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Abstract—We propose a mathematical model for geometric op-
tical illusions, in which optical illusions are explained by skeleton
dislocations in blurred images. We first observe by computational
experiments with Voronoi diagrams that the skeletons of figures
consisting of thin lines are dislocated when the images are blurred,
and next consider the relations between the dislocations and
geometric optical illusions. We can see that many classic illusions
can be explained by this mathematical model in a unifying
manner.

I. INTRODUCTION

Optical illusions are phenomena in which what we see are
different from physical reality, and there are a wide range
of variations. Among them, the historically oldest class is
geometric optical illusions in which the sizes and orientations
of geometric objects are perceived differently from the actual
sizes and orientations. Typical examples include the Miiller-
Lyer illusion, in which two line segments of the same length
appear as if they have different lengths, and the Zollner
illusion, in which parallel lines appear to be non-parallel [5],

[7].

Many studies have been done to explain this class of
illusions. Empirically it is observed that local orientations of
geometric elements mislead perceived global orientations, and
acute angles are apt to be perceived larger than the actual
angles. These observations explain some of geometric optical
illusions. Mathematical models have also been proposed by
many researches. For example, Fermtiller and Malm [3] argued
that orientation illusions such as Poggendorff illusion and the
Café Wall illusion can be explained by the biases of locations
of edges due to finite resolution of retinal images. Arai and
Arai [1] argued that illusion components can be extracted
by the wavelet-type decomposition of images and that the
strengths of illusions can be controlled by the addition and
subtraction of those components.

In this paper, we propose a computational model of ge-
ometric optical illusions using computational-geometry tools
such as the Voronoi diagram and the medial axis. We concen-
trate on figures composed of thin lines. We study how their
skeletal structures change when the figures are blurred, and
compare the changes with our perception of illusion figures.

Fermiiller and Malm [3] also argued about the relation
of image blurring with the optical illusions, but they studied
boundaries between two different gray-label regions. In this

paper, on the other hand, we concentrate on figures composed
of thin lines.

The structure of the paper is as follows. In Section 2
we review a robust method for extracting the medial axis
and skeleton using the Voronoi diagrams. In Section 3, we
observe how the skeleton of figures is dislocated when the
images are blurred. In Section 4, we associate the illusion
phenomena and the dislocation of the skeleton, and show
typical optical illusions, including the Miiller-Lyer illusion, the
Z6llner illusion and Hering illusion, can be explained by this
model in a unifying manner.

II. ROBUST EXTRACTION OF SKELETONS

Let X C R? be a connected region in the plane, and let
0X denote the boundary of X. We assume that X is closed,
that is, 0X C X. Let ¢(p,r) denote the circle centered at
p € R? with radius r > 0. We define M (X) as the set of
all center points p such that the maximal circle ¢(p,r) in X
touches 0X at least at two points:

M(X) = {peR?|c(p,r) C X and |c(p,r) NIX]| > 2
for some r > 0}, (1
where |Y'| represents the number of elements in set Y. We call

M (z) the medial axis of X [8]. The medial axis of X can be
regarded as a skeletal structure of the figure X.

For two points p and ¢ we denote by ||p—¢|| the Euclidean
distance between p and ¢. Let S = {p1,po,...,pn} be a set
of n points in the plane. For p; € S, we define

R(S;p)= )

p; ES,p;#pi

{peR’||lp—npill <llp—pill}- @

A point in R(S;p;) is nearer to p; than to any other points in
S. We call R(S;p;) the Voronoi region of p; with respect to S.
The plane is partitioned into R(S;p1), R(S;p2), .., R(S;pn)
and their boundaries. We call this partition the Voronoi diagram
for S [12]. We denote the Voronoi diagram for S by Vor(S).
The boundary edges of two Voronoi regions and called Voronoi
edges, and the common terminal points of three or more
Voronoi edges are called Voronoi points. The elements of S
are called the generators of Vor(S). The Voronoi diagram
is the partition of the plane into regions according to the
nearest generators. Hence, in particular, a Voronoi edge is in



equal distance from the two generators associated with the side
Voronoi regions.

The medial axis of X can be computed approximately
using the Voronoi diagram in the following way [12]. First,
we replace the boundary X with sequences of points densely
located along 0.X, and let the resulting set of points be denoted
by G(X). We abbreviate G(X) simply by G if X is clear in
the context. Two points p and ¢ in G are said to be adjacent
if they are located next to each other along 9X.

