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§1. Homeomorphism Groups with Whitney Topology

M : a connected n-manifold (possibly with boundary)

— separable, metrizable

H(M) : Homeomorphism Group of M

Whitney Topology : (h 2 H(M), U 2 cov(M))

Basic Open sets : O(h,U) :=
�

g 2 H(M) | g : U -close to h
 

⇤ g : U -close to h () 8 x 2 M 9 U 2 U s.t. g(x), h(x) 2 U

— Top group

K ⇢ M

H(M ;K) = {h 2 H(M) : h|K = idK} < H(M) (Whitney Topology)

H(M ;K)0 : the identity connected component of H(M ;K)

Hc(M ;K) ⇢ H(M ;K) : Subgroup of Homeo’s with compact support

Problem. Topological Properties of H(M ;K) and Hc(M ;K)
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Local Models for H(M,K) and Hc(M,K)

H(M,K) and Hc(M,K) : Homogeneous, Infinite-dimensional

We can expect that H(M,K) and Hc(M,K)

are Top manifolds modeled on some typical infinite-dim spaces.

Test case — H(R) and Hc(R)

(1) Models for Compact-Open Topology H(R)co : (R. D. Anderson, et al)

H+(R)co ⇡ `2 ⇡
Q!`2 (Tychono↵ Product of `2)

Hc(R)co ⇡ (
Q! `2)f (finite sequences) (Weak Product of `2)

(H+(R)co,Hc(R)co) ⇡ (
Q!`2, (

Q! `2)f) ⇡ (`2 ⇥ `2, `2 ⇥ `f2)

(2) Models for Uniform Topology Hu(R)u : (MSYY, 2011)

(Hu(R)u)0 = Hu
b (R)u ⇡ `1

Hc(R)u ⇡ `2 ⇥ `f2

(Hu
b (R)u,Hc(R)u) ⇡ (`1 ⇥ `2 ⇥ `2, {0}⇥ `2 ⇥ `f2)
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(3) Models for Whitney Topology H(R) : (BMS, 2011)

H(R) ⇡ H+(R) ⇡ ⇤!`2 (Box product of `2)

H(R)0 = Hc(R) ⇡ �!`2 ⇡ `2 ⇥ R1 (Small box product of `2)

(H(R),Hc(R)) ⇡ (H+(R),Hc(R)) ⇡ (⇤!`2,�!`2)

Box products :

— ⇤!`2 =
�

Q!`2, Box Top
�

Basic open subsets :
Q1

i=0 Ui (Ui ⇢ `2 : open)

�!`2 ⇢ ⇤!`2 (finite sequences) ⇤nXn �n(Xn, ⇤n)

— (P. Mankiewicz, 1974) Classification of Top. Type of LF spaces

�!R ⇡ R1 ⌘ dir lim {R1 ⇢ R2 ⇢ R3 ⇢ · · · }
�!`2 ⇡ `2 ⇥ R1

Expectation. When clM(M �K) : non-compact (and K ⇢ M : good)

(H(M,K),Hc(M,K)) ⇡
local

(⇤!`2,�!`2)

— Hc(M,K) : a paracompact (`2 ⇥ R1)-manifold

In this talk we consider the 2-dim case.
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M : a connected 2-manifold

K ⇢ M : a subpolyhedron (in some triangulation of M)

§2. Previous Results in Compact cases

[1] Homeomorphism Groups in Compact cases :

“clM(M �K) is compact”

H(M ;K) = Hc(M ;K) : Whitney Top = Compact-Open Top.

(1) Hc(M ;K) : a metrizable `2-manifold

(R.Luke - W.K.Mason (1972), et al. + Theory of top `2-manifolds)

(2) Classification of Homotopy type of Hc(M ;K)0

(M.E. Hamstrom (1966), et al.)

