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. . . . . .

Definition

Let G be a finite group not of prime power order.

▶ A real G-module means a finite dimensional real vector space with a
linear G-action.

▶ π(G) denotes the set of primes dividing |G|, the order of G.

▶ P(G) denotes the set of subgroups P with |π(P)| ≤ 1

▶ PH(G) denotes the set of pairs (P,H) of subgroups of G such that
P ∈ P(G) and P < H ≤ G.

.
Definition
..

......

A G-module V is called a gap G-module if

dim VP > 2 dim VH

for all (P,H) ∈ PH(G).
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. . . . . .

Gap modules

▶ For a set S of subgroups of G, a G-module V is S-free if VL = 0 for
all L ∈ S.

▶ For a prime p, Op(G) denotes the minimal (normal) p-power index
subgroup of G, called Dress subgroup of type p.

Op(G) =
∩

L≤G,[G:L ]=p∗

L

▶ L(G) denotes the set of subgroups of G containing some Op(G)

G ∈ L(G)

.
Definition
..

......
A finite group G is called a gap group if there exists an L(G)-free gap
G-module.
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. . . . . .

Notation

▶ For a G-module V , define dV : PH(G)→ Z by

dV(P,H) = dim VP − 2 dim VH

▶ For a subset S of PH(G), a real G-module V is called positive on S if
dV(P,H) > 0 for any (P,H) ∈ S.

▶ For a subset S of PH(G), a real G-module V is called nonnegative
on S if dV(P,H) ≥ 0 for any (P,H) ∈ S.

A finite group G is a gap group if there exists an L(G)-free G-module
which is positive on PH(G).
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. . . . . .

Oliver group

A finite group G is an Oliver group, if G has no series of subgroups of the
form

P ◁ H ◁ G

where |π(P)| ≤ 1, |π(G/H)| ≤ 1 and H/P is cyclic. Particularly, each
nonsolvable group is an Oliver group.

.
Theorem (Oliver 1975)
..

......

A finite group G has a fixed point free smooth action on a disk if and only if
G is an Oliver group.

.
Theorem (Laitinen-Morimoto 1998)
..

......

A finite group G has a one fixed point smooth action on a sphere if and
only if G is an Oliver group.
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. . . . . .

Surgery Theory
..
.
Theorem (Morimoto 1998, 2008)
..

......

Let G be a finite Oliver and gap group and Y a smooth G-manifold such
that the underlying manifold of Y is diffeomorphic to the disk of dimension
n ≥ 5 and YG , ∅. Let F1, . . . ,Ft denote the connected components of
YG , and let k1, . . . , kt be nonnegative integers. Suppose the following
condition.

...1 π1(YP) is finite group of order prime to |P | for any P ∈ P(G).

...2 ki = kj whenever some connected component YH
α of YH, H ∈ L(G),

contains both Fi and Fj .

Then there exist a gap G-module W and a G-action on the disk D such
that

▶ DG =
⨿t

i=1

⨿ki
j=1 Fi,j (each Fi,j is diffeomorphic to Fi),

▶ ∂D is G-diffeomorphic to ∂(Y × D(W)),
▶ each normal bundle ν(Fi,j ,D) is G-isomorphic to ν(Fi ,Y) ⊕W.
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. . . . . .

Examples I

A gap group G satisfies that L(G) ∩ P(G) = ∅.
.
Example
..

......

Suppose that L(G) ∩ P(G) = ∅.
...1 Any nonabelian perfect group is a gap group.
...2 If |{p ∈ π(G) | p , 2, Op(G) , G}| ≥ 2, then G is a gap group.

([Laitinen-Morimoto 1998])
...3 Sn (n ≥ 6) are gap groups. ([Dovermann-Herzog 1997])
...4 S4 × S5, Sn × C2 (n ≥ 6) and An × C2 (n ≥ 5) are gap groups.

([Morimoto-S-Yanagihara 2000])
...5 S1,S2,S3,S4 are not gap groups.
...6 S5 is not a gap group. ([Morimoto-Yanagihara 1996])
...7 S5 × C2 is not a gap group.
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. . . . . .

Examples II

.
Example (S)
..

......

Suppose that L(G) ∩ P(G) = ∅.
...1 If G is a generalized quaternion group Q4n of order 4n,

⟨x, y | x2n = 1, y2 = xn, y−1xy = x−1⟩

G is not a gap group but G × Cp is for all odd prime p.
...2 G × D2n is a gap group if and only if G is.
...3 For a 2-group K , G × K is a gap group if and only if G is.
...4 A finite group which has a quotient gap group is a gap group.
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. . . . . .

