HOW MANY IDEALS WHOSE QUOTIENT RINGS ARE GORENSTEIN EXIST?

NAOKI ENDO

Abstract

This paper investigates a naive question of how many non-principal ideals whose residue class rings are Gorenstein exist in a given Gorenstein ring. The main result provides that the number of such graded ideals in a symmetric numerical semigroup ring R over a field coincides with the conductor of the semigroup. We furthermore provide a complete list of nonprincipal graded ideals I in R whose quotient rings R / I are Gorenstein.

1. Introduction

Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $d=\operatorname{dim} A \geq 0$. An \mathfrak{m}-primary ideal I is called Ulrich, if the associated graded ring $\operatorname{gr}_{I}(A)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ is a Cohen-Macaulay ring with $\mathrm{a}\left(\operatorname{gr}_{I}(A)\right)=1-d$ and I / I^{2} is free as an A / I-module, where $\mathrm{a}\left(\operatorname{gr}_{I}(A)\right)$ stands for the ainvariant of $\operatorname{gr}_{I}(A)$. When I contains a parameter ideal Q of A as a reduction, i.e., $I^{r+1}=Q I^{r}$ for some $r \geq 0$, the ideal I is Ulrich if and only if $I \neq Q, I^{2}=Q I$, and I / Q is a free A / I-module ([4, Definition 1.1, Lemma 2.3]). The notion of Ulrich ideal is one of the modifications of that of stable maximal ideal introduced in 1971 by his monumental paper [U]] of J. Lipman. The present modification was formulated by S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida [4] in 2014, where the authors developed and consolidated the basic theory of Ulrich ideals. As an example, since I / Q is free as an A / I-module, we have the inequality $\left(\mu_{A}(I)-d\right) \cdot \mathrm{r}(A / I) \leq \mathrm{r}(A)([4$, Corollary $2.6(\mathrm{~b})])$, where $\mu_{A}(-)$ and $\mathrm{r}(-)$ denote the number of generators and the Cohen-Macaulay type, respectively. Subsequently, the authors of [5] studied the structure of the complex $\mathbf{R H o m}_{A}(A / I, A)$ in the derived category of A, and proved that the equality $\left(\mu_{A}(I)-d\right) \cdot \mathrm{r}(A / I)=\mathrm{r}(A)$ holds ([5, Corollary 2.6]). Hence, A is Gorenstein if and only if A / I is Gorenstein and $\mu_{A}(I)=d+1$, if an Ulrich ideal I exists.

Motivated by this observation, in this paper we investigate the following question.
Question 1.1. Let A be a Gorenstien ring with $d=\operatorname{dim} A>0$. How many ideals I of A with $\mathrm{ht}_{A} I=1$ which satisfy the ring A / I is Gorenstein and $\mu_{A}(I) \geq 2$ exist?

Every Ulrich ideal in a one-dimensional Gorenstein local ring satisfies the conditions stated as in Queistion [..]. Whereas, based on the past experience on analysis for Ulrich ideals ([II, [2, 3, [5]), it is rather difficult to make a list of all the Ulrich ideals even for one-dimensional Cohen-Macaulay local rings, especially for numerical semigroup rings; see e.g., [⿴囗, Theorem 3.9, Theorem 4.1]. In light of the result that there are only finitely many Ulrich ideals generated by monomials in numerical semigroup rings ([4], Theorem 6.1]), we start our investigation on

[^0]Question I. l by going over graded ideals. Still, it remains unclear the question even if we restrict to graded ideals in numerical semigroup rings, which we will clarify in this paper.

Let \mathbb{N} be the set of non-negative integers. A numerical semigroup is a non-empty subset H of \mathbb{N} which is closed under addition, contains the zero element, and whose complement in \mathbb{N} is finite. Every numerical semigroup H admits a finite minimal system of generators, i.e., there exist positive integers $a_{1}, a_{2}, \ldots, a_{\ell} \in H(\ell \geq 1)$ such that

$$
H=\left\langle a_{1}, a_{2}, \ldots, a_{\ell}\right\rangle=\left\{\sum_{i=1}^{\ell} c_{i} a_{i} \mid c_{i} \in \mathbb{N} \text { for all } 1 \leq i \leq \ell\right\}
$$

For a field k, the ring $k[H]=k\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]$ is called the numerical semigroup ring of H over k, where t denotes an indeterminate over k. Then $R=k[H]$ forms a one-dimensional Noetherian graded integral domain; moreover the ring R enjoys a beautiful relation with its corresponding semigroup H. A typical example is that the maximum integer $\mathrm{f}(H)$ in the set $\mathbb{N} \backslash H$ coincides with the a-invariant a (R) of the ring $R=k[H]$ ([6, Example (2.1.9)]). Besides, the semigroup H is symmetric, i.e., the equality $\#\{n \in H \mid n<\mathrm{c}(H)\}=\#(\mathbb{N} \backslash H)$ holds, if and only if its semigroup ring $R=k[H]$ is Gorenstein, where $\#(-)$ denotes the cardinality of a set and $\mathrm{c}(H)=\mathrm{f}(H)+1$ is the conductor of H. See [8, Proposition 2.21] or [10), Theorem] for the proof of this fact.

With this notation, the main result of this paper is stated as follows.
Theorem 1.2. Suppose that $R=k[H]$ is a Gorenstein ring. Then the equality

$$
\#\left\{I \mid I \text { is a graded ideal of } R \text { such that } R / I \text { is Gorenstein and } \mu_{R}(I) \geq 2\right\}=\mathrm{c}(H)
$$

holds.
Let us now explain how this paper is organized. To show Theorem [.2. , we need several auxiliaries which we will prepare in Section 2. We actually provide them in a more general setting, not only for numerical semigroup rings. We shall prove Theorem $[.2$ in Section 3 starting with the case where $\mathrm{a}(R / I)<\mathrm{a}(R)$. In Section 4 we finally provide a complete list of non-principal graded ideals I in R whose quotient rings R / I are Gorenstein. As an application of Theorem [L.2, we consider such ideals in the associated graded ring with respect to a certain filtration of ideals. Examples are explored as well.

