Homeomorphism groups of non-compact surfaces endowed with the Whitney topology

Tatsuhiko Yagasaki (Kyoto Institute of Technology, Japan)

Coauthors :

Taras Banakh (Ivan Franko National University of Lviv, Ukraine) Kotaro Mine (University of Tokyo, Japan) Katsuro Sakai (Kanagawa University, Japan)

> The 41 th Symposium on Transformation Groups Nov. 15, 2014, Gamagori, Aichi Pref.

*§*1. Homeomorphism Groups with Whitney Topology

M : a connected *n*-manifold (possibly with boundary) — separable, metrizable

H(*M*) : Homeomorphism Group of *M*

Whitney Topology : $(h \in \mathcal{H}(M), \mathcal{U} \in \text{cov}(M))$ Basic Open sets : $\mathcal{O}(h, \mathcal{U}) := \{ g \in \mathcal{H}(M) \mid g : \mathcal{U}\text{-close to } h \}$

- **★** $g: U$ -close to h \iff $\forall x \in M$ $\exists U \in U$ s.t. $g(x), h(x) \in U$
- $-$ Top group

 $K \subset M$

 $\mathcal{H}(M; K) = \{h \in \mathcal{H}(M) : h|_K = \text{id}_K\} < \mathcal{H}(M)$ (Whitney Topology) $\mathcal{H}(M; K)_0$: the identity connected component of $\mathcal{H}(M; K)$ $\mathcal{H}_c(M; K) \subset \mathcal{H}(M; K)$: Subgroup of Homeo's with compact support

Problem. Topological Properties of $\mathcal{H}(M; K)$ and $\mathcal{H}_c(M; K)$

Local Models for $\mathcal{H}(M,K)$ and $\mathcal{H}_c(M,K)$

 $\mathcal{H}(M,K)$ and $\mathcal{H}_c(M,K)$: Homogeneous, Infinite-dimensional

We can expect that $\mathcal{H}(M,K)$ and $\mathcal{H}_c(M,K)$

are Top manifolds modeled on some typical infinite-dim spaces.

Test case — $\mathcal{H}(\mathbb{R})$ and $\mathcal{H}_c(\mathbb{R})$

- (1) Models for Compact-Open Topology $\mathcal{H}(\mathbb{R})_{co}$: (R. D. Anderson, et al) $\mathcal{H}_{+}(\mathbb{R})_{co} \approx \ell_2 \approx \Pi^{\omega} \ell_2$ (Tychonoff Product of ℓ_2) $\mathcal{H}_c(\mathbb{R})_{co}$ $\approx (\prod^{\omega} \ell_2)_f$ (finite sequences) (Weak Product of ℓ_2) $(\mathcal{H}_+(\mathbb{R})_{co}, \mathcal{H}_c(\mathbb{R})_{co}) \approx (\prod^{\omega} \ell_2, (\prod^{\omega} \ell_2)_f) \approx (\ell_2 \times \ell_2, \ell_2 \times \ell_2^f)$
- (2) Models for Uniform Topology $\mathcal{H}^u(\mathbb{R})_u$: (MSYY, 2011) $(\mathcal{H}^u(\mathbb{R})_u)_0 = \mathcal{H}^u_b(\mathbb{R})_u \approx \ell_\infty$ $\mathcal{H}_c(\mathbb{R})_u \,\approx\, \ell_2 \times \ell_2^f$ 2 $(\mathcal{H}_b^u(\mathbb{R})_u, \mathcal{H}_c(\mathbb{R})_u) \approx (\ell_\infty \times \ell_2 \times \ell_2, \{0\} \times \ell_2 \times \ell_2^f)$