Examples III

.
Theorem (S)
..

......

A nonsolvable general linear group GL(n, q) is a gap group. A nonsolvable
projective linear group PGL(n, q) is a gap group if and only if
(n, q) , (2, 5), (2, 7), (2, 9), (2, 17).

.
Theorem (S)
..
......The automorphism group of any sporadic group is a gap group.
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. . . . . .

Criterion to be a gap group

Let K be an index 2 subgroup of G.
For an element x of G, we set

▶ φ(x) = {q: odd prime | x ∈ ∃N ≤ G, Oq(N) , N}
▶ E2(G,K) = {x ∈ G ∖ K | |x | = 2, |φ(x)| > 1 or O2(CG(x)) < P(G)}

▶ Eo
2 (G,K) = {x ∈ G ∖ K | |x | = 2,O2(CG(x))) < P(G)}

▶ E4(G,K) = {x ∈ G ∖ K | |x | = 2∗ ≥ 4, |φ(x)| > 0}

▶ Eo
4 (G,K) = {x ∈ G ∖ K | |x | = 2∗ ≥ 4,CG(x) < P(G)}

▶ E(G,K) = E2(G,K) ∪ E4(G,K)

▶ Eo(G,K) = Eo
2 (G,K) ∪ Eo

4 (G,K)

Eo
2 (G,K) ⊆ E2(G,K), Eo

4 (G,K) ⊆ E4(G,K), Eo(G,K) ⊆ E(G,K)
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. . . . . .

Criterion to be a gap group I

.
Definition
..

......

A finite group G not of prime power order is called an almost gap group if
there exists an L(G)-free module which is positive on
{(P,H) ∈ PH(G) | P < L(G)}.

.
Theorem
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅ and let K be a index 2
subgroup of G. Suppose that K is an almost gap group. G is a gap group
if and only if Eo(G,K) is not empty.
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. . . . . .

Criterion to be a gap group II

.
Proposition
..

......

Suppose that P(G) ∩ L(G) = ∅.
∃ {O2(G)}-free gap G-module iff ∃ L(G)-free gap G-module

.
Theorem (Morimoto-S-Yanagihara, 2000)
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅ and let L be subgroup of G
with L ≥ O2(G). If L is not an almost gap group, then G is not a gap group.
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. . . . . .

Proof of examples, I
..
.
Theorem
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅ and let K be a 2 power index
subgroup of G. Suppose that K is an almost gap group. G is a gap group if and
only if Eo(G,K) is not empty.

.
Example (Dovermann-Herzog, 1997 and Morimoto-S-Yanagihara, 2000)
..
......Sn for n ≥ 7 is a gap group.

.
Proof.
..
......Since (1, 2, 3, 4)(5, 6, 7) ∈ Sn, (1, 2, 3, 4) ∈ Eo(Sn,An). □

Eo
4 (G,K) = {x ∈ G ∖ K | |x | = 2∗ ≥ 4,CG(x) < P(G)}

Eo
2 (G,K) = {x ∈ G ∖ K | |x | = 2,O2(CG(x))) < P(G)}
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. . . . . .
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.
Example
..
......An × C2 for n ≥ 5 is a gap group.

.
Proof.
..

......

We see An × C2 is a subgroup of Sn+2 such that C2 = {(), (n + 1, n + 2)}.
Since (1, 2, 3)(n + 1, n + 2), (1, 2, 3, 4, 5)(n + 1, n + 2) ∈ Sn,
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. . . . . .

Proof of examples, I
..
.
Theorem
..

......
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subgroup of G. Suppose that K is an almost gap group. G is a gap group if and
only if Eo(G,K) is not empty.

.
Example
..
......S5 is not a gap group.

.
Proof.
..

......

CS5((4, 5)) = ⟨(1, 2), (1, 3), (4, 5)⟩ � S3 × C2. O2(CS5((4, 5)) � C3.
CS5((1, 2, 3, 4)) = ⟨(1, 2, 3, 4)⟩ � C4. Then Eo(S5,A5) = ∅. □

Eo
4 (G,K) = {x ∈ G ∖ K | |x | = 2∗ ≥ 4,CG(x) < P(G)}

Eo
2 (G,K) = {x ∈ G ∖ K | |x | = 2,O2(CG(x))) < P(G)}
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. . . . . .