2. Preliminaries

Let $R=\bigoplus_{n \geq 0} R_{n}$ be a one-dimensional Noetherian graded integral domain. Throughout this section, we assume $k=R_{0}$ is a field, and $R_{n} \neq(0)$ and $R_{n+1} \neq(0)$ for some $n \geq 0$. Let W be the set of non-zero homogeneous elements in R. Note that the localization $W^{-1} R=K\left[t, t^{-1}\right]$ of R with respect to W is a simple graded ring, i.e., every non-zero homogeneous element is invertible, where t is a homogeneous element of degree 1 which is transcendental over k, and $K=\left[W^{-1} R\right]_{0}$ is a field. There is an exact sequence

$$
0 \rightarrow R \rightarrow K\left[t, t^{-1}\right] \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(R) \rightarrow 0
$$

of graded R-modules, where \mathfrak{m} denotes the graded maximal ideal of R and $\mathrm{H}_{\mathfrak{m}}^{1}(R)$ is the 1 st graded local cohomology module of R with respect to \mathfrak{m}. As $R_{0}=k$ and $\left[\mathrm{H}_{\mathfrak{m}}^{1}(R)\right]_{0}$ is a finitedimensional k-vector space (remember that $\mathrm{H}_{\mathfrak{m}}^{1}(R)$ is an Artinian R-module), the field extension
K / k is finite. Hence $k=K$, if k is an algebraically closed field. Let \bar{R} be the integral closure of R in its quotient field $\mathrm{Q}(R)$.

We begin with the following which was pointed out by S . Goto.
Lemma 2.1. The equality $\bar{R}=K[t]$ holds in $\mathrm{Q}(R)$.
Proof. Note that \bar{R} is a graded ring and $\bar{R} \subseteq W^{-1} R=K\left[t, t^{-1}\right]$; see e.g., [14, page 157]. As the field k is Nagata, so is the finitely generated k-algebra R. Thus \bar{R} is a finite R-module. As $R_{n}=(0)$ for all $n<0$ and $R_{0}=k$, we see that $[\bar{R}]_{n}=(0)$ for all $n<0, L=[\bar{R}]_{0}$ is a field, and $k \subseteq L \subseteq K$. Set $N=\bigoplus_{n>0}[\bar{R}]_{n}$. Since the local ring \bar{R}_{N} of \bar{R} at the maximal ideal N is a DVR, the ideal N is principal. We choose a homogeneous element $f \in \bar{R}$ of degree $q>0$ such that $N=f \bar{R}$. Hence $\bar{R}=L[N]=L[f] \subseteq W^{-1} R=K\left[t, t^{-1}\right]$. Besides, because $\bar{R}\left[f^{-1}\right]=L\left[f, f^{-1}\right]$ is a simple graded ring and $R \subseteq \bar{R}\left[f^{-1}\right]$, we have $W^{-1} R \subseteq \bar{R}\left[f^{-1}\right]=L\left[f, f^{-1}\right]$. Therefore

$$
K\left[t, t^{-1}\right]=L\left[f, f^{-1}\right]
$$

so that $K=L$ and $q=1$. This shows $\bar{R}=L[f]=K[f]=K[t]$, as claimed.
For R-submodules X and Y of $\mathrm{Q}(R)$, let $X: Y=\{a \in \mathrm{Q}(R) \mid a Y \subseteq X\}$. If we consider ideals I, J of R, we set $I:_{R} J=\{a \in R \mid a J \subseteq I\}$. Hence $I:_{R} J=(I: J) \cap R$.

Remark 2.2. Let I be a non-zero graded ideal of R. It is straightforward to check that $R: I$ is a graded R-submodule of $K\left[t, t^{-1}\right]$ which contains R. In addition, the natural isomorphism $R: I \xrightarrow{\cong} \operatorname{Hom}_{R}(I, R), \alpha \mapsto(x \mapsto \alpha x)$ is graded. Thus, provided $k=K$, every homogeneous component of $\operatorname{Hom}_{R}(I, R)$ has dimension, as a k-vector space, at most 1 .

For a Cohen-Macaulay graded ring $A=\bigoplus_{n \geq 0} A_{n}$ such that A_{0} is a local ring, we set a $(A)=$ $\max \left\{n \in \mathbb{Z} \mid\left[\mathrm{H}_{\mathfrak{M}}^{d}(A)\right]_{n} \neq(0)\right\}$ which is called the a-invariant of A ([6, Definition (3.1.4)]). Here, \mathfrak{M} denotes the unique graded maximal ideal of $A, d=\operatorname{dim} A$, and $\left\{\left[\mathrm{H}_{\mathfrak{M}}^{d}(A)\right]_{n}\right\}_{n \in \mathbb{Z}}$ is the homogeneous components of the d-th graded local cohomology module $\mathrm{H}_{\mathfrak{M}}^{d}(A)$ of A with respect to \mathfrak{M}. When A admits the graded canonical module K_{A}, one has a $(A)=-\min \{n \in \mathbb{Z} \mid$ $\left.\left[\mathrm{K}_{A}\right]_{n} \neq(0)\right\}$.
Let M be a graded R-module and ℓ an integer. Let $M(\ell)$ denote the graded R-module whose underlying R-module is the same as that of the R-module M and the grading is given by $[M(\ell)]_{n}=M_{\ell+n}$ for all $n \in \mathbb{Z}$. When M is finitely generated, we denote by $\mu_{R}(M)$ the minimal number of generators of M.