3 (3) Models for Whitney Topology $\mathcal{H}(\mathbb{R})$: (BMS, 2011) $\mathcal{H}(\mathbb{R}) \approx \mathcal{H}_+(\mathbb{R}) \approx \Box^{\omega} \ell_2$ (Box product of ℓ_2) $\mathcal{H}(\mathbb{R})_0 = \mathcal{H}_c(\mathbb{R}) \approx \Box^{\omega} \ell_2 \approx \ell_2 \times \mathbb{R}^{\infty}$ (Small box product of ℓ_2) $(\mathcal{H}(\mathbb{R}), \mathcal{H}_c(\mathbb{R})) \approx (\mathcal{H}_+(\mathbb{R}), \mathcal{H}_c(\mathbb{R})) \approx (\square^{\omega} \ell_2, \square^{\omega} \ell_2)$

Box products :

 $-\Box^{\omega}\ell_2 = (\prod^{\omega}\ell_2, \text{Box Top})$ Basic open subsets : $\prod_{i=0}^{\infty} U_i$ $(U_i \subset \ell_2 : \text{ open})$ $\Box^{\omega}\ell_2 \subset \Box^{\omega}\ell_2$ (finite sequences) $\Box_n X_n \Box_n(X_n, *_n)$

— (P. Mankiewicz, 1974) Classification of Top. Type of LF spaces $\Box^{\omega} \mathbb{R} \approx \mathbb{R}^{\infty} \equiv \text{dir}\lim \{ \mathbb{R}^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset \cdots \}$ $\Gamma^{\omega}\ell_{2} \approx \ell_{2} \times \mathbb{R}^{\infty}$

Expectation. When $cl_M(M - K)$: non-compact (and $K \subset M$: good) $(\mathcal{H}(M,K), \mathcal{H}_c(M,K)) \approx (\Box^{\omega} \ell_2, \Box^{\omega} \ell_2)$ local $-\mathcal{H}_c(M,K)$: a paracompact $(\ell_2 \times \mathbb{R}^\infty)$ -manifold

In this talk we consider the 2-dim case.

 $M:$ a connected 2-manifold

 $K \subset M$: a subpolyhedron (in some triangulation of *M*)

*§*2. Previous Results in Compact cases

[1] Homeomorphism Groups in Compact cases :

 $C_{M}(M - K)$ is compact"

 $\mathcal{H}(M; K) = \mathcal{H}_c(M; K)$: Whitney Top = Compact-Open Top.

 (1) $\mathcal{H}_c(M; K)$: a metrizable ℓ_2 -manifold

(R.Luke - W.K.Mason (1972), et al. + Theory of top ℓ_2 -manifolds)

(2) Classification of Homotopy type of $\mathcal{H}_c(M; K)_0$

(M.E. Hamstrom (1966), et al.)

 $\mathcal{H}_c(M; K)_0 \simeq *$ with several exceptional cases

 $(\mathcal{H}_c(M; K)_0 \approx \ell_2)$ $(\mathcal{H}_c(M; K)_0 \simeq P \implies \mathcal{H}_c(M; K)_0 \approx P \times \ell_2)$

(3) Mapping class group

 $\mathcal{H}(M; K)_0 = \mathcal{H}_c(M; K)_0 \subset \mathcal{H}_c(M; K)$: Open normal subgroup $\mathcal{M}_c(M; K) = \mathcal{H}_c(M; K)/\mathcal{H}(M; K)$

[2] Spaces of Embeddings and Bundle Theorem in dim 2 (R.Luke - W.K.Mason (1972), Yagasaki (2000))

 $L \subset N$: subpolyhedra of *M* s.t. $\text{cl}_M(N - L)$ is compact

 $\mathcal{E}_L^*(N, M)$: the space of proper embeddings $f : N \to M$ s.t. $f|_L = id_L$ Compact - Open topology

 $R: \mathcal{H}(M,L) \to \mathcal{E}_L^*(N,M)$, $R(h) = h|_N$: the restriction map

 (1) $\mathcal{E}_L^*(N, M)$: an ℓ_2 -manifold if dim $(N - L) \geq 1$.

(2) The map *R* has a local section at id_N .

