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1. Introduction

Let S1 be the unit circle and Tn := (S1)n the n-dimensional compact torus.
Tn acts on the n-dimensional complex vector space Cn by coordinate-wise complex
multiplication. This action is called the standard representation of Tn. Tn acts on a
complex n-dimensional toric variety X as a subgroup of (Cn)∗. If X is nonsingular,
then for each point x ∈ X, there exists a coordinate neighborhood (U, ρ, ϕ) of x,
where where U is a Tn-invariant open set of X, ρ is an automorphism of Tn, and
ϕ is a ρ-equivariant diffeomorphism from U to some Tn-invariant open subset in
Cn. In general, a Tn-action on a 2n-dimensional manifold which is covered by
such coordinate neighborhoods is said to be locally standard. See [4, 2] for more
details. This property is one of the starting point of their pioneer work [4] of
Davis-Januszkiewicz and now, it plays a central role in toric topology.

A similar structure can be seen in Lagrangian fibrations. Let (X,ω) be a 2n-
dimensional smooth symplectic manifold and B an n-dimensional smooth manifold
with corners. We call a map µ : (X,ω) → B a locally toric Lagrangian fibration
if µ is locally identified with the moment map of the standard representation of
Tn. It is known that there exists an atlas {(Uα, ϕα)} of X and there also exists an
automorphism ρ of Tn on each nonempty overlap Uα ∩Uβ such that each ϕα sends
Uα diffeomorphically to some Tn-invariant open subset of Cn and the overlap map
ϕX

α ◦ (ϕX
β )−1 is ρ-equivariant (see also Example 2.9).

In [13], as a generalization of a locally standard torus action and also as an un-
derlying structure of a locally toric Lagrangian fibration, we introduced the notion
of a local Tn-action modeled on the standard representation, and defined two topo-
logical invariants called the characteristic pair and the Euler class of the orbit map
for a local Tn-action, then proved that local Tn-actions are topologically classified
by these two invariants. We also investigate the symplectic case. The content of
[13] is a refinement of the work [12].

This is an announcement of [13]. In the next section, we recall the definition and
basic facts of a local Tn-action. In Section 3, we explain that a local Tn-action is
accompanied by the principal Aut(Tn)-bundle and the characteristic bundle. After
that, we recall the construction of the canonical model of a local Tn-action. In
Section 4, we define the Euler class of the orbit map. Section 5 is devoted to the
topological classification of local Tn-actions. Theorem 5.1 is the main theorem
of the first part of this paper. We also describe the idea of the proof, where the
canonical model plays an important role. As a corollary, we can obtain that locally
standard Tn-actions are classified by the characteristic bundle and the Euler class
of the orbit map up to equivariant homeomorphisms (Corollary 5.2). One of the
important examples of manifolds equipped with local Tn-actions is a locally toric
Lagrangian fibration with n-dimensional fibers. Finally, in Section 6, we give the
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necessary and sufficient condition that a manifold with a local Tn-action becomes a
locally toric Lagrangian fibration and also describe the classification of locally toric
Lagrangian fibrations.

Throughout this paper we employ the vector notation in order to represent ele-
ments of Cn, namely, z = (z1, . . . , zn) ∈ Cn. The similar notation is also used for
Tn = (S1)n, Rn, etc.

2. Definitions and basic facts

Let X be a paracompact, Hausdorff space.

Definition 2.1. A weakly standard Cr (0 ≤ r ≤ ∞) atlas of X is an atlas
{(UX

α , ϕ
X
α )}α∈A which satisfies the following properties

(1) for each α, ϕX
α is a homeomorphism from UX

α to an open set of Cn invariant
under the standard representation of Tn and

(2) for each nonempty overlap UX
αβ := UX

α ∩UX
β , there exists an automorphism

ραβ of Tn as a Lie group such that the overlap map ϕX
αβ := ϕX

α ◦ (ϕX
β )−1

is ραβ-equivariant Cr diffeomorphic with respect to the restrictions of the
standard representation of Tn to ϕX

α (UX
αβ) and ϕX

β (UX
αβ). (The latter means

that ϕX
αβ(u · z) = ραβ(u) · ϕX

αβ(z) for u ∈ Tn and z ∈ ϕX
β (UX

αβ).)

Two weakly standard Cr atlases {(UX
α , ϕ

X
α )}α∈A and {(V X

β , ψX
β )}β∈B of X2n are

equivalent if on each nonempty overlap UX
α ∩V X

β , there exists an automorphism ρ of
Tn such that ϕX

α ◦(ψX
β )−1 is ρ-equivariant Cr diffeomorphic. We call an equivalence

class of weakly standard Cr atlases a Cr local Tn-action on X2n modeled on the
standard representation and denote it by T .

In the rest of this paper, a Cr local Tn-action on X2n modeled on the standard
representation is often called a Cr local Tn-action on X2n, or more simply, a local
Tn-action on X if there are no confusions.

Let (X, T ) be a 2n-dimensional manifoldX equipped with a Cr local Tn-action T
and {(UX

α , ϕ
X
α )}α∈A a maximal weakly standard atlas of X which belongs to T . For

(X, T ) we can generalize the orbit space and the orbit map in the following way. We
endow each quotient space ϕX

α (UX
α )/Tn with the quotient topology induced from

the topology of ϕX
α (UX

α ) by the natural projection π : ϕX
α (UX

α ) → ϕX
α (UX

α )/Tn.
By the property (2) for each overlap UX

αβ , ϕX
αβ induces a homeomorphism from

ϕX
β (UX

αβ)/Tn to ϕX
α (UX

αβ)/Tn. We define two elements bα ∈ ϕX
α (UX

α )/Tn and
bβ ∈ ϕX

β (UX
β )/Tn are equivalent if bα ∈ ϕX

α (UX
αβ)/Tn, bβ ∈ ϕX

β (UX
αβ)/Tn and the

map induced by ϕX
αβ sends bβ to bα. It is an equivalence relation on the disjoint

union
∐

α

(
ϕX

α (UX
α )/Tn

)
. We call the quotient space of

∐
α

(
ϕX

α (UX
α )/Tn

)
by the

equivalence relation together with a quotient topology the orbit space of the local
Tn-action T on X and denote it by BX . It is easy to see that BX is a Hausdorff
space and {ϕX

α (UX
α )/Tn}α∈A is an open covering of BX . By the construction of

BX , the map
∐

α π ◦ ϕX
α :

∐
α U

X
α → ∐

α

(
ϕX

α (UX
α )/Tn

)
induces the map from X

to BX . We call it the orbit map of the local Tn-action T on X and denote it by
µX : X → BX . Notice that by the construction, it is a continuous open map.

