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1. Introduction

Let S1 be the unit circle and Tn := (S1)n the n-dimensional compact torus.
Tn acts on the n-dimensional complex vector space Cn by coordinatewise complex
multiplication. This action is called the standard representation of Tn. A Tn-
action on a 2n-dimensional manifold is said to be locally standard if for each point
x ∈ X there exists a coordinate neighborhood (U, ρ, ϕ) of X consisting of a Tn-
invariant connected open neighborhood U of x, an automorphism ρ of Tn, and a
ρ-equivariant diffeomorphism ϕ from U to some Tn-invariant open subset in Cn.
The latter means that ϕ(u · x) = ρ(u) · ϕ(x) for u ∈ Tn and x ∈ U . An atlas
of X which consists of such coordinate neighborhoods is called a standard atlas,
see [5, 3] for more details. A standard atlas is one of the starting point of their
pioneer work [5] of Davis-Januszkiewicz and now, it plays a fundamental role in
toric topology.

In [11] as a generalization of a locally standard torus action, we introduced the
following notion. Let X be a compact Hausdorff space.

Definition 1.1. A weakly standard Cr (0 ≤ r ≤ ∞) atlas of X is an atlas
{(UX

α , ϕ
X
α )}α∈A which satisfies the following properties

(i) for each α, ϕX
α is a homeomorphism from UX

α to an open set of Cn invariant
under the standard representation of Tn and

(ii) for each nonempty overlap UX
αβ := UX

α ∩UX
β , there exists an automorphism

ραβ of Tn as a Lie group such that the overlap map ϕX
αβ := ϕX

α ◦ (ϕX
β )−1

is ραβ-equivariant Cr diffeomorphic with respect to the restrictions of the
standard representation of Tn to ϕX

α (UX
αβ) and ϕX

β (UX
αβ).

Two weakly standard Cr atlases {(UX
α , ϕ

X
α )}α∈A and {(V X

β , ψX
β )}β∈B of X2n are

equivalent if on each nonempty overlap UX
α ∩V X

β , there exists an automorphism ρ of
Tn such that ϕX

α ◦(ψX
β )−1 is ρ-equivariant Cr diffeomorphic. We call an equivalence

class of weakly standard Cr atlases a Cr local Tn-action on X2n modeled on the
standard representation and denote it by T .

In the rest of this note, a Cr local Tn-action on X2n modeled on the standard
representation is often called a Cr local Tn-action on X2n, or more simply, a local
Tn-action on X if there are no confusions.

It is obvious that a standard atlas satisfies the above condition. But not all local
torus actions come from local torus actions. In fact we gave an obstruction class
in some cohomology set in order that a local torus action comes from a local torus
action in [11]. We also defined two invariants for a local torus action and classified
local torus actions topologically in terms of them. As a corollary we obtained a
topological classification theorem for locally standard torus actions.
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One of the important class of manifolds equipped with local torus actions is the
class of locally toric Lagrangian fibrations (for the definition, see Definition 2.1). It
is a natural generalization of a moment map of a symplectic toric manifold. We will
see that the total space of a locally toric Lagrangian fibration admits a C∞ local
torus action in Proposition 2.2. The purpose of this talk is to give a necessary and
sufficient condition in order that a manifold with a local torus action becomes a
locally toric Lagrangian fibration. For a local Tn-action (X, T ) we defined the orbit
space and the orbit map which are denoted by BX and µX : X → BX , respectively,
in [11]. First we see that if X admits a symplectic form ω so that µX : (X,ω) → BX

is a locally toric Lagrangian fibration, then BX admits a rigid structure called an
integral affine structure. An integral affine structure is a generalization of a Delzant
polytope. As a corollary we see that the structure group of T ∗BX is reduced to
GLn(Z). Let πTX

: TX → BX be the associated Tn-bundle of the frame bundle of
T ∗BX by the natural GLn(Z)-action on Tn. Then we also see that TX is equipped
with a symplectic structure ωTX

so that πTX
: (TX , ωTX

) → BX is a nonsingular
Lagrangian fibration.

From an integral affine structure we construct a new locally toric Lagrangian
fibration on BX which is locally isomorphic to (X, T ) as C∞ local torus actions.
By the standard argument we obtain a Čech one cocycle of BX with values in the
sheaf of germs of sections of πTX

: TX → BX . Then a necessary and sufficient
condition is as follows (Theorem 4.4).

Theorem 1 ([11]). For a local Tn-action (X, T ) there exists a symplectic structure
ω on X such that µX : (X,ω) → BX is a locally toric Lagrangian fibration if and
only if BX admits an integral affine structure and the above Čech one cocycle takes
values in the sheaf of germs of Lagrangian sections of πTX

: (TX , ωTX
) → BX .