 $R: \mathcal{H}(M,L) \to \text{Im } R$: a principal $\mathcal{H}(M,N)$ -bundle

 \circ Im *R* : an open neighborhood of id_{*N*} in $\mathcal{E}_L^*(N, M)$

- ⇤ R.Luke W.K.Mason (1972)
	- $N = a$ proper arc, an orientation-preserving circle, $L = \emptyset$
	- Conformal mapping theorem
- ⇤ Yagasaki (2000) General case

\n- \n**§3. Non-Compact case**\n
$$
``cl_M(M - K)
$$
 is non-compact"\n
\n- \n [BMSY, 2011]\n $(D \mathcal{H}(M, K), \mathcal{H}_c(M, K)) \approx (\Box^{\omega} \ell_2, \Box^{\omega} \ell_2)$ \n local\n
\n- \n (2) $\mathcal{H}_c(M; K)$: a paracompact $(\ell_2 \times \mathbb{R}^{\infty})$ -manifold\n
\n- \n (3) $\mathcal{H}(M; K)_0 = \mathcal{H}_c(M; K)_0 \subset \mathcal{H}_c(M; K)$: Open normal subgroup\n
\n- \n $\mathcal{M}_c(M; K) = \mathcal{H}_c(M; K) / \mathcal{H}(M; K)_0$: Mapping Class Group\n
\n- \n (4) $M_i \subset M \ (i \in \mathbb{N})$: Compact s.t. $M_i \subset \text{Int}_M M_{i+1}, M = \bigcup_i M_i$ \n $\mathcal{H}_c(M; K) = \text{Dir }\text{Lim }\mathcal{H}(M; K \cup (M - M_i))$ in Category of Top Groups\n
\n

[BMSY, 2014]

 (1) $\mathcal{H}(M; K)_0 \approx \ell_2 \times \mathbb{R}^\infty$ (2) *M* : Non-Compact \implies $\#\mathcal{M}_c(M) = \begin{cases} 1 & \text{in the exceptional cases} \\ \aleph_0 & \text{in all other cases} \end{cases}$ \aleph_0 in all other cases Exceptional cases : $M = X - K$ $X =$ Annulus, Disk or Möbius band, $K =$ Non-empty compact subset of one boundary circle of X

7

Comparison with Compact - Open Topology

- (1) Whitney Topology : $\mathcal{H}(M; K)_0 = \mathcal{H}_c(M; K)_0 \approx \ell_2 \times \mathbb{R}^\infty \simeq *$ (2) Compact - Open Topology (Yagasaki, 2000, 2004) $(\mathcal{H}(M;K)_{co})_0 \approx$ $\sqrt{ }$ \int $\left\lfloor \right\rfloor$ $\mathbb{S}^1 \times \ell_2 \simeq \mathbb{S}^1$ if $(M, K) = (\mathbb{R}^2, \emptyset)$, $(\mathbb{R}^2, 1 \text{pt})$ *,* $(\mathbb{S}^1 \times \mathbb{R}, \emptyset), (\mathbb{S}^1 \times [0, \infty), \emptyset),$ $(M - \partial M, \emptyset)$ \cup h.e. $\left\{\begin{array}{ccc} \ell_2 \simeq \ast \\ \end{array}\right.$ in all other cases. $(\mathcal{H}_c(M;K)_{co})_0$
- **Remark.** $\mathcal{H}_c(\mathbb{R}^2)_{co} \simeq \mathbb{S}^1$
	- (i) The contraction of $\mathcal{H}_c(\mathbb{R}^2)_{co}$ induced by the Alexander trick is not continuous.

(ii) We can directly construct an essential loop in $\mathcal{H}_c(\mathbb{R}^2)_{co}$ (some kind of rotation)

since Compact-Open Top does not impose enough control on the end of \mathbb{R}^2 .

