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Unitary manifolds

Definition

A unitary manifold M is a compact, oriented, smooth manifold
whose tangent bundle admits a stably almost complex structure
(i.e.,

J : TM ⊕ Rl −→ TM ⊕ Rl

such that J2 = −id).

Example: Quasi-toric manifolds are closed unitary manifolds.
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Milnor and Novikov: classifying all closed manifolds up to
unitary bordism.

ΩU
∗ = {all closed unitary manifolds}/ ∼

where ∼: unitary bordism, which is defined by

Mn
1 ∼ Mn

2 ⇐⇒ ∃W s. t. ∂W = Mn
1t−Mn

2 with same unitary structure

ΩU
∗ forms a ring with the following addition and multiplication

[M1] + [M2] = [M1 tM2]

[M] · [N] = [M × N]
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Theorem (Milnor, Novikov)

[M] = 0 in ΩU
∗ ⇐⇒ all Chern numbers of M vanish.

ΩU
∗ = Z[x2i |i ≥ 1], where x2i can be represented by Milnor

hypersurfaces.
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Equivariant case

G: compact Lie group

Definition
A unitary G-manifold is a unitary manifold with a G-action
preserving the unitary structure (i.e., there exists the following
commutative diagram

TM ⊕ Rl J−−−−→ TM ⊕ Rl

g
y yg

TM ⊕ Rl J−−−−→ TM ⊕ Rl

where J2 = −id and g ∈ G.
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ΩU,G
∗ = {all closed unitary G-manifolds}/ ∼G

where ∼G: equivariant unitary bordism, defined by

M1 ∼G M2 ⇐⇒ ∃W s. t. ∂W = M1t−M2 with same G-unitary stru.

ΩU,G
∗ also forms a ring.

Remark
Complicated!!!
The ring structure of ΩU,G

∗ is still open for arbitrary G
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§2 Question

Natural question
What is the complete invariant of ∼G?

Theorem (tom Dieck, 1971)

Let G = T k × Zm. Then [M]G = 0 in ΩU,G
∗ ⇐⇒ all equivariant

K-theoretic Chern numbers of M vanish.

Theorem (Guillemin–Ginzburg–Karshon, 2002)

Let G = T k . Then a closed unitary T k -manifold M with only
isolated fixed points represents the zero element in ΩU,T k

∗ ⇐⇒
all equivariant cohomology Chern numbers of M vanish.
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Without the restriction of isolated fixed-points,
Guillemin–Ginzburg–Karshon posed

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

[M]T k = 0 in ΩU,T k

∗ ⇐⇒ all equivariant cohomology Chern
numbers of M vanish.

Remark
In their book, Guillemin–Ginzburg–Karshon discussed the problem of
calculating the ring HT k

∗ of equivariant Hamiltonian bordism classes of
all unitary Hamiltonian T k -manifolds. They designed three series of
questions, the first one of which is stated as follows:
Do mixed equivariant characteristic numbers form a full system of
invariants of Hamiltonian bordism?
Then GuilleminõGinzburgõKarshon constructed a monomorphism

HT k

∗ −→ ΩU,T k

∗+2
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Main results

Theorem A (Lü-Wang)

[M]T k = 0 in ΩU,T k

∗ ⇐⇒ all equivariant cohomology Chern
numbers of M vanish.

Corollary
Mixed equivariant characteristic numbers form a full system of
invariants of Hamiltonian bordism.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Main results

Theorem A (Lü-Wang)
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Main results

Using the equivariant Riemann–Roch relation of
Atiyah–Hizebruch type, we also obtain

Theorem B (Lü–Wang)

Let [M]T k ∈ ΩU,T k

∗ . Then All equivariant cohomology Chern
numbers of M vanish⇐⇒ all equivariant K-theoretic Chern
numbers of M vanish.