Let Rn
+ be the standard n-dimensional positive cone

Rn
+ := {ξ = (ξ1, . . . , ξn) ∈ Rn : ξi ≥ 0 i = 1, . . . , n}.

It has the natural stratification with respect to the number of coordinates ξi which
are equal to zero.

Definition 2.2. Let B be a Hausdorff space. A structure of an n-dimensional
topological manifold with corners on B is a system of coordinate neighborhoods
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onto open subsets of Rn
+ so that overlap maps are homeomorphisms which preserve

the natural stratifications induced from the one of Rn
+. See [3, Section 6] for a

topological manifold with corners.

Proposition 2.3. BX is endowed with a structure of an n-dimensional topological
manifold with corners.

Proof. We define the map µCn : Cn → Rn by

(2.1) µCn(z) = (|z1|2, . . . , |zn|2)
for z = (z1, . . . , zn) ∈ Cn. Notice that the image of µCn is the n-dimensional
standard positive cone Rn

+. It is invariant under the standard representation of Tn

and induces the homeomorphism from Cn/Tn to Rn
+. The orbit space Cn/Tn is

endowed with the natural stratification whose k-dimensional stratum consists of k-
dimensional orbits and the homeomorphism induced by µCn preserves stratifications
of Cn/Tn and Rn

+. We put UB
α := ϕX

α (UX
α )/Tn. The restriction of µCn to ϕX

α (UX
α )

induces the homeomorphism from UB
α to the open subset µCn(ϕX

α (UX
α )) of Rn

+,
which is denoted by ϕB

α . By the construction, on each overlap UB
αβ := UB

α ∩UB
β , the

overlap map ϕB
αβ := ϕB

α ◦ (ϕB
β )−1 : µCn(ϕX

β (UX
αβ)) → µCn(ϕX

α (UX
αβ)) preserves the

natural stratifications of µCn(ϕX
α (UX

αβ)) and µCn(ϕX
β (UX

αβ)). Thus, {(UB
α , ϕ

B
α )}α∈A

is the desired atlas. ¤
Remark 2.4. The atlas {(UB

α , ϕ
B
α )}α∈A of BX constructed in the proof of Proposi-

tion 2.3 has following properties
(1) for each α, UX

α = µ−1
X (UB

α ), ϕX
α (UX

α ) = µ−1
Cn (ϕB

α (UB
α )) and the following

diagram commutes

X

µX

²²

⊃ µ−1
X (UB

α )
ϕX

α //

µX

²²

µ−1
Cn (ϕB

α (UB
α ))

µCn

²²

⊂ Cn

µCn

²²
BX ⊃ UB

α

ϕB
α // ϕB

α (UB
α ) ⊂ Rn

+,

(2) the restriction of {(UB
α , ϕ

B
α )}α∈A to the interior BX \ ∂BX of BX is a Cr

atlas of BX \ ∂BX .

Let (X1, T1) and (X2, T2) be 2n-dimensional manifolds X1 and X2 equipped with
Cr local Tn-actions T1 and T2. Let {(UX1

α , ϕX1
α )}α∈A and {(UX2

β , ϕX2
β )}β∈B be the

maximal weakly standard atlases of X1 and X2 which belong to T1 and T2.

Definition 2.5. (X1, T1) and (X2, T2) are Cr isomorphic if there exists a Cr dif-
feomorphism fX : X1 → X2 from X1 to X2 and on each nonempty overlap UX1

α ∩
(fX)−1(UX2

β ) 6= ∅ there exists an automorphism ρ of Tn such that ϕX2
β ◦fX◦(ϕX1

α )−1

is ρ-equivariant. We also call such a Cr diffeomorphism fX a Cr isomorphism and
denote it by fX : (X1, T1) → (X2, T2).

Notice that a Cr isomorphism fX : (X1, T1) → (X2, T2) induces the stratification
preserving homeomorphism fB : BX1 → BX2 between their orbit spaces such that
fX and fB satisfy µX2 ◦ fX = fB ◦ µX1 .

We give examples of local torus actions.

Example 2.6 (Locally standard torus actions). Let Tn act smoothly on a 2n-
dimensional smooth manifold X. A standard coordinate neighborhood of X consists
of a triple (U, ρ, ϕ), where U is a Tn-invariant open set of X, ρ is an automorphism
of Tn, and ϕ is a ρ-equivariant diffeomorphism from U to some Tn-invariant open
subset in Cn. The action of Tn on X is said to be locally standard if every point
in X lies in some standard coordinate neighborhood. See [4, 2] for more details.
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(A typical example of locally standard torus actions is a nonsingular toric variety.)
The atlas which consists of standard coordinate neighborhoods is weakly standard.
Therefore, a locally standard Tn-action induces the local Tn-action on X.

Notice that not all local torus actions are induced by locally standard torus
actions. For any Cr local Tn-action T on a 2n-dimensional manifold X, we take
a weakly standard atlas {(UX

α , ϕ
X
α )}α∈A belonging to T . It is easy to see that the

automorphisms ραβ of Tn in the property (2) of Definition 2.1 form a Čech one-
cocycle {ραβ} on {UB

α }α∈A with values in Aut(Tn). Then, the cohomology class
of {ρβα} in the first Čech cohomology set H1(BX ; Aut(Tn)) is the obstruction for
the local Tn-action to be induced by a locally standard Tn-action.

Proposition 2.7. A Cr local Tn-action on X is induced by some Cr locally stan-
dard Tn-action if and only if {ραβ} and the trivial Čech one-cocycle are of the same
equivalence class in H1(BX ; Aut(Tn)), where the trivial Čech one-cocycle is the one
whose values on all open set are equal to the identity map of Tn.

For the proof, see [13].

Example 2.8. We can construct an example of local torus actions which does not
come from any locally standard torus fibrations in the following way. For a small
positive number 0 < ε¿ 1, let X be the quotient space of the space

{(z, w) ∈ C2 × C : 0 < |z1|2 < 1 + ε, |w|2 + |z2|2 = 1}
by the S1-action defined by

u · (z, w) :=
(
(z1, u−1z2), u−1w

)
.