Next we compute the Voronoi diagram for the generator
set G with respect to the Euclidean distance. Let the resulting
Voronoi diagrams be Vor(G), and let E be the set of all
Voronoi edges in Vor(G).

Finally we collect from E those Voronoi edges whose
two sides generators are not adjacent to each other on the
boundary X and which are included in X. Let the resulting
set of Voronoi edges be E*. Then, E* can be regarded as an
approximation of the medial axis M (X).

Fig. 1 shows an example of this computation of the medial
axis. Let X be the region represented by the black area
in Fig. 1(a). We replace X with a number of points and
construct the Voronoi diagram for those points. The resulting
Voronoi diagram is as shown in Fig. 1(b), where all the edges
in E as drawn. Removing the edges which are outside of X or
whose side generators are adjacent, we get the diagram shown
in Fig. 1(c), where the original figure and the edges in E* are
shown; we can regard E* as an approximation of the medial
axis of X. This is a well-known method for computing the
medial axis of a figure using the Voronoi diagram.

However, as we can see in Fig. 1(c), the medial axis
has many branches corresponding to small undulation of the
boundary shape, and hence the medial axis in general is a
mixture of the global structure and the tiny local structure. So
next we want to extract only the basic part of the structure that
represents the global shape of X.

Many indices have been proposed to evaluate the impor-
tance of the points on the medial axis [13], [15]. Among
them, the one proposed by Sakai and Sugihara [14] is the
most successful because it can extract the global structure in a
robust manner by guaranteeing the topological structure of the
original figure. Their index is defined in the following way.

Let M (X) be the medial axis of the figure X, and p be a
point in M (X). Let Q(p) be the set of points on the boundary
0X at which the maximal circle ¢(p,r) in X touches 0X.
From the definition of the medial axis, we get |Q(p)| > 2.
Next for ¢ and ¢' € Q(p), let [(g, ") be the distance between
q and ¢' measured along the boundary dX. Because 90X is
composed of one or more closed curves, there are two paths
between g and ¢ if they belong to the same curve. We take
the shorter one to measure (g, q'). So if ¢ and ¢' are on the
same connected component of X, I(q,q') will be a positive
real, whereas if ¢ and ¢' are on mutually different components,
D(g,q') =00 .

Let p € M(X). We define

max {l(¢,¢)}- 3)
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Fig. 1. Extraction of skeletons of a figure through the Voronoi diagram:
(a) figure; (b) Voronoi diagram for the boundary points; (c) medial axis; (d)
skeleton based on a small threshold; (e) skeleton based on a large threshold.

D(p) can be considered an index that shows the importance of
the point p in the medial axis. In other word, if D(p) is small,



the point p corresponds to a local structure of the medial axis,
which is caused by a tiny undulation of the boundary. If D(p)
is relatively large, on the other hand, p corresponds to a global
structure of the medial axis. So we define for real ¢ > 0,

M(X) ={pe M(X) | D(p) > t}. “4)

If t is small, M;(X) contains details of the medial axis, and as
t becomes larger, M;(X) represents only global structure of
the medial axis. We call M;(X) the skeleton of X with respect
to the importance threshold ¢. In Fig. 1, (d) shows M;(X) for
a small ¢, and (e) shows M;(X) for a large ¢. We can see that
the skeleton in Fig. 1(e) corresponds to a global structure of
the original figure X.

In this paper, we use the skeleton defined as above as a
tool to model geometric optical illusions.

We would like to give a remark on the actual computa-
tion of the Voronoi diagrams. Algorithms for computing the
Voronoi diagrams are well studied from a theoretical view
points and many efficient algorithms were proposed. They
include the plane-sweep method [4], the divide-and-conquer
method [9], the lift-up method [2] and the incremental method
[11], to mention a few. However, we have to be careful about
numerical errors, because numerical errors cause inconsistency
and can make correct algorithms to fail. So we need robust
computer software to guarantee the consistency in the course
of algorithm execution. For that purpose there are two powerful
approaches; one is the exact computation approach [16] and
the other is topology-oriented approach [17]. In this paper
we use the exact-computation software for the computational
experiments.

III. DISLOCATION OF SKELETONS DUE TO IMAGE
BLURRING

Let X be a region in the plane. We consider X as a black
figure placed on a white background. Our retina has a limited
resolution, and hence when we see a figure, the perceived
image is blurred to a certain extent. In this section we observe
how the location of the skeleton is shifted when the image is
blurred.

