
TORIC TOPOLOGY AND COMPLEX COBORDISM

TARAS PANOV

Abstract. We plan to discuss how the ideas and methodology of Toric Topol-
ogy can be applied to one of the classical subjects of algebraic topology: finding
nice representatives in complex cobordism classes. Toric and quasitoric man-
ifolds are the key players in the emerging field of Toric Topology, and they
constitute a sufficiently wide class of stably complex manifolds to additively
generate the whole complex cobordism ring. In other words, every stably com-
plex manifold is cobordant to a manifold with a nicely behaving torus action.

An informative setting for applications of toric topology to complex cobor-
dism is provided by the combinatorial and convex-geometrical study of anal-
ogous polytopes. By way of application, we give an explicit construction of
a quasitoric representative for every complex cobordism class as the quotient
of a free torus action on a real quadratic complete intersection. The latter is
a yet another disguise of the moment-angle manifold, another familiar object
of toric topology. We suggest a systematic description for omnioriented qua-
sitoric manifolds in terms of combinatorial data, and explain the relationship
with non-singular projective toric varieties (otherwise known as toric mani-
folds).
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Main Theorem . Every complex cobordism class in dim > 2 contains quasitoric
representative.

In cobordism theory, all manifolds are smooth and closed.

Complex cobordism.

complex manifolds ⊂ almost complex ⊂ stably (almost) complex manifolds

τMn ⊕ RN complex bundle−−−−−−−−−−→ M

Quasitoric manifolds. manifold M2n with “nice” Tn-action
• locally standard action
• The orbit space M2n/Tn is a simple polytope.

Examples include projective smooth toric varieties and symplectic manifolds M2n

with Hamiltonian action of Tn.
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1. Polytopes

Rn: Euclidean vector space.
P = {x ∈ Rn : 〈a i,x 〉+ bi ≥ 0 for 1 ≤ i ≤ m}, a i ∈ Rn, bi ∈ R.
Hi = {〈a i,x 〉+ bi = 0}, the ith bounding hyperplane.

Assume:
(1) dim P = n;
(2) P is bounded.

Then P is called a (convex) n-dimensional polytope.

A supporting hyperplane H is characterised by the condition that P lies within
one of the halfspaces determined by H.

A proper face of P is the intersection with a supporting hyperplane.
0-dim faces are vertices.
1-dim faces are edges.
(n− 1)-dim faces are facets.
n-dim face is P .
Also assume:
(3) there are no redundant inequalities (cannot remove any inequality without

changing P ); then P has exactly m facets;
(4) bounding hyperplanes of P intersect in general position at every vertex;

then there are exactly n facets of P meeting at each vertex.
Then P is a simple n-dim polytope with m facets.

The faces form a poset L(P ) with respect to the inclusion. Two polytopes
are said to be combinatorially equivalent if their face posets are isomorphic. The
corresponding equivalence classes are called combinatorial polytopes.

Assume |a i| = 1. Then 〈a i,x 〉 + bi is the distance from x ∈ Rn to the ith
hyperplane Hi.
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2. Moment angle manifolds

P a simple polytope given as above, a i = (ai1, . . . , ain), 1 ≤ i ≤ m.

Set AP =




a1

a2

...
am


 = (aij) (m× n-matrix), bP =




b1

...
bm


. Then can write P as

P = {x : APx + bP ≥ 0}.
Define iP (x ) = APx + bP , iP : Rn → Rm, so we have

iP : Rn → Rm

∪ ∪
P → Rm

≥ = {(y1, . . . , ym) : yi ≥ 0}
iP (P ) is the intersection of an n-dim affine plane in Rm with Rm

≥ .
Consider the m-torus

Tm = {(t1, . . . , tm) = (e2πiϕ1 , . . . , e2πiϕm) ∈ Cm; ϕi ∈ R}.
Then Rm

≥ is the orbit space of the standard Tm-action on Cm:

(t1, . . . , tm) · (z1, . . . , zm) = (t1z1, . . . , tmzm).

The orbit projection is

Cm → Rm
≥ ,

(z1, . . . , zm) 7→ (|z1|2, . . . , |zm|2).
Now define the space ZP from the pullback diagram

ZP
iZ→ Cm

↓ ↓
P

iP→ Rm
≥

.

So ZP is a Tm-space and iZ : ZP → Cm is a Tm-equivariant embedding.

Example 2.1. P 2 = {x1 ≥ 0, x2 ≥ 0, −x1 − x2 + 1 ≥ 0} a triangle,

AP =




1 0
0 1
−1 −1


 ,

iP (R2) = {APx + bP } = {y1 + y2 + y3 = 1} ⊂ R3,

ZP → C3

↓ ↓
P 2 → R3

, ZP = {|z1|2 + |z2|2 + |z3|2 = 1} ∼= S5.

Proposition 2.2. ZP is a smooth Tm-manifold with the canonical trivialisation
of the normal bundle of iZ : ZP → Cm.

