Construction of gap modules

Toshio SUMI

Faculty of Arts and Science Kyushu University

The 41st Symposium on Transformation Groups, November 14, 2014 Gamagori civic hall, Japan

Definition

Let G be a finite group not of prime power order.

- A real G-module means a finite dimensional real vector space with a linear G-action.
- $\pi(G)$ denotes the set of primes dividing |G|, the order of *G*.
- $\mathcal{P}(G)$ denotes the set of subgroups *P* with $|\pi(P)| \leq 1$
- ▶ $\mathcal{PH}(G)$ denotes the set of pairs (*P*, *H*) of subgroups of *G* such that $P \in \mathcal{P}(G)$ and $P < H \leq G$.

Definition

A G-module V is called a gap G-module if

$$\dim V^P > 2 \dim V^H$$

for all $(P, H) \in \mathcal{PH}(G)$.

Gap modules

- For a set S of subgroups of G, a G-module V is S-free if $V^L = 0$ for all $L \in S$.
- ► For a prime p, O^p(G) denotes the minimal (normal) p-power index subgroup of G, called Dress subgroup of type p.

$$O^p(G) = \bigcap_{L \le G, [G:L] = p^*} L$$

• $\mathcal{L}(G)$ denotes the set of subgroups of G containing some $O^{p}(G)$

$$G \in \mathcal{L}(G)$$

Definition

A finite group G is called a *gap group* if there exists an $\mathcal{L}(G)$ -free gap G-module.

Toshio SUMI (Kyushu University)

Construction of gap modules

For a *G*-module *V*, define $d_V \colon \mathcal{PH}(G) \to \mathbb{Z}$ by

$$d_V(P,H) = \dim V^P - 2 \dim V^H$$

- For a subset S of PH(G), a real G-module V is called positive on S if d_V(P, H) > 0 for any (P, H) ∈ S.
- ▶ For a subset *S* of $\mathcal{PH}(G)$, a real *G*-module *V* is called *nonnegative* on *S* if $d_V(P, H) \ge 0$ for any $(P, H) \in S$.

A finite group *G* is a gap group if there exists an $\mathcal{L}(G)$ -free *G*-module which is positive on $\mathcal{PH}(G)$.

Oliver group

A finite group *G* is an *Oliver group*, if *G* has no series of subgroups of the form

P⊲H⊲G

where $|\pi(P)| \le 1$, $|\pi(G/H)| \le 1$ and H/P is cyclic. Particularly, each nonsolvable group is an Oliver group.

- E - E

A finite group *G* is an *Oliver group*, if *G* has no series of subgroups of the form

P⊲H⊲G

where $|\pi(P)| \le 1$, $|\pi(G/H)| \le 1$ and H/P is cyclic. Particularly, each nonsolvable group is an Oliver group.

Theorem (Oliver 1975)

A finite group G has a fixed point free smooth action on a disk if and only if G is an Oliver group.

A finite group *G* is an *Oliver group*, if *G* has no series of subgroups of the form

P⊲H⊲G

where $|\pi(P)| \le 1$, $|\pi(G/H)| \le 1$ and H/P is cyclic. Particularly, each nonsolvable group is an Oliver group.

Theorem (Oliver 1975)

A finite group G has a fixed point free smooth action on a disk if and only if G is an Oliver group.

Theorem (Laitinen-Morimoto 1998)

A finite group G has a one fixed point smooth action on a sphere if and only if G is an Oliver group.

3

A 3 b

< D > < P > < P > < P >

Surgery Theory

Theorem (Morimoto 1998, 2008)

Let G be a finite Oliver and gap group and Y a smooth G-manifold such that the underlying manifold of Y is diffeomorphic to the disk of dimension $n \ge 5$ and $Y^G \ne \emptyset$. Let F_1, \ldots, F_t denote the connected components of Y^G , and let k_1, \ldots, k_t be nonnegative integers. Suppose the following condition.

π₁(Y^P) is finite group of order prime to |P| for any P ∈ P(G).
 k_i = k_j whenever some connected component Y^H_α of Y^H, H ∈ L(G), contains both F_i and F_j.

Then there exist a gap G-module W and a G-action on the disk D such that

- $D^{G} = \coprod_{i=1}^{t} \coprod_{j=1}^{k_{i}} F_{i,j}$ (each $F_{i,j}$ is diffeomorphic to F_{i}),
- ∂D is G-diffeomorphic to $\partial (Y \times D(W))$,
- each normal bundle $v(F_{i,j}, D)$ is G-isomorphic to $v(F_i, Y) \oplus W$.

Examples I

A gap group G satisfies that $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$.

Example

Suppose that $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$.