Next we suppose that a local Tn-action (X, T ) satisfies the condition in Theo-
rem 1. Hence X admits a symplectic structure ω so that µX : (X,ω) → BX is a
locally toric Lagrangian fibration. The above Čech one cocycle defines a cohomol-
ogy class in the first Čech cohomology of BX with coefficient in the sheaf of germs
of Lagrangian sections of πTX

: (TX , ωTX
) → BX . We call it a Lagrangian class of

µX : (X,ω) → BX . Then we obtain the following classification theorem for locally
toric Lagrangian fibrations (Theorem 5.1).

Theorem 2 ([2]). Locally toric Lagrangian fibrations are classified by the integral
affine structures and the Lagrangian classes up to fiber-preserving symplectomor-
phisms.

This result has already been obtained by Boucetta-Molino [2]. We will prove this
theorem by refining the method used to prove the topological classification theorem
for local torus actions.

This note is organized as follows. In the next section we define a locally toric
Lagrangian fibration and show that the total space of a locally toric Lagrangian
fibration admits a C∞ local torus action. In Section 3 we recall the orbit space and
the orbit map of a local torus action. In Section 4 we give a necessary and sufficient
condition in order that a manifold with a local torus action becomes a locally toric
Lagrangian fibration. Finally Section 5 is devoted to the classification theorem for
locally toric Lagrangian fibrations.

1.1. Conventions. We denote by Aut(Tn) the group of automorphisms of Tn.
Aut(Tn) can be identified with GLn(Z) because of the decomposition Tn = (S1)n.
We often identify an automorphism of Tn with an element of GLn(Z) by this
isomorphism. In this note we work in the C∞ category unless otherwise stated.
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2. Locally toric Lagrangian fibrations

Let ωCn := 1
2π
√−1

∑n
k=1 dzk ∧ dzk be the standard symplectic structure on Cn.

The standard representation of Tn preserves ωCn and the map µCn : Cn → Rn

defined by
µCn(z) = (|z1|2, . . . , |zn|2) (2.1)

for z = (z1, . . . , zn) ∈ Cn is a moment map of the standard representation of Tn.
Notice that the image of µCn is an n-dimensional standard positive cone

Rn
+ := {ξ = (ξ1, . . . , ξn) ∈ Rn : ξi ≥ 0 i = 1, . . . , n}.

Let (X,ω) be a 2n-dimensional symplectic manifold and B an n-dimensional man-
ifold with corners.

Definition 2.1 ([8]). A map µ : (X,ω) → B is called a locally toric Lagrangian
fibration if there exists a system {(Uα, ϕ

B
α )} of coordinate neighborhoods of B mod-

eled on Rn
+, and for each α there exists a symplectomorphism ϕX

α : (µ−1(Uα), ω) →
(µ−1
Cn (ϕB

α (Uα)), ωCn) such that µCn ◦ ϕX
α = ϕB

α ◦ µ.

A locally toric Lagrangian fibration is a natural generalization of a moment map
of a symplectic toric manifold. In the case of ∂B = ∅, it is a nonsingular La-
grangian fibration. Conversely, by the Arnold-Liouville theorem [1], a nonsingular
Lagrangian fibration with closed connected fibers on a closed manifold is also such
an example.

The following proposition shows that the total space of a locally toric Lagrangian
fibration admits a local torus action.

Proposition 2.2. Let µ : (X,ω) → B be a locally toric Lagrangian fibration on an
n-dimensional base B and {(Uα, ϕ

B
α , ϕ

X
α )} a system of local identifications of µ with

µCn . Then, on each connected component of a nonempty overlap Uαβ := Uα ∩ Uβ,
there exists an element ραβ ∈ Aut(Tn) such that ϕX

α ◦ (ϕX
β )−1 is ραβ-equivariant.

for the proof, see [11].

3. The orbit structures of local torus actions

In this section we recall the orbit space and the orbit map of a local torus
action. Let (X, T ) be a 2n-dimensional manifold equipped with a local Tn-action
and {(UX

α , ϕ
X
α )}α∈A ∈ T the maximal weakly standard atlas of X. We define the

orbit space BX of X by

BX :=
∐
α

(
ϕX

α (UX
α )/Tn

)
/ ∼orb,

where bα ∈ ϕX
α (UX

α )/Tn ∼orb bβ ∈ ϕX
β (UX

β )/Tn if and only if bα ∈ ϕX
α (UX

αβ)/Tn,
bβ ∈ ϕX

β (UX
αβ)/Tn and a homeomorphism induced by the overlap map ϕX

αβ sends
bβ to bα.

Definition 3.1. Let B be a Hausdorff space. A structure of an n-dimensional C0

manifold with corners on B is a system of coordinate neighborhoods onto open sub-
sets of Rn

+ so that overlap maps are homeomorphisms which preserve stratifications
induced from the natural stratification of Rn

+. See [4, Section 6] for a C0 manifold
with corners.