Idea of proof.
(1) Write the image iP (Rn) ⊂ Rm as the set of common solutions of (m − n)

linear equations in yi, 1 ≤ i ≤ m.
(2) Replace yi’s by |zi|2’s to get a representation of ZP as an intersection of

(m− n) real quadratic hypersurfaces.
(3) Check that (2) is a ”complete” intersection, i.e. the gradients are linearly

independent at each point of ZP .
¤
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In the presentation of P , let us fix a i, 1 ≤ i ≤ m, but allow for bi’s to change.
Let us consider “virtual polytopes” analogous to P (“analogous” here means “keep
a i’s, change bi’s”), so

virtual polytope = arrangement of half-spaces.

Let R(P ) be the space of virtual polytopes analogous P .

κ : Rm → R(P ) an isomorphism,
bP + h 7→ P (h) := {x : APx + bP + h ≥ 0}

Remark 2.3. Sum in Rm corresponds to Minkowski sum of polytopes in R(P ).

Now define

χP = κ ◦ iP : Rn → R(P ).

So χP (y) is the polytope congruent to P obtained by translating the origin to
y ∈ Rn. Indeed, iP (y) = APy + bP and χP (y) = P (APy) = {x : APx + bP +
APy ≥ 0} = P − y .

Assume that the first n facets of P meet at a vertex v1, called the initial vertex. So
H1 ∩ · · · ∩Hn = v1 in P , and therefore (H1 − h) ∩ · · · ∩ (Hn − h) = v1(h) is the
initial vertex of P (h). Denote

di(h) = distance between v1(h) and Hi + h ,

so di(h) = 0 for 1 ≤ i ≤ n. Define C : Rm → Rm−n by

C(bP + h) = (dn+1(h), . . . , dm(h)).

In other words,

C : R(P ) → Rm−n,

P (h) 7→ (dn+1(h), . . . , dm(h))

Claim 1. The sequence 0 → Rn AP−→ Rm C−→ Rm−n → 0 is exact.

Proof. Use the fact that di are metric invariants, so they take the same values on
congruent polytopes. ¤

In what follows assume a i = ei for 1 ≤ i ≤ n; so we have

AP =




1 0 . . . 0
0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1

an+1,1 . . . . . . an+1,n

. . . . . . . . . . . . . . . . . . . . . . .
am,1 . . . . . . am,n




= (aij).

Example 2.4. κ : Rm → R(P ) maps the basis vector ej to the virtual polytope
P (−bP + ej) =: Pj ; then

di(Pj) =

{
−ai,j if 1 ≤ j ≤ n,

δij if n + 1 ≤ j ≤ m,
for n + 1 ≤ i ≤ m,

and C is given by the (m− n)×m matrix

C = (cij) =




−an+1,1 . . . −an+1,n 1 0 . . . 0
−an+2,1 . . . −an+2,n 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−am,1 . . . −am,n 0 0 . . . 1


 .
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Proof of Proposition 2.2. Step (1). We can write

iP (Rn) = {y ∈ Rm : y = APx + bP for some x ∈ Rn}
= {y : Cy − CbP = 0}
(m− n linear equations in y ∈ Rm).

Step (2). Then

ZP = {z ∈ Cm :
m∑

k=1

cjk(|zk|2 − bk) = 0, 1 ≤ j ≤ m− n}

Step (3). Now we want to check that the gradients in the presentation of ZP in
Step (2) are linearly independent at each point. Write zk = qk +

√−1rk; then the
gradients are given by

2(cj1q1, cj1r1, . . . , cjmqm, cjmrm), 1 ≤ j ≤ m− n.

So the gradients form the rows of the (m− n)× 2m matrix 2CR, where

R =




q1 r1 0 . . . . . . . . . . . 0
0 0 q2 r2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . 0 qm rm


 m× 2m matrix

Assume that qj1 = rj1 = · · · = qjk
= rjk

= 0 at z ∈ ZP so that (zj1 = · · · = zjk
=

0). Then the corresponding facets Fj1 , . . . , Fjk
of P intersect nontrivially. The

condition CAP = 0 guarantees that the submatrix obtained form C by deleting the
columns cj1 , . . . , cjk

has rank m− n. Then rank of 2CR is also m− n. ¤

ZP is called the moment angle manifold corresponding to P .

Remark 2.5. It can be proved that the equivariant smooth structure on ZP de-
pends only on the combinatorial type of P .

Summary (reminder). Given a simple polytope

P = {x ∈ Rn : 〈a i,x 〉+ bi ≥ 0 for 1 ≤ i ≤ m}, a i ∈ Rn, bi ∈ R
with m facets

Fi = {x ∈ Rn : 〈a i,x 〉+ bi = 0} ∩ P, 1 ≤ i ≤ m.

The facets are finely ordered, i.e.

F1 ∩ · · · ∩ Fn = v1 the initial vertex

May specify P by the matrix inequality APx + bP ≥ 0, where

AP : m× n matrix of row vectors a i,

bP ∈ Rm : column vector of scalar bi

The intersection of the affine subspace AP (Rn) + bP with the positive cone Rm
≥ is

a copy of P in Rm:

iP : Rn → Rm, iP (x ) = APx + bP affine, injective

moment angle manifold ZP
iZ
↪→ Cm

↓ ↓ρ
P

iP→ Rm
≥

ρ((z1, . . . , zm)) = (|z1|2, . . . , |zm|2).
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We want to describe the isotropy subgroups of points of ZP with respect to the
Tm-action. We may write

Tm =
m∏

i=1

Ti,

where Ti := {(1, . . . , 1, t, 1, . . . , 1)} ⊂ Tm is the i-th coordinate subcircle. Given
a multiindex I = {i1, . . . , ik} ⊂ [m] = {1, 2, . . . , m}, define the corresponding
coordinate subgroup of Tm as

TI :=
∏

i∈I

Ti ⊂ Tm.