- Any nonabelian perfect group is a gap group.
- If $|\{p \in \pi(G) \mid p \neq 2, O^p(G) \neq G\}| \ge 2$, then G is a gap group. ([Laitinen-Morimoto 1998])
- S_n ($n \ge 6$) are gap groups. ([Dovermann-Herzog 1997])
- ③ $S_4 \times S_5$, $S_n \times C_2$ (*n* ≥ 6) and $A_n \times C_2$ (*n* ≥ 5) are gap groups. ([Morimoto-S-Yanagihara 2000])
- **5** S_1 , S_2 , S_3 , S_4 are <u>not</u> gap groups.
- S₅ is not a gap group. ([Morimoto-Yanagihara 1996])
- $S_5 \times C_2$ is <u>not</u> a gap group.

イロト イボト イヨト イヨト

Examples II

Example (S)

Suppose that $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$.

If G is a generalized quaternion group Q_{4n} of order 4n,

$$\langle x, y | x^{2n} = 1, y^2 = x^n, y^{-1}xy = x^{-1} \rangle$$

G is not a gap group but $G \times C_p$ is for all odd prime *p*.

- **2** $G \times D_{2n}$ is a gap group if and only if G is.
- Sor a 2-group K, $G \times K$ is a gap group if and only if G is.
- A finite group which has a quotient gap group is a gap group.

Theorem (S)

A nonsolvable general linear group GL(n, q) is a gap group. A nonsolvable projective linear group PGL(n, q) is a gap group if and only if $(n, q) \neq (2, 5), (2, 7), (2, 9), (2, 17).$

Theorem (S)

The automorphism group of any sporadic group is a gap group.

Criterion to be a gap group

Let K be an index 2 subgroup of G. For an element x of G, we set

•
$$\varphi(x) = \{q: \text{ odd prime } | x \in \exists N \le G, \ O^q(N) \neq N\}$$

►
$$E_2(G, K) = \{x \in G \setminus K \mid |x| = 2, |\varphi(x)| > 1 \text{ or } O^2(C_G(x)) \notin \mathcal{P}(G)\}$$

►
$$E_4(G, K) = \{x \in G \setminus K \mid |x| = 2^* \ge 4, |\varphi(x)| > 0\}$$

$$\blacktriangleright E(G,K) = E_2(G,K) \cup E_4(G,K)$$

$E_2^o(G, K) \subseteq E_2(G, K), \ E_4^o(G, K) \subseteq E_4(G, K), \ E^o(G, K) \subseteq E(G, K)$

- 3

Criterion to be a gap group

Let K be an index 2 subgroup of G. For an element x of G, we set

- $\varphi(x) = \{q: \text{ odd prime } | x \in {}^{\exists}N \leq G, \ O^q(N) \neq N\}$
- ► $E_2(G, K) = \{x \in G \setminus K \mid |x| = 2, |\varphi(x)| > 1 \text{ or } O^2(C_G(x)) \notin \mathcal{P}(G)\}$
- ► $E_2^o(G, K) = \{x \in G \setminus K \mid |x| = 2, O^2(C_G(x))) \notin \mathcal{P}(G)\}$
- ► $E_4(G, K) = \{x \in G \setminus K \mid |x| = 2^* \ge 4, |\varphi(x)| > 0\}$
- ► $E_4^o(G, K) = \{x \in G \setminus K \mid |x| = 2^* \ge 4, C_G(x) \notin \mathcal{P}(G)\}$
- $\blacktriangleright E(G,K) = E_2(G,K) \cup E_4(G,K)$
- $\blacktriangleright E^o(G,K) = E_2^o(G,K) \cup E_4^o(G,K)$

$E_2^o(G,K)\subseteq E_2(G,K),\ E_4^o(G,K)\subseteq E_4(G,K),\ E^o(G,K)\subseteq E(G,K)$

Definition

A finite group *G* not of prime power order is called an *almost gap group* if there exists an $\mathcal{L}(G)$ -free module which is positive on $\{(P, H) \in \mathcal{PH}(G) \mid P \notin \mathcal{L}(G)\}.$

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and let K be a index 2 subgroup of G. Suppose that K is an almost gap group. G is a gap group if and only if $E^{\circ}(G, K)$ is not empty.

4 3 6 4 3 6

Proposition

Suppose that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. $\exists \{O^2(G)\}\$ -free gap G-module iff $\exists \mathcal{L}(G)\$ -free gap G-module

Theorem (Morimoto-S-Yanagihara, 2000)

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and let L be subgroup of G with $L \ge O^2(G)$. If L is not an almost gap group, then G is not a gap group.

Proof of examples, I

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and let K be a 2 power index subgroup of G. Suppose that K is an almost gap group. G is a gap group if and only if $E^{\circ}(G, K)$ is not empty.

Example (Dovermann-Herzog, 1997 and Morimoto-S-Yanagihara, 2000) S_n for $n \ge 7$ is a gap group.

Proof.