In order to present our idea, let X be the figure composed
of two line segments mutually crossing at their middle points
in a general angle, as shown in Fig. 2(a). Let us define function
fx (p) for point p € R? in the following way.

1 if X
fX(p) = { 0 ;fgiX: &)

and call fx(p) the image functions of X. We define another
function gx (p) as

2
L fx(q) exp(M
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gx(p) = )dg,  (6)

where ||p — ¢|| represents the Euclidean distance between p
and ¢, and o2 represents a variance parameter. The value of
gx (p) is the weighted average of the image function around
p with the Gaussian function centered at p as the weight. The
function gx(p) obtained from the image function fx(p) in

Fig. 2(a) is represented in Fig. 2(b), where the value of gx (p)
is represented by the gray value.
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Fig. 2. Skeleton dislocation due to image blurring: (a) figure; (b) blurred
image; (c) binarization of the blurred image; (d) Voronoi diagram for the
boundary points; (e) skeleton.

Note that fx(p) represents a black figure on a white
background, and gx (p) is its blurred image. Actually the sharp
boundary between the black and the white is replaced with



smoothly changing gray regions. The mapping from fx(p) to
9x (p) is called the Gaussian filter [10].

Next we fix some threshold B,0 < B < 1, and binarize
9x (p) to get the third function hx (p) by

_[ 1 ifgx(p) > B,
hX(p)—{ 0 ifgx(p) < B. ™

For the example figure in Fig. 2(b), we get the binary image
hx(p) as shown in (c). Then we get the Voronoi diagram for
its boundary points as shown in (d) and the skeleton as shown
in (e).

Because the original figure consists of thin lines, if we do
not blur the image, the associated skeleton is almost the same
as the original figure. On the other hand, if we blur the image
the associated skeleton changes as in the example shown in
Fig. 2(e). Let us call this shift of the location of the skeleton
the dislocation of the skeleton due to blurring.

The dislocation of the skeleton is a common phenomenon
when we blur a figure composed of thin lines. We next
apply the dislocation phenomena to explain geometric optical
illusions.

IV. OPTICAL ILLUSIONS DESCRIBED BY SKELETON
DISLOCATION

In this section, we will show several typical optical illusion
caused by figures consisting of thin lines can be explained by
the skeleton dislocation phenomena in a unifying manner.

A. Miiller-Lyer illusion

Fig. 3(a) shows one of the most famous geometric optical
illusions called the Miiller-Lyer illusion. In this figure the two
horizontal line segments are of the same length, but the one
with outer allows appears longer than the other. A prevailing
explanation of this illusion is “line perspective” by Gregory
[6]. He associated the line segment having outer arrows with
the farthest corner of a rectangular room, and the line segment
having inner arrows with the nearest corner of a rectangular
building, and he argued that these depth interpretations distort
the apparent lengths.

On the other hand, we can explain the Miiller-Lyer illusion
by the skeleton dislocation in the following way. We blur the
original figure in Fig. 3(a) and get the blurred image Fig. 3(b).
Next, we construct the Voronoi diagram for the boundary
points of the binarized image as in Fig. 3(c), and get the
skeleton as in Fig. 3(d). We can observe that the horizontal
parts of the two skeletons differ much in their lengths; the
one with outer arrows has longer horizontal part than the
other. Thus, the Miiller-Lyer illusion can be explained by the
dislocation of the skeletons.

B. Zillner illusion

Another famous and classic illusion is Zollner illusion
shown in Fig. 4, where the horizontal lines are parallel but
they apperar to be slanted in alternating directions.

We call the horizontal lines the target lines, and the short
slanted lines the inducing lines; the including lines seem to
induce the perceived orientation of the target lines.

(@)

(d)

Fig. 3. Miiller-Lyer illusion: (a) original figure; (b) blurred image; (c) Voronoi
diagram for the boundary points of the binarized image; (d) skeleton of the
blurred figure.

Letl; and I5 be two parallel lines in the plane. Suppose that
[y and [, are rotated slightly and their orientations change. If
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Fig. 4. Zoller illusion.

both [; and [, are rotated clockwise, we say that the orientation
changes have the same polarity. Similarly, if they are both
rotated counterclockwise, we say that their orientation changes
have the same polarity. On the other hand, if one is rotated
clockwise and the other is rotated counterclockwise, we say
that their orientation changes have opposite polarities.

In Zollner illusion, the adjacent target lines are perceived
in such a way that their orientation changes have opposite
polarities.