T 2 acts on X by
u · [z, w] := [u · z, w].

The map µX : X → R2 defined by µX([z, w]) := (|z1|2, |z2|2) is invariant under the
T 2-action and induces the identification of the orbit space of the T 2-action with
(0, 1 + ε)× [0, 1].

We define that two elements x1 and x2 in X are equivalent, or x1 ∼X x2 if for
a representative (z, w) of x1,

(
(z1/|z1|

√
|z1|2 + 1, z2), w

)
is a representative of x2.

It does not depend on the choice of representatives of x1 and it is well-defined.
We denote the quotient space X/ ∼X of the equivalence relation by X. By the
construction, we can show that X is endowed with a local Tn-action. The orbit
space BX is the cylinder defined by

BX := (0, 1 + ε)× [0, 1]/ ∼B ,

where ξ ∼B η if and only if η1 = ξ1 + 1 and η2 = ξ2, and µX induces the orbit map
µX : X → BX .

Example 2.9 (Locally toric Lagrangian fibrations [7]). Let ωCn := 1
2π
√−1

∑n
k=1

dzk∧dzk be the standard symplectic structure on Cn. The standard representation
of Tn preserves ωCn and the map µCn : Cn → Rn defined by (2.1) is a moment
map of the standard representation of Tn. Notice that the image of µCn is the n-
dimensional standard positive cone Rn

+. Let (X,ω) be a 2n-dimensional symplectic
manifold and B an n-dimensional manifold with corners. A map µ : (X,ω) → B
is called a locally toric Lagrangian fibration if there exists a system {(Uα, ϕ

B
α )} of

coordinate neighborhoods of B into Rn
+, and for each α there exists a symplecto-

morphism ϕX
α : (µ−1(Uα), ω) → (µ−1

Cn (ϕB
α (Uα)), ωCn) such that µCn ◦ ϕX

α = ϕB
α ◦ µ.

We show in [13] that for a locally toric Lagrangian fibration µ : (X,ω) → B on an n-
dimensional base B and an above atlas {(Uα, ϕ

B
α , ϕ

X
α )}, on each nonempty overlap

Uα ∩ Uβ there exists an automorphism ραβ ∈ Aut(Tn) such that the overlap map
4



ϕX
α ◦ (ϕX

β )−1 is ρ-equivariant. (Precisely, ραβ is a map from Uα ∩ Uβ → Aut(Tn).
Since Aut(Tn) is discrete, ραβ is locally constant.) In particular, X is endowed
with a smooth local Tn-action. In Section 6, we will describe the necessary and
sufficient condition that a manifold with a local torus action becomes a locally toric
Lagrangian fibration.

3. Characteristic pairs and canonical models

In this section, we introduce the characteristic pair for a local torus action,
and construct the canonical model from the characteristic pair. Both of them
play important roles of the topological classification of local torus actions. In this
section, all manifolds, maps, and local Tn-actions are assumed to be of class C0

unless otherwise stated.

3.1. Characteristic pairs. Let B be an n-dimensional topological manifold with
corners. We assume that ∂B 6= ∅. By the definition of a manifold with corners, B
is equipped with a natural stratification. We denote by S(k)B the k-dimensional
stratum of B, namely, S(k)B consists of those points which have exactly k nonzero
components in a local coordinate. In particular, the top-dimensional stratum S(n)B
is equal to the interior B \ ∂B of B.

Let Λ := {t ∈ t : exp t = 1} be the lattice of integral elements in the Lie algebra
t of Tn. Since the differential of any automorphism of Tn at the unit element pre-
serves Λ, by associating any automorphism of Tn with its differential at the unit
element, there is the natural homomorphism from Aut(Tn) to GL(Λ). It is an iso-
morphism. In fact, it follows from the surjectivity of the exponential map of Tn and
the equation ϕ ◦ exp = exp ◦dϕ for any automorphism ϕ ∈ Aut(Tn). In the rest of
this paper, we identify Aut(Tn) with GL(Λ) by this isomorphism. Let πP : P → B
be a principal Aut(Tn)-bundle on B and πΛ : ΛP → B the associated Λ-bundle of
P by the above isomorphism Aut(Tn) ∼= GL(Λ). Suppose that πL : L → S(n−1)B
is a rank one sub-bundle of the restriction πΛ|S(n−1)B : ΛP |S(n−1)B → S(n−1)B of
πΛ : ΛP → B to S(n−1)B. For each k and any point b ∈ S(k)B, let U be an open
neighborhood of b in B on which there exists a local trivialization ϕΛ : π−1

Λ (U) →
U × Λ of ΛP . By shrinking U if necessary, we can assume that the intersection
U ∩ S(n−1)B of U with S(n−1)B has exactly n − k connected components, say,
(U ∩S(n−1)B)1, . . ., (U ∩S(n−1)B)n−k. Since Λ is discrete, for each (U ∩S(n−1)B)a

there exists a rank one sub-lattice La ⊂ Λ such that ϕE sends the preimage
π−1
L

(
(U ∩ S(n−1)B)a

)
of (U ∩S(n−1)B)a by πL fiber-wisely to (U ∩S(n−1)B)a×La.

Definition 3.1. πL : L → S(n−1)B is said to be unimodular if for each k and any
point b ∈ S(k)B, the sub-lattice L1+· · ·+Ln−k generated by L1, . . ., Ln−k is a rank
n−k direct summand of Λ. (In [4] such a sub-lattice is called an (n−k)-dimensional
unimodular subspace of Λ.)

Notice that rank one sub-lattices L1, . . ., Ln−k depend on the choice of a neigh-
borhood U and a local trivialization ϕE . But Definition 3.1 does not depend on the
choice of them because the condition for a sub-lattice to be unimodular is invariant
by an automorphism of Λ.

Definition 3.2. Let πL : L → S(n−1)B be a unimodular rank one sub-bundle of
πΛ|S(n−1)B : ΛP |S(n−1)B → S(n−1)B. Then the pair (P,L) of the principal Aut(Tn)-
bundle πP : P → B and πL : L → S(n−1)B is called a characteristic pair and
πL : L → S(n−1)B is called a characteristic bundle.