Since $(1, 2, 3, 4)(5, 6, 7) \in S_n$, $(1, 2, 3, 4) \in E^o(S_n, A_n)$.

$$\begin{split} E_4^o(G,K) &= \{ x \in G \smallsetminus K \mid |x| = 2^* \geq 4, C_G(x) \notin \mathcal{P}(G) \} \\ E_2^o(G,K) &= \{ x \in G \smallsetminus K \mid |x| = 2, O^2(C_G(x))) \notin \mathcal{P}(G) \} \end{split}$$

Proof of examples, I

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and let K be a 2 power index subgroup of G. Suppose that K is an almost gap group. G is a gap group if and only if $E^{\circ}(G, K)$ is not empty.

Example

 $A_n \times C_2$ for $n \ge 5$ is a gap group.

Proof.

We see $A_n \times C_2$ is a subgroup of S_{n+2} such that $C_2 = \{(), (n+1, n+2)\}$. Since $(1, 2, 3)(n+1, n+2), (1, 2, 3, 4, 5)(n+1, n+2) \in S_n, (n+1, n+2) \in E_2^o(A_n \times C_2, A_n)$.

$$\begin{split} E_4^o(G, \mathcal{K}) &= \{ x \in G \smallsetminus \mathcal{K} \mid |x| = 2^* \ge 4, C_G(x) \notin \mathcal{P}(G) \} \\ E_2^o(G, \mathcal{K}) &= \{ x \in G \smallsetminus \mathcal{K} \mid |x| = 2, O^2(C_G(x))) \notin \mathcal{P}(G) \} \end{split}$$

Proof of examples, I

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and let K be a 2 power index subgroup of G. Suppose that K is an almost gap group. G is a gap group if and only if $E^{\circ}(G, K)$ is not empty.

Example

 S_5 is not a gap group.

Proof.

$$C_{S_5}((4,5)) = \langle (1,2), (1,3), (4,5) \rangle \cong S_3 \times C_2. \ O^2(C_{S_5}((4,5)) \cong C_3. \\ C_{S_5}((1,2,3,4)) = \langle (1,2,3,4) \rangle \cong C_4. \ \text{Then} \ E^o(S_5, A_5) = \emptyset.$$

$$\begin{split} E_4^o(G, K) &= \{ x \in G \smallsetminus K \mid |x| = 2^* \ge 4, C_G(x) \notin \mathcal{P}(G) \} \\ E_2^o(G, K) &= \{ x \in G \smallsetminus K \mid |x| = 2, O^2(C_G(x))) \notin \mathcal{P}(G) \} \end{split}$$

п

Example (Dovermann-Herzog, 1997 and Morimoto-S-Yanagihara, 2000) $S_{\rm 6}$ is a gap group.

Proof.

$$C_G((1,2)) = \langle (1,2), (3,6), (4,6), (5,6) \rangle$$

 $O^2(C_G((1,2))) = \langle (3,4,5), (4,5,6) \rangle \cong A_4.$

Then $(1,2) \in E^{o}(S_{6},A_{6})$.

 $C_{S_6}((1,2,3,4)) \cong C_4 \times C_2 \text{ and } C_{S_6}((1,2)(3,4)(5,6)) \cong C_{S_6}((1,2)).$

Toshio SUMI (Kyushu University)

イロト (得) (ヨ) (ヨ) - ヨ

Proposition

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. Let $G_{\{2\}}$ be a a Sylow 2-subgroup of G. If $|\pi(N_G(G_{\{2\}})/G_{\{2\}})| \ge 2$, then G is a gap group. In particular, if $G_{\{2\}}$ is normal, then G is a gap group.

Proof.

Let *p* and *q* be distinct primes of $\pi(N_G(G_{\{2\}})/G_{\{2\}})$. Take elements *x* and *y* of $\pi(N_G(G_{\{2\}}))$ of order *p* and *q* respectively. Consider the subgroups $N_p = \langle x \rangle G_{\{2\}}, N_q = \langle y \rangle G_{\{2\}}$. Then $\operatorname{Ind}_{N_p}^G V(N_p) \oplus \operatorname{Ind}_{N_q}^G V(N_q) \oplus V(G)$ is an $\mathcal{L}(G)$ -free gap *G*-module.

イロト (得) (ヨ) (ヨ) - ヨ

Construction of gap modules - ideas - I

For a set S of subgroups of G, $RO(G)^S$ denotes the set of all S-free real G-modules.

Proposition

We can construct a gap G-module of form $\sum_C \text{Ind}_C^G V_C$, where V_C is a C-module. Here C runs over representatives of conjugacy classes of cyclic subgroups of G.

$$\mathcal{L}(G) \cap \mathcal{K} = \{L \cap \mathcal{K} \mid L \in \mathcal{L}(G)\}$$
$$\mathcal{RO}(G) \otimes \mathbb{Q} = \sum_{C} \operatorname{Ind}_{C}^{G} \mathcal{RO}(C) \otimes \mathbb{Q}$$
$$\mathcal{RO}(G)^{\mathcal{L}(G)} \otimes \mathbb{Q} = \sum_{C} \operatorname{Ind}_{C}^{G} \mathcal{RO}(C)^{\mathcal{L}(G) \cap C} \otimes \mathbb{Q}$$