This illusion is usually explained as a visual phenomena
in which acute angles are apt to be perceived larger than the
actual values. On the other hand, we can explain this illusion
by skeleton dislocation in the following way.

Let us concentrate on one target line of the Zollner illusion
figure in Fig. 4. We blur the original figure and get the blurred
image as shown in Fig. 5(a). The Voronoi diagram for the
boundary points of the binarized image is obtained as in
Fig. 5(b), and the skeleton is obtained as in Fig. 5(c). Fig. 5(d)
shows an overlay of the skeleton with the fatten inducing lines.
This figure represents how the target line is dislocated by
image blurring. The dislocated skeleton segments are slanted
in the same direction as the perceived direction, that is, the
orientation change in the skeleton dislocation has the same
polarity as the perceived orientation change. Thus, the Zollner
illusion can be explained by the skeleton dislocation.

C. Hering illusion

Fig. 6 shows the Hering illusion. The two long lines appear
to be curved although they are exactly horizontal and parallel.
We call these two horizontal lines the target lines, and the two
bundles of radial lines the inducing lines. Usually this illusion
is also explained by the phenomenon that acute angles are apt
to be perceived larger than the actual angles.

We can explain the Herring illusion also by the skeleton
dislocation. Let us concentrate on the upper part of the Herring
illusion figure. We get a blurred image as shown in Fig. 7(a),
and the Voronoi diagram for the boundary points of the
binarized image as shown in Fig. 7(b). The skeleton is obtained
as shown in Fig. 7(c), and the overlay of the skeleton with the
fatten inducing lines is as shown in Fig. 7(d). The skeleton
segments corresponding to the target line are slanted in the
same orientation as the perceived local orientations of the

(d)

Fig. 5.  Skeleton dislocation for the Zollner illusion: (a) blurred image of
one target line of the Zollner illusion figure in Fig. 4; (b) Voronoi diagram
for the boundary points of the binarized image; (c) skeleton; (d) overlay of
the skeleton with the fatten inducing lines.

Fig. 6. Herring illusion.

target line. That is, the orientation changes have the same
polarities as the perceived orientations. Thus, the Herring
illusion can also be explained by the skeleton dislocation.
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Fig. 7. Skeleton dislocation for the Hering illusion: (a) blurred image of the
upper part of the Hering illusion figure in Fig. 6; (b) Voronoi diagram for the
boundary points of binarized image; (c) skeleton; (d) overlay of the skeleton
with fatten inducing lines.

D. Ponzo illusion

Fig. 8(a) shows the Ponzo illusion. The two circles are of
the same size, but the left one appears larger than the right
one. This illusion is usually explained by the line perspective;
the two lines give an impression that the left part is farther
than the right part from the viewer, and consequently the left
circle is farther than the right circle, giving the difference of
the perceived sizes due to the size constancy.

We blur the Ponzo figure and get the blurred image as
shown in Fig. 8(b). The Voronoi diagram for the boundary
points of the binarized image is obtained as in Fig. 8(c), and the
skeleton is obtained as in Fig. 8(d). The skeleton corresponding
to the left circle is larger in the vertical direction than that
corresponding to the right circle. Thus, the skeleton dislocation
explains the Ponzo illusion.

V. CONCLUDING REMARKS

In this paper we observed the dislocation phenomena of
the skeleton of figures composed of thin lines according to
the image blurring, and apply it to explain some of typical

O O
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Fig. 8. Ponzo illusion: (a) original figure; (b) blurred image; (c) Voronoi
diagram for the boundary points of the binarized image; (d) skeleton of the
blurred image.

geometric optical illusions in a unifying manner. We adopted
the three typical optical illusions: the Miiller-Lyer illusion, the
Zollner illusion, the Herring illusion and the Ponzo illusion.



The same explanation is also possible to many other geometric
illusions, including the Wundt illusion, Ehrenstein illusion, the
Obrison illusion and Judd illusion.

Readers might feel that the blurring used in this paper is
too much exaggerated than the blurring that actually occur in
our retina and brain neurons. However, there is still possibility
that this amount of large blurring actually occurs in our visual
perception system. Optical illusion in general is irrational and
illogical in the sense that, even if we know the physical
truth, we perceive the sizes and orientations incorrectly. These
phenomena suggest that our brain contains a large part or
irrational information processing components, and they might
use very rough data such as highly blurred images. Actually,
the skeleton dislocation theory proposed in this paper should
be investigated from anatomical and experimental aspects in
order to see whether it is actually happening in the brains. This
is the most important problem for future.
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