Let (X, T ) be a 2n-dimensional manifold equipped with a local Tn-action. We
show that there is a characteristic pair associated with (X, T ). Let {(UX

α , ϕ
X
α )}α∈A ∈

T be the maximal weakly standard atlas. It induces the atlas {(UB
α , ϕ

B
α )}α∈A of

5



BX which satisfies the properties in Remark 2.4 and also determines a Čech one-
cocycle {ραβ} on {UB

α }α∈A with coefficients in Aut(Tn). It defines the principal
Aut(Tn)-bundle πPX

: PX → BX on BX by setting

(3.1) PX :=

(∐
α

UB
α ×Aut(Tn)

)
/ ∼P ,

where (bα, hα) ∈ UB
α × Aut(Tn) ∼PX

(bβ , hβ) ∈ UB
β × Aut(Tn) if and only if

bα = bβ ∈ UB
αβ and hα = ραβ ◦ hβ . The bundle projection πPX

is defined by
the obvious way. For each α, every point in π−1

PX
(UB

α ) has a unique representative
which lies in UB

α × Aut(Tn). By associating a point in π−1
PX

(UB
α ) with the unique

representative, we define the local trivialization of PX on UB
α which is denoted

by ϕP
α : π−1

PX
(UB

α ) → UB
α × Aut(Tn). Let πΛX

: ΛX → BX be the Λ-bundle as-
sociated with PX by the natural identification Aut(Tn) ∼= GL(Λ). The property
(2) in Definition 2.1 determines a unique unimodular sub-bundle of the restriction
πΛX

|S(n−1)BX
: ΛX |S(n−1)BX

→ S(n−1)BX of πΛX
: ΛX → BX to the codimension

one stratum S(n−1)BX in the following way. For each coordinate neighborhood
(UB

α , ϕ
B
α ) of BX with UB

α ∩S(n−1)BX 6= ∅, the preimage µ−1
Cn

(
ϕB

α (UB
α ∩ S(n−1)BX)

)
is equipped with the Tn-action which is the restriction of the standard represen-
tation of Tn. For simplicity, we assume that the intersection UB

α ∩ S(n−1)BX

is connected. (Otherwise, we may consider component-wise.) Then, all points of
µ−1
Cn

(
ϕB

α (UB
α ∩ S(n−1)BX)

)
has the common one-dimensional stabilizer with respect

to the Tn-action. We denote it by S1
α and also denote the rank one sub-lattice of Λ

spanned by the integral element which generates S1
α by Lα. Suppose that (UB

α , ϕ
B
α )

and (UB
β , ϕ

B
β ) are coordinate neighborhoods satisfying the above conditions and

the intersection UB
αβ ∩ S(n−1)BX is nonempty. Since the overlap map ϕX

αβ is a
ραβ-equivariant homeomorphism, we can show that ραβ sends S1

β isomorphically to
S1

α. Under the identification of ραβ with the automorphism of Λ induced by ραβ ,
ραβ also sends Lβ isomorphically to Lα. By the construction of πΛX

: ΛX → BX ,
ϕP

α induces a local trivialization ϕΛ
α : π−1

ΛX
(UB

α ) → UB
α × Λ of πΛX

: ΛX → BX

on each UB
α such that on an overlap UB

αβ the transition function with respect to
ϕΛ

α and ϕΛ
β is ραβ . We take a subsystem {(UB

αi
, ϕB

αi
)}i∈I of {(UB

α , ϕ
B
α )}α∈A which

covers S(n−1)BX and define the rank one sub-bundle πLX
: LX → S(n−1)BX of

πΛX
|S(n−1)BX

: ΛX |S(n−1)BX
→ S(n−1)BX by setting

(3.2) LX :=

(∐

i

UB
αi
∩ S(n−1)BX × Lαi

)
/ ∼L,

where (bi, li) ∈ UB
αi
∩ S(n−1)BX × Lαi

∼L (bj , lj) ∈ UB
αj
∩ S(n−1)BX × Lαj

if
and only if bi = bj and li = ραiαj

(lj). By the construction, it is easy to see
that πLX

: LX → S(n−1)BX is unimodular. As a summary, we have the following
proposition.

Proposition 3.3. Associated with a local Tn-action T on X, there exists a charac-
teristic pair (PX ,LX), where PX and LX are defined by (3.1) and (3.2), respectively.

Notice that the characteristic bundle is a generalization of the characteristic
function of a quasi-toric manifold, or a torus manifold.

Example 3.4. For a 2n-dimensional manifold X equipped with a locally stan-
dard Tn-action, πPX

: PX → BX is the trivial principal Aut(Tn)-bundle PX =
BX × Aut(Tn). Let (S(n−1)BX)a (a = 1, . . . , k) be the connected component
of S(n−1)BX . On the preimage µ−1

X ((S(n−1)BX)a) of each connected component
6



(S(n−1)BX)a by µX , Tn-action on it has the unique one-dimensional stabilizer
which we denote by S1

a. Let La be the rank one sub-lattice in Λ corresponding to
S1

a. Then, LX is the disjoint union
∐

a(S(n−1)BX)a × La.

Example 3.5. In the case of Example 2.8, the characteristic pair is constructed as
follows. We identify Λ with Z2 and also identify Aut(T 2) with GL2(Z). Then PX

can be written by

PX = ((0, 1 + ε)× [0, 1]×GL2(Z)) / ∼P ,

where (ξ,A) ∼P (η,B) if and only if η ∼B ξ and B = −A. The bundle projection
is defined by the obvious way. ΛX is written by the similar way, namely,

ΛX =
(
(0, 1 + ε)× [0, 1]× Z2

)
/ ∼Λ,

where (ξ,m) ∼P (η, n) if and only if η ∼B ξ and n = −m. With this notation, LX

is written by
LX = ((0, 1 + ε)× {0, 1} × {0} ⊕ Z) / ∼Λ .

For i = 1, 2, let Bi be an n-dimensional topological manifold with corners and
(Pi,Li) a pair of a principal Aut(Tn)-bundle πPi

: Pi → Bi and a unimodular
rank one sub-bundle πLi : Li → S(n−1)Bi of the restriction of the associated Λ-
bundle πΛi : ΛPi → Bi of Pi by the natural identification Aut(Tn) ∼= GL(Λ) to the
codimension one stratum S(n−1)Bi of Bi.