Construction of gap modules – ideas – II

A *G*-module *V* regards as a vector space with a *G*-invariant inner product. For a *G*-invariant subspace *U* of *V* (that is *U* is a submodule of *V*), we denote by V - U the orthogonal complement subspace of *U* in *V*. Laitinen and Morimoto used the *G*-module

$$V(G) = (\mathbb{R}[G] - \mathbb{R}) - igoplus_{
ho \in \pi(G)} (\mathbb{R}[G] - \mathbb{R})^{O^{
ho}(G)}$$

to show that *G* is Oliver iff ³one fixed point action on a sphere. This module is the maximal $\mathcal{L}(G)$ -free submodule of $\mathbb{R}[G]$.

dim
$$V(G)^{H} = (|G/H| - 1) - \sum_{p \in \pi(G)} (|G/O^{p}(G)H| - 1)$$

Construction of gap modules – ideas – III

▶ $\mathcal{PH}^2(G)$: the subset of $\mathcal{PH}(G)$ containing (P, H) such that

$$[H:P] = [O^{2}(G)H:O^{2}(G)P] = 2, O^{q}(G)P = G$$

Proposition (Laitinen-Morimoto 1998)

- V(G) is $\mathcal{L}(G)$ -free and nonnegative.
- 2 $d_{V(G)}(P,H) = 0$ if and only if $P \in \mathcal{L}(G)$ or $(P,H) \in \mathcal{PH}^2(G)$

For a *G*-module *V*, put

$$V_{\mathcal{L}(G)} = (V - V^G) - \bigoplus_{p \in \pi(G)} (V^{O^p(G)} - V^G)$$

which is the maximal $\mathcal{L}(G)$ -free G-submodule of V.

Construction of gap modules – ideas – IV

$$V(G) = \mathbb{R}[G]_{\mathcal{L}(G)}$$

Proposition

Let G be a group satisfying that $O^2(G) = G$ or $\pi(G/[G, G])$ contains two odd primes. If $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$, then V(G) is a gap G-module.

Proposition (Nonnegative + Positive = Positive)

Suppose that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. If there exists an $\mathcal{L}(G)$ -free module which is positive for any $(P, H) \in \mathcal{PH}^2(G)$, then $W \oplus V(G)^{\oplus \dim W+1}$ is a gap G-module and G is a gap group.

イロト (得) (ヨ) (ヨ) - ヨ

Construction of gap modules – ideas – V

Remark

- If V is a gap module, then $V^{\oplus m}$ is also for $m \in \mathbb{N}$.
- Provide a G-module V and a nonnegative G-module W, it holds that d_V ≤ d_{V⊕W}, that is, d_V(P, H) ≤ d_{V⊕W}(P, H) for all (P, H) ∈ PH(G).
- Solution Let K be a subgroup of G. For a nonnegative K-module W, if $W^{K \cap O^2(G)} = 0$, then $(\operatorname{Ind}_{K}^{G} W)_{\mathcal{L}(G)} \oplus V(G)^{\oplus n}$ is nonnegative where $n = \min(-\min d_{(\operatorname{Ind}_{K}^{G} W)_{\mathcal{L}(G)}}, 0)$.

Necessary condition to be a gap group I

$$\land A = \{L \le G \mid O^2(G) < L\}$$

•
$$\Lambda_0 = \{L \in \Lambda \mid L/O^2(G) \text{ is cyclic}\}$$

$$\Lambda_1 = \{ L \in \Lambda_0 \mid L < ^{\nexists} K < G \}$$

Theorem (S)

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. TFAE.

- G is a gap group.
- **②** For any *L* ∈ Λ, there exists an $(\mathcal{L}(G) \cap L)$ -free *L*-module *W*_{*L*} such that $d_{W_L}(P, H) > 0$ for $(P, H) \in \mathcal{PH}(L)$.
- **③** For any *L* ∈ Λ_0 , there exists an ($\mathcal{L}(G) \cap L$)-free *L*-module *W*_{*L*} such that $d_{W_L}(P, H) > 0$ for $(P, H) \in \mathcal{PH}(L)$.
- So For any $L \in \Lambda_1$, there exists an $(\mathcal{L}(G) \cap L)$ -free L-module W_L such that $d_{W_L}(P, H) > 0$ for $(P, H) \in \mathcal{PH}(L)$.

Necessary condition to be a gap group II

Let G be a finite group such that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and $G/O^2(G)$ is nontrivial cyclic.

Theorem

If there exists an element $x \in G$ such that $G = O^2(G)\langle x \rangle$ and $\langle x \rangle \cap O^2(G) \notin \mathcal{P}(G)$, then G is a gap group.