Now take z ∈ Cm. Its isotropy subgroup with respect to the coordinatewise Tm-
action is

Tm
z = {t ∈ Tm : t · z = z} ⊂ Tm.

It is easy to see that

Tm
z = Tω(z )

where ω(z ) = {i ∈ [m] : zi = 0} ⊂ [m]. Obviously, every coordinate subgroup of
Tm arises as Tω(z ) for some z ∈ Cm. However not every coordinate subgroup of
Tm arises as the isotropy subgroup for some z ∈ ZP .
The isotropy subgroups of the Tm-action on ZP are described as follows. Given
p ∈ P , set

F (p) :=
⋂

p∈Fi

Fi.

It is the unique face of P containing p in its relative interior. Note
• if p is a vertex, then F (p) = p;
• if p ∈ intP , then F (p) = P .

Now set

T (p) =
∏

p∈Fi

Ti ⊂ Tm.

Note that 0 ≤ dim T (p) ≤ n (∵ Pn is simple).
Now if z ∈ ZP , then ρ(z ) ∈ P , and

Tm
z = T (ρ(z )).



8 TARAS PANOV

3. Quasitoric manifolds

Assume given P as above, and an n×m matrix

Λ =




1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 λn,m+1 . . . λn,m




= (In,Λ∗),

In : n× n unit matrix,

Λ∗ : n× (m− n) matrix,

satisfying
(∗) the columns λj1 , . . . , λjn

corresponding to any vertex Fj1 ∩ · · · ∩ Fjn
of P

form a basis for Zn.

Definition 3.1. A combinatorial quasitoric pair is (P, Λ) as above.

We may view Λ as a homomorphism Tm → Tn. Now set

K(Λ) = ker(Tm Λ−→ Tn) ∼= Tm−n.

Proposition 3.2. K(Λ) acts freely on ZP .

Proof. The map Λ: Tm→Tn is injective when restricted to T (p), for all p ∈ P .
Therefore, K(Λ) meets every isotropy subgroup of the Tm-action on ZP trivially.

¤

Definition 3.3. The quotient

M(P, Λ) := ZP /K(Λ)

is the quasitoric manifold corresponding to (P, Λ). The 2n-dimensional mani-
fold M = M(P, Λ) has a Tn ∼= Tm/K(Λ)-action which satisfies the two Davis–
Januszkiewicz conditions:

(a) the Tn-action α : Tn×M2n → M2n is locally standard, or locally isomorphic
to the standard coordinatewise representation of Tn in Cn. More precisely,
every x ∈ M is contained in a Tn-invariant neighborhood U(x ) ⊂ M for
which there is a Tn-invariant subset W ⊂ Cn, an automorphism θ : Tn →
Tn, and a homeomorphism f : U(x ) → W satisfying f(ty) = θ(t)f(y) for
all t ∈ Tn, y ∈ U(x ).

(b) there is a projection π : M → P whose fibres are orbits of α.
It follows from the construction that M is canonically smooth.

Question 3.4 (open). Unlike ZP , we don’t know whether the equivariant smooth
structure on M is unique.

Example 3.5. Assume that the initial vertex v1 is the origin, and the first n normal
vectors a1, . . . ,an form the standard basis of Rn. (We can always achieve this by
applying an affine transformation). Then

At
P =




1 0 . . . 0 an+1,1 . . . am,1

0 1 . . . 0 an+1,2 . . . am,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 an+1,n . . . am,n




has the same form as Λ, although with real (rather than integer) matrix elements.
We can always achieve that P has integral coordinates of vertices without changing
its combinatorial type. So we may assume aij ∈ Z. However, condition (∗) on
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the minors of Λ is more severe: there are combinatorial polytopes with no integral
realisation satisfying (∗). But if you can realise P so that At

P satisfies (∗) , then

M(P ) = ZP /K(At
P )

is the projective toric variety corresponding to P .

Example 3.6.

1. Λ =
(

1 0 −1
0 1 −1

)
= At

P , and K(Λ) = 〈(t, t, t)〉 ⊂ T 3, the diagonal subcircle.

Then

M(P ) = ZP /K(Λ) = S5/S1 ∼= CP 2.

The T 2-action is given by

(t1, t2) · (z0 : z1 : z2) = (z0 : t1z1 : t2z2)

2. Λ =
(

1 0 1
0 1 −1

)
, and M(P ) = CP 2 (the standard orientation is reversed).

The action is

(t1, t2) · (z0 : z1 : z2) = (z0 : t1z1 : t−1
2 z2)

3. Λ =
(

1 0 1 0 1 0
0 1 0 1 0 1

)
, M ∼= (S2 × S2)#(S2 × S2).

The Tn-action on M is free over the interior intP = P ◦.

p ∈ P ◦, π−1(p) = (p, t), π : M → P.