Idea of Proof. $\mathcal{H}(M; K)_0 \approx \ell_2 \times \mathbb{R}^\infty$ in Non-Compact case

M : Non-Compact

 $M = \bigcup_{n=0}^{\infty} M_n$: *M_n* : Compact 2-submanifolds of *M* s.t. $M_n \subset \text{Int}_M M_{n+1}$ \parallel ⇓

8

 $\mathcal{H}_c(M; K) = \bigcup_n \mathcal{H}(M; K \cup (M - M_n))$ (a tower of closed subgroups) each $\mathcal{H}(M; K \cup (M - M_n))$: Compact Case

Top Group Tower of Closed subgroups

 $G \iff G_n \ (n \in \omega) \qquad (\omega = \{0, 1, 2, \cdots\})$ $(G_n \subset G_{n+1}, \ G = \bigcup_n G_n)$

⁹ *§*4. Results on Top Groups and Towers of Subgroups

 $G: Top group$ (*e* : the identity element of *G*) G_n ($n \in \omega$) : Tower of Closed subgroups of *G* $p: \Box_n(G_n, e) \longrightarrow G$: $p(x_0, x_1, \ldots, x_k, e, e, \ldots) = x_k \cdots x_1 x_0$ [1] (BMSY [arXiv:0802.0337v1], 2011) (0) *p* : continuous, surjective (1) $p:$ open at $(e)_n \implies G = \text{Dir }\text{Lim } G_n$ (in Category of Top Groups) (2) *p* has a local section at *e* p has a local section at $e \rightarrow G$: Locally contractible
each G_n : Locally contractible \rightarrow G : Locally contractible $(\mathcal{H}_c(M^n) :$ Locally contractible $\forall n$) $[2]$ (2007 - 2008) (BMSY [arXiv:0802.0337v1]) (#) (i) $p: \Box_n G_n \to G$: open (ii) $G_n \to G_n/G_{n-1}$ admits a global section *sn*.

 $(\#)$ + Results in Compact Case $(\S2) \implies \mathcal{H}(M; K)_0 \approx \Box^\omega \ell_2 \approx \ell_2 \times \mathbb{R}^\infty$

 $\begin{bmatrix} 3 \end{bmatrix}$ (2009 -) T. Banakh - D. Repovš — Series of papers

Study of Top LF-manifolds and Direct limit of Uniform spaces

Sufficient Condition that Top Group $\approx \ell_2 \times \mathbb{R}^\infty$ (BMRSY, 2013)

- (i) $G: \text{Non-metrizable}$ (ii) $G_n \approx \ell_2$
- (iii) $p: \Box_n G_n \to G$: open
- (iv) $G_{n+1} \to G_{n+1}/G_n$ has a local section
- (v) each *Z*-point of G_{n+1}/G_n is a strong *Z*-point. (for example, G_{n+1}/G_n is an ℓ_2 -manifold.)

$$
\implies G \approx \ell_2 \times \mathbb{R}^\infty
$$

 (\star) Criterion of $\ell_2 \times \mathbb{R}^{\infty}$ + Results in Compact Case (*§*2) \implies $\mathcal{H}(M; K)_0 \approx \ell_2 \times \mathbb{R}^\infty$

Below we give **Sketch of** (\star)

$\frac{11}{11}$

(1) *M* : a connected 2-manifold

 $K \subset M$: a subpolyhedron " $cl_M(M - K)$ is non-compact"

(2) We can represent $M = \bigcup_{n \in \omega} M_n$, where

 M_n : a compact subpolyhedron of M , $M_n \subset \text{Int}_M M_{n+1}$, $\text{Int}_M M_n \not\subset K$. $K_n = K \cup (M - \text{Int}_M M_n)$ $(n \in \omega)$

(3) Consider Subgroup and Tower of subgroups :

$$
G = \mathcal{H}(M; K)_0 \qquad G_n = \mathcal{H}(M; K_n)_0 \quad (n \in \omega)
$$

We shall show that *G* and G_n ($n \in \omega$) satisfy the next conditions :

\n- [1]
$$
G
$$
: Non-metrizable
\n- [2] $G_n \approx \ell_2$
\n- [3] $p : \Box_n G_n \to G$: open
\n- [4] $\pi : G_{n+1} \to G_{n+1}/G_n$ admits a local section
\n- [5] G_{n+1}/G_n : an ℓ_2 -manifold
\n- \leadsto each point of G_{n+1}/G_n is a strong Z -point.
\n

Then, Criterion of $\ell_2 \times \mathbb{R}^\infty$ implies that $G \approx \ell_2 \times \mathbb{R}^\infty$.