Let $\pi(\langle x \rangle) = \{q_1, q_2, \dots, q_t\}$, C_j a Sylow q_j -subgroup of $\langle x \rangle$ and η_j an irreducible complex C_j -module such that $\eta_j^P = 0$ for any nontrivial subgroup P of C_j . Set

$$U = (\mathbb{C} - \eta_1) \cdots (\mathbb{C} - \eta_t) \in R(\langle G_1 \rangle) \otimes \cdots \otimes R(\langle G_t \rangle) \cong R(\langle x \rangle)$$

and let *V* be a real $\langle x \rangle$ -module which is direct sum of the realification of the module *U* and $V(\langle x \rangle)^{\oplus n}$ for sufficiently large *n*. Then $(\operatorname{Ind}_{\langle x \rangle}^G V)_{\mathcal{L}(G)}$ is a gap *G*-module.

イロト (得) (ヨ) (ヨ) - ヨ

Construction of nonnegative modules -E(G, K) –

For an element x of G, we denote by $\varphi(x)$ the set of odd primes q such that $x \in N_q$ and $O^q(N_q) \neq N_q$ for some subgroup N_q of G, and by $\psi(x)$ the number of elements of the set $\varphi(x)$.

$$E_4(G, O^2(G)) = \{ x \in G \setminus O^2(G) \mid |x| = 2^* \ge 4, \ \psi(x) > 0 \}$$

Proposition

Let G be a finite group. For an element x of $E_4(G, O^2(G))$, the G-module

$$W_{\mathsf{x}} = \sum_{q \in \varphi(\mathsf{x})} \operatorname{Ind}_{N_q}^{\mathsf{G}} V(N_q)$$

is nonnegative and $\mathcal{L}(G)$ -free such that

• $d_{W_x}(P, H) > 0$ for any $(P, H) \in \mathcal{PH}^2(G)$ with $(x) \cap (H \setminus P) \neq \emptyset$ and $P \notin \mathcal{L}(G)$.

Construction of nonnegative modules -E(G, K) –

For an element x of G, we denote by $\varphi(x)$ the set of odd primes q such that $x \in N_q$ and $O^q(N_q) \neq N_q$ for some subgroup N_q of G, and by $\psi(x)$ the number of elements of the set $\varphi(x)$.

 $\frac{E_2(G, O^2(G))}{\mathcal{P}(G)} = \{ x \in G \setminus O^2(G) \mid |x| = 2, \ \psi(x) > 1 \text{ or } O^2(C_G(x)) \notin \mathcal{P}(G) \}$

Proposition

Let G be a finite group. For an element x of $E_2(G, O^2(G))$, the G-module

$$W_{\mathbf{x}} = igoplus_{q \in arphi(\mathbf{x})} \operatorname{Ind}_{N_q}^G V(N_q) \oplus igoplus_{q \in \pi(C_G(\mathbf{x})) \smallsetminus \{2\}} \operatorname{Ind}_{M_q}^G V(M_q).$$

where S_q is a Sylow q-subgroup of $C_G(x)$ and $M_q = \langle x \rangle \times S_q$, is nonnegative and $\mathcal{L}(G)$ -free such that $d_{W_x}(P, H) > 0$ for any $(P, H) \in \mathcal{PH}^2(G)$ with $(x) \cap (H \setminus P) \neq \emptyset$ and $P \notin \mathcal{L}(G)$.

3

イロト イボト イヨト イヨト

Construction of nonnegative modules – $E^{o}(G, K)$ –

For $E_4^o(G, K)$ and $E_2^o(G, K)$,

Proposition

Let G be a finite group. For an element x of $E_4^o(G, O^2(G))$, the G-module

$$W_x = \sum_{q \in \varphi(x)} \operatorname{Ind}_{M_q}^G V(M_q),$$

where S_q is a Sylow q-subgroup of $C_G(x)$ and $M_q = \langle x \rangle \times S_q$, is nonnegative and $\mathcal{L}(G)$ -free such that

• $d_{W_x}(P, H) > 0$ for any $(P, H) \in \mathcal{PH}^2(G)$ with $(x) \cap (H \setminus P) \neq \emptyset$ and $P \notin \mathcal{L}(G)$.

 $E_4^o(G, O^2(G)) = \{x \in G \smallsetminus O^2(G) \mid \ |x| = 2^* \ge 4, \ |\pi(C_G(x))| > 1\}$

Construction of nonnegative modules – $E^{o}(G, K)$ –

For $E_4^o(G, K)$ and $E_2^o(G, K)$,

Proposition

Let G be a finite group. For an element x of $E_2^0(G, O^2(G))$, the G-module

$$W_{x} = \bigoplus_{q \in \pi(C_{G}(x)) \setminus \{2\}} \operatorname{Ind}_{M_{q}}^{G} V(M_{q}),$$

where S_q is a Sylow q-subgroup of $C_G(x)$ and $M_q = \langle x \rangle \times S_q$, is nonnegative and $\mathcal{L}(G)$ -free such that

• $d_{W_x}(P, H) > 0$ for any $(P, H) \in \mathcal{PH}^2(G)$ with $(x) \cap (H \setminus P) \neq \emptyset$ and $P \notin \mathcal{L}(G)$.