We orient M using the decomposition

τ(p,t)M ∼= τpP ⊕ τtT
n

by insisting that (ξ1, η1, . . . , ξn, ηn) is a positive basis of τ(p,t)M whenever

(ξ1, . . . , ξn) > 0 in τpP = Rn and (η1, . . . , ηn) > 0 in τtT
n.

This is similar to orienting Cn by the basis (e1, ie1, . . . , en, ien).

Corollary 3.7. M is canonically oriented by the orientations of P and Tn.

The facial (or characteristic) submanifolds of M are defined as

Mi := π−1(Fi) = ZFi/K for 1 ≤ i ≤ m.

ZFi is the fixed point set of ZP with respect to the action of Ti ⊂ Tm. So Mi ⊂
M is fixed by the circle subgroup Λ(Ti) ⊂ Tn determined by the ith column of
Λ: Tm → Tn.
Let Ci denote the 1-dim complex Tm-representation defined via the quotient pro-
jection Cm → Ci onto the ith factor. Define

ZP ×K Ci = {(z , w) : z ∈ ZP , w ∈ Ci} /∼,

(z , w) ∼ (z t−1, tw) for every t ∈ K.

Then we have a complex line bundle

ρi : ZP ×K Ci → M

over M whose restriction to Mi is the normal bundle of the inclusion Mi ↪→ M .
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Definition 3.8. The ominiorientation of M is a choice of orientation for M and
for every Mi, 1 ≤ i ≤ m.

By the above considerations, (P, Λ) determines a canonical omniorientation for
M(P, Λ).
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4. Cobordism theories

4.1. General notion of cobordism. All manifolds are closed, smooth.

Definition 4.1. Mn
1 and Mn

2 are (co)bordant (notation: Mn
1 ∼ Mn

2 ) if there exists
a manifold Wn+1 with boundary such that ∂Wn+1 = M1 tM2.

Proposition 4.2. ∼ is an equivalence relation.

Proof.
(1) M ∼ M . Indeed, W = M × [0, 1];
(2) M1 ∼ M2 ⇒ M2 ∼ M1 obvious;
(3) M1 ∼ M2 & M2 ∼ M3 =⇒ M1 ∼ M3.

¤
Denote by [M ] the cobordism equivalence class of M .
ΩO

n = {[Mn]} the set of cobordism classes of n-dimensional manifolds.

Proposition 4.3. ΩO
n an abelian group with respect to [Mn

1 ]+ [Mn
2 ] = [Mn

1 tMn
2 ].

Proof. Zero is the cobordism class of an empty set, −[M ] = [M ]. ¤
In particular, ΩO

n is a 2-torsion.
Set ΩO

∗ :=
⊕

n≥0 ΩO
n .

Proposition 4.4. ΩO
∗ is a ring with respect to [M1]× [M2] = [M1 ×M2].

ΩO
∗ is called the unoriented (co)bordism ring (in fact, it is a Z/2-algebra).

4.2. Oriented cobordism. Now all manifolds are oriented.
Mn

1 ∼ Mn
2 if there is an oriented Wn+1 such that ∂W = M1tM2 where M2 denotes

M2 with orientation reversed.
ΩSO
∗ is defined in the same way as ΩO

∗ except −[M ] = [M ]. So ΩSO
∗ is no longer a

2-torsion! It is a Z-algebra.

Remark 4.5. [M1] + [M2] = [M1#M2]. In other words, M1 tM2 ∼ M1#M2.
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Example 4.6.
1. ΩO

0
∼= Z/2 (with two cobordism classes ∅ and · = pt).

2. ΩO
1 = 0 (every 1-manifold bounds).

3. ΩO
2
∼= Z/2 with generator [RP 2];

2[RP 2] = [RP 2#RP 2] = [K2] = 0.

Here K2 is the Klein bottle (it bounds).
4. ΩO

3
∼= 0 elementary, but hard. Established by Rohlin in 1951.

5. ΩO
∗ was completely calculated by Thom in 1954 using algebraic and homo-

topy methods.

Example 4.7.
1. ΩSO

0
∼= Z. The generator is [pt].

2. ΩSO
1 = 0.

3. ΩSO
2 = 0 (every oriented 2-manifold bounds).

4. ΩSO
3 = 0 by Rohlin.

5. ΩSO
4

∼= Z with generator [CP 2]; hard.
6. ΩSO

∗ was completely calculated by the efforts of several people by 1960.

Exercise 4.8. RP 2n+1, CP 2n+1 bound.

4.3. Complex cobordism. Idea: try to work with complex manifolds. This runs
into a complication as W cannot be complex. The remedy is to consider complex
structures on M up to “stabilisation”, i.e. assume chosen a real bundle isomorphism

cτ : τ(M)⊕ Rk → ξ

where τ(M) denotes the tangent bundle, Rk a trivial real k-plane bundle over M ,
and ξ a complex bundle over M .

Definition 4.9. A (tangentially) stably complex manifold is an equivalence class
of pairs (M, cτ ) as above, where (M, cτ ) ∼ (M, cτ ′) if there are some m, m′ and a
complex bundle isomorphism ξ ⊕ Cm → ξ′ ⊕ Cm′

such that the composition

τ(M)⊕ Rk ⊕ Cm cτ⊕id−−−−→ ξ ⊕ Cm

↓∼=
τ(M)⊕ Rk′ ⊕ Cm′ cτ′⊕id−−−−→ ξ′ ⊕ Cm′

is an isomorphism of real bundles.