With this notation, we furthermore assume R admits a graded canonical module K_{R}. Let $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, \mathrm{K}_{R}\right)$ denote the canonical dual functor. We then have the following.

Lemma 2.3. Suppose that R is a Gorenstein ring. Let I be a graded ideal of R such that R / I is Gorenstein and $\mu_{R}(I) \geq 2$. Then the following assertions hold true.
(1) $\left[I^{\vee}\right]_{-\mathrm{a}(R)} \neq(0)$ and $\left[I^{\vee}\right]_{-\mathrm{a}(R / I)} \neq(0)$.
(2) $\min \left\{n \in \mathbb{Z} \mid\left[I^{\vee}\right]_{n} \neq(0)\right\}=\min \{-\mathrm{a}(R),-\mathrm{a}(R / I)\}$.
(3) $\mu_{R}\left(I^{\vee}\right)=2$.
(4) If $k=K$, then $\mathrm{a}(R) \neq \mathrm{a}(R / I)$.
(5) $I^{\vee}=R f+R g$ for some $f \in\left[I^{\vee}\right]_{-\mathrm{a}(R)}$ and $g \in\left[I^{\vee}\right]_{-\mathrm{a}(R / I)}$.

Proof. We set $a=\mathrm{a}(R), b=\mathrm{a}(R / I)$, and $n=\min \left\{n \in \mathbb{Z} \mid\left[I^{\vee}\right]_{n} \neq(0)\right\}$. By taking the functor $(-)^{\vee}$ to the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$, we get the sequence

$$
\begin{equation*}
0 \rightarrow R(a) \rightarrow I^{\vee} \rightarrow(R / I)(b) \rightarrow 0 \tag{*}
\end{equation*}
$$

of graded R-modules, because $\mathrm{K}_{R} \cong R(a)$ and $\operatorname{Ext}_{R}^{1}\left(R / I, \mathrm{~K}_{R}\right) \cong \mathrm{K}_{(R / I)} \cong(R / I)(b)$. This shows $\left[I^{\vee}\right]_{-a} \neq(0),\left[I^{\vee}\right]_{-b} \neq(0)$, and $n=\min \{-a,-b\}$. Besides, the exact sequence (*) implies $\mu_{R}\left(I^{\vee}\right) \leq 2$. As $I^{\vee \vee} \cong I$ and $\mu_{R}(I) \geq 2$, we get $\mu_{R}\left(I^{\vee}\right)=2$. This proves the assertions (1), (2), and (3).

If $k=K$, then all the homogeneous components of $I^{\vee} \cong \operatorname{Hom}_{R}(I, R)(a)$, as a k-vector space, have dimension at most 1 . Thus $a \neq b$, and the assertion (4) holds.

Recall that \mathfrak{m} is the graded maximal ideal of R. By applying the functor $R / \mathfrak{m} \otimes_{R}-$ to the sequence $(*)$, we have the exact sequence of the form:

$$
(R / \mathfrak{m})(a) \xrightarrow{\xi} I^{\vee} / \mathfrak{m} I^{\vee} \xrightarrow{\eta}(R / \mathfrak{m})(b) \rightarrow 0
$$

As $\mu_{R}\left(I^{\vee}\right)=2$, the map ξ is injective. We choose $f \in\left[I^{\vee}\right]_{-a}$ and $g \in\left[I^{\vee}\right]_{-b}$ such that $\bar{f}=\xi(1)$ and $\eta(\bar{g})=1$, where $\bar{*}$ denotes the image in $I^{\vee} / \mathfrak{m} I^{\vee}$. Then the images of f, g form a k-basis of $I^{\vee} / \mathfrak{m} I^{\vee}$. Hence $I^{\vee}=R f+R g$ by Nakayama's lemma.

Remark 2.4. If R is a numerical semigroup ring over a field k, then $k=K$. Whereas, if $k=K$, e.g., k is an algebraically closed field, then the ring R is isomorphic to a semigroup ring of a numerical semigroup ([6, Proposition (2.2.11)]).

3. Proof of Theorem [.2]

We first fix the notation on which all the results in this section are based.
Setup 3.1. Let \mathbb{N} be the set of non-negative integers and $a_{1}, a_{2}, \ldots, a_{\ell} \in \mathbb{Z}(\ell \geq 1)$ be positive integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)=1$. We set

$$
H=\left\langle a_{1}, a_{2}, \ldots, a_{\ell}\right\rangle=\left\{\sum_{i=1}^{\ell} c_{i} a_{i} \mid c_{i} \in \mathbb{N} \text { for all } 1 \leq i \leq \ell\right\}
$$

and call it the numerical semigroup generated by $\left\{a_{i}\right\}_{1 \leq i \leq \ell}$. The reader may consult the book [112] for the fundamental results on numerical semigroups. Let $S=k[t]$ denote the polynomial ring over a field k, and define

$$
k[H]=k\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right] \subseteq S
$$

which we call the semigroup ring of H over k. The ring $R=k[H]$ forms a Noetherian integral domain with $\operatorname{dim} R=1$ and is a \mathbb{Z}-graded subring of S whose grading $\left\{R_{n}\right\}_{n \in \mathbb{Z}}$ is given by

$$
R_{n}= \begin{cases}k t^{n} & \text { if } n \in H \\ (0) & \text { otherwise }\end{cases}
$$

In addition, S is a birational module-finite extension of R, so that $\bar{R}=S$, where \bar{R} denotes the integral closure of R in its quotient field $\mathrm{Q}(R)$. Let

$$
\mathrm{c}(H)=\min \{n \in \mathbb{Z} \mid m \in H \text { for all } m \in \mathbb{Z} \text { such that } m \geq n\}
$$

and $\operatorname{set} \mathrm{f}(H)=\max (\mathbb{Z} \backslash H)$ which is called the Frobenius number of H. By [6$]$, we get

$$
R: S=t^{\mathrm{c}(H)} S \text { and } \mathrm{f}(H)=\mathrm{c}(H)-1=\mathrm{a}(R)
$$

Note that, for each non-zero ideal I in R, we have $\mathrm{a}(R / I) \in H$, whence $\mathrm{a}(R / I) \neq \mathrm{a}(R)$; see also Lemma 2.3 (4). We set $a=\mathrm{a}(R)$ and $c=\mathrm{c}(H)$.