 $E_2^o(G, O^2(G)) = \{ x \in G \smallsetminus O^2(G) \mid \ |x| = 2, \ O^2(C_G(x)) \notin \mathcal{P}(G) \}$

Construction of nonnegative modules

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. There exists an $\mathcal{L}(G)$ -free nonnegative G-module W such that $d_W(P, H) > 0$ if $E(G, O^2(G)) \cap (H \setminus P) \neq \emptyset$ for any $(P, H) \in \mathcal{PH}^2(G)$.

Necessary condition to be a gap group

Theorem (S)

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. TFAE.

- G is a gap group.
- For any x ∈ G \ O²(G), there exists an (L(G) ∩ O²(G)⟨x⟩)-free O²(G)⟨x⟩-module U_x such that d_{U_x}(P, H) > 0 for (P, H) ∈ PH(O²(G)⟨x⟩).

1 ⇒ **2**:

For a gap G-module V,

$$U_{x} = (\operatorname{\mathsf{Res}}^{\mathsf{G}}_{\operatorname{O}^{2}(\mathsf{G})\langle x\rangle} V)_{\operatorname{\mathscr{L}}(\mathsf{G})\cap\operatorname{O}^{2}(\mathsf{G})\langle x\rangle}$$

is a required module.

ヨト イヨト ニヨ

Necessary condition to be a gap group

Theorem (S)

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. TFAE.

- G is a gap group.
- **②** For any x ∈ G \ O²(G), there exists an (L(G) ∩ O²(G)⟨x⟩)-free O²(G)⟨x⟩-module U_x such that d_{U_x}(P, H) > 0 for (P, H) ∈ PH(O²(G)⟨x⟩).

1 ⇐ **2**:

$$\bigoplus_{(x)^{\pm} \subset G\smallsetminus O^2(G)} \operatorname{Ind}_{O^2(G)\langle x\rangle}^G U_x$$

is a gap G-module.

ヨト イヨト ニヨ

Let *G* be a finite group such that $G/O^2(G)$ is a nontrivial cyclic group and let *K* be an index 2 subgroup of *G*. Note that $E_2(G, K) = \emptyset$ if $K \neq O^2(G)$. In the previous argument, we see that there exists an $\mathcal{L}(G)$ -free nonnegative *G*-module W(G) such that $d_{W(G)}(P, H)$ is positive if $(P, H) \in \mathcal{PH}(G) \setminus \mathcal{PH}^2(G)$ or $(H \setminus P) \cap E(G, K) \neq \emptyset$.

Construction of gap modules II

Let $\{C_i \mid j \in J\}$ be a complete set of representatives of all conjugacy classes in G of cyclic subgroups C with $C \leq K$.

> $J(2) = \{ j \in J \mid C_j \in \mathcal{P}(G) \}$ $s_i = |N_G(C_i)/C_i|$

for $i \in J$.

Proposition

$$\sum_{j\in J(2)} s_j^{-1} \leq 1$$

 $\sum_{j\in J(2)} s_j^{-1} = 1 \Leftrightarrow J(2) = J$

Toshio SUMI (Kyushu University)

3

A 3 b

Construction of gap modules III

$$m = \operatorname{LCM}\{s_j \mid j \in J(2)\}$$

$$U = \sum_{j \in J(2)} \left((\operatorname{Ind}_{C_j}^G(\mathbb{R}[C_j] - \mathbb{R}))_{\mathcal{L}(G)} \right)^{\oplus m s_j^{-1}}$$

$$n = \min(-\min d_U - 1, 0), \quad 0 \le n \le \dim U + 1$$

$$U(\mathcal{K}) := U \oplus (W(G) \oplus V(G))^{\oplus n}$$

$$U(\mathcal{K}; G) := U \oplus W(G)^{\oplus n}$$

Theorem

Let G be a finite group such that $G/O^2(G)$ is a nontrivial cyclic group and let K be an index 2 subgroup of G. If $E^o(G, K) \neq \emptyset$, then U(K) is nonnegative and $\mathcal{L}(G)$ -free, and $d_{U(K)}(P, H) > 0$ for any $H \nleq K$.

Let G be a finite group such that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and $G/O^2(G)$ is cyclic. Let consider the sequence of index 2 subgroups of G

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_{t-1} \triangleright G_t = O^2(G), \ [G_k : G_{k+1}] = 2$$

Theorem

If $E^{\circ}(G_k, G_{k+1}) \neq \emptyset$ for any $0 \le k < t$, then $\bigoplus_{0 \le k < t} U(G_k; G) \oplus nV(G)$ is an $\mathcal{L}(G)$ -free gap G-module (for sufficient large n) and in partialar G is a gap group.