FACT 1. We can do cobordism with tangentially stably complex manifolds. The
opposite element in the resulting cobordism group is given by

−[M, cτ ] := [M, cτ ]

where cτ : τ(Mn)⊕ Rk → ξ (the conjugate stably complex structure).

If M is an (almost) complex manifold then it has the canonical tangentially stably
complex structure id = cτ : τ(M) → τ(M).

Example 4.10. M = CP 1. Then we have a complex bundle isomorphism

α : τ(CP 1)⊕ C ∼= η ⊕ η

where η is the Hopf line bundle. So [CP 1, α] is the canonical stably complex struc-
ture. The opposite element −[CP 1, α] is determined by the real bundle isomorphism

τ(CP 1)⊕ R2 → η ⊕ η.

Finally, the real bundle isomorphism

β : τ(CP 1)⊕ R2 → η ⊕ η ∼= C2

gives rise to the trivial stably complex structure on CP 1.
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FACT 2. ΩU
2
∼= Z, genetated by [CP 1].

4.4. Generalised (co)homology theories.

Definition 4.11. Let X be a “good” topological space. Define On(X) as the set
cobordism classes of maps Mn → X, where (M1 → X) ∼ (M2 → X) if there is W
such that ∂W = M1 tM2 and the map M1 tM2 → X extends to W :

O∗(X) satisfied 3 of 4 Steenrod axioms for homology theory. It is
• homotopy invariant;
• has exact sequences of pairs;
• has the excision axiom.

But O∗(pt) = ΩO
∗ . The forth Steenrod axiom fails. So O∗(X) gives rise to a

generalised homology theory.
We can also define the “cohomology theory” O∗(X), with

O∗(pt) = O−∗(pt).

In other words, Ω∗O = ΩO
−∗.

Other (co)bordism theories SO∗(X), SO∗(X), U∗(X), U∗(X) are treated similarly.
Another common notation: use MO∗(X), MSO∗(X), etc. instead of O∗(X),
SO∗(X), etc.

4.5. Main results on cobordism.

O : M, w(τM) = 1 + w1(τM) + w2(τM) + . . . total Stiefel–Whitney class

SO : M, p(τM) = 1 + p1(τM) + p2(τM) + . . . total Pontrjagin class

U : (M, cτ , ξ), c(ξ) = 1 + c1(ξ) + c2(ξ) + . . . total Chern class of ξ

Given a sequence ω = (i1, i2, . . . , ik) such that i1 + 2i2 + · · ·+ kik = n (a partition
of n), define the corresponding characteristic numbers as

wω(Mn) = wi1
1 wi2

2 . . . wik

k (τM)〈M〉 ∈ Z/2, dim M = n,

pω(M4n) = pi1
1 pi2

2 . . . pik

k (τM)〈M〉 ∈ Z, dim M = 4n,

cω(M2n, ξ) = ci1
1 ci2

2 . . . cik

k (ξ)〈M〉 ∈ Z, dim M = 2n,

where 〈M〉 denotes the fundamental homology class of M (with Z/2 or Z coeffi-
cients).

Example 4.12. M4 = CP 2, ξ = τ(M) , τ(CP 2)⊕ C = η ⊕ η ⊕ η.

c(τ(M)) = (1 + u)3 = 1 + 3u︸︷︷︸
c1

+ 3u2︸︷︷︸
c2

, where u = c1(η) ∈ H2(CP 2),

c2(CP 2) = 3, c2
1(CP 2) = 9, u2〈CP 2〉 = 1.

Theorem 4.13 (Thom, Milnor).
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1. M1 ∼ M2 unorientedly cobordant ⇔ ∀ω, wω(M1) = wω(M2).
2. [M1]− [M2] is a torsion element in ΩSO

∗ ⇔ ∀ω, pω(M1) = pω(M2).
3. (M1, ξ1) ∼ (M2, ξ2) complex cobordant ⇔ ∀ω, cw(M1, ξ1) = cw(M2, ξ2).

Theorem 4.14 (Thom’1954). ΩO
∗ ∼= Z/2[{ai, i 6= 2k − 1}] with deg ai = i. So in

small dimensions, ΩO
∗ ∼= Z/2[a2, a4, a5, . . . ].. Moreover, we can take a2n = [RP 2n].

Theorem 4.15 (Novikov, Milnor, Averbuh, Wall, Rohlin, Thom).

ΩU
∗ ∼= Z[a1, a2, . . . ], deg ai = 2i;

ΩSO
∗ /Tors ∼= Z[b1, b2, . . . ], deg bi = 4i.

Moreover, ΩSO
∗ has only 2-torsion, which is completely described.

Remark 4.16. Over rationals, the cobordism rings look much simpler:

ΩU
∗ ⊗Z Q = Q[[CP 1], [CP 2], . . . ],

ΩSO
∗ ⊗Z Q = Q[[CP 2], [CP 4], . . . ].