Hc(M ;K)0 ' ⇤ with several exceptional cases

(Hc(M ;K)0 ⇡ `2 ) (Hc(M ;K)0 ' P =) Hc(M ;K)0 ⇡ P ⇥ `2)

(3) Mapping class group

H(M ;K)0 = Hc(M ;K)0 ⇢ Hc(M ;K) : Open normal subgroup

Mc(M ;K) = Hc(M ;K)/H(M ;K)0



5

[2] Spaces of Embeddings and Bundle Theorem in dim 2

(R.Luke - W.K.Mason (1972), Yagasaki (2000))

L ⇢ N : subpolyhedra of M s.t. clM(N � L) is compact

E⇤
L(N,M) : the space of proper embeddings f : N ! M s.t. f |L = idL

Compact -Open topology

R : H(M,L) ! E⇤
L(N,M), R(h) = h|N : the restriction map

(1) E⇤
L(N,M) : an `2-manifold if dim(N � L) � 1.

(2) The map R has a local section at idN .

R : H(M,L) ! ImR : a principal H(M,N)-bundle

� ImR : an open neighborhood of idN in E⇤
L(N,M)

⇤ R.Luke - W.K.Mason (1972)

— N = a proper arc, an orientation-preserving circle, L = ;
— Conformal mapping theorem

⇤ Yagasaki (2000) — General case
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§3. Non-Compact case “clM(M �K) is non-compact”

[BMSY, 2011] (BMSY [arXiv:0802.0337v1])

(1) (H(M,K),Hc(M,K)) ⇡
local

(⇤!`2,�!`2)

(2) Hc(M ;K) : a paracompact (`2 ⇥ R1)-manifold

(3) H(M ;K)0 = Hc(M ;K)0 ⇢ Hc(M ;K) : Open normal subgroup

Mc(M ;K) = Hc(M ;K)/H(M ;K)0 : Mapping Class Group

(4) Mi ⇢ M (i 2 N) : Compact s.t. Mi ⇢ IntMMi+1, M = [iMi

Hc(M ;K) = Dir Lim H(M ;K[ (M�Mi)) in Category of Top Groups
Top Spaecs======

[BMSY, 2014]

(1) H(M ;K)0 ⇡ `2 ⇥ R1

(2) M : Non-Compact =) #Mc(M) =

⇢

1 in the exceptional cases

@0 in all other cases

Exceptional cases : M = X �K

X = Annulus, Disk or Möbius band,

K = Non-empty compact subset of one boundary circle of X
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Comparison with Compact -Open Topology

(1) Whitney Topology : H(M ;K)0 = Hc(M ;K)0 ⇡ `2 ⇥ R1 ' ⇤

(2) Compact -Open Topology (Yagasaki, 2000, 2004)

(H(M ;K)co)0 ⇡

8

>

>

<

>

>

:

S1 ⇥ `2 ' S1 if (M,K) = (R2, ;), (R2, 1pt),

(S1 ⇥ R, ;), (S1 ⇥ [0,1), ;),
(M� @M, ;)

`2 ' ⇤ in all other cases.[ h.e.

(Hc(M ;K)co)0

Remark. Hc(R2)co ' S1

(i) The contraction of Hc(R2)co induced by the Alexander trick

is not continuous.

(ii) We can directly construct an essential loop in Hc(R2)co

(some kind of rotation)

since Compact-Open Top does not impose enough control on the end of R2.
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Idea of Proof. H(M ;K)0 ⇡ `2 ⇥ R1 in Non-Compact case

M : Non-Compact

M = [1
n=0Mn : Mn : Compact 2-submanifolds of M s.t. Mn ⇢ IntMMn+1

w

�

Hc(M ;K) = [nH(M ;K [ (M �Mn)) (a tower of closed subgroups)

each H(M ;K [ (M �Mn) : Compact Case

Top Group Tower of Closed subgroups

G (= Gn (n 2 !) (! = {0, 1, 2, · · · })

(Gn ⇢ Gn+1, G =
S

n Gn )
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§4. Results on Top Groups and Towers of Subgroups

G : Top group (e : the identity element of G)

