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Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups,

Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234,

Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres,

it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups...

We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces

is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results

obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.

The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years,

Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Hsiang’s conviction

In the article: Some Problems in Differentiable Transformation
Groups, Proc. Conf. Transformation Groups, New Orleans, 1967,
Springer-Verlag, 1968, pp. 223–234, Wu-Chung Hsiang and Wu-Yi
Hsiang (on pp. 224 and 231) have expressed the following opinion.

Due to the existence of natural linear group actions on Euclidean
spaces, disks and spheres, it is quite fair to say that they are the
best testing spaces in the study of differentiable transformation
groups... We share the prevailing conviction that the study of
differentiable group actions on these best testing spaces is still
the most important topic in transformation groups.

Our goal is to discuss some of the related results obtained so far.
The results confirm that after 46 years, Hsiangs’ conviction must
largely be accepted.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Geometric structures not preserved by smooth actions

We will focus on geometric structures on manifolds such as Kähler,
symplectic, complex, and almost complex.

Our results show that in general the geometric structures are not
preserved by smooth actions of compact Lie groups.

We wish to answer the question, open for a long time in stydying
the geometry of manifolds, whether for a compact Lie group G ,
there exists a smooth action of G on some smooth manifold M
equipped with a geometric structure, such that the fixed point
set F (G ,M) does not admit the specific geometric structure,
regardless of the possible way the prescribed geometric structure
on M is chosen.
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Geometric structures on manifolds

For any complex manifold M2n, there exists a vector bundle map
J : T (M)→ T (M) over idM such that J2 = −idT (M).

By an almost complex manifold (M2n, J) we mean a smooth
manifold M2n with a map J : T (M)→ T (M) as above.

By a symplectic manifold (M2n, ω) we mean a smooth manifold
M2n with a smooth 2-form ω which is non-degenerate and closed.

By a Kähler manifold (M2n, J, h) we mean a complex manifold
M2n with J determined by the complex structure on M2n and
with a Riemannian metric h on M2n such that

h(Ju, Jv) = h(u, v) for u, v ∈ Tx(M
2n), x ∈ M2n, and

the form ω on M2n given by ω(u, v) = h(u, Jv) is closed.

It follows that ω is a non-degenerate 2-form and so, any Kähler
manifold is symplectic. Clearly, any Kähler manifold is complex.
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The Kodaira–Thurstone 4-manifold

The Kodaira–Thurstone manifold KT = R4/Γ

is the quotient of
R4 by the discrete group Γ generated by the translations

(x1, x2, x3, x4) 7→ (x1 + 1, x2, x3, x4)
(x1, x2, x3, x4) 7→ (x1, x2 + 1, x3, x4)
(x1, x2, x3, x4) 7→ (x1, x2, x3 + 1, x4)
(x1, x2, x3, x4) 7→ (x1 + x2, x2, x3, x4 + 1).

The Kodaira–Thurstone manifold KT is the Cartesian product of
the Heisenberg manifold H = UT3(R)/UT3(Z) of dimension 3,
and the circle S1. As H is a parallelizable manifold, so is KT .

The manifolds H and KT can be expressed as principal bundles
S1 → H → T 2 and T 2 → KT → T 2.

The Kodaira–Thurstone manifold KT is a complex manifold. As
the torus T 2 acts symplectically on itself by translations, one can
show that the Kodaira–Thurstone 4-manifold is symplectic.
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Complex manifolds which are not symplectic

The Kodaira–Thurstone 4-manifold KT is not a Kähler manifold,
because the odd Betti numbers of KT are odd while the odd Betti
numbers of any compact Kähler manifold are even.

Proposition
The Kodaira–Thurstone 4-manifold KT is a stably parallelizable
manifold which

is complex and symplectic, but

is not Kähler.

Proposition
The Cartesian product S2m+1 × S2n+1 is a stably parallelizable
manifold which

is complex, but

is not symplectic for m  0 and n  1.
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Non-complex manifolds which are symplectic

The Fernández–Gotay–Gray 4-manifolds

Proc. Amer. Math. Soc. 103 (1988) 1209–1212

Theorem (M. Fernández, M. J. Gotay, A. Gray)
There exist principal S1-bundles

S1 → E 3 → T 2 and S1 → E 4 → E 3

such that the E 4’s are closed, smooth, stably paralellizable, and

symplectic, but

not complex.

The manifolds E 4 are called the Fernández–Gotay–Gray manifolds
(FGG manifolds).
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Non-complex manifolds which are not symplectic

The even dimensional spheres S4, S8, S10, S12, S14, S16, . . . are
stably parallelizable manifolds

which are not almost complex,

and thus, are not symplectic.

The sphere S6 and the products S2 × S4, S2 × S6, and S6 × S6

are stably parallelizable manifolds

which are almost complex, but

are not symplectic. Are they complex or not? – open question!