In what follows we consider only complex cobordism. Write formally the total
Chern class of (M2n, ξ) as

c(ξ) = 1 + c1(ξ) + · · ·+ cn(ξ) = (1 + x1) . . . (1 + xn),

so ci(ξ) = σi(x1, . . . , xn) is the ith elementary symmetric function. Consider
Pn(x1, . . . xn) = xn

1 + · · · + xn
n and express it as a polynomial in elementary sym-

metric functions, Pn(x1, . . . , xn) = sn(σ1, . . . , σn).

Definition 4.17. sn(M2n, ξ) = sn(c1, . . . , cn)〈M〉.
Theorem 4.18. [M2n] can be taken as a multiplicative generator of ΩU

∗ in degree
2n if and only if

sn(M2n, ξ) = ±µ(n + 1) where µ(k) =

{
p if there is a prime p such that k = ps,

1 else.

in other words, sn(M2n) = ±1 except for n = ps − 1 in which case sn(M2n) = ±p.

Example 4.19. Can we take [CPn] as a generator of ΩU
2n?

1. CP 1 :
P1(x1) = x1, s1(CP 1) = c1〈CP 1〉 = 2. Since n = 1 = 21 − 1, [CP 1] is a
generator or ΩU

2 .
2. CP 2 :

P2(x1, x2) = x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 = c2
1 − 2c2, so s2(CP 2) =

(c2
1 − 2c2)〈CP 2〉 = 3. Since n = 2 = 31 − 1, [CP 2] is a generator of ΩU

4 .
3. CP 3 :

In general, sn(CPn) = n + 1 (Exercise; use the fact τ(CPn) ⊕ C = η ⊕
· · · ⊕ η). So for n = 3, s3(CP 3) = 4. Since n = 3 = 22− 1, one should have
s3(M) = ±2 for a generator, and [CP 3] is not a generator!

Example 4.20 (Milnor hypersurfaces). Given two integers 1 ≤ i ≤ j, consider the
following hypersurface in CP i × CP j :

Hi,j = {(z0 : · · · : zi)× (w0 : · · · : wj) ∈ CP i×CP j : z0w0 + · · ·+ ziwi = 0}
Consider Ci+1 ⊂ Cj+1 embedded onto first i + 1 coordinates.

CP i = {l ⊂ Ci+1},
E = {(l, α) : l a line in Ci+1, α a hyperplane in Cj+1 containing l}.

So we have a fibration CP j+1 → E → CP i.
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Proposition 4.21. E = Hi,j.

Also, set H0,j = CP j−1.

Exercise 4.22. si+j−1(Hi,j) =
(

i+j
i+1

)
.

Corollary 4.23. ΩU
∗ is multiplicatively generated by the set of cobordism classes

{[Hi,j ], 0 ≤ i ≤ j}.
Proof. Use the fact that

gcd
1≤j≤k−1

{(
k

j

)}
=

{
p if k = ps,

1 else.

¤
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5. (Quasi)toric representatives in complex cobordism classes

Theorem 5.1. In dim > 2, every complex cobordism class contains a quasitoric
manifold, necessarily connected, whose stably complex structure is compatible with
the action of the torus.

Plan of proof.
1. Identify equivariant stably complex structures on quasitoric manifolds.
2. Observe that Hi,j are not quasitoric manifolds.
3. Replace Hi,j by a toric manifold, denoted Bi,j , with the same characteristic

number si+j−1. This provides a set of toric multiplicative generators for
ΩU
∗ .

4. Replace disjoint unions by connected sums. This is tricky because we need
to keep track of both the action and the stably complex structure.

The above theorem provides a solution to a toric version of the following famous
problem:

Problem 5.2 (Hirzebruch). Describe cobordism classes in ΩU
∗ which have con-

nected algebraic representatives.

Example 5.3. We have ΩU
2 = 〈[CP 1]〉. For k ≤ 1, the class k[CP 1] contains a

Riemanian surface of genus 1 − k. But k[CP 1] with k > 1 does not contain a
connected algebraic representative. So the solution to the above problem in dim 2
is given by the inequality c1(M) ≤ 2.
In dimension 4 (complex 2), some similar inequalities for c2

1 and c2 are known, but
the complete answer is open.

5.1. Equivariant stably complex structure on quasitoric manifolds.
Recall: iZ : ZP → Cm the framed Tm-equivariant embedding of the moment-angle
manifold, (P, Λ) a combinatorial quasitoric pair,

Λ =




1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 λn,n+1 . . . λn,m


 ,

M(P, Λ) = ZP /K(Λ) the associated omnioriented quasitoric manifold,

ρi : ZP ×K Ci → ZP /K = M

a Tn = Tm/K-equivariant C-line bundle over M .

Theorem 5.4. There is a real bundle isomorphism

τ(M)⊕ R2(m−n) ∼= ρ1 ⊕ · · · ⊕ ρm.

Proof. There is a Tm-invariant decomposition

τ(ZP )⊕ ν(iZ) ∼= ZP × Cm

obtained by restricting τ(Cm) to ZP . Factoring out K = ker(Λ: Tm → Tn) gives

τ(M)⊕ (ξ/K)⊕ (ν(iZ)/K) ∼= ZP ×K Cm,

where ξ denotes the (m−n)-plane bundle of tangents along the fibres of ZP → M .
Both ξ and ν(iZ) are trivial real (m − n)-plane bundles. Moreover, the matrix
AP provides a canonical framing (trivialisation) of νZ , as described in Section 2.
Similarly, the matrix Λ provides a canonical choice of basis in K = kerΛ, and
therefore a canonical framing of ξ. It remains to note that

ZP ×K Cm = ρ1 ⊕ · · · ⊕ ρm.