The following plays a key in our argument.
Proposition 3.2. Suppose that $R=k[H]$ is a Gorenstein ring. Then the equality

$$
\#\left\{I \mid I \text { is a graded ideal of } R \text { such that } \mathrm{a}(R / I)<a \text { and } \mu_{R}(I) \geq 2\right\}=\frac{c}{2}
$$

holds.
Proof. Let \mathscr{Y}_{R} be the set of graded ideals I of R such that R / I is Gorenstein, $\mathrm{a}(R / I)<a$, and $\mu_{R}(I) \geq 2$. To show the required equality, we may assume $R \neq \bar{R}$. Thus $\mathscr{Y}_{R} \neq \emptyset$. For each $I \in \mathscr{Y}_{R}$, since $\mathrm{a}(R / I)<a$, we then have $R_{m} \subseteq I$ for all $m \geq c=a+1$. By setting $J=R: I$, we see that J is a graded ideal of R and

$$
R \subseteq J \subseteq R: \mathfrak{c}=R:(R: \bar{R})=\bar{R}
$$

where the second inclusion follows from $\mathfrak{c} \subseteq I$ and the last equality holds by [9 , Bemerkung 2.5] (remember that R is a Gorenstein ring). This shows $J=\left(1, t^{m}\right)$ for some $m \in \mathbb{N} \backslash H$. So we can consider the map

$$
\Phi: \mathscr{Y}_{R} \rightarrow \mathbb{N} \backslash H
$$

defined by $\Phi(I)=m$ for each $I \in \mathscr{Y}_{R}$, where $R: I=\left(1, t^{m}\right)$.
Conversely, for each $m \in \mathbb{N} \backslash H$, we set $J=\left(1, t^{m}\right)$. Then $R \subsetneq J \subseteq \bar{R}=k[t]$. By setting $I=R: J$, we have

$$
\mathfrak{c}=R: \bar{R} \subseteq R: J=I \subsetneq R
$$

which yield that $\mathrm{a}(R / I)<a, \mu_{R}(I) \geq 2$, and the ring R / I is Gorenstein. Indeed, since $t^{c} \bar{R}=\mathfrak{c} \subseteq I$ and $\mathrm{a}(R / I) \in H$, we have $\mathrm{a}(R / I)<a$. The K_{R}-dual $(-)^{\vee}$ of the exact sequence $0 \rightarrow I \rightarrow R \rightarrow$ $R / I \rightarrow 0$ induces the sequence

$$
0 \rightarrow R(a) \xrightarrow{\varphi} I^{\vee} \rightarrow \operatorname{Ext}_{R}^{1}\left(R / I, \mathrm{~K}_{R}\right) \rightarrow 0
$$

of graded R-modules, because $\mathrm{K}_{R} \cong R(a)$. Let $f=\varphi(1)$. Then $f \in\left[I^{\vee}\right]_{-a}$ forms a part of a minimal basis of I^{\vee}. As $I^{\vee} \cong J$ and $\mu_{R}(J)=2$, we get $\mu_{R}(I) \geq 2$; while the R-module $\operatorname{Ext}_{R}^{1}\left(R / I, \mathrm{~K}_{R}\right)$ is cyclic, so that R / I is a Gorenstein ring, because $\operatorname{Ext}_{R}^{1}\left(R / I, \mathrm{~K}_{R}\right) \cong \mathrm{K}_{(R / I)}$ is the canonical module of R / I. Here, the proof of above especially shows that if $\mathrm{a}(R / I)<a$ then R / I is Gorenstein. Hence, we define the map

$$
\Psi: \mathbb{N} \backslash H \rightarrow \mathscr{Y}_{R}, \quad m \mapsto R:\left(1, t^{m}\right)
$$

and it is straightforward to check the composite maps $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are identity. In particular, the map Φ is bijective. Therefore

$$
\#\left\{I \mid I \text { is a graded ideal of } R, \mathrm{a}(R / I)<a, \text { and } \mu_{R}(I) \geq 2\right\}=\# \mathscr{Y}_{R}=\#(\mathbb{N} \backslash H)=\frac{c}{2}
$$

where the last equality follows from the fact that H is symmetric, i.e., R is Gorenstein. This completes the proof.

We are ready to prove Theorem [.2.2.

Proof of Theorem [.2. Let \mathscr{X}_{R} be the set of graded ideals I of R such that R / I is Gorenstein and $\mu_{R}(I) \geq 2$. Similarly as in the proof of Proposition [3.2, we may assume $R \neq \bar{R}$. So $\mathscr{X}_{R} \neq \emptyset$. By Proposition [3.2, it suffices to show that the number of ideals $I \in \mathscr{X}_{R}$ with $\mathrm{a}(R / I)>a$ is a half of the conductor c of H.