Proof of examples, II

.
Example (Dovermann-Herzog, 1997 and Morimoto-S-Yanagihara, 2000)
..
......S6 is a gap group.

.
Proof.
..

......

CG((1, 2)) = ⟨(1, 2), (3, 6), (4, 6), (5, 6)⟩

O2(CG((1, 2))) = ⟨(3, 4, 5), (4, 5, 6)⟩ � A4.

Then (1, 2) ∈ Eo(S6,A6). □

CS6((1, 2, 3, 4)) � C4 × C2 and CS6((1, 2)(3, 4)(5, 6)) � CS6((1, 2)).
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. . . . . .

Proof of examples, III

.
Proposition
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. Let G{2} be a a Sylow
2-subgroup of G. If |π(NG(G{2})/G{2})| ≥ 2, then G is a gap group. In
particular, if G{2} is normal, then G is a gap group.

.
Proof.
..

......

Let p and q be distinct primes of π(NG(G{2})/G{2}). Take elements x and y
of π(NG(G{2}) of order p and q respectively. Consider the subgroups
Np = ⟨x⟩G{2}, Nq = ⟨y⟩G{2}. Then IndG

Np
V(Np) ⊕ IndG

Nq
V(Nq) ⊕ V(G) is an

L(G)-free gap G-module. □
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. . . . . .

Construction of gap modules – ideas – I

For a set S of subgroups of G, RO(G)S denotes the set of all S-free real
G-modules.
.
Proposition
..

......

We can construct a gap G-module of form
∑

C IndG
C VC , where VC is a

C-module. Here C runs over representatives of conjugacy classes of
cyclic subgroups of G.

L(G) ∩ K = {L ∩ K | L ∈ L(G)}
RO(G) ⊗ Q =

∑
C IndG

C RO(C) ⊗ Q

RO(G)L(G) ⊗ Q =
∑

C IndG
C RO(C)L(G)∩C ⊗ Q
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. . . . . .

Construction of gap modules – ideas – II

A G-module V regards as a vector space with a G-invariant inner product.
For a G-invariant subspace U of V (that is U is a submodule of V ), we
denote by V − U the orthogonal complement subspace of U in V . Laitinen
and Morimoto used the G-module

V(G) = (R[G] − R) −
⊕

p∈π(G)

(R[G] − R)Op(G)

to show that G is Oliver iff ∃one fixed point action on a sphere. This
module is the maximal L(G)-free submodule of R[G].

dim V(G)H = (|G/H| − 1) −
∑

p∈π(G)

(|G/Op(G)H| − 1)
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. . . . . .

Construction of gap modules – ideas – III

▶ PH2(G) : the subset of PH(G) containing (P,H) such that

[H : P] = [O2(G)H : O2(G)P] = 2,Oq(G)P = G

.
Proposition (Laitinen-Morimoto 1998)
..

......

...1 V(G) is L(G)-free and nonnegative.

...2 dV(G)(P,H) = 0 if and only if P ∈ L(G) or (P,H) ∈ PH2(G)

For a G-module V , put

VL(G) = (V − VG) −
⊕

p∈π(G)

(VOp(G) − VG)

which is the maximal L(G)-free G-submodule of V .
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. . . . . .

Construction of gap modules – ideas – IV

V(G) = R[G]L(G)

.
Proposition
..

......

Let G be a group satisfying that O2(G) = G or π(G/[G,G]) contains two
odd primes. If P(G) ∩ L(G) = ∅, then V(G) is a gap G-module.

.
Proposition (Nonnegative + Positive = Positive)
..

......

Suppose that P(G) ∩ L(G) = ∅. If there exists an L(G)-free module
which is positive for any (P,H) ∈ PH2(G), then W ⊕ V(G)⊕ dim W+1 is a
gap G-module and G is a gap group.
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. . . . . .

Construction of gap modules – ideas – V

.
Remark
..

......

...1 If V is a gap module, then V⊕m is also for m ∈ N.

...2 For a G-module V and a nonnegative G-module W, it holds that
dV ≤ dV⊕W , that is, dV(P,H) ≤ dV⊕W (P,H) for all (P,H) ∈ PH(G).

...3 Let K be a subgroup of G. For a nonnegative K-module W, if
WK∩O2(G) = 0, then (IndG

K W)L(G) ⊕ V(G)⊕n is nonnegative where
n = min(−min d(IndG

K W)L(G)
, 0).
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. . . . . .