Proposition 3.2. BX is endowed with a structure of an n-dimensional C0 manifold
with corners.
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Proof. A structure of an n-dimensional C0 manifold with corners on BX is con-
structed as follows. We put UB

α := ϕX
α (UX

α )/Tn. The restriction of µCn to ϕX
α (UX

α )
induces the homeomorphism from UB

α to the open subset µCn(ϕX
α (UX

α )) of Rn
+,

which we denote by ϕB
α . By the construction, on each overlap UB

αβ := UB
α ∩UB

β , the
overlap map ϕB

αβ := ϕB
α ◦ (ϕB

β )−1 : µCn(ϕX
β (UX

αβ)) → µCn(ϕX
α (UX

αβ)) preserves the
natural stratifications of µCn(ϕX

α (UX
αβ)) and µCn(ϕX

β (UX
αβ)). Thus, {(UB

α , ϕ
B
α )}α∈A

is the desired atlas. ¤
By the construction of BX , the map

∐
α π ◦ ϕX

α :
∐

α U
X
α → ∐

α

(
ϕX

α (UX
α )/Tn

)
induces a map from X to BX . We call it an orbit map of the local Tn-action T on
X and denote it by µX : X → BX .

Remark 3.3. The atlas {(UB
α , ϕ

B
α )}α∈A of BX constructed in the proof of Proposi-

tion 3.2 has following property; for each α, UX
α = µ−1

X (UB
α ), ϕX

α (UX
α ) = µ−1

Cn (ϕB
α (UB

α ))
and the following diagram commutes

X

µX

²²

⊃ µ−1
X (UB

α )
ϕX

α //

µX

²²

µ−1
Cn (ϕB

α (UB
α ))

µCn

²²

⊂ Cn

µCn

²²
BX ⊃ UB

α

ϕB
α // ϕB

α (UB
α ) ⊂ Rn

+.

4. A necessary and sufficient condition

In this section we give a necessary and sufficient condition in order that a man-
ifold with a local torus action becomes a locally toric Lagrangian fibration. Let
(X, T ) be a 2n-dimensional manifold equipped with a local Tn-action T .

Definition 4.1. Let {(UX
α , ϕ

X
α )}α∈A ∈ T be a weakly standard atlas of X and

{(UB
α , ϕ

B
α )}α∈A the atlas of BX induced by {(UX

α , ϕ
X
α )}α∈A. For each connected

component of a nonempty overlap UX
αβ 6= ∅, let ραβ ∈ Aut(Tn) be the automor-

phism in (ii) of Definition 1.1 with respect to {(UX
α , ϕ

X
α )}α∈A. We call {(UB

α , ϕ
B
α )}α∈A

an integral affine structure compatible with {(UX
α , ϕ

X
α )}α∈A if on each connected

component of a nonempty overlap UB
αβ 6= ∅, the overlap map ϕB

αβ : ϕB
β (UB

αβ) →
ϕB

α (UB
αβ) is of the form

ϕB
αβ(ξ) = ρ−T

αβ (ξ) + cαβ , (4.1)
for some constant cαβ ∈ Rn.

Lemma 4.2. If there exists a symplectic structure ω on X and there also exists
a weakly standard atlas {(UX

α , ϕ
X
α )}α∈A ∈ T of X such that on each UX

α , ϕX
α

preserves symplectic forms, namely, ω = ϕX
α
∗
ωCn , then the atlas {(UB

α , ϕ
B
α )}α∈A

of BX induced by {(UX
α , ϕ

X
α )}α∈A is an integral affine structure compatible with

{(UX
α , ϕ

X
α )}α∈A. In particular, BX becomes a smooth manifold with corners.

See [11] for the proof.
Let {(UX

α , ϕ
X
α )}α∈A ∈ T be a weakly standard atlas of X. Suppose that the

induced atlas {(UB
α , ϕ

B
α )}α∈A of BX is an integral affine structure compatible with

{(UX
α , ϕ

X
α )}α∈A ∈ T . By (4.1) the structure group of the cotangent bundle T ∗BX

is reduced to GLn(Z). Let πPX
: PX → BX be the the frame bundle of T ∗BX with

structure group GLn(Z). Let Λ be the lattice of integral elements of the Lie algebra
t of Tn, namely, Λ := {t ∈ t : exp(t) = 1}. We denote by πΛX

: ΛX → BX and
πTX

: TX → BX the associated Λ-bundle and Tn-bundle by the natural action of
GLn(Z) on Λ and Tn, respectively. Then we have the following exact sequence of
associated fiber bundles of PX

0 // ΛX
// T ∗BX

// TX
// 0.
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As is well-known, T ∗BX is equipped with the standard symplectic structure ωT∗BX
.