For each $I \in \mathscr{X}_{R}$, we have $\mu_{R}\left(I^{\vee}\right)=2$, so we can write

$$
I^{\vee}=R f+R g \text { for some } f \in\left[I^{\vee}\right]_{-a} \text { and } g \in\left[I^{\vee}\right]_{-\mathrm{a}(R / I)}
$$

Set $b=\mathrm{a}(R / I)$. Since (0) $:_{R} g=(0)$, we get the exact sequence

$$
0 \rightarrow R(b) \xrightarrow{\xi} I^{\vee} \rightarrow C \rightarrow 0
$$

of graded R-modules, where $\xi(1)=g$ and $C=\operatorname{Coker} \xi$. We consider the graded ideal $J=(0):_{R}$ C of R. As C has a finite length and $C \cong I^{\vee} / R g \neq(0)$, we get $(0) \neq J \subsetneq R$. Besides, we have the isomorphism

$$
C \cong R \bar{f} \cong(R / J)(a)
$$

as a graded R-module, where \mp denotes the image in $I^{\vee} / R g$. Hence we obtain the sequence

$$
0 \rightarrow R(b) \rightarrow I^{\vee} \rightarrow(R / J)(a) \rightarrow 0
$$

of graded R-modules. By applying the functor $(-)^{\vee}$ to the above sequence, we have

$$
0 \rightarrow I \rightarrow R(a-b) \rightarrow \operatorname{Ext}_{R}^{1}\left(R / J, \mathrm{~K}_{R}\right)(-a) \rightarrow 0
$$

because $I^{\vee \vee} \cong I$ and $R(b)^{\vee}=\operatorname{Hom}_{R}\left(R(b), \mathrm{K}_{R}\right) \cong \operatorname{Hom}_{R}(R(b), R(a)) \cong R(a-b)$. In particular, $\mathrm{K}_{(R / J)} \cong \operatorname{Ext}_{R}^{1}\left(R / J, \mathrm{~K}_{R}\right)$ is cyclic; hence R / J is Gorenstein. By letting $\alpha=\mathrm{a}(R / J)$, we have $\mathrm{K}_{(R / J)} \cong(R / J)(\alpha)$. Therefore, by changing the shift by $b-a$, we get the exact sequence

$$
0 \rightarrow I(b-a) \xrightarrow{\psi} R \rightarrow(R / J)(\alpha-a+b-a) \rightarrow 0
$$

of graded R-modules. The degree 0 part of the following isomorphism

$$
R / \operatorname{Im} \psi \cong(R / J)(\alpha-2 a+b)
$$

induces $\alpha-2 a+b=0$; while $I(b-a) \cong \operatorname{Im} \psi \cong J$. Hence, $\mathrm{a}(R / J)=\alpha=2 a-b$ and $I \cong$ $J(a-b)$ as a graded R-module. In particular, $\mu_{R}(J) \geq 2$. Thus $J \in \mathscr{X}_{R}$.

Let W be the set of non-zero homogeneous elements in R. Consider the simple graded ring $W^{-1} R=k\left[t, t^{-1}\right]$, where t is a homogeneous element of degree 1 which is transcendental over k. Hence we have the commutative diagram below:

Note that the induced isomorphism $k\left[t, t^{-1}\right](a-b) \xrightarrow{\cong} k\left[t, t^{-1}\right]$ is given by the homothety of homogeneous element of degree $b-a$. Therefore $I=t^{b-a} J$.

To sum up this argument, for each $I \in \mathscr{X}_{R}$, there exists a graded ideal $J \in \mathscr{X}_{R}$ satisfying

$$
\mathrm{a}(R / J)=2 a-\mathrm{a}(R / I) \text { and } I=t^{\mathrm{a}(R / I)-a} J .
$$

This shows, if $\mathrm{a}(R / I)>a($ resp. $\mathrm{a}(R / I)<a)$, then $\mathrm{a}(R / J)<a($ resp. $\mathrm{a}(R / J)>a)$. So, there is a one-to-one correspondence between the set of ideals $I \in \mathscr{X}_{R}$ with a $(R / I)>a$, and the set of ideals $J \in \mathscr{X}_{R}$ with $\mathrm{a}(R / J)<a$. Finally we conclude that

$$
\# \mathscr{X}_{R}=\#\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)>a\right\}+\#\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)<a\right\}=\frac{c}{2}+\frac{c}{2}=c
$$

as desired.

4. Corollaries and examples

We summarize some consequences of Theorem [.2. In this section we maintain the notation as in Setup 3.1. Let \mathscr{X}_{R} be the set of graded ideals I of R such that R / I is Gorenstein and $\mu_{R}(I) \geq 2$. Recall that $a=\mathrm{a}(R)$ and $c=\mathrm{c}(H)$.

The direct consequence of the proof of Theorem $\mathbb{L 2}$. is stated as follows, which is useful to compute concrete examples.

Corollary 4.1. Suppose that $R=k[H]$ is a Gorenstein ring. For each $I \in \mathscr{X}_{R}$, we set $J=$ $t^{a-\mathrm{a}(R / I)} I$. Then the following assertions hold true.
(1) $J \in \mathscr{X}_{R}$ and $\mathrm{a}(R / J)=2 a-\mathrm{a}(R / I)$. Hence, if $\mathrm{a}(R / I)<a($ resp. $\mathrm{a}(R / I)>a)$, then $\mathrm{a}(R / J)>$ $a($ resp. $\mathrm{a}(R / J)<a)$.
(2) $\mathrm{a}(R / I) \in H, a \neq \mathrm{a}(R / I)$, and $a-\mathrm{a}(R / I) \in \mathbb{Z} \backslash H$.
(3) If $\mathrm{a}(R / I)<a$, then $a-\mathrm{a}(R / I) \in \mathbb{N} \backslash H$.
(4) If $\mathrm{a}(R / I)>a$, then $\mathrm{a}(R / I)-a \in \mathbb{N} \backslash H$.

Proof. We already proved the assertion (1) in the proof of Theorem [L.2. Recall that $\mathbf{a}(R / I) \in H$ and $a \notin H$. So $a \neq \mathrm{a}(R / I)$. As H is symmetric and $\mathrm{a}(R / I) \in H$, we see that $a-\mathrm{a}(R / I) \in$ $\mathbb{Z} \backslash H$. In particular, if $\mathrm{a}(R / I)<a$, then $a-\mathrm{a}(R / I) \in \mathbb{N} \backslash H$. On the other hand, we assume $\mathrm{a}(R / I)>a$. Since $J \in \mathscr{X}_{R}$ and $\mathrm{a}(R / J)<a$, we conclude that $\mathrm{a}(R / I)-a=a-\mathrm{a}(R / J) \in \mathbb{N} \backslash H$, as claimed.