Gn (n 2 !) : Tower of Closed subgroups of G

p : �n(Gn, e) �! G : p(x0, x1, . . . , xk, e, e, . . . ) = xk · · · x1 x0

[1] (BMSY [arXiv:0802.0337v1], 2011) (0) p : continuous, surjective

(1) p : open at (e)n =) G = Dir LimGn (in Category of Top Groups)

(2) p has a local section at e

each Gn : Locally contractible
=) G : Locally contractible

(Hc(M
n) : Locally contractible 8 n)

[2] (2007 - 2008) (BMSY [arXiv:0802.0337v1])

(#) (i) p : �nGn ! G : open (ii) Gn ! Gn/Gn�1

admits a global section sn.

=)
�nGn

p

""

�n(Gn/Gn�1)
ps
⇡ //

s = �nsn
77

G

(#) + Results in Compact Case (§2) =) H(M ;K)0 ⇡ �!`2 ⇡ `2 ⇥ R1
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[3] (2009 - ) T.Banakh -D.Repovš — Series of papers

Study of Top LF-manifolds and Direct limit of Uniform spaces

Su�cient Condition that Top Group ⇡ `2⇥R1 (BMRSY, 2013)

(i) G : Non-metrizable (ii) Gn ⇡ `2

(iii) p : �nGn ! G : open

(iv) Gn+1 ! Gn+1/Gn has a local section

(v) each Z-point of Gn+1/Gn is a strong Z-point.

(for example, Gn+1/Gn is an `2-manifold.)

=) G ⇡ `2 ⇥ R1

(?) Criterion of `2 ⇥ R1

+ Results in Compact Case (§2)
=) H(M ;K)0 ⇡ `2 ⇥ R1

Below we give Sketch of (?)
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Notations.

(1) M : a connected 2-manifold

K ⇢ M : a subpolyhedron “clM(M �K) is non-compact”

(2) We can represent M =
S

n2! Mn, where

Mn : a compact subpolyhedron ofM , Mn ⇢ IntM Mn+1, IntM Mn 6⇢ K.

Kn = K [ (M � IntM Mn) (n 2 !)

(3) Consider Subgroup and Tower of subgroups :

G = H(M ;K)0 Gn = H(M ;Kn)0 (n 2 !)

We shall show that G and Gn (n 2 !) satisfy the next conditions :

[1] G : Non-metrizable [2] Gn ⇡ `2

[3] p : �nGn ! G : open

[4] ⇡ : Gn+1 ! Gn+1/Gn admits a local section

[5] Gn+1/Gn : an `2-manifold

 each point of Gn+1/Gn is a strong Z-point.

Then, Criterion of `2 ⇥ R1 implies that G ⇡ `2 ⇥ R1.
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[1] Whitney Topology + Diagonal argument =) G is not 1st countable

[2] Compact Case (§2)  Gn : an `2-manifold, Gn ' ⇤ ) Gn ⇡ `2

[4], [5]

(1) First consider the groups Hn = H(M ;Kn) (n 2 !)

Hn
⇡

zz

R

""

Hn/Hm
'

homeo
// ImR ⇢

open
E⇤
Kn
(Km,M)

(m  n)

Compact Case (§2) R has a local section, E⇤
Kn
(Km,M) : an `2-manifold

) ⇡ : Hn ! Hn/Hm has a local section, Hn/Hm : an `2-manifold

(2) Gm ⇢ Hm : open ) Hm/Gm : discrete

⇡ : Hn/Gm ! Hn/Hm : a locally trivial bundle with fiber Hm/Gm

 ⇡ : Gn+1 ! Gn+1/Gn has a local section, Gn+1/Gn : an `2-manifold
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[3] p : �nGn ! G : open

(1) Compact Case (§2)  Rn : Gn ! E⇤
Kn
(Kn�1,M) has a local section

sn : (Vn, idKn�1) ! (Gn, idM) at idKn�1.