Definition 3.6. An isomorphism fP : (P1,L1) → (P2,L2) from (P1,L1) to (P2,L2)
is a bundle isomorphism fP : P1 → P2 which covers a stratification preserving home-
omorphism fB : B1 → B2 such that the lattice bundle isomorphism fΛ : ΛP1 → ΛP2

induced by fP sends L1 isomorphically to L2. (P1,L1) and (P2,L2) are isomorphic
if there exists an isomorphism between them.

The isomorphism class of the characteristic pair (PX ,LX) is an invariant of a
local Tn-action on X.

Lemma 3.7. For i = 1, 2, let (Xi, Ti) be a 2n-dimensional manifold Xi with a
local Tn-action Ti. If there is a C0 isomorphism fX : (X1, T1) → (X2, T2), then
fX induces the isomorphism fPX

: (PX1 ,LX1) → (PX2 ,LX2) between characteristic
pairs associated with X1 and X2.

Proof. Let {(UX1
β , ϕX1

β )}β∈B ∈ T1 and {(UX2
α , ϕX2

α )}α∈A ∈ T2 be maximal weakly
standard atlases of X1 and X2, and {(UB1

β , ϕB1
β )}β∈B and {(UB2

α , ϕB2
α )}α∈A atlases

of BX1 and BX2 induced by {(UX1
β , ϕX1

β )}β∈B and {(UX2
α , ϕX2

α )}α∈A, respectively.
Suppose that fX : (X1, T1) → (X2, T2) is a C0 isomorphism and fB is the home-
omorphism from BX1 to BX2 which is induced by fX . By definition, on each
nonempty overlap UB1

β ∩ f−1
B (UB2

α ), there exists an automorphism ρf
αβ of Tn such

that ϕX2
α ◦ fX ◦ (ϕX1

β )−1 is ρf
αβ-equivariant. It is easy to see that the following

equality holds

(3.3) ρf
α0,β0

◦ ρX1
β0β1

= ρX2
α0α1

◦ ρf
α1β1

on a nonempty intersection UB1
β0β1

∩ f−1
B (UB2

α0α1
), where ρX1

β0β1
and ρX2

α0α1
are au-

tomorphisms of Tn in (2) of Definition 2.1 with respect to X1 and X2, respec-
tively. We define the bundle isomorphism (fP )αβ : UB1

β ∩ f−1
B (UB2

α ) × Aut(Tn) →
fB(UB1

β ) ∩ UB2
α ×Aut(Tn) by

(fP )αβ(b, h) := (fB(b), ρf
αβ ◦ h).

By (3.3), we can patch them together to obtain the bundle isomorphism fP : PX1 →
PX2 which covers fB . ¤
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3.2. Canonical models. In [4, Section 1.5], Davis-Januszkiewicz constructed the
canonical model of a quasi-toric manifold from the based polytope and the char-
acteristic function. A similar construction can be done by using the characteristic
pair in the following way. Let B be an n-dimensional C0 manifold with corners and
(P,L) a characteristic pair on B. We denote by πT : TP → B the Tn-bundle associ-
ated with P by the natural action of Aut(Tn) on Tn. First we shall explain that for
any k-dimensional part S(k)B, (P,L) determines a rank n− k sub-torus bundle of
the restriction of πT : TP → B to S(k)B. Let {Uα} be an open covering of B such
that on each Uα there exists a local trivialization ϕP

α : π−1
P (Uα) → Uα × Aut(Tn).

On each nonempty overlap Uαβ we denote by ραβ the transition function with
respect to ϕP

α and ϕP
β , namely,

ϕP
α ◦ (ϕP

β )−1(b, f) = (b, ραβf)

for (b, f) ∈ Uβ × Aut(Tn). Notice that ραβ is locally constant since Aut(Tn) is
discrete. ϕP

α induces the local trivializations of the associated bundles TP and ΛP

which are denoted by ϕT
α : π−1

T (Uα) → Uα × Tn and ϕΛ
α : π−1

Λ (Uα) → Uα × Λ,
respectively. For S(k)B we take Uα with Uα ∩ S(k)B 6= ∅. By replacing Uα by a
sufficiently small one if necessary, we may assume that the intersection Uα∩S(n−1)B
of Uα with the codimension one part S(n−1)B of B has exactly n − k connected
components, say (Uα ∩ S(n−1)B)1, · · · , (Uα ∩ S(n−1)B)n−k. For k = n, this means
that Uα is contained in S(n)B. For k < n, there are n − k rank one sub-lattices
L1, . . ., Ln−k of Λ such that for a = 1, . . ., n − k ϕΛ

α sends the restriction of
πL : L → S(n−1)B to (Uα ∩ S(n−1)B)a isomorphically to the trivial rank one sub-
bundle (Uα ∩ S(n−1)B)a × La of (Uα ∩ S(n−1)B)a × Λ. Since L is unimodular, L1,
. . ., Ln−k generate the (n − k)-dimensional sub-torus of Tn which is denoted by
ZUα∩S(k)B . For k = n, we define ZUα∩S(n)B to be the trivial subgroup which consists
of the unit element. Notice that when (P,L), {Uα}, and ϕP

α are the ones induced
by some local Tn-action T on X, ZUB

α ∩S(k)BX
is the common (n− k)-dimensional

stabilizer of Tn-action on µ−1
Cn (UB

α ∩ S(k)BX).
Suppose that another Uβ satisfies the above condition and Uαβ ∩ S(k)B 6= ∅.

By the definition of (P,L), ραβ sends ZUB
β ∩S(k)BX

isomorphically to ZUB
α ∩S(k)BX

.
Hence, in the same way as before, they are patched together to form a rank n− k
sub-torus bundle, which is denoted by πZS(k)B

: ZS(k)B → S(k)B, of the restriction
of πT : TP → B to S(k)B.

Definition 3.8. For t, t′ ∈ TP , t and t′ are equivalent or t ∼can t′ if and only if
πT (t) = πT (t′) and t′t−1 ∈ π−1

ZS(k)B
(πT (t)) when πT (t) lies in S(k)B. Notice that a

fiber of πT : TP → B is equipped with the structure of a group since its structure
group is Aut(Tn).

