, for each m € N\ H, one has
a(R/R:gt"™)=a—m and a(R/t"™(R g ")) =a+m.

Proof. Note that R: (1,#) =R :g ¢ for all m € N\ H. By Proposition B2, there is a one-to-one
correspondence below:

N\H «— {I€ Zr|a(R/I) <a}, m— R:(1,").

This shows the equality {/ € 2% | a(R/I) < a} = {R:gt™ | m € N\ H}. Besides, the proof of
Theorem [ guarantees that the map

{(I€ Zr|aR/l) <a} +— {I€ Zr|a(R/I) > a}, I—ta 2R/
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is bijective. Hence {I € 2% | a(R/I) > a} = {r* 2R/Rr™)(R :p 1) | m € N\ H} holds. Since
H is symmetric and ¢ = a+ 1, it is straightforward to check that a(R/R :g t"") = a — m for all
m € N\ H. Therefore the equality

Zr={R:gt",1"(R:gt")|me N\H}
holds. Furthermore, by Corollary B (1), we have the equalities
a(R/t"™(R:gt"™))=2a—a(R/R:gt")=2a—(a—m)=a+m
which complete the proof. U

The ideals of the forms R :g t" and (R :g t") are easy to compute, especially in numerical
semigroup rings, and provide numerous examples illustrating Theorem 2.

Example 4.3. Let k[r] be the polynomial ring over a field k and R = k[H| the semigroup ring of
a numerical semigroup H. Then the following assertions hold.

(1) Let H = (2,204 1) (£ >1). Then c(H) = 2¢ and the equality
(/{m//'R _ {(l2 IZK—H) (l4 IZK—H) (tZE IZK—H) (IZE—H t4€) (IZZ—H t4€—2) (t2€+1 t2€+2)}

holds.
(2) Let H = (3,4). Then c(H) = 6 and the equality

Zr={(,1*),(*,1°), (,1%), (1°,2%), (1°,%), (%)}

holds.
(3) Let H = (3,5). Then c(H) = 8 and the equality

e ={(2,2),(12,19), (2,110, (1,62), (¢19,412), (¢,110), (1 ,¢1%), (¢°,410)}

holds.
(4) LetH=(n,n+1,...,2n—2) (n>4). Then c(H) = 2n and the equality
D = {(" 2R, (0 R 2t )
U (" et i 22y e 0)
U {(Z‘3nfl’t3n7 . ’t4n73), (th’t2n+1,. - 7t3nf37t3n71)}
U {222 2 Y << n—2)
holds.

Let Hy = {(ay,ay,...,ay) and Hy = (by,bs,...,by) (¢,m > 1) be numerical semigroups. We
choose d; € Hy \ {b1,bs,...,by} and d, € Hy \ {ay,az,...,a;} such that ged(d;,d>) = 1. We
say that

H = (d\H|,d>H;) = (d1ay,das, . ..,d1ay,dyby,drbs, . .. ,dyby,)

is a gluing of H| and H, with respect to d| € H and d, € H;.

Note that every three-generated symmetric numerical semigroup H is obtained by gluing of a
two-generated numerical semigroup H; and N ([[4, Section 3], [T3, Proposition 3]). Leta,b € Z
be positive integers with ged(a,b) = 1. We set H; = (a,b) and assume that H; is minimally
generated by two-elements. Choose ¢ € H; and d € N so that ¢,d satisfy the conditions that
¢>0,d>1,c¢{ab}, and gcd(c,d) = 1. Hence, ged(da,db,c) = 1. We consider a gluing
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H = (dH,,cN) of H| and N with respect to d € N and ¢ € H;. Let k be a field. We then have
the isomorphism

k[H] = k[X,Y,Z]/ (X" —Y4,z9 —X™Y")
of k-algebras, where ¢ = am + bn with m,n € N. Hence, a(k[H]) =d(ab—a—b)+ (d — 1)c.

Corollary 4.4. Let H be a three-generated symmetric numerical semigroup. Under the same
notation of above, the equality

#%{[H] = d(ab—a—b)+ (d— 1)C+1
holds.

Example 4.5. Let k be a field and H = (4,6,7). Then H = (2(2,3),7N) and
R=k[H] = k[X,Y,Z]/(X? —Y?, 72> - X?Y).
In particular, a(R) = 9 and # 2, = ¢(H) = 10. Indeed, we have the equality
Zr = {*0.17), (%17 1%, (t* 1), (t*,1%), (1%, 1)}
U {(3,615,419), (11 112,613), (7,619), (15,8, (7, 1%)).
For an R-module M, we denote by [M] the isomorphism class of M.

Corollary 4.6. Suppose that R = k[H| is a Gorenstein ring. Then the equalities
{[1]11€ 2k} ={[R:x ") [me N\H} and #{[1] |1 € 2k} =5
hold.

Proof. Note that R :g ™ = t™(R :g t"") as an R-module for each m € N\ H. This shows the
equality {[/] | I € Zr} = {[R :r "] | m € N\ H} and its cardinality is at most a half of c. We
now assume R :g /" = t*(R :g ") for some m,m’ € N\ H and ¢ € Z. Then

R:(L,M) =t"R:(1,") =R: ' (1,f")) =R: (¢t ,t=1+™).

As R is Gorenstein, we have (1,/) = (+~¢,¢~ ) in k[t,t~"]. Since —¢ < —C+m’, we have
¢=0and m = —{+m' = m'. Hence the cardinality of {[I] | € 2} is the half of c. O

Remark 4.7. There exists a one-dimensional local Gorenstein numerical semigroup ring A with
infinite residue class field (e.g., Q[[t?,¢"]], C[[t*,#>,£%]]) admitting infinitely many two-generated
Ulrich ideals. Hence 2 = .

When A is a local ring, although the set 24 is not necessarily finite, there is an associated
graded ring G with respect to a filtration of ideals such that Z¢ is a finite set.

Let (A,m) be a Noetherian local ring with dimA = 1 and V = A the integral closure of A in
its total ring Q(A) of fractions. Assume that V is a DVR which is a module-finite extension of
Aand A/m =V /n, where n =1V (¢t € V) denotes the maximal ideal of V. Let o(—) denote the
n-adic valuation (or the order function) of V and set

v(A) ={o(f) |07 f e A}.
Then, Hy = v(A) is called the value semigroup of A, which is indeed a numerical semigroup.

Let ¢ = A : V denote the conductor of A. Then ¢ = r*#4)V and c(Hy) = £4(V /¢). Note that A is
Gorenstein if and only if Hy = v(A) is symmetric ([J, Theorem]).
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For each ¢ € Z, we set F; = n‘NA. Then .Z = {Fy} ez is a filtration of ideals in A. We define

G=G(F) = DF/Fry =P na)/ (' na)
>0 >0

and call it the associated graded ring of A with respect to .% . Note that, for each £ > 0, Gy # (0)
if and only if £ € Hy. This shows Hy = {¢ > 0| G; # (0)} and the isomorphism below:

G =EPFi/Fri1 = (A/m)[Hy).
>0

With this notation we have the following.

Corollary 4.8. Let (A,m) be a one-dimensional Gorenstein complete local domain with alge-
braically closed residue class field. Let G = G(F) be the associated graded ring of A with
respect to the filtration ¥ = {né NA} ez, where n denotes the maximal ideal of V = A. Then
the equality

#{I | I is a graded ideal of G such that G/I is Gorenstein and ug(I) > 2} = c(Hy)
holds, where Hy = v(A) denotes the value semigroup of A.
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