¤
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Remark 5.5. Everything is Tm/K-invariant.

Definition 5.6. Assume N is a G-manifold, α : G×N → N the action. A stably
complex structure cτ : τ(N)⊕ Rk → ξ is said to be G-equivariant if

ξ
c−1

τ−−→ τ(N)⊕ Rk dα(g,·)⊕id−−−−−−−→ τ(N)⊕ Rk cτ−→ ξ

is an isomorphism of complex bundles for every g ∈ G.

Corollary 5.7. The quasitoric manifold M(P, Λ) admits a canonical Tn-equivari-
ant stably complex structure.

Remark 5.8. Using the 1-1 correspondence{
combinatorial

quasitoric pairs (P, Λ)

}
←→

{
omnioriented

quaritoric manifolds

}

we see that the Tn-equivariant stably complex structure is determined by the om-
niorientation. Changing the orientation of one Mi in the omniorientation data
results in changing the corresponding ρi to its conjugate in the stably complex
structure. This is equivalent to reversing the sign of the ith column in Λ.

5.2. Hi,j are not quasitoric.
Recall:

Hi,j = {(l, α) : l ⊂ Ci+1 a line, α ⊂ Cj+1 a hyperplane containing l}, 0 ≤ i ≤ j,

so Hi,j = CP (ζ), where ζ is the complex j-plane bundle whose fibre over l ∈ CP i

is the j-plane l⊥ in Cj+1:

CP j−1 → CP (ζ) → CP i.

Theorem 5.9 (exercise).

H∗(Hi,j) ∼= Z[u,w]
/(

ui+1, vj−i(ui + ui−1w + · · ·+ uwi−1 + wi)
)
.

Theorem 5.10 (Davis-Januszkiewicz).

H∗(M(P, Λ)) = Z[u1, . . . , um]/I + J ,

where ui = c1(ρi) ∈ H2(M(P, Λ)),

I = {vi1 , . . . , vik
: Fi1 ∩ · · · ∩ Fik

= ∅} the Stanley-Reisner ideal of P,

J = {λi,1u1 + · · ·+ λi,mum, 1 ≤ i ≤ n}.
Corollary 5.11. Hi,j is not a quasitoric manifold for 2 ≤ i ≤ j.

Proof. Assume the converse. Comparing H2, we obtain 2 = m− n. Therefore,

H∗(Hi,j) = (Z[u1, . . . , um]/J )/I = Z[u,w]/I ′, deg u = deg w = 2

where the ideal I ′ has a basis consisting of elements of deg ≥ 4 decomposable into
linear factors. This gives a contradiction. ¤
5.3. Toric multiplicative generator set for ΩU

∗ .

Construction 5.12 (the bounded flag manifold Bn). A bounded flag in Cn+1 is a
complete flag U = {U1 ⊂ · · · ⊂ Un+1 = Cn+1} such that Uk contains the coordinate
subspace Ck−1 generated by the first k − 1 standard basis vectors, for 2 ≤ k ≤ n.

Bn = {set of bounded flags in Cn+1}.
There is a projection Bn → Bn−1

U =(U1 ⊂ U2 ⊂ · · · ⊂ Un−1 ⊂ Un ⊂ Cn+1)
7→

U ′ =U/C1 = (U ′
1 = U2/C1 ⊂ U ′

2 = U3/C1 ⊂ · · · ⊂ U ′
n−1 = Un/C1 ⊂ Cn)
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The fibre of Bn → Bn−1 is CP 1 (to recover U1 we need to choose a line in U ′
1⊕C).

Get a tower of fibrations

Bn → Bn−1 → · · · → B2 → B1 = CP 1.

This is an example of a Bott tower of height n.

Proposition 5.13. The action

Tn × Cn+1 → Cn+1,

(t, z) 7→ (t1z1, . . . , tnzn, zn+1)

induces a Tn-action on Bn making it a quasitoric manifold over In.

Idea of proof. Bn = (P, Λ) where P = In (an n-dimensional cube), and

Λ =


 In

−1 0 . . . 0
1 −1 . . . 0
...

. . . . . .
...

0 . . . 1 −1


 , m = 2n,

so K(Λ) → T 2n as

(t1, . . . , tn) 7→ (t1, t−1
1 t2, t

−1
2 t3, . . . , t

−1
n−1tn, t1, t2, . . . , tn),

ZP = {(z1, . . . z2n) ∈ C2n : |zk|2 + |zn+k|2 = 1, 1 ≤ k ≤ n} ∼= (S3)n.

To identify ZP /K(Λ) with Bn, we do the following. Given (z1, . . . , z2n) ∈ ZP ,
define v1, . . . , vn+1 ∈ Cn+1

vn+1 = en+1, vk = zkek + zk+nvk+1, k = n, . . . , 1.