We denote by X(P,L) the quotient space of TP by the equivalence relation. The
bundle projection πT : TP → B descends to the map µX(P,L) : X(P,L) → B. On
any Uα, under the identification ϕT

α : π−1
T (Uα) → Uα × Tn, the equivalence rela-

tion in Definition 3.8 can be rewritten as follows. For (b, t), (b′, t′) ∈ Uα × Tn,
(b, t) ∼can (b′, t′) if and only if b = b′ and t′t−1 ∈ ZUα∩S(k)B when b lies in S(k)B.
Then, ϕT

α induces the identification of µ−1
X(P,L)

(Uα) with (Uα × Tn)/ ∼can on Uα.
Now we take {Uα} to be an atlas {(Uα, ϕ

B
α )} of B as a manifold with corners.

Since L is unimodular and B is a manifold with corners, by the same way as
in Davis-Januszkiewicz [4, Section 1.5], or Masuda-Panov [8, Section 3.2], we can
show that (Uα × Tn)/ ∼can is also homeomorphic to a Tn-invariant open sub-
set µ−1

Cn (ϕB
α (Uα)) of Cn. Hence, by taking the composition of these identifications,

there is a homeomorphism ϕ
X(PX ,LX )
α : µ−1

X(PX ,LX )
(Uα) → µ−1

Cn (ϕB
α (Uα)) which covers
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ϕB
α : Uα → ϕB

α (Uα). Notice that on Uαβ the overlap map with these identifications
is induced by idUαβ

×ραβ : Uαβ×Tn → Uαβ×Tn. Hence, X(P,L) is a 2n-dimensional
topological manifold equipped with a C0 local Tn-action whose orbit space is B
and whose orbit map is µX(P,L) .

Definition 3.9. We call X(P,L) the canonical model of (P,L). In particular, when
(P,L) is the characteristic pair (PX ,LX) of a local Tn-action T on a 2n-dimensional
manifold X, we also call X(PX ,LX) the canonical model of (X, T ).

The following propositions describe the properties of the canonical model. For
proofs see [13].

Proposition 3.10. For any characteristic pair (P,L), µX(P,L) : X(P,L) → B admits
a continuous section s.

For any characteristic pair (P,L), recall that a fiber of TP admits a structure of
a group. By the construction, a fiber of µX(P,L) : X(P,L) → B also admits a group
structure.

Proposition 3.11 ([13]). For a 2n-dimensional manifold (X, T ) equipped with a
local Tn-action, we denote the associated Tn-bundle TPX

of PX by πTX
: TX → BX

for simplicity. Then TX acts fiber-wise on X. Similarly X(PX ,LX) also acts fiber-
wise on X. For any b ∈ BX the action of µ−1

X(P,L)
(b) on µ−1

X (b) is simply transitive.

The following lemma follow directly from the construction of a canonical model.

Lemma 3.12. For i = 1, 2, let Bi be an n-dimensional topological manifold
with corners and (Pi,Li) a characteristic pair on Bi. Then, any isomorphism
fP : (P1,L1) → (P2,L2) induces the C0 isomorphism fX(P,L) : X(P1,L1) → X(P2,L2)

between canonical models of (P1,L1) and (P2,L2).

Remark 3.13. If there is an isomorphism fP : (P1,L1) → (P2,L2) between char-
acteristic pairs, then the induced C0 isomorphism fX(P,L) : X(P1,L1) → X(P2,L2)

between canonical models is fiber-wise group isomorphism.

4. The Euler classes of orbit maps

In this section, for a local torus action we define the Euler class of the orbit
map as an obstruction class for the orbit map to have a continuous section. In
this section we assume that manifolds, maps, and local Tn-actions are of class C0

unless otherwise stated. Let (X, T ) be a 2n-dimensional manifold equipped with a
local Tn-action. We investigate when µX : X → BX has a section. We assume that
the index set A of the weakly standard atlas {(UX

α , ϕ
X
α )}α∈A is countable ordered.

By the construction of X(PX ,LX), there exists a C0 isomorphism hα : µ−1
X (UB

α ) →
µ−1

X(PX ,LX )
(UB

α ) covering the identity on each UB
α such that hα is equivariant with

respect to the fiber-wise action of TX or X(PX ,LX). (For example we can take

(ϕ
X(PX ,LX )
α )−1 ◦ ϕX

α as hα.) On each nonempty overlap UB
αβ the equation

(4.1) hα ◦ h−1
β (x) = θX

αβ(b)x

for b ∈ UB
αβ and x ∈ µ−1

X(PX ,LX )
(b) determines a unique local section θX

αβ of µX(PX ,LX )

on UB
αβ . Let S(PX ,LX) denote the sheaf of germs of continuous sections of µX(PX ,LX ) .

Then local sections θX
αβ form a Čech one-chain {θX

αβ} on {UB
α } with values in

S(PX ,LX). Moreover, by definition, we can show the following lemma.

Lemma 4.1. {θX
αβ} is a cocycle.
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Let H1(BX ;S(PX ,LX)) denote the first Čech cohomology group of BX with val-
ues in S(PX ,LX). By the above lemma, {θX

αβ} defines the cohomology class in
H1(BX ;S(PX ,LX)). We denote it by eorbit(X). It is easy to see that eorbit(X) does
not depend on the choice of hαs and depends only on the local Tn-action on X.

Definition 4.2. We call eorbit(X) the Euler class of µX .

Notice that if the local Tn-action is induced by a locally standard Tn-action and
∂BX = ∅, then µX : X → BX is a principal Tn-bundle. In this case, eorbit(X) is
nothing but the Euler class of the principal Tn-bundle.

Theorem 4.3. µX : X → BX has a section if and only if eorbit(X) vanishes.

Example 4.4. For the Tn-action on a complex n-dimensional, nonsingular toric
variety X, eorbit(X) vanishes.

Example 4.5. For Example 2.8, eorbit(X) vanishes. In fact, we can defined the
section s of µX : X → BX by

s([ξ1, ξ2]) := [(
√
ξ1,

√
ξ2),

√
1− ξ2]

for [ξ1, ξ2] ∈ BX .

For i = 1, 2, let Bi be an n-dimensional topological manifold with corners
and (Pi,Li) a characteristic pair on Bi. Suppose that there exists an isomor-
phism fP : (P1,L1) → (P2,L2). By Lemma 3.12, it induces the isomorphism
f∗P : H1(B2;S(P2,L2)) → H1(B1;S(P1,L1)) between cohomology groups. In partic-
ular, by Lemma 3.7 and Lemma 3.12, a C0 isomorphism fX : (X1, T1) → (X2, T2)
induces the isomorphism f∗PX

: H1(BX2 ;S(PX2 ,LX2 )) → H1(BX1 ;S(PX1 ,LX1 )).