12

- [1] Whitney Topology + Diagonal argument $\implies G$ is not 1st countable [2] Compact Case (§2) \rightsquigarrow G_n : an ℓ_2 -manifold, $G_n \simeq *$ \therefore $G_n \approx \ell_2$ $[4], [5]$
	- (1) First consider the groups $H_n = \mathcal{H}(M; K_n)$ $(n \in \omega)$

$$
H_n
$$
\n
$$
H_n/H_m \xrightarrow{\pi} \mathbb{R} \qquad \text{open}
$$
\n
$$
H_n/H_m \xrightarrow{\varphi} \text{homeo} \qquad \text{Im } R \ \subset \ \mathcal{E}_{K_n}^*(K_m, M) \qquad (m \le n)
$$

Compact Case (§2) \rightsquigarrow *R* has a local section, $\mathcal{E}_{K_n}^*(K_m, M)$: an ℓ_2 -manifold $\therefore \pi : H_n \to H_n/H_m$ has a local section, H_n/H_m : an ℓ_2 -manifold (2) $G_m \subset H_m$: open \therefore H_m/G_m : discrete $\pi : H_n/G_m \to H_n/H_m$: a locally trivial bundle with fiber H_m/G_m \rightsquigarrow $\pi: G_{n+1} \to G_{n+1}/G_n$ has a local section, G_{n+1}/G_n : an ℓ_2 -manifold

- [3] $p : \Box_n G_n \to G$: open
	- (1) Compact Case (§2) \rightsquigarrow $R_n: G_n \to \mathcal{E}_{K_n}^*(K_{n-1}, M)$ has a local section $s_n : (V_n, \text{id}_{K_{n-1}}) \to (G_n, \text{id}_M)$ at $\text{id}_{K_{n-1}}$.

 $- s_n$ $(n \in \omega) \rightsquigarrow$ a local section *s* of *p* \therefore *p* : open

(2) (a direct argiment to show that *p* is open)

Suppose U_n is a symmetric open nbd of id_M in G_n ($n \in \omega$) \rightsquigarrow We have to show that $p(\Box_n U_n)$ is a nbd of id_M in G

$$
(3) \text{ (Notations)} \qquad \mathcal{U} \in \text{cov}(M)
$$

 $A \subset M$ $St(A, \mathcal{U}) = \bigcup \{U \in \mathcal{U} : A \cap U \neq \emptyset\}$ $St(\mathcal{U}) = \{St(U, \mathcal{U}) : U \in \mathcal{U}\}$

(4) Inductively we can find $\mathcal{U}_n, \mathcal{V}_n \in cov(M)$ $(n \in \omega)$ such that

(i) (a)
$$
\mathcal{S}t(\mathcal{U}_n) \prec \mathcal{V}_{n-1}
$$
 $(\mathcal{V}_{-1} = \{M\})$
\n(b) $h \in \mathcal{H}(M; K_n)$, $h : \mathcal{U}_n$ -close to id_M $\implies h \in U_n$
\n(ii) (a) $\mathcal{S}t(\mathcal{V}_n) \prec \mathcal{U}_n$ (b) $f \in \mathcal{E}_{K_n}^*(K_{n-1}, M)$, $f : \mathcal{S}t(\mathcal{V}_n)$ -close to id_{K_{n-1}}
\n $\implies f \in V_n$, $s_n(f) : \mathcal{U}_n$ -close to id_M

 $(5) \exists \mathcal{V} \in \text{cov}(M) \text{ s.t. } \{ \mathcal{S}t(x, \mathcal{V}) \mid x \in M - \text{Int}_{M} M_{n-1} \} \prec \mathcal{V}_{n} \ (n \in \omega)$ $\mathcal{O}(\mathrm{id}_M, \mathcal{V}) \subset p(\boxdot_n U_n)$