The next provides a complete list of graded ideals in \mathscr{X}_{R}.
Corollary 4.2. Suppose that $R=k[H]$ is a Gorenstein ring. Then the equality

$$
\mathscr{X}_{R}=\left\{R:_{R} t^{m}, t^{m}\left(R:_{R} t^{m}\right) \mid m \in \mathbb{N} \backslash H\right\}
$$

holds. Moreover, for each $m \in \mathbb{N} \backslash H$, one has

$$
\mathrm{a}\left(R / R:_{R} t^{m}\right)=a-m \text { and } \mathrm{a}\left(R / t^{m}\left(R:_{R} t^{m}\right)\right)=a+m .
$$

Proof. Note that $R:\left(1, t^{m}\right)=R:_{R} t^{m}$ for all $m \in \mathbb{N} \backslash H$. By Proposition 3.2, there is a one-to-one correspondence below:

$$
\mathbb{N} \backslash H \longleftrightarrow\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)<a\right\}, m \longmapsto R:\left(1, t^{m}\right)
$$

This shows the equality $\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)<a\right\}=\left\{R:_{R} t^{m} \mid m \in \mathbb{N} \backslash H\right\}$. Besides, the proof of Theorem [l. 2 guarantees that the map

$$
\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)<a\right\} \longleftrightarrow\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)>a\right\}, I \longmapsto t^{a-\mathrm{a}(R / I)} I
$$

is bijective. Hence $\left\{I \in \mathscr{X}_{R} \mid \mathrm{a}(R / I)>a\right\}=\left\{t^{a-\mathrm{a}\left(R / R: R_{R} t^{m}\right)}\left(R:_{R} t^{m}\right) \mid m \in \mathbb{N} \backslash H\right\}$ holds. Since H is symmetric and $c=a+1$, it is straightforward to check that $\mathrm{a}\left(R / R:_{R} t^{m}\right)=a-m$ for all $m \in \mathbb{N} \backslash H$. Therefore the equality

$$
\mathscr{X}_{R}=\left\{R:_{R} t^{m}, t^{m}\left(R:_{R} t^{m}\right) \mid m \in \mathbb{N} \backslash H\right\}
$$

holds. Furthermore, by Corollary 4.1 (1), we have the equalities

$$
\mathrm{a}\left(R / t^{m}\left(R:_{R} t^{m}\right)\right)=2 a-\mathrm{a}\left(R / R:_{R} t^{m}\right)=2 a-(a-m)=a+m
$$

which complete the proof.
The ideals of the forms $R:_{R} t^{m}$ and $t^{m}\left(R:_{R} t^{m}\right)$ are easy to compute, especially in numerical semigroup rings, and provide numerous examples illustrating Theorem [.2.

Example 4.3. Let $k[t]$ be the polynomial ring over a field k and $R=k[H]$ the semigroup ring of a numerical semigroup H. Then the following assertions hold.
(1) Let $H=\langle 2,2 \ell+1\rangle(\ell \geq 1)$. Then $\mathrm{c}(H)=2 \ell$ and the equality

$$
\mathscr{X}_{R}=\left\{\left(t^{2}, t^{2 \ell+1}\right),\left(t^{4}, t^{2 \ell+1}\right), \ldots,\left(t^{2 \ell}, t^{2 \ell+1}\right),\left(t^{2 \ell+1}, t^{4 \ell}\right),\left(t^{2 \ell+1}, t^{4 \ell-2}\right), \ldots,\left(t^{2 \ell+1}, t^{2 \ell+2}\right)\right\}
$$

holds.
(2) Let $H=\langle 3,4\rangle$. Then $\mathrm{c}(H)=6$ and the equality

$$
\mathscr{X}_{R}=\left\{\left(t^{3}, t^{4}\right),\left(t^{4}, t^{6}\right),\left(t^{3}, t^{8}\right),\left(t^{8}, t^{9}\right),\left(t^{6}, t^{8}\right),\left(t^{4}, t^{9}\right)\right\}
$$

holds.
(3) Let $H=\langle 3,5\rangle$. Then $\mathrm{c}(H)=8$ and the equality

$$
\mathscr{X}_{R}=\left\{\left(t^{3}, t^{5}\right),\left(t^{5}, t^{6}\right),\left(t^{3}, t^{10}\right),\left(t^{5}, t^{9}\right),\left(t^{10}, t^{12}\right),\left(t^{9}, t^{10}\right),\left(t^{5}, t^{12}\right),\left(t^{6}, t^{10}\right)\right\}
$$

holds.
(4) Let $H=\langle n, n+1, \ldots, 2 n-2\rangle(n \geq 4)$. Then $\mathrm{c}(H)=2 n$ and the equality

$$
\begin{aligned}
\mathscr{X}_{R} & =\left\{\left(t^{n}, t^{n+1}, \ldots, t^{2 n-2}\right),\left(t^{n+1}, t^{n+2}, \ldots, t^{2 n-2}, t^{2 n}\right)\right\} \\
& \cup\left\{\left(t^{n}, t^{n+1}, \ldots, t^{n+i-1}, t^{n+i+1}, \ldots, t^{2 n-2}\right) \mid 1 \leq i \leq n-2\right\} \\
& \cup\left\{\left(t^{3 n-1}, t^{3 n}, \ldots, t^{4 n-3}\right),\left(t^{2 n}, t^{2 n+1}, \ldots, t^{3 n-3}, t^{3 n-1}\right)\right\} \\
& \cup\left\{\left(t^{2 n-i-1}, t^{2 n-i}, \ldots, t^{2 n-2}, t^{2 n}, \ldots, t^{3 n-i-3}\right) \mid 1 \leq i \leq n-2\right\}
\end{aligned}
$$