Remark
With a different way, we actually obtain the tom Dieck’s
Theorem in the case where G is a torus.
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Kronecker pairing between bordism and
cobordism

Notions-homotopic bordism and cobordism

MU∗(X ) = lim
r−→∞

[S2r+∗,X+ ∧MU(r)]

MU∗(X ) = lim
r−→∞

[S2r+∗ ∧ X+,MU(r)]

where X+ = X ∪ {pt}, MU(r): Thom space of universal
complex r -dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, MU∗(X ) ∼= ΩU
∗ (X ),

where ΩU
∗ (X ) is formed by the bordism classes of singular

manifolds f : M −→ X for M: unitary manifold



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Notions-homotopic bordism and cobordism

MU∗(X ) = lim
r−→∞

[S2r+∗,X+ ∧MU(r)]

MU∗(X ) = lim
r−→∞

[S2r+∗ ∧ X+,MU(r)]

where X+ = X ∪ {pt}, MU(r): Thom space of universal
complex r -dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, MU∗(X ) ∼= ΩU
∗ (X ),

where ΩU
∗ (X ) is formed by the bordism classes of singular

manifolds f : M −→ X for M: unitary manifold



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Notions-homotopic bordism and cobordism

MU∗(X ) = lim
r−→∞

[S2r+∗,X+ ∧MU(r)]

MU∗(X ) = lim
r−→∞

[S2r+∗ ∧ X+,MU(r)]

where X+ = X ∪ {pt}, MU(r): Thom space of universal
complex r -dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, MU∗(X ) ∼= ΩU
∗ (X ),

where ΩU
∗ (X ) is formed by the bordism classes of singular

manifolds f : M −→ X for M: unitary manifold



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Notions-homotopic bordism and cobordism

MU∗(X ) = lim
r−→∞

[S2r+∗,X+ ∧MU(r)]

MU∗(X ) = lim
r−→∞

[S2r+∗ ∧ X+,MU(r)]

where X+ = X ∪ {pt}, MU(r): Thom space of universal
complex r -dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, MU∗(X ) ∼= ΩU
∗ (X ),

where ΩU
∗ (X ) is formed by the bordism classes of singular

manifolds f : M −→ X for M: unitary manifold



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Quillen’s geometric interpretation of elements in MU∗(X )

Each element α ∈ MU±n can be represented by an oriented
complex map f : M −→ X ,

where X is a smooth manifold and
dim X − dim M = ±n.

If n is even, f is a composition of

M ↪→ E −→ X

such that the normal bundle of M in E admits a complex
structure, where E −→ X is a complex vector bundle.

If n is odd, E is replaced by E × R.
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Kronecker pairing between bordism and
cobordism

Kronecker pairing

〈, 〉 : MU±n(X )⊗MUm(X ) −→ MUm∓n.

For example, let X be a smooth manifold.
α ∈ MU−n(X ) is represented by a smooth fiber bundle E −→ X
with dim E − dim X = n.
β ∈ MUm(X ) is represented by a smooth map f : M −→ X
Then 〈α, β〉 is the bordism class of the pull-back f̃ ∗(E)

f̃ ∗(E)
f̃−−−−→ Ey y

M f−−−−→ X



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Kronecker pairing

〈, 〉 : MU±n(X )⊗MUm(X ) −→ MUm∓n.

For example, let X be a smooth manifold.

α ∈ MU−n(X ) is represented by a smooth fiber bundle E −→ X
with dim E − dim X = n.
β ∈ MUm(X ) is represented by a smooth map f : M −→ X
Then 〈α, β〉 is the bordism class of the pull-back f̃ ∗(E)

f̃ ∗(E)
f̃−−−−→ Ey y

M f−−−−→ X



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Kronecker pairing

〈, 〉 : MU±n(X )⊗MUm(X ) −→ MUm∓n.

For example, let X be a smooth manifold.
α ∈ MU−n(X ) is represented by a smooth fiber bundle E −→ X
with dim E − dim X = n.