Necessary condition to be a gap group I

▶ Λ = {L ≤ G | O2(G) < L}
▶ Λ0 = {L ∈ Λ | L/O2(G) is cyclic}
▶ Λ1 = {L ∈ Λ0 | L < ∄K < G}

.
Theorem (S)
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. TFAE.

...1 G is a gap group.

...2 For any L ∈ Λ, there exists an (L(G) ∩ L)-free L-module WL such
that dWL (P,H) > 0 for (P,H) ∈ PH(L).

...3 For any L ∈ Λ0, there exists an (L(G) ∩ L)-free L-module WL such
that dWL (P,H) > 0 for (P,H) ∈ PH(L).

...4 For any L ∈ Λ1, there exists an (L(G) ∩ L)-free L-module WL such
that dWL (P,H) > 0 for (P,H) ∈ PH(L).
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. . . . . .

Necessary condition to be a gap group II

Let G be a finite group such that P(G) ∩ L(G) = ∅ and G/O2(G) is
nontrivial cyclic.
.
Theorem
..

......

If there exists an element x ∈ G such that G = O2(G)⟨x⟩ and
⟨x⟩ ∩ O2(G) < P(G), then G is a gap group.

Let π(⟨x⟩) = {q1, q2, . . . , qt }, Cj a Sylow qj-subgroup of ⟨x⟩ and ηj an
irreducible complex Cj-module such that ηP

j = 0 for any nontrivial
subgroup P of Cj . Set

U = (C − η1) · · · (C − ηt) ∈ R(⟨G1⟩) ⊗ · · · ⊗ R(⟨Gt ⟩) � R(⟨x⟩)

and let V be a real ⟨x⟩-module which is direct sum of the realification of the
module U and V(⟨x⟩)⊕n for sufficiently large n. Then (IndG

⟨x⟩ V)L(G) is a
gap G-module.
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. . . . . .

Construction of nonnegative modules – E(G,K) –
..
For an element x of G, we denote by φ(x) the set of odd primes q such
that x ∈ Nq and Oq(Nq) , Nq for some subgroup Nq of G, and by ψ(x) the
number of elements of the set φ(x).
E4(G,O2(G)) = {x ∈ G ∖ O2(G) | |x | = 2∗ ≥ 4, ψ(x) > 0}
.
Proposition
..

......

Let G be a finite group. For an element x of E4(G,O2(G)), the G-module

Wx =
∑

q∈φ(x)
IndG

Nq
V(Nq)

is nonnegative and L(G)-free such that

▶ dWx (P,H) > 0 for any (P,H) ∈ PH2(G) with (x) ∩ (H ∖ P) , ∅ and
P < L(G).
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. . . . . .

Construction of nonnegative modules – E(G,K) –
..
For an element x of G, we denote by φ(x) the set of odd primes q such
that x ∈ Nq and Oq(Nq) , Nq for some subgroup Nq of G, and by ψ(x) the
number of elements of the set φ(x).
E2(G,O2(G)) = {x ∈ G ∖ O2(G) | |x | = 2, ψ(x) > 1 or O2(CG(x)) <
P(G) }
.
Proposition
..

......

Let G be a finite group. For an element x of E2(G,O2(G)), the G-module

Wx =
⊕

q∈φ(x)
IndG

Nq
V(Nq) ⊕

⊕
q∈π(CG(x))∖{2}

IndG
Mq

V(Mq),

where Sq is a Sylow q-subgroup of CG(x) and Mq = ⟨x⟩ × Sq, is
nonnegative and L(G)-free such that dWx (P,H) > 0 for any
(P,H) ∈ PH2(G) with (x) ∩ (H ∖ P) , ∅ and P < L(G).
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. . . . . .

Construction of nonnegative modules – Eo(G,K) –

For Eo
4 (G,K) and Eo

2 (G,K),

.
Proposition
..

......

Let G be a finite group. For an element x of Eo
4 (G,O

2(G)), the G-module

Wx =
∑

q∈φ(x)
IndG

Mq
V(Mq),

where Sq is a Sylow q-subgroup of CG(x) and Mq = ⟨x⟩ × Sq, is
nonnegative and L(G)-free such that

▶ dWx (P,H) > 0 for any (P,H) ∈ PH2(G) with (x) ∩ (H ∖ P) , ∅ and
P < L(G).