Mapping class groups of non-compact surfaces

M : a non-compact connected 2-manifold (possibly with boundary) $\mathcal{M}_c(M) = \mathcal{H}_c(M)/\mathcal{H}(M)_0$

Theorem. The following conditions are equivalent: $[1]$ $\mathcal{M}_c(M)$: trivial [2] $\mathcal{M}_c(M)$ is a torsion group (i.e., each element has finite order) $[3]$ *M* : exceptional i.e., $M \approx X - K$: $X =$ Annulus A, Disk $\mathbb D$ or Möbius band M, *K* = Non-empty compact subset of one boundary circle of *X* Sketch of Proof : $[1] \Rightarrow [2] \Rightarrow [3] \Rightarrow [1]$ $[2] \Rightarrow [3] :$

Lemma 1.

(1) Every boundary circle *C* of *M* is a retract of *M*. (2) $h \in \mathcal{H}(M)$ $h \in \mathcal{H}(M)_0 \iff \exists$ an isotopy from *h* to id_M with compact support **Lemma 2.** $\mathcal{M}_c(M) \supset \mathbb{Z}$ in each of the following cases:

- (1) *M* contains a handle;
- (2) *M* contains at least two disjoint Möbius bands;
- (3) *M* contains at least two boundary circles;
- (4) *M* contains a Möbius band and a boundary circle;
- (5) *M* is separated by a circle $C \subset \text{Int } M$

into two non-compact connected subsurfaces L_1 and L_2 .

$$
(\cdot \cdot) (5) h_n := \text{the } n \text{-fold Dehn twist along } C \ (n \in \mathbb{Z})
$$

Claim : $h_n \in \mathcal{H}(M)_0 \iff n = 0$

(i) Suppose $h_n \in \mathcal{H}(M)_0$.

 \exists an isotopy $h_n \simeq id_M$ with a compact support *K*.

(ii) \exists a path ℓ in M which

connects a point in $L_1 \setminus K$ with a point of $L_2 \setminus K$ and crosses *C* once.

(iii) $h_n \ell \simeq \ell$ in *M* rel. end points $\therefore C^n \simeq (h_n \ell) \ell^{-1} \simeq * \text{ in } M$.

(iv) *M* retracts onto *C* \therefore *C*ⁿ \approx * in *C* \therefore *n* = 0

Proof of [2] \Rightarrow [3]. Suppose $\mathcal{M}_c(M)$: a torsion group.

- (1) By Lemma 2, *M* contains
	- (i) at most one Möbius band
	- (ii) at most one boundary circle
	- (iii) no handle and

(iv) no circle separating *M* into two non-compact connected subsurfaces.

not simultaneous

 $\overline{\mathfrak{l}}$

\n- (2)
$$
M = \bigcup_{n \in \omega} M_n
$$
, where
\n- (i) M_n : a compact connected subsurfaces of M ,
\n- (ii) $M_n \subset \text{int}_M M_{n+1}$, (iii) if $\partial M \neq \emptyset$ then $M_0 \cap \partial M \neq \emptyset$,
\n- (iv) if L is a connected component of $M - \text{Int}_M M_n$, then L is non-compact and $L \cap M_{n+1}$ is connected.
\n

(3) Every M_n has exactly one boundary circle meeting $M - \text{Int}_M M_n$.

17

(4) Three possible cases :

Case (i): *M* contains no boundary circle and no Möbius band.

 $M \approx \mathbb{D} - K$ $(K \subset \partial \mathbb{D} : \text{compact}, \neq \emptyset)$ $(\forall M_n : \text{a disk})$ **Case (ii):** *M* contains a Möbius band. ($\forall M_n : a$ Möbius band) $M \approx M - K$ ($K \subset \partial M$: compact, $\neq \emptyset$) **Case (iii):** *M* contains a boundary circle *C*. $(\forall M_n : \text{an annulus})$ $(M, C) \approx (\mathbb{A} - K, C_1)$ $(\partial \mathbb{A} = C_1 \cup C_2, K \subset C_2 : \text{compact}, \neq \emptyset)$ [End of Talk]

Thank you very much for your attention !