Then we get a projection

ZP → Bn,

z 7→ U = (U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ Cn+1),

Uk = 〈e1, . . . , ek−1, vk〉.
¤

Now, define

fi : Bi → CP i,

U = {U1 ⊂ U2 ⊂ . . . } 7→ U1 ⊂ Ci+1,

and define Bi,j from the pullback diagram

Bi,j → Hi,j = CP (ζ)
↓ ↓

Bi
fi−→ CP i

So

Bi,j = {(U,α) : U a bounded flag in Ci+1, α a hyperplane in Cj+1 containing U1}
and there is a fibration CP j−1 → Bi,j → Bi.

Proposition 5.14. Bi,j has a T i+j−1-action turning it into a quasitoric manifold
over Ii ×∆j−1.

Idea of proof. Like always with “flag” manifolds, pulling back ζ along fi splits it
into a sum of line bundles. So Bi,j is a projectivisation of a sum of line bundles over
a toric manifold Bi. Under these circumstances, the torus action can be extended
from the base to the total space. ¤
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Remark 5.15. Both Bi and Bi,j are toric manifolds, or Bott and generalised Bott
towers respectively.

Lemma 5.16. Assume f : N2i
1 → N2i

2 is a degree 1 map of stably complex mani-
folds, and ζ → N2i

2 a j-plane complex bundle. Then

si+j−1(CP (f∗(ζ))) = si+j−1(CP (ζ))

Theorem 5.17 (Buchstaber-Ray ’98). {Bi,j} is the set of multiplicative generators
of ΩU

∗ consisting of toric manifolds.

Proof. Indeed, si+j−1(Bi,j) = si+j−1(Hi,j) by the above Lemma. ¤

5.4. Constructing connected representatives: replacing the disjoint union
by the connected sum.

Remark 5.18. We cannot find a toric representative in every cobordism class
because e.g. Td(M) = 1 and cn(M) = χ(M) > 0 for every toric manifold M .

Construction 5.19 (connected sum of polytopes).
P ′, P ′′ simple polytopes, finely ordered, of dim n:

v′0 = F ′1 ∩ · · · ∩ F ′n, v′′0 = F ′′1 ∩ · · · ∩ F ′′n : initial vertices.

Construction 5.20 (equivariant connected sum of quasitoric pairs and quasitoric
manifolds).

Λ′ =




1 0 . . . . . . λ′1,n+1 . . . λ′1,m′

0 1 . . . . . . λ′2,n+1 . . . λ′2,m′
... . . .

. . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . 1 λ′n,n+1 . . . λ′n,m′




Λ′′ =




1 0 . . . . . . λ′′1,n+1 . . . λ′′1,m′′

0 1 . . . . . . λ′′2,n+1 . . . λ′′2,m′′
... . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . 1 λ′′n,n+1 . . . λ′′n,m′′




Λ′#Λ′′ =




1 0 . . . . . . λ′1,n+1 . . . λ′1,m′ λ′′1,n+1 . . . λ′′1,m′′

0 1 . . . . . . λ′2,n+1 . . . λ′2,m′ λ′′2,n+1 . . . λ′′2,m′′
... . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . 1 λ′n,n+1 . . . λ′n,m′ λ′′n,n+1 . . . λ′′n,m′′




M ′ = M(P ′, Λ′), M ′′ = M(P ′′,Λ′′),
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M := M(P ′#P ′′, Λ′#Λ′′).

Proposition 5.21. M is the equivariant connected sum of M ′ and M ′′ at π−1(v′1)
and π−1(v′′1 ).

Difficulty: Both M ′ and M ′′ are oriented. The only possible obstruction to get
the omniorientation of M ′#M ′′ right involves the associated orientations of M ′ and
M ′′: the orientations must be preserved under the collapse maps

p′ : M ′#M ′′ → M ′ and p′′ : M ′#M ′′ → M ′′.

Definition 5.22. Let w ∈ P be a vertex, w = Fi1 ∩ · · · ∩ Fin
. The sign σ(w)

is ±1: it measures the difference between the orientations induced on TwM by
ρi1 ⊕ · · · ⊕ ρin and by the orientation of M . It can be calculated by

σ(w) = ui1 , . . . , uin〈M〉
where ui = c1(ρi) ∈ H2(M), and 〈M〉 ∈ H2n(M) the fundamental class.

Proposition 5.23. M ′#v′1,v′′1 M ′′ admits an orientation compatible with those of
M ′ and M ′′ if and only if −σ(v′1) = σ(v′′1 ). In this case, [M ′#M ′′] = [M ′] + [M ′′]
in ΩU

∗ .

Lemma 5.24. Let M be an omnioriented quasitoric manifold of dimension > 2
over P . Then there exists an ominioriented M ′ over P ′ such that [M ′] = [M ] in
ΩU
∗ and P ′ has at least two vertices of opposite signs.

Corollary 5.25. The main theorem.

Example 5.26. How to find a quasitoric representative in 2[CP 2] ∈ ΩU
4 ? We have

c2([CP 2]) = 3 = number of vertices in a triangle ∆,

and c2(2[CP 2]) = 6. So there is no quasitoric manifold over ∆#∆ = ¤ representing
2[CP 2], because ¤ has only 4 vertices. But it is possible to do over a hexagon:
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