Eo
4 (G,O

2(G)) = {x ∈ G ∖ O2(G) | |x | = 2∗ ≥ 4, |π(CG(x))| > 1}
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. . . . . .

Construction of nonnegative modules – Eo(G,K) –

For Eo
4 (G,K) and Eo

2 (G,K),

.
Proposition
..

......

Let G be a finite group. For an element x of Eo
2 (G,O

2(G)), the G-module

Wx =
⊕

q∈π(CG(x))∖{2}
IndG

Mq
V(Mq),

where Sq is a Sylow q-subgroup of CG(x) and Mq = ⟨x⟩ × Sq, is
nonnegative and L(G)-free such that

▶ dWx (P,H) > 0 for any (P,H) ∈ PH2(G) with (x) ∩ (H ∖ P) , ∅ and
P < L(G).

Eo
2 (G,O

2(G)) = {x ∈ G ∖ O2(G) | |x | = 2, O2(CG(x)) < P(G) }
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. . . . . .

Construction of nonnegative modules

.
Theorem
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. There exists an L(G)-free
nonnegative G-module W such that dW (P,H) > 0 if
E(G,O2(G)) ∩ (H ∖ P) , ∅ for any (P,H) ∈ PH2(G).
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. . . . . .

Necessary condition to be a gap group

.
Theorem (S)
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. TFAE.

...1 G is a gap group.

...2 For any x ∈ G ∖ O2(G), there exists an (L(G) ∩O2(G)⟨x⟩)-free
O2(G)⟨x⟩-module Ux such that dUx (P,H) > 0 for
(P,H) ∈ PH(O2(G)⟨x⟩).

❶⇒ ❷:
For a gap G-module V ,

Ux = (ResG
O2(G)⟨x⟩ V)L(G)∩O2(G)⟨x⟩

is a required module.
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. . . . . .

Necessary condition to be a gap group

.
Theorem (S)
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. TFAE.

...1 G is a gap group.

...2 For any x ∈ G ∖ O2(G), there exists an (L(G) ∩O2(G)⟨x⟩)-free
O2(G)⟨x⟩-module Ux such that dUx (P,H) > 0 for
(P,H) ∈ PH(O2(G)⟨x⟩).

❶⇐ ❷: ⊕
(x)±⊂G∖O2(G)

IndG
O2(G)⟨x⟩ Ux

is a gap G-module.
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. . . . . .

Construction of gap modules I

Let G be a finite group such that G/O2(G) is a nontrivial cyclic group and
let K be an index 2 subgroup of G.
Note that E2(G,K) = ∅ if K , O2(G). In the previous argument, we see
that there exists an L(G)-free nonnegative G-module W(G) such that
dW(G)(P,H) is positive if (P,H) ∈ PH(G) ∖ PH2(G) or
(H ∖ P) ∩ E(G,K) , ∅.
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. . . . . .

Construction of gap modules II

Let {Cj | j ∈ J} be a complete set of representatives of all conjugacy
classes in G of cyclic subgroups C with C ≰ K .

J(2) = { j ∈ J | Cj ∈ P(G)}

sj = |NG(Cj)/Cj |

for j ∈ J.
.
Proposition
..

......

∑
j∈J(2)

s−1
j ≤ 1

∑
j∈J(2)

s−1
j = 1⇔ J(2) = J
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. . . . . .

Construction of gap modules III

m = LCM{sj | j ∈ J(2)}

U =
∑

j∈J(2)
((IndG

Cj
(R[Cj] − R))L(G))

⊕ms−1
j

n = min(−min dU − 1, 0), 0 ≤ n ≤ dim U + 1

U(K) := U ⊕ (W(G) ⊕ V(G))⊕n

U(K ;G) := U ⊕W(G)⊕n

.
Theorem
..

......

Let G be a finite group such that G/O2(G) is a nontrivial cyclic group and
let K be an index 2 subgroup of G. If Eo(G,K) , ∅, then U(K) is
nonnegative and L(G)-free, and dU(K)(P,H) > 0 for any H ≰ K.
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. . . . . .

Construction of gap modules IV

Let G be a finite group such that P(G) ∩ L(G) = ∅ and G/O2(G) is
cyclic. Let consider the sequence of index 2 subgroups of G

G = G0 ▷ G1 ▷ · · · ▷ Gt−1 ▷ Gt = O2(G), [Gk : Gk+1] = 2

.
Theorem
..

......