Let G_1, \ldots, G_s be complete representatives of subgroups of conjugacy classes of *G* such that G/G_i is cyclic and there is no subgroup *K* of *G* such that G/K is cyclic and $K > G_i$. Let $G_{i,1}, \ldots, G_{i,k_i}$ be subgroups of $G_{i,0} := G_i$ such that

$$[G_{i,0}:G_{i,1}] = [G_{i,1}:G_{i,2}] = \cdots = [G_{i,k_i-1}:G_{i,k_i}] = 2.$$

Put $S = \{ (G_{i,j-1}, G_{i,j}) \mid 1 \le i \le s, 1 \le j \le j_i \}.$

$$\bigoplus_{(H,H')\in\mathcal{S}} U(H;G) \oplus V(G)^{\oplus n}$$

is a gap G-module for sufficient large n.

Construction of gap modules VI

For each $j \in J$, put

$$(P_j, H_j) = \begin{cases} (O^2(C_G(C_j))(C_j \cap K), O^2(C_G(C_j))C_j), & H_j \in G_{t-1} \\ (C_j \cap K, C_j), & otherwize \end{cases}$$

$$t_j = \begin{cases} |N_{G_{[2]}}(C_j)/C_j|, & H_j \in G_{t-1} \\ s_j = |N_G(C_j)/C_j|, & otherwize \end{cases}$$

Theorem

If J = J(2), then $\sum_{j \in J} t_j^{-1} d_V(P_j, H_j) = 0$

which implies that $d_V(P_j, H_j) = 0$ for any an $\mathcal{L}(G)$ -free nonnegative *G*-module V.

Toshio SUMI (Kyushu University)

Construction of gap modules VII

We summarize that

Theorem

Let G be a finite group such that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. Let Γ be the set of all representatives of conjugacy classes of 2-power index subgroups L of G with [G:L] = 2 or $[L:O^2(G)] = 2$.

- **●** If $E^{o}(L, O^{2}(G)) = Ø$ for some $L \in Γ$, then G is not a gap group.
- ② If $E^{o}(L, O^{2}(G)) \neq \emptyset$ for all $L \in \Gamma$, then G is a gap group.

Corollary

If there is an element x of G such that $G = \langle x \rangle O^2(G)$ and $|\pi(\langle x \rangle)| \ge 3$, then G is a gap group.

- 3

イロト イポト イラト イラト

Construction of gap modules VIII

S: a noncomplete sporadic group $G = Aut(S) \cong S \rtimes C_2$.

S		$ C_G(x) $	$E^{o}(G, S)$
<i>M</i> ₁₂	empty		2C, 4C, 4D
HN	empty		2C, 4D, 4E, 4F, 8C, 8E, 8D, 8F
J ₂	8C	2 ⁵	2C, 4B, 4C, 8B
J_3	8C	2 ⁵	2B, 4B, 8B
M ^c L	8C	2 ⁵	2B, 4B, 8B
O'N	8 <i>E</i>	2 ⁵	2B,8C,8D
Fi ₂₂	16C	2 ⁵	2D, 2E, 2F, 4F, 4G, 4H, 4I, 4J, 8E, 8F, 8G, 8H
Fi' ₂₄	16 <i>B</i>	2 ⁶	2C, 2D, 4D, 4E, 4F, 4G, 8D, 8E, 8F
He	16A, 16 <i>B</i> *	2 ⁴ , 2 ⁴	2C, 4D, 8B, 8C*
M ₂₂	4D,8B	2 ⁶ , 2 ⁴	2B, 2C, 4C
Suz	8 <i>G</i> , 16 <i>A</i>	2 ⁸ , 2 ⁴	2C, 2D, 4E, 4F, 8D, 8E, 8F, 8H
HS	8D,8E	2 ⁶ , 2 ⁶	2C, 2D, 4D, 4E, 4F

э

Construction of gap modules IX

Theorem

The automorphism group of a sporadic group is a gap group.

Lemma (Morimoto-S-Yanagihara, 2000)

If K is a subgroup of G with odd index possessing an $(\mathcal{L}(G) \cap K)$ -free positive K-module V, then $\operatorname{Ind}_{K}^{G} V$ is a gap G-module.

$$\begin{aligned} Aut(M_{22}) \stackrel{77}{>} K \twoheadrightarrow S_6, \quad Aut(Suz) \stackrel{405405}{>} K' \twoheadrightarrow S_6, \\ Aut(HS) \stackrel{1100}{>} S_8 \times C_2, \\ HS \cap (S_8 \times C_2) = S_8 \end{aligned}$$

Theorem

Let

$$G_{\{2\}} \smallsetminus O^2(G) = \coprod_{x \in \Psi} (x)^{\pm}$$

where $G_{[2]}$ is a Sylow 2-subgroup of G. Suppose that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$, $[G : O^2(G)] = 2$ and that there is $x \in \Psi$ such that

 $\Psi \smallsetminus E(G, O^2(G)) \subset \langle x \rangle,$

that is, for any $y \in \Psi$, $(y) \cap \langle x \rangle = \emptyset$, there exists an $\mathcal{L}(G)$ -free nonnegative *G*-module W_y such that $d_{W_y}(P, H) > 0$ for $(P, H) \in \mathcal{PH}^2(G)$ with $(y) \cap H \neq \emptyset$. Then

$$(\operatorname{Ind}_{\langle x \rangle}^G(\mathbb{R}[\langle x \rangle] - \mathbb{R}))_{\mathcal{L}(G)} \oplus (V(G) \oplus \bigoplus_{y \in \Psi, y \neq x} W_y)^{\oplus n}$$

is a gap G-module for a sufficiently large integer n.