holds.
Let $H_{1}=\left\langle a_{1}, a_{2}, \ldots, a_{\ell}\right\rangle$ and $H_{2}=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle(\ell, m \geq 1)$ be numerical semigroups. We choose $d_{1} \in H_{2} \backslash\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ and $d_{2} \in H_{1} \backslash\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$ such that $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. We say that

$$
H=\left\langle d_{1} H_{1}, d_{2} H_{2}\right\rangle=\left\langle d_{1} a_{1}, d_{1} a_{2}, \ldots, d_{1} a_{\ell}, d_{2} b_{1}, d_{2} b_{2}, \ldots, d_{2} b_{m}\right\rangle
$$

is a gluing of H_{1} and H_{2} with respect to $d_{1} \in H_{2}$ and $d_{2} \in H_{1}$.
Note that every three-generated symmetric numerical semigroup H is obtained by gluing of a two-generated numerical semigroup H_{1} and \mathbb{N} ([], Section 3], [133, Proposition 3]). Let $a, b \in \mathbb{Z}$ be positive integers with $\operatorname{gcd}(a, b)=1$. We set $H_{1}=\langle a, b\rangle$ and assume that H_{1} is minimally generated by two-elements. Choose $c \in H_{1}$ and $d \in \mathbb{N}$ so that c, d satisfy the conditions that $c>0, d>1, c \notin\{a, b\}$, and $\operatorname{gcd}(c, d)=1$. Hence, $\operatorname{gcd}(d a, d b, c)=1$. We consider a gluing
$H=\left\langle d H_{1}, c \mathbb{N}\right\rangle$ of H_{1} and \mathbb{N} with respect to $d \in \mathbb{N}$ and $c \in H_{1}$. Let k be a field. We then have the isomorphism

$$
k[H] \cong k[X, Y, Z] /\left(X^{b}-Y^{a}, Z^{d}-X^{m} Y^{n}\right)
$$

of k-algebras, where $c=a m+b n$ with $m, n \in \mathbb{N}$. Hence, $\mathrm{a}(k[H])=d(a b-a-b)+(d-1) c$.
Corollary 4.4. Let H be a three-generated symmetric numerical semigroup. Under the same notation of above, the equality

$$
\# \mathscr{X}_{k[H]}=d(a b-a-b)+(d-1) c+1
$$

holds.
Example 4.5. Let k be a field and $H=\langle 4,6,7\rangle$. Then $H=\langle 2\langle 2,3\rangle, 7 \mathbb{N}\rangle$ and

$$
R=k[H] \cong k[X, Y, Z] /\left(X^{3}-Y^{2}, Z^{2}-X^{2} Y\right)
$$

In particular, $\mathrm{a}(R)=9$ and $\# \mathscr{X}_{R}=\mathrm{c}(H)=10$. Indeed, we have the equality

$$
\begin{aligned}
\mathscr{X}_{R} & =\left\{\left(t^{4}, t^{6}, t^{7}\right),\left(t^{6}, t^{7}, t^{8}\right),\left(t^{4}, t^{7}\right),\left(t^{4}, t^{6}\right),\left(t^{6}, t^{7}\right)\right\} \\
& \cup\left\{\left(t^{13}, t^{15}, t^{16}\right),\left(t^{11}, t^{12}, t^{13}\right),\left(t^{7}, t^{10}\right),\left(t^{6}, t^{8}\right),\left(t^{7}, t^{8}\right)\right\} .
\end{aligned}
$$

For an R-module M, we denote by $[M]$ the isomorphism class of M.
Corollary 4.6. Suppose that $R=k[H]$ is a Gorenstein ring. Then the equalities

$$
\left\{[I] \mid I \in \mathscr{X}_{R}\right\}=\left\{\left[R:_{R} t^{m}\right] \mid m \in \mathbb{N} \backslash H\right\} \text { and } \#\left\{[I] \mid I \in \mathscr{X}_{R}\right\}=\frac{c}{2}
$$

hold.
Proof. Note that $R:_{R} t^{m} \cong t^{m}\left(R:_{R} t^{m}\right)$ as an R-module for each $m \in \mathbb{N} \backslash H$. This shows the equality $\left\{[I] \mid I \in \mathscr{X}_{R}\right\}=\left\{\left[R:_{R} t^{m}\right] \mid m \in \mathbb{N} \backslash H\right\}$ and its cardinality is at most a half of c. We now assume $R:_{R} t^{m}=t^{\ell}\left(R:_{R} t^{m^{\prime}}\right)$ for some $m, m^{\prime} \in \mathbb{N} \backslash H$ and $\ell \in \mathbb{Z}$. Then

$$
R:\left(1, t^{m}\right)=t^{\ell}\left(R:\left(1, t^{m^{\prime}}\right)\right)=R:\left(t^{-\ell}\left(1, t^{m^{\prime}}\right)\right)=R:\left(t^{-\ell}, t^{-\ell+m^{\prime}}\right) .
$$

As R is Gorenstein, we have $\left(1, t^{m}\right)=\left(t^{-\ell}, t^{-\ell+m^{\prime}}\right)$ in $k\left[t, t^{-1}\right]$. Since $-\ell<-\ell+m^{\prime}$, we have $\ell=0$ and $m=-\ell+m^{\prime}=m^{\prime}$. Hence the cardinality of $\left\{[I] \mid I \in \mathscr{X}_{R}\right\}$ is the half of c.

Remark 4.7. There exists a one-dimensional local Gorenstein numerical semigroup ring A with infinite residue class field (e.g., $\mathbb{Q}\left[\left[t^{3}, t^{7}\right]\right], \mathbb{C}\left[\left[t^{4}, t^{5}, t^{6}\right]\right]$) admitting infinitely many two-generated Ulrich ideals. Hence $\mathscr{X}_{A}=\infty$.