If Eo(Gk ,Gk+1) , ∅ for any 0 ≤ k < t , then
⊕

0≤k<t U(Gk ;G) ⊕ nV(G) is
an L(G)-free gap G-module (for sufficient large n) and in partiular G is a
gap group.
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. . . . . .

Construction of gap modules V

Let G1, . . . ,Gs be complete representatives of subgroups of conjugacy
classes of G such that G/Gi is cyclic and there is no subgroup K of G
such that G/K is cyclic and K > Gi . Let Gi,1, . . . ,Gi,ki be subgroups of
Gi,0 := Gi such that

[Gi,0 : Gi,1] = [Gi,1 : Gi,2] = · · · = [Gi,ki−1 : Gi,ki ] = 2.

Put S = {(Gi,j−1,Gi,j) | 1 ≤ i ≤ s, 1 ≤ j ≤ ji}.⊕
(H,H′)∈S

U(H;G) ⊕ V(G)⊕n

is a gap G-module for sufficient large n.
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. . . . . .

Construction of gap modules VI

For each j ∈ J, put

(Pj ,Hj) =

(O2(CG(Cj))(Cj ∩ K),O2(CG(Cj))Cj), Hj ∈ Gt−1

(Cj ∩ K ,Cj), otherwize

tj =

|NG{2}(Cj)/Cj |, Hj ∈ Gt−1

sj = |NG(Cj)/Cj |, otherwize
.

.
Theorem
..

......

If J = J(2), then ∑
j∈J

t−1
j dV(Pj ,Hj) = 0

which implies that dV(Pj ,Hj) = 0 for any an L(G)-free nonnegative
G-module V.
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. . . . . .

Construction of gap modules VII

We summarize that
.
Theorem
..

......

Let G be a finite group such that P(G) ∩ L(G) = ∅. Let Γ be the set of all
representatives of conjugacy classes of 2-power index subgroups L of G
with [G : L ] = 2 or [L : O2(G)] = 2.

...1 If Eo(L ,O2(G)) = ∅ for some L ∈ Γ, then G is not a gap group.

...2 If Eo(L ,O2(G)) , ∅ for all L ∈ Γ, then G is a gap group.

.
Corollary
..

......

If there is an element x of G such that G = ⟨x⟩O2(G) and |π(⟨x⟩)| ≥ 3,
then G is a gap group.
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. . . . . .

Construction of gap modules VIII

S: a noncomplete sporadic group
G = Aut(S) � S ⋊ C2.

S |CG(x)| Eo(G,S)
M12 empty 2C , 4C , 4D
HN empty 2C , 4D, 4E, 4F , 8C , 8E, 8D, 8F
J2 8C 25 2C , 4B , 4C , 8B
J3 8C 25 2B , 4B , 8B

McL 8C 25 2B , 4B , 8B
O ′N 8E 25 2B , 8C , 8D
Fi22 16C 25 2D, 2E, 2F , 4F , 4G, 4H, 4I, 4J, 8E, 8F , 8G, 8H
Fi′24 16B 26 2C , 2D, 4D, 4E, 4F , 4G, 8D, 8E, 8F
He 16A , 16B∗ 24, 24 2C , 4D, 8B , 8C∗
M22 4D, 8B 26, 24 2B , 2C , 4C
Suz 8G, 16A 28, 24 2C , 2D, 4E, 4F , 8D, 8E, 8F , 8H
HS 8D, 8E 26, 26 2C , 2D, 4D, 4E, 4F
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. . . . . .

Construction of gap modules IX

.
Theorem
..
......The automorphism group of a sporadic group is a gap group.

.
Lemma (Morimoto-S-Yanagihara, 2000)
..

......

If K is a subgroup of G with odd index possessing an (L(G) ∩ K)-free
positive K-module V, then IndG

K V is a gap G-module.

Aut(M22)
77
> K ↠ S6, Aut(Suz)

405405
> K ′ ↠ S6,

Aut(HS)
1100
> S8 × C2,

HS ∩ (S8 × C2) = S8
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. . . . . .

Sufficient condition I

.
Theorem
..

......