— sn (n 2 !)  a local section s of p ) p : open

(2) (a direct argiment to show that p is open)

Suppose Un is a symmetric open nbd of idM in Gn (n 2 !)

 We have to show that p(�nUn) is a nbd of idM in G

(3) (Notations) U 2 cov(M)

A ⇢ M St(A,U) = [{U 2 U : A \ U 6= ;} St(U) = {St(U,U) : U 2 U}

(4) Inductively we can find Un, Vn 2 cov(M) (n 2 !) such that

(i) (a) St(Un) � Vn�1 (V�1 = {M})
(b) h 2 H(M ;Kn), h : Un-close to idM =) h 2 Un

(ii) (a) St(Vn) � Un (b) f 2 E⇤
Kn

(Kn�1,M), f : St(Vn)-close to idKn�1

=) f 2 Vn, sn(f) : Un-close to idM

(5) 9 V 2 cov(M) s.t.
�

St(x,V) | x 2 M � IntM Mn�1

 

� Vn (n 2 !)

O(idM,V) ⇢ p(�nUn)
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Mapping class groups of non-compact surfaces

M : a non-compact connected 2-manifold (possibly with boundary)

Mc(M) = Hc(M)/H(M)0

Theorem. The following conditions are equivalent:
[1] Mc(M) : trivial

[2] Mc(M) is a torsion group (i.e., each element has finite order)

[3] M : exceptional i.e., M ⇡ X �K :

X = Annulus A, Disk D or Möbius band M,

K = Non-empty compact subset of one boundary circle of X

Sketch of Proof : [1] ) [2] ) [3] ) [1]

[2] ) [3] :

Lemma 1.

(1) Every boundary circle C of M is a retract of M .

(2) h 2 H(M) h 2 H(M)0 () 9 an isotopy from h to idM

with compact support
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Lemma 2. Mc(M) � Z in each of the following cases:

(1) M contains a handle;

(2) M contains at least two disjoint Möbius bands;

(3) M contains at least two boundary circles;

(4) M contains a Möbius band and a boundary circle;

(5) M is separated by a circle C ⇢ IntM

into two non-compact connected subsurfaces L1 and L2.

(*) (5) hn := the n-fold Dehn twist along C (n 2 Z)
Claim : hn 2 H(M)0 () n = 0

(i) Suppose hn 2 H(M)0.

9 an isotopy hn ' idM with a compact support K.

(ii) 9 a path ` in M which

connects a point in L1 \K with a point of L2 \K and crosses C once.

(iii) hn` ' ` in M rel. end points ) Cn ' (hn`)`�1 ' ⇤ in M .

(iv) M retracts onto C ) Cn ' ⇤ in C ) n = 0
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Proof of [2] ) [3]. Suppose Mc(M) : a torsion group.

(1) By Lemma 2, M contains

(i) at most one Möbius band

(ii) at most one boundary circle

o

not simultaneous

(iii) no handle and

(iv) no circle separating M into two non-compact connected subsurfaces.

(2) M =
S

n2! Mn, where

(i) Mn : a compact connected subsurfaces of M ,

(ii) Mn ⇢ intMMn+1, (iii) if @M 6= ; then M0 \ @M 6= ;,
(iv) if L is a connected component of M � IntMMn,

then L is non-compact and L \Mn+1 is connected.

(3) Every Mn has exactly one boundary circle meeting M � IntMMn.
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(4) Three possible cases :

Case (i): M contains no boundary circle and no Möbius band.

M ⇡ D�K (K ⇢ @D : compact, 6= ;) (8 Mn : a disk)

Case (ii): M contains a Möbius band. (80 Mn : a Möbius band)

M ⇡ M�K (K ⇢ @M : compact, 6= ;)
Case (iii): M contains a boundary circle C. (80 Mn : an annulus)

(M,C) ⇡ (A�K,C1) (@A = C1 [ C2, K ⇢ C2 : compact, 6= ;)

[End of Talk]

Thank you very much for your attention !