4 3 6 4 3 6

Recall that if there are two distinct odd primes *r* such that $O^r(G) \neq G$, then *G* is a gap group. Let consinder a finite group *G* such that $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$, $O^2(G) \neq G$, and $O^q(G) \neq G$ for a unique odd prime *q*.

Let *S* be a complete set of representatives of conjugacy classes of *G* represented by elements of order 2 which does not lie in $E(G, O^2(G)) \cup O^2(G)$. Fix a Sylow 2-subgroup $G_{\{2\}}$ of *G*. (We can assume that *x* belongs to $G_{\{2\}}$ for any $x \in S$ without loss of generality.) Let $S = \{x_1, \ldots, x_r\}$ and s_j denotes the order of $C_{G_{\{2\}}}(x_j)/\langle x_j \rangle$ for $1 \le j \le r$.

Toshio SUMI (Kyushu University)

Sufficient condition III

Theorem

Let G be a finite group such that $O^q(G) \neq G$ for some unique odd prime q, $[G : O^2(G)] = 2$ and $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$. TFAE.

- G is a gap group.
- 2 $E(G, O^2(G))$ is not empty.

3
$$\sum_{j=1}^{r} s_j^{-1} \neq 1.$$

There are two elements of G_{2} of order 2 which are conjugate in G but not conjugate in G_{{2}}.

Sufficient condition IV

Theorem

Let G be a finite nongap group such that $[G : O^2(G)] = 2$ and $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. If the abelian group $(G_{\{2\}} \cap O^2(G_{\{2\}}))/[G_{\{2\}}, G_{\{2\}}]$ is generated by xy for involutions x, y of $G_{\{2\}} \setminus O^2(G)$ which are conjugate in G, then $O^2(G)$ is of odd order.

Theorem

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and $O^q(G) \neq G$ for an odd prime q. If $O^2(G)$ is of even order (eg. nonsolvable group), then G is a gap group.

イロト イポト イラト イラト

Group having nontrivial center

Proposition

Let G be a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. Suppose that the center Z(G) of G is not a 2-group (also not trivial). If $O^2(G)$ is of even order then G is a gap group.

Remark

Note that if G/Z(G) is gap then so is G. The converse is not true in general: It is not true that G is gap implies that G/Z(G) is gap. For a nonabelian q-group P,

•
$$G = Q_{4n} \times P$$
 is gap if $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$,

•
$$G = D_{2n} \times P/Z(P)$$
 is not gap.

4 3 5 4 3 5

Let Sm(G) be a set, called the Smith set, consisting of all differences $[T_x(\Sigma)] - [T_y(\Sigma)]$ of RO(G) for a smooth *G*-action of a homotopy sphere Σ with $\Sigma^G = \{x, y\}$.

Theorem

Let G be a finite Oliver group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and $O^q(G) \neq G$ for an odd prime q. Then

I

$$\mathsf{RO}(G)^{\mathcal{L}(G)}_{\mathcal{P}(G)} \subseteq \mathit{Sm}(G).$$

Toshio SUMI (Kyushu University)

4 3 6 4 3 6

Conjecture

Let *K* be a finite group with $[K : O^2(K)] = 2$. Suppose that $\mathcal{P}(K) \cap \mathcal{L}(K) = \emptyset$ and $E^o(K, O^2(K)) = \emptyset$. Then it seems that elements of $K \setminus O^2(K)$ of order 2 are conjugate in *K*.

Theorem

If K is an Oliver group satisfying the property of the above conjecture, then

$$\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)} \subseteq \operatorname{Sm}(K).$$

Dimension

We might want to know a gap module with smaller dimension as possible. To find a gap module with smallest dimension, we consider the integer linear programming. For a matrix

$$A = \begin{bmatrix} \vdots \\ \cdots & d_V(P, H) & \cdots \\ \vdots & \end{bmatrix},$$

where (P, H) runs over $\mathcal{PH}(G)$ on rows and V runs over $\mathcal{L}(G)$ -free irreducible G-modules on columns.

minimize
$$[\cdots, \dim V, \cdots]x$$

subject to $Ax \ge \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}, x \ge 0, x \in \mathbb{Z}^{|\operatorname{Irr}(G)|}$

4 B K 4 B K - B

Thank you for your attention!

< A >

э