Since the natural fiberwise action of ΛX on T ∗BX preserves ωT∗BX
, ωT∗BX

descends
to a symplectic structure on TX , which is denoted by ωTX

, so that πTX
: (TX , ωTX

) →
BX is a nonsingular Lagrangian fibration.

Since BX is a manifold with corners it is equipped with a natural stratification.
Let S(k)BX be the k-dimensional part of BX with respect to the natural strat-
ification, namely, S(k)BX consists of those points which have exactly k nonzero
components in a local coordinate. For any point b of BX , let (UB

α , ϕ
B
α ) be a coordi-

nate neighborhood in the integral affine structure which contains b. Suppose that
b lies in S(k)BX . Then the stabilizer of the Tn-action on µ−1

Cn (ϕB
α (b)) is an (n− k)-

dimensional subtorus and by Lemma 4.2 it defines a unique (n − k)-dimensional
subtorus of the fiber π−1

TX
(b) of πTX

: TX → BX at b which is denoted by Zb. Notice
that a fiber of πTX

: TX → BX admits a group structure since its structure group
is GLn(Z). We define the equivalence relation ∼can on TX by t ∼can t

′ if and only
if πTX

(t) = πTX
(t′) and t′t−1 ∈ ZπTX

(t), and denote the quotient space of ∼can

by Xcan. By the construction of Xcan the bundle projection πTX
descends to the

projection µcan : Xcan → BX .

Lemma 4.3 ([11]). Xcan is a 2n-dimensional smooth manifold. Moreover, ωTX

induces a symplectic structure ωcan on Xcan so that µcan : (Xcan, ωcan) → BX is a
locally toric Lagrangian fibration.

Roughly speaking, the proof is as follows. The integral affine structure defines a
Hamiltonian action of some subtorus of Tn on each π−1

TX
(UB

α ). (Xcan, ωcan) can be
obtained from (TX , ωTX

) by the symplectic cutting technique with respect to these
Hamiltonian torus actions. For more details, see [11]. µcan : (Xcan, ωcan) → BX is
called a canonical model for the integral affine structure on BX .

By the construction of µcan : (Xcan, ωcan) → BX , it is locally isomorphic, as local
torus actions, to the orbit map µX : X → BX , namely, on each UB

α there is a equiv-
ariantly diffeomorphism hα : µ−1

X (UB
α ) → µ−1

can(UB
α ) with respect to the Tn-actions

which covers the identity on UB
α . Note that on µ−1

X (UB
α ) and on µ−1

can(UB
α ) there

are Tn-actions under the identifications with µ−1
Cn (ϕB

α (UB
α )). On each nonempty

overlap Uαβ the equation
hα ◦ h−1

β (x) = θαβ(b)x

for b ∈ UB
αβ and x ∈ µ−1

can(b) determines a local section θαβ of πTX
: TX → BX

on UB
αβ . Then a necessary and sufficient condition in order that µX : X → BX

becomes a locally toric Lagrangian fibration is given as follows.

Theorem 4.4. Let (X, T ) be a 2n-dimensional manifold equipped with a local Tn-
action T . There exists a symplectic structure ω on X and there also exists a weakly
standard atlas {(UX

α , ϕ
X
α )}α∈A ∈ T of X such that on each UX

α , ω = ϕX
α
∗
ωCn if and

only if the atlas {(UB
α , ϕ

B
α )}α∈A of BX induced by {(UX

α , ϕ
X
α )}α∈A is an integral

affine structure compatible with {(UX
α , ϕ

X
α )}α∈A and on each nonempty overlap

UB
αβ, θαβ is a Lagrangian section, namely, θ∗αβωTX

vanishes.

For nonsingular Lagrangian fibrations, this result is obtained by Duistermaat [6].
See also [10], [9]. Recently, in [7] Gay-Symington showed the similar result for near-
symplectic four-manifolds.

5. Classification of locally toric Lagrangian fibrations

Suppose that (X, T ) be a 2n-dimensional manifold equipped with a local Tn-
action T satisfies the condition in Theorem 4.4. Then X is equipped with a sym-
plectic structure ω so that µX : (X,ω) → BX is a locally toric Lagrangian fibra-
tion. In this case, by Theorem4.4, the local sections θαβ define a Čech cohomology
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class λ(X) ∈ H1(BX ;S Lag
TX

) of BX with values in the sheaf S Lag
TX

of germs of
Lagrangian sections of πTX

: (TX , ωTX
) → BX . λ(X) is called a Lagrangian class

for µX : (X,ω) → BX . Now we state the classification theorem for locally toric
Lagrangian fibrations.

Theorem 5.1 ([2]). Locally toric Lagrangian fibrations are classified by integral
affine structures on the bases and λ(X) up to fiber-preserving symplectomorphisms.

The idea of the proof is as follows. If for two locally toric Lagrangian fibra-
tions µX1 : (X1, ω1) → BX1 and µX2 : (X2, ω2) → BX2 , there