Lemma 4.6. For i = 1, 2, let (Xi, Ti) be a 2n-dimensional manifold equipped with a
local Tn-action. If there is a C0 isomorphism fX : X1 → X2, then f∗PX

eorbit(X2) =
eorbit(X1).

5. The topological classification

The following is the main theorem of [13].

Theorem 5.1 ([13]). For i = 1, 2, let (Xi, Ti) be a 2n-dimensional manifold Xi

with a local Tn-action Ti. X1 and X2 are C0 isomorphic if and only if there
exists an isomorphism fP : (PX1 ,LX1) → (PX2 ,LX2) between characteristic pairs
associated with X1 and X2 such that f∗P eorbit(X2) = eorbit(X1). Moreover, for any
characteristic pair (P,L) on an n-dimensional topological manifold B with corners
and for any element e ∈ H1(B;S(P,L)), there exists a 2n-dimensional C0 manifold
(X, T ) equipped with a C0 local Tn-action whose characteristic pair and the Euler
class of the orbit map are equal to (P,L) and e, respectively.

The idea of the proof. The only if part follows from Lemma 3.7 and Lemma 4.6.
The proof of the if part is similar to the proof of the classification of principal
bundles and the idea is as follows. Recall that by definition, eorbit(X) measures the
difference between X and X(PX ,LX). If there is an isomorphism fP : (PX1 ,LX1) →
(PX2 ,LX2) , then, by Lemma 3.12, fP induces the C0 isomorphism from X(PX1 ,LX1 )

to X(PX2 ,LX2 ). Moreover, suppose that f∗P eorbit(X2) = eorbit(X1). This means that
the difference between X1 and X(PX1 ,LX1 ) is same as the difference between X2

and X(PX2 ,LX2 ) under the identification X(PX1 ,LX1 )
∼= X(PX2 ,LX2 ). Hence, X1 is C0

isomorphic to X2. For more details, see [13]. ¤
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We focus on the case of locally standard torus actions. We remark that if a
manifold X is equipped with a locally standard torus action, then, PX is the trivial
bundle PX = BX ×Aut(Tn). In this case, we can obtain the following corollary. It
is a generalization of the topological classification theorem for effective T 2-actions
on four-dimensional manifolds without finite stabilizers by Orlik-Raymond [10] and
for quasi-toric manifolds by Davis-Januszkiewicz [4].

Corollary 5.2 ([13]). Locally standard torus actions are classified by the character-
istic bundle and the Euler class of the orbit map up to equivariant homeomorphisms.

6. Locally toric Lagrangian fibrations

Let (X, T ) be a 2n-dimensional smooth manifold equipped with a smooth local
Tn-action T . In this section, we investigate the condition in order that µX : X →
BX becomes a locally toric Lagrangian fibration.

Lemma 6.1. Suppose that there exists a symplectic structure ω on X and there
also exists a weakly standard atlas {(UX

α , ϕ
X
α )}α∈A ∈ T of X such that on each

UX
α , ϕX

α preserves symplectic forms, namely, ω = ϕX
α
∗
ωCn . For each nonempty

overlap UX
αβ 6= ∅, let ραβ ∈ Aut(Tn) be the automorphism in (2) of Definition 2.1

with respect to {(UX
α , ϕ

X
α )}α∈A. We identify ραβ with an element of GLn(Z) by

the natural identification Aut(Tn) ∼= GLn(Z). Let {(UB
α , ϕ

B
α )}α∈A be the atlas of

BX induced by {(UX
α , ϕ

X
α )}α∈A. Then, on each nonempty overlap UB

αβ 6= ∅, the
overlap map ϕB

αβ : ϕB
β (UB

αβ) → ϕB
α (UB

αβ) is of the form

(6.1) ϕB
αβ(ξ) = ρ−T

αβ (ξ) + cαβ ,

for some constant cαβ, where ρ−T
αβ is the transpose inverse of ραβ. In particular,

BX becomes a smooth manifold with corners.

Proof. Let ωRn×T n be the symplectic form on Rn × Tn which is defined by

ωRn×T n =
n∑

k=1

dθk ∧ dξk,

where (ξ1, . . . , ξn) is the standard coordinates of Rn and (θ1, . . . , θn) is the angle
coordinates of Tn with period 1, which means (e2πθ1 , . . . , e2πθn) ∈ Tn. First we
focus on the interior of BX . We can show that for each α, there exists a sym-
plectomorphism φα : (µ−1

X (UB
α \ ∂BX), ω) → (ϕB

α (UB
α \ ∂BX) × Tn, ωRn×T n) such

that pr1 ◦φα = ϕB
α ◦ µX and on an overlap UB

αβ , the overlap map φαβ := φα ◦ φ−1
β

is of the form φαβ(b, u) = (ϕB
αβ(b), ραβ(u)uαβ(b)) for some map uαβ : UB

αβ → Tn,
where pr1 : ϕB

α (UB
α \ ∂BX)× Tn → ϕB

α (UB
α \ ∂BX) is the natural projection to the

first factor. For more details, see [13]. Then, by [11, Lemma 2.5], on each overlap
UB

αβ \∂BX the overlap map ϕB
αβ is of the form (6.1). Since UB

αβ \∂BX is open dense
in UB

αβ , ϕB
αβ should be of the form (6.1) on the whole UB

αβ . ¤

Definition 6.2. We call the atlas {(UB
α , ϕ

B
α )}α∈A of BX in Lemma 6.1 an integral

affine structure compatible with {(UX
α , ϕ

X
α )}α∈A.

Let {(UX
α , ϕ

X
α )}α∈A ∈ T be a weakly standard atlas of X. Suppose that the

induced atlas {(UB
α , ϕ

B
α )}α∈A of BX is an integral affine structure compatible with

{(UX
α , ϕ

X
α )}α∈A ∈ T .