β ∈ MUm(X ) is represented by a smooth map f : M −→ X
Then 〈α, β〉 is the bordism class of the pull-back f̃ ∗(E)

f̃ ∗(E)
f̃−−−−→ Ey y

M f−−−−→ X



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Kronecker pairing

〈, 〉 : MU±n(X )⊗MUm(X ) −→ MUm∓n.

For example, let X be a smooth manifold.
α ∈ MU−n(X ) is represented by a smooth fiber bundle E −→ X
with dim E − dim X = n.
β ∈ MUm(X ) is represented by a smooth map f : M −→ X

Then 〈α, β〉 is the bordism class of the pull-back f̃ ∗(E)

f̃ ∗(E)
f̃−−−−→ Ey y

M f−−−−→ X



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Kronecker pairing between bordism and
cobordism

Kronecker pairing

〈, 〉 : MU±n(X )⊗MUm(X ) −→ MUm∓n.

For example, let X be a smooth manifold.
α ∈ MU−n(X ) is represented by a smooth fiber bundle E −→ X
with dim E − dim X = n.
β ∈ MUm(X ) is represented by a smooth map f : M −→ X
Then 〈α, β〉 is the bordism class of the pull-back f̃ ∗(E)

f̃ ∗(E)
f̃−−−−→ Ey y

M f−−−−→ X



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Universal toric genus

Φ : ΩU,T k

∗ −→ MU∗(BT k )

Defined by tom Dieck

Φ is a monomorphism (due to Hanke and Löffler)
Re-defined by Buchstaber–Ray–Panov in a geometric way
as follows:

[M]T k 7−→ [π : ET k ×T k M −→ BT k ]
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Proof of Theorem A

Take [M]T k ∈ ΩU,T k

n , and [f : N −→ BT k ] ∈ MU∗(BT k ), consider

f̃ ∗(ET k ×T k M)
f̃−−−−→ ET k ×T k M

π′
y π

y
N f−−−−→ BT k

By universal toric genus and Kronecker pairing,

〈Φ([M]T k ), [f : N −→ BT k ]〉 = [̃f ∗(ET k ×T k M)] ∈ MU∗ = ΩU
∗

Remark: f̃ ∗(ET k ×T k M) is a closed unitary manifold of
dimension=dim M + dim N.
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Proof of Theorem A

Step I: Suppose that all equivariant cohomology Chern
numbers of M vanish.
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Step II: Suppose that [M]T k = 0 in ΩU,T k

∗ .

=⇒ Φ([M]T k ) = [π : ET k ×T k M −→ BT k ] = 0 in MU∗(BT k )

Consider π!(cT k

ω (M)) = cT k

ω (M)[M] ∈ H∗(BT k ) = Z[x1, ..., xk ],
where ω = (i1, ..., ir ) is a partition.

If dim M is odd, then π!(cT k

ω (M)) = 0.

If dim M = 2m, then π!(cT k

ω (M)) ∈ H2|ω|−2n(BT k )

Note: Clearly if |ω| < m, then π!(cT k

ω (M)) = 0.
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Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `.

When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1,

write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m,

and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J,

choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk ,

we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Proof of Theorem A

Step II:(continued)

We perform an induction on |ω| −m ≥ 0.

Easy to check that π!(cT k

ω (M)) = 0 if |ω| = m.

Assume inductively that π!(cT k

ω (M)) = 0 if |ω| −m ≤ `. When
|ω| −m = `+ 1, write

π!(cT k

ω (M)) =
∑

J

nJxJ

where J = (j1, ..., jk ) with |J| = |ω| −m, and xJ = x j1
1 · · · x

jk
k .

For each J, choose N = CP j1 × · · · × CP jk , we can obtain that
nJ = 0.



§1 Notations and background §2 Question §3 Main Results §4 Proofs

Thank You!


	§1 Notations and background
	§2 Question
	§3 Main Results
	§4 Proofs