Let
G{2} ∖ O2(G) = ⨿x∈Ψ(x)

±

where G{2} is a Sylow 2-subgroup of G. Suppose that P(G) ∩ L(G) = ∅,
[G : O2(G)] = 2 and that there is x ∈ Ψ such that

Ψ ∖ E(G,O2(G)) ⊂ ⟨x⟩,

that is, for any y ∈ Ψ, (y) ∩ ⟨x⟩ = ∅, there exists an L(G)-free nonnegative
G-module Wy such that dWy (P,H) > 0 for (P,H) ∈ PH2(G) with (y) ∩ H , ∅.
Then

(IndG
⟨x⟩(R[⟨x⟩] − R))L(G) ⊕ (V(G) ⊕

⊕
y∈Ψ,y,x

Wy)
⊕n

is a gap G-module for a sufficiently large integer n.
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. . . . . .

Sufficient condition II

Recall that if there are two distinct odd primes r such that O r(G) , G, then
G is a gap group.
Let consinder a finite group G such that P(G) ∩ L(G) = ∅, O2(G) , G,
and Oq(G) , G for a unique odd prime q.

Let S be a complete set of representatives of conjugacy classes of G
represented by elements of order 2 which does not lie in
E(G,O2(G)) ∪ O2(G). Fix a Sylow 2-subgroup G{2} of G. (We can
assume that x belongs to G{2} for any x ∈ S without loss of generality.) Let
S = {x1, . . . , xr } and sj denotes the order of CG{2}(xj)/⟨xj⟩ for 1 ≤ j ≤ r .
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. . . . . .

Sufficient condition III

.
Theorem
..

......

Let G be a finite group such that Oq(G) , G for some unique odd prime q,
[G : O2(G)] = 2 and L(G) ∩ P(G) = ∅. TFAE.

...1 G is a gap group.

...2 E(G,O2(G)) is not empty.

...3
r∑

j=1

s−1
j , 1.

...4 There are two elements of G{2} of order 2 which are conjugate in G
but not conjugate in G{2}.
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. . . . . .

Sufficient condition IV

.
Theorem
..

......

Let G be a finite nongap group such that [G : O2(G)] = 2 and
P(G) ∩ L(G) = ∅. If the abelian group (G{2} ∩ O2(G{2}))/[G{2},G{2}] is
generated by xy for involutions x, y of G{2} ∖ O2(G) which are conjugate in
G, then O2(G) is of odd order.

.
Theorem
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅ and Oq(G) , G for an odd
prime q. If O2(G) is of even order (eg. nonsolvable group), then G is a
gap group.
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. . . . . .

Group having nontrivial center

.
Proposition
..

......

Let G be a finite group with P(G) ∩ L(G) = ∅. Suppose that the center
Z(G) of G is not a 2-group (also not trivial). If O2(G) is of even order then
G is a gap group.

.
Remark
..

......

Note that if G/Z(G) is gap then so is G. The converse is not true in
general: It is not true that G is gap implies that G/Z(G) is gap. For a
nonabelian q-group P,

▶ G = Q4n × P is gap if P(G) ∩ L(G) = ∅,

▶ G = D2n × P/Z(P) is not gap.
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. . . . . .

Application I

Let Sm(G) be a set, called the Smith set, consisting of all differences
[Tx(Σ)] − [Ty(Σ)] of RO(G) for a smooth G-action of a homotopy sphere
Σ with ΣG = {x, y}.
.
Theorem
..

......

Let G be a finite Oliver group with P(G) ∩ L(G) = ∅ and Oq(G) , G for
an odd prime q. Then

RO(G)
L(G)

P(G)
⊆ Sm(G).
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. . . . . .

Application II

.
Conjecture
..

......

Let K be a finite group with [K : O2(K)]= 2. Suppose that
P(K) ∩ L(K) = ∅ and Eo(K ,O2(K)) = ∅. Then it seems that elements of
K ∖ O2(K) of order 2 are conjugate in K.

.
Theorem
..

......

If K is an Oliver group satisfying the property of the above conjecture, then

RO(K)
L(K)

P(K)
⊆ Sm(K).
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. . . . . .

Dimension

We might want to know a gap module with smaller dimension as possible.
To find a gap module with smallest dimension, we consider the integer
linear programming. For a matrix

A =


...

· · · dV(P,H) · · ·
...

 ,
where (P,H) runs over PH(G) on rows and V runs over L(G)-free
irreducible G-modules on columns.

minimize [· · · , dim V , · · · ]x

subject to Ax ≥


1
...

1

 , x ≥ 0, x ∈ Z|Irr(G)|
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. . . . . .

Thank you for your attention!

Toshio SUMI (Kyushu University) Construction of gap modules Symp. Transf. Gps 44 / 44