Lemma 6.3. The characteristic bundle πLX
: LX → S(n−1)BX admits a smooth

section which generates LX fiber-wisely. In particular, πLX
: LX → S(n−1)BX is

determined by the integral affine structure.
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Proof. Let (UB
α , ϕ

B
α ) be a coordinate neighborhood of BX with UB

α ∩S(n−1)BX 6= ∅.
We may assume that the intersection UB

α ∩ S(n−1)BX is connected. (Otherwise,
we may consider component-wise.) As described in the construction of LX , the
local trivialization ϕΛ

α of ΛX sends π−1
LX

(UB
α ∩ S(n−1)BX) isomorphically to UB

α ∩
S(n−1)BX ×Lα, where Lα is a rank one sublattice of Λ. Then there exists a unique
generator uα of Lα such that ϕB

α (UB
α ) and ϕB

α (UB
α ∩S(n−1)BX) lie in the upper half

space {ξ ∈ Rn : 〈ξ, uα〉 ≥ 0} and the hyperplane {ξ ∈ Rn : 〈ξ, uα〉 = 0} determined
by uα, respectively. Suppose that (UB

β , ϕ
B
β ) is another coordinate neighborhoods

satisfying the above conditions and the intersection UB
αβ ∩ S(n−1)BX is nonempty.

Let uβ be the corresponding generator of Lβ . Since the overlap map ϕB
αβ is of

the form (6.1), ϕB
αβ sends {ξ ∈ Rn : 〈ξ, uβ〉 ≥ 0} and {ξ ∈ Rn : 〈ξ, uβ〉 = 0}

diffeomorphically to {ξ ∈ Rn : 〈ξ, uα〉 ≥ 0} and {ξ ∈ Rn : 〈ξ, uα〉 = 0}, respectively.
In particular, this implies that uα = ραβ(uβ). Thus uα’s form the required section
of LX . ¤

By (6.1) the structure group of the cotangent bundle T ∗BX is GLn(Z) and the
principal Aut(Tn)-bundle PX is nothing but the frame bundle of T ∗BX . Now we
have the following exact sequence of associated fiber bundles of PX

0 // ΛX
// T ∗BX

// TX
// 0.

As is well-known, T ∗BX is equipped with the standard symplectic structure, and
it is easy to see that the standard symplectic structure on T ∗BX descends to the
symplectic structure on TX , which is denoted by ωTX

, so that πTX
: (TX , ωTX

) →
BX is a nonsingular Lagrangian fibration. Moreover, we can show that following
lemma.

Lemma 6.4. The canonical model X(PX ,LX) becomes a smooth locally toric La-
grangian fibration on BX .

Roughly speaking, the proof is as follows. For each UB
α , the section of LX

defines a Hamiltonian action of some sub-torus of Tn on π−1
TX

(UB
α ). X(PX ,LX) can

be obtained by symplectic cutting technique with respect to these Hamiltonian
torus actions. For more details, see [13].

From Lemma 6.4, in particular, hα : µ−1
X (UB

α ) → µ−1
X(PX ,LX )

(UB
α ) in Section 4

can be taken to be a C∞ isomorphism which covers the identity on each UB
α and

θX
αβ defined by (4.1) can be also taken to be a C∞ local section of TX on UB

αβ .
Then the necessary and sufficient condition in order that µX : X → BX becomes a
locally toric Lagrangian fibration is given as follows.

Lemma 6.5. Let (X, T ) be a 2n-dimensional smooth manifold equipped with a
smooth local Tn-action T . There exists a symplectic structure ω on X and there also
exists a weakly standard atlas {(UX

α , ϕ
X
α )}α∈A ∈ T of X such that on each UX

α , ω =
ϕX

α
∗
ωCn if and only if the atlas {(UB

α , ϕ
B
α )}α∈A of BX induced by {(UX

α , ϕ
X
α )}α∈A is

an integral affine structure compatible with {(UX
α , ϕ

X
α )}α∈A and on each nonempty

overlap UB
αβ, θX

αβ is a Lagrangian section, namely, (θX
αβ)∗ωTX

vanishes.

For nonsingular Lagrangian fibrations, this result is obtained by Duistermaat [5].
See also [11], [9]. Recently, in [6] Gay-Symington showed the similar result for near-
symplectic four-manifolds.

Finally we state the classification theorem for locally toric Lagrangian fibrations.
For a locally toric Lagrangian fibration µ : (X,ω) → B, the local sections θX

αβ define
a Čech cohomology class λ(X) ∈ H1(BX ;S Lag

TX
) of BX with values in the sheaf

S Lag
TX

of germs of Lagrangian sections of πTX
: (TX , ωTX

) → BX .
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Theorem 6.6 ([1], [13]). Locally toric Lagrangian fibrations are classified by inte-
gral affine structures on the bases and λ(X) up to fiber-preserving symplectomor-
phisms.
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C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 13, 421–424.
2. V. Buchstaber and T. Panov, Torus actions and their applications in topology and combina-

torics, University Lecture Series, vol. 24, Amer. Math. Soc., Providence, RI, 2002.
3. M. Davis, Group generated by reflections and aspherical manifolds not covered by Euclidean

space, Ann. of Math. (2) 117 (1983), no. 2, 293–324.

4. M. Davis and T. Januszkiewicz, Convex polytopes, coxeter orbifolds and torus actions, Duke
Math. J. 62 (1991), no. 2, 417–451.

5. J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980),

no. 6, 687–706.
6. D. T. Gay and M. Symington, Toric structures on near-symplectic 4-manifolds,

arXiv:math.SG/0609753, 2006.

7. M. Hamilton, Quantization of toric manifolds via real polizations, The talk in International
Conference on Toric Topology, 2006.

8. M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006),

no. 3, 711–746.
9. K. N. Mishachev, The classification of lagrangian bundles over surface, Differential Geom.

Appl. 6 (1996), no. 4, 301–320.

10. P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc.
152 (1970), no. 2, 531–559.

11. M. Symington, Four dimensions from two in symplectic topology, Topology and geometry
of manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc.,

Providence, RI, 2003, pp. 153–208.

12. T. Yoshida, Twisted toric structures, arXiv:math.SG/0605376, 2006.
13. , Local torus actions modeled on the standard represenation, preprint, 2007.

Graduate School of Mathematical Sciences, The University of Tokyo,, 8-1 Komaba

3-chome, Meguro-ku, Tokyo, 153-8914, Japan
E-mail address: takahiko@ms.u-tokyo.ac.jp

13