When A is a local ring, although the set \mathscr{X}_{A} is not necessarily finite, there is an associated graded ring G with respect to a filtration of ideals such that \mathscr{X}_{G} is a finite set.

Let (A, \mathfrak{m}) be a Noetherian local ring with $\operatorname{dim} A=1$ and $V=\bar{A}$ the integral closure of A in its total ring $\mathrm{Q}(A)$ of fractions. Assume that V is a DVR which is a module-finite extension of A and $A / \mathfrak{m} \cong V / \mathfrak{n}$, where $\mathfrak{n}=t V(t \in V)$ denotes the maximal ideal of V. Let $\mathrm{o}(-)$ denote the \mathfrak{n}-adic valuation (or the order function) of V and set

$$
v(A)=\{\mathrm{o}(f) \mid 0 \neq f \in A\} .
$$

Then, $H_{A}=v(A)$ is called the value semigroup of A, which is indeed a numerical semigroup. Let $\mathfrak{c}=A: V$ denote the conductor of A. Then $\mathfrak{c}=t^{\mathfrak{c}\left(H_{A}\right)} V$ and $\mathfrak{c}\left(H_{A}\right)=\ell_{A}(V / \mathfrak{c})$. Note that A is Gorenstein if and only if $H_{A}=v(A)$ is symmetric ([IU0, Theorem]).

For each $\ell \in \mathbb{Z}$, we set $F_{\ell}=\mathfrak{n}^{\ell} \cap A$. Then $\mathscr{F}=\left\{F_{\ell}\right\}_{\ell \in \mathbb{Z}}$ is a filtration of ideals in A. We define

$$
G=G(\mathscr{F})=\bigoplus_{\ell \geq 0} F_{\ell} / F_{\ell+1}=\bigoplus_{\ell \geq 0}\left(\mathfrak{n}^{\ell} \cap A\right) /\left(\mathfrak{n}^{\ell+1} \cap A\right)
$$

and call it the associated graded ring of A with respect to \mathscr{F}. Note that, for each $\ell \geq 0, G_{\ell} \neq(0)$ if and only if $\ell \in H_{A}$. This shows $H_{A}=\left\{\ell \geq 0 \mid G_{\ell} \neq(0)\right\}$ and the isomorphism below:

$$
G=\bigoplus_{\ell \geq 0} F_{\ell} / F_{\ell+1} \cong(A / \mathfrak{m})\left[H_{A}\right] .
$$

With this notation we have the following.
Corollary 4.8. Let (A, \mathfrak{m}) be a one-dimensional Gorenstein complete local domain with algebraically closed residue class field. Let $G=G(\mathscr{F})$ be the associated graded ring of A with respect to the filtration $\mathscr{F}=\left\{\mathfrak{n}^{\ell} \cap A\right\}_{\ell \in \mathbb{Z}}$, where \mathfrak{n} denotes the maximal ideal of $V=\bar{A}$. Then the equality
$\#\left\{I \mid I\right.$ is a graded ideal of G such that G / I is Gorenstein and $\left.\mu_{G}(I) \geq 2\right\}=\mathrm{c}\left(H_{A}\right)$
holds, where $H_{A}=v(A)$ denotes the value semigroup of A.

References

[1] N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small multiplicity, J. Algebra, $\mathbf{6 1 1}$ (2022), 435-479.
[2] N. Endo, S. Goto, S.-I. Iai, and N. Matsuoka, Ulrich ideals in the ring $k\left[\left[t^{5}, t^{11}\right]\right]$, arXiv:2111.01085.
[3] S. Goto, R. Isobe, and N. Taniguchi, Ulrich ideals and 2-AGL rings, J. Algebra, 555 (2020), 96-130.
[4] S. Goto, K. Ozeki, R. Takahashi, K.-I. Watanabe, and K.-I. Yoshida, Ulrich ideals and modules, Math. Proc. Cambridge Philos. Soc., 156 (2014), no.1, 137-166.
[5] S. Goto, R. Takahashi, and N. Taniguchi, Ulrich ideals and almost Gorenstein rings, Proc. Amer. Math. Soc., 144 (2016), 2811-2823.
[6] S. Goto and K.-I. Watanabe, On graded rings I, J. Math. Soc. Japan, 30 (1978), no. 2, 179-213.
[7] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193.
[8] J. Herzog and E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimnension 1, S.-Ber. Heidelberger Akad. Wiss. II. Abh., 1971.
[9] J. Herzog and E. Kunz, Der kanonische Modul eines-Cohen-Macaulay-Rings, Lecture Notes in Mathematics, 238, Springer-Verlag, 1971.
[10] E. KunZ, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25 (1970), no. 4, 748-751.
[11] J. LipmAn, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685.
[12] J. C. Rosales and P. A. García-Sánchez, Numerical semigroups. Developments in Mathematics, 20. Springer, New York, 2009.
[13] K.-I. Watanabe, Some examples of one dimensional Gorenstein domains, Nagoya Math. J., 49 (1973), 101-109.
[14] O. Zariski and P. SamuEl, Commutative Algebra Volume II, Springer, 1960.
School of Political Science and Economics, Meiji University, 1-9-1 Eifuku, Suginami-ku, TOKYO 168-8555, JAPAN

Email address: endo@meiji.ac.jp
URL: https://www.isc.meiji.ac.jp/~endo/

[^0]: 2020 Mathematics Subject Classification. 13H10, 13A15, 13A02.
 Key words and phrases. Gorenstein ring, numerical semigroup ring, a-invariant.
 The author was partially supported by JSPS Grant-in-Aid for Young Scientists 20K14299 and JSPS Grant-inAid for Scientific Research (C) 23K03058.