The connected sum CP2#CP2#CP2 is a smooth manifold

which is almost complex, but

is not complex and not symplectic.
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Actions on connected sums of manifolds

Let G be a compact Lie group acting smoothly on a smooth
manifold Mn

with a fixed point x ∈ F (G ,Mn), as well as on
the sphere Sn with a fixed point y ∈ F (G ,Sn). Assume that
Tx(M

n) ∼= Ty (S
n), as representation spaces of G .

The G -equivariant connected sum Mn#Sn around x and y yields
a new smooth action of G on Mn ∼= Mn#Sn.

The fixed point set of the new action of G on Mn ∼= Mn#Sn,
coming from the connected sum, is diffeomorphic to

(1) either the connected sum F (G ,Mn) x#y F (G , S
n), or

(2) the disjoint union
(
F (G ,Mn) \ {x}

)
t
(
F (G ,Sn) \ {y}

)
.
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Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem

Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group.

Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold.

Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.

Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X

such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D

such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F ,

the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x

is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Actions on finite CW complexes and disks

K.Pa., Topology 28 (1989) 273–289

Theorem
Let G be a compact Lie group. Let F be a compact smooth
manifold. Let ν be a G -vector bundle over F with dim νG = 0.
Then the following two conditions are equivalent.

There is a finite contractible G -CW complex X such that
XG = F and the class [τF ⊕ ν] lies in the image of the
restriction map

K̃OG (X )→ K̃OG (F ).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.

We may always assume that at a chosen point x ∈ F , the fiber of
ν ⊕ ε over x is the realification of a complex G -module.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



The case of stably parallelizable fixed point sets

K.Pa., Topology 28 (1989) 273–289

Corollary
Let G be a compact Lie group and let F be a compact smooth
stably parallelizable manifold. The following two conditions
are equivalent.

There is a finite contractible G -CW complex X such that
the fixed point set XG is homeomorphic to F .

There is a smooth action of G on a disk D such that
the fixed point set DG is diffeomorphic to F .
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Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem

Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group.

Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold.

Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D

such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that

the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof.

As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable.

By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above,

it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G .

Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .

For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).

For a compact Lie group G , set X = IndGG0
(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Z-cyclic manifolds as fixed point sets

Theorem
Let G be a compact Lie group. Let F be a compact Z-acyclic
smooth manifold. Then there is a smooth action of G on a disk
D such that the fixed point set DG is diffeomorphic to F .

Proof. As F is Z-acyclic, F is stably parallelizable. By the corollary
above, it sufficies to show that there exists a finite contractible
G -CW complex X such that XG = F .

For a finite (non-trivial) cyclic group G , consider the circle S1

with the standard action of G . Then X = G 	 (S1 ∗ F ) is a
finite contractible G -CW complex with XG = F .
For a finite group G , choose a cyclic (non-trivial) subgroup H

of G and set X = IndGH
(
H 	 (S1 ∗ F )

)
.

For a compact connected Lie group G , set X = G 	 (G ∗ F ).
For a compact Lie group G , set X = IndGG0

(
G0 	 (G0 ∗ F )

)
.

Krzysztof Pawałowski (UAM Poznań, Poland) Transformation Groups and Hsiangs’ Conviction after 46 years



Homology spheres

By a homology n-sphere we mean a closed smooth manifold Σn

of dimension n  0, with the homology H∗(Σ
n;Z) = H∗(S

n;Z).

M. Kervaire, Trans. Amer. Math. Soc. 144 (1969) 67–72

Theorem

Any homology 4-sphere bounds a contractible compact
smooth 5-manifold.

For any homology n-sphere Σn with n  5, there is a unique
homotopy n-sphere Sn such that the connected sum Σn#Sn
bounds a compact contractible smooth (n + 1)-manifold.

Y. Fukumoto, M. Furuta, Math. Research Letters 7 (2000) 757–766

Theorem

There exist homology 3-spheres which bound Z-acyclic
compact smooth 4-manifolds, in some cases, contractible.
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Homology spheres as fixed point sets

Corollary
For any compact Lie group G , there exists a smooth action of G
on a sphere such that the fixed point set F is diffeomorphic to:

any homology 3-sphere bounding a Z-acyclic compact smooth
4-manifold,

any homology 4-spheres Σ4,

the connected sum Σn#Sn for any homology n-spheres Σn

with n  5, and the appropriate homotopy sphere Sn.
In particular, F is homeomorphic to Σn.

We may always assume that at a chosen point x ∈ Σn, the normal
G -module is the realification of a complex G -module.
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Stably parallelizable manifolds as fixed point sets

K.Pa., Topology 28 (1989) 273–289

Theorem A
Let G be a compact Lie group such that

(i) G is a torus S1 × · · · × S1 , or

(ii) G is a finite p-group or a p-toral group for a prime p.

Let F be a stably parallelizable smooth manifold such that
∂F = ∅, resp. F is compact. Then there exists a smooth action
of G on some Euclidean space, resp. disk, such that the fixed
point set is diffeomorphic to F if and only if – for G as in (i):
F is Z-acyclic, and for G as in (ii): F is Zp-acyclic.

If we drop the assumtion that F is stably parallelizable, the same
result is true for G as in (i), and for G as in (ii), we have to claim
that “F is Zp-acyclic and stably complex” to prove that a similar
statement for actions of G is true.
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Stably parallelizable manifolds as fixed point sets

In Theorems B and C, assume G is a compact Lie group which is
neither a torus nor a finite p-group or p-toral group (any prime p),
i.e., G is not a torus T n, a finite p-group P, or some extension of
the form 1→ T n → G → P → 1.

Theorem B
Let F be a stably parallelizable smooth manifold with ∂F = ∅.
Then there exists a smooth action of G on some Euclidean space
such that the fixed point set is diffeomorphic to F .

Theorem C
Let F be a stably parallelizable closed smooth manifold.
Then there exists a smooth action of G on a disk, resp. sphere,
resp. complex projective spaces, such that a part of the fixed
point set is diffeomorphic to F .
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Oliver number

R. Oliver, Comment. Math. Helv. 50 (1975) 155–177

Proposition (defining the Oliver number)
Let G be a finite group not of prime power order. The set

{χ(XG )− 1 | X is a finite contractible G -CW complex}

is a subgroup of Z, the group of integers.

Therefore, this set has the form nG ·Z for a unique integer nG  0.
We refer to nG as to the Oliver number of G .

If nG = 1, G is called an Oliver group, which in algebraic terms
means that there is no normal series of subgroups P E H E G
such that P and G/H are of prime power order and H/P is cyclic.
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Connected sums without symplectic forms

For a closed 4-manifold X , let b+2 (X ) be the number of positive
entries in a diagonalization of the intersection form of X over Q

H2(X ,Q)× H2(X ,Q)→ Q

(a, b) 7→ 〈a ∪ b, [X ]〉.

Math. Research Letters 1 (1994) 809–822

Theorem (M. Taubes)
Let X and Y be two closed oriented smooth 4-manifolds such
that b+2 (X ) > 0 and b+2 (Y ) > 0. Then the connected sum X#Y
is not a symplectic manifold.
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Actions on complex projective spaces

Y. Sato, Osaka J. Math. 28 (1991) 243–253

Sato’s Lemma
There exists a homology 4-sphere Σ4 with π1(Σ4) ∼= SL(2, 5).

By the result of Kaluba and Politarczyk applied for X = CP2 and
M = Σ4 from Sato’s Lemma, the connected sum CP2#Σ4 is not
a symplectic manifold.

M. Kaluba, W. Politarczyk, J. Symplectic Geom., Vol. 10, No. 1 (2012), 17–26.

Theorem
For any compact Lie group G , there exists a smooth action of G
on a complex projective space such that the fixed point set F is
diffeomorphic to CP2#Σ4, where Σ4 is the homology sphere
from Sato’s Lemma.
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M = Σ4 from Sato’s Lemma, the connected sum CP2#Σ4 is not
a symplectic manifold.

M. Kaluba, W. Politarczyk, J. Symplectic Geom., Vol. 10, No. 1 (2012), 17–26.

Theorem
For any compact Lie group G , there exists a smooth action of G
on a complex projective space such that the fixed point set F is
diffeomorphic to CP2#Σ4, where Σ4 is the homology sphere
from Sato’s Lemma.
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Restrictions on F and actions on CW complexes

Bob Oliver, Topology 35 (1996) 583–615

Theorem
Let G be a finite group not of prime power order. Let F be
a compact smooth manifold. Let ν be a G -vector bundle over
F with dim νG = 0. Then the two conditions are equivalent.

The Euler characteristic χ(F ) ≡ 1 (mod nG ) and the class
[τF ⊕ ν] lies in the kernel of the map

K̃OG (F )→ K̃O(F )⊕
⊕

P∈P(G)

K̃OP(F )(p).

There is a finite contractible G -CW complex X such that
XG = F and [τF ⊕ ν] lies in the image of the restriction map

K̃OG (X )→ K̃OG (F ).
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Restrictions on F and actions on disks

K. Pa., Topology 28 (1989) 273–289

Bob Oliver,Topology 35 (1996) 583–615

Corollary
Let G be a finite group not of prime power order. Let F be
a compact smooth manifold. Let ν be a G -vector bundle over
F with dim νG = 0. Then the two conditions are equivalent.

The Euler characteristic χ(F ) ≡ 1 (mod nG ) and the class
[τF ⊕ ν] lies in the kernel of the map

K̃OG (F )→ K̃O(F )⊕
⊕

P∈P(G)

K̃OP(F )(p).

There is a smooth action of G on a disk D such that
the fixed point set is diffeomorphic to F and νF⊂D ∼= ν ⊕ ε
for a product G -vector bundle ε over F with dim εG = 0.
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