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November 14, 2014



Group Actions on
a Class of

7-manifolds.

Marek Kaluba

Asymmetric
manifolds

Product actions

The action of G on a manifold M × N is called a product
action if it is equivalent with one decomposable in the
following manner.

G × (M × N) −→ M × N

(g , (x , y)) 7−→
[
ϕ(g) 0

0 ψ(g)

]
·
[

x
y

]
Where ϕ and ψ denote actions of G on maifolds M, N
respectively.



Group Actions on
a Class of

7-manifolds.

Marek Kaluba

Asymmetric
manifolds

Product actions

The action of G on a manifold M × N is called a product
action if it is equivalent with one decomposable in the
following manner.

G × (M × N) −→ M × N

(g , (x , y)) 7−→
[
ϕ(g) 0

0 ψ(g)

]
·
[

x
y

]
Where ϕ and ψ denote actions of G on maifolds M, N
respectively.



Group Actions on
a Class of

7-manifolds.

Marek Kaluba

Asymmetric
manifolds

Product actions

The action of G on a manifold M × N is called a product
action if it is equivalent with one decomposable in the
following manner.

G × (M × N) −→ M × N

(g , (x , y)) 7−→
[
ϕ(g) 0

0 ψ(g)

]
·
[

x
y

]
Where ϕ and ψ denote actions of G on maifolds M, N
respectively.



Group Actions on
a Class of

7-manifolds.

Marek Kaluba

Asymmetric
manifolds

Motivation

When there are plenty of actions on both M and N, we tend
to believe that some of them might be interweaved to create
a non-product one.

Choose M with as few symmetries as possible.
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Stabilisation

The most natural choice for N is a sphere.

Consider an action of G on M × Sn, where M is an
“asymmetric” manifold.

What is the minimal n (depending on M and G )
such that there exist a non-product action of G on
M × Sn?
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Asymmetric manifolds

Theorem

I There exist an infinite family of simply connected,
6-dimensional smooth manifolds which do not admit any
effective (even topological) action of any compact Lie
group with possible exception of orientation reversing
involutions.

I Each of the manifolds above turns out to be a
conjugation space (e.g. admits a special type of
involution)

I But if we are satisfied with just topological manifolds
then there exists a similar family of non-smoothable
ones which admit no involutions at all

I Existence of smooth simply connected manifolds with no
involutions is still an open problem.

V. Puppe, 1995
Simply connected
6-dimensional
manifolds with little
symmetry (...)

M. Olbermann,
2010
Conjugations on
6-manifolds

M. Kreck, 2009
Simply connected
asymmetric
manifolds
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Detection methods

Remark
A G -action on M × N is a product action if and only if both
projections πM : M × N → M and πN : M × N → N are
G -equivariant maps.

Corollary

Let G = S1 or Z/p. Suppose that for every G-action on M,
MF is connected and that there is an action on M × Sn with
an H-isotropy set

(M × Sn)H ⊇ X t Y ,

for X not homotopy equivalent to Y . Then the G-action is
not equivalent to a product action.
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In this talk the we will focus on cases:

I M × S1 and M × S2;

I G = S1 or G = Z/p.
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Non-product actions

Proposition

Let M be a n-dimensional asymmetric manifold. There exist
effective, non-product actions of G on M × S2.
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Codimension 2 fixed point sets of G -actions

Proposition

Let X be a contractible, (n + 1)-dimensional (n ≥ 3) manifold
with smooth boundary ∂X = F . Then there exist effective,
smooth G -action on sphere Sn+2 with the fixed-point set
diffeomorphic to F .

Construction:

I Consider product G -action on X × D(V ), where V is a
non-trivial complex, 1-dimensional representation of G .

g · (x, y) 7→ (x, gy)

I By h-cobordism theorem X × D(V ) ∼= Dn+3.

I The action restricted to the boundary is the desired one.

Every codimension
2 fixed point set
S1-action on a
sphere comes from
this construction, by
result of W-Y.
Hsiang
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Non-product actions

Proposition

Let M be a n-dimensional asymmetric manifold. Then there
exist effective, non-product actions of G on M × S2.

I Choose a n-dimensional (n ≥ 3) non-simply connected
manifold F bounding a contractible manifold X .

(e.g. F may be a
smooth homology
sphere)

I By the previous proposition there exists a smooth action
of G on Sn+2 with the fixed point set diffeomorphic to F
and tangential G -module at F isomorphic to V ⊕ n1G .

I Form the connected sum

M × S(V ⊕ R)#Sn+2 ∼= M × S2.

n1G = Rn with

trivial action
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I Since all actions on S2 are linear, a product action on
M × S2 would have the fixed point set either

I empty (fixed-point-free action on S2), or
I diffeomorphic to M tM (2-fixed-points action on S2), or
I diffeomorphic to M × S1 (case G = Z/2)

I Observe that the fixed point set of the action
constructed on M × S2 consists of two components

M tM#F

with non-isomorphic fundamental groups.
�
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Actions on M × S1

Let M6 be one of the smooth asymmetric manifolds described
by Puppe. In particular M is simply connected, spin manifold
with torsion-free cohomology concentrated in even
dimensions.

Theorem
All free S1-actions on M × S1 are equivalent to a product
action.

Product action =
id× complex mult.

We strongly believe that the following is also true:

Theorem? (Work in progress)

All free Z/p-actions on M × S1 are equivalent to a product
action (p 6= 2).

Product action =
id× exp

(
2πi
p

)
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Proof: (free S1-actions)

We use the fact that a free S1-action on M × S1 yields a fibre

bundle over the orbit space X
def.
= M ×G S1:

ξ
def.
=
(
S1 → M × S1 → X

)
.

Every such bundle has a classifying map

X
c(ξ)−−→ BS1

We want to use the map to compare fibre bundles.
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Proof: (continued)

All such S1-bundles are determined by their first Chern class

c1(ξ) = c(ξ)∗(x),

where x is the generator of H 2(BS1,Z).

Our aim is to prove that c1(ξ) vanishes, so that we have a
trivial bundle (

S1 → X × S1 → X
)
.

Assume so for now.
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Proof: (continued)

Then we have a commuting diagram:

M × S1

M × S1

S1

M

X

BS1

i

i

πG

πG

1

c(ξ)

' 	h

So we know that over (a manifold) X the trivial S1-bundle
satisfies

M × S1 ∼= X × S1.
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Proof: (continued)

Observe that this gives us just a homotopy equivalence

M
'−→ X .

Exercise (in h-cobordism)

Improve this to a diffeomorphism.
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Solution:

We already have a diffeomorphism M × S1 → X × S1. Lift it
to the Z-cover

ϕ : M × R→ X × R.

The image ϕ(M × {0}) belongs to X × (0, 2) and separates
X × R into two components. Choose one of them and
intersect it with

(
X × (±∞, a]

)
.

This is a non-empty, connected manifold with boundary

∂W ∼= N t ϕ(M).

Moreover the inclusions N ↪→W and ϕ(M) ↪→W are
homotopy equivalences. Since π1(M) = 0 we obtain a
diffeomorphism M → X by the h-cobordism theorem.
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Proof: (end of)

So M and X are diffeomorphic, and the diffeomorphism gives
us desired equivalence of actions.

Omitted in the proof:

I Triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by c1(ξ) can be identified with a
differential on the second page of the Leray-Serre
spectral sequence.

Then we use
cohomological
properties of M to
prove that
c1(ξ) = 0.
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Recall that M is 6-dimensional, simply connected manifold
with cohomology

H∗(M) = Free (H∗(M)) = Heven(M)

generated in dimension 2.

By the long exact sequence of fibration, π1(X ) is either trivial
or finite cyclic.

Assume that π1(X ) acts trivially on H∗(S1). Then we have
the following spectral sequence

Ep,q
2 = Hp(X ,Hq(S1,Z))⇒ Hp+q(M × S1,Z).

For simplicity.
We can actually do
better.
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I torsion(H2(X )) = H1(X ) = π1(X ) is trivial.

�

The proof above suggests, that the fact is more general, i.e.
it holds for all manifolds M with torsion-free cohomology in
even degrees.
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Free actions of Z/p

We may approach this problem using (classical) surgery
methods.

However now the orbit space X
def.
= M ×Z/p S1 is a non-simply

connected 7-manifold.

Remark
We believe that for free G = Z/p-actions the homotopy type
of the orbit space is the invariant.

in the case Z/2 we
do have a proof

This is work in progress with Z. B laszczyk

A similar results on free Z/p-actions on Sn × S1 was recently
obtained by Q.Khan (for p an odd prime) and
B.Jahren&S.Kwasik (for p an even prime).
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Semi-conjectures and questions

Let G be an arbitrary finite group and let N be the smallest
dimension of faithful representation of G .

Question
Is it true that for n < N all effective actions of G on M × Sn

are product actions?

Problem (for a decent-lunch-price)

What are algebraic or geometric (computable!) invariants
that will allow us to recognize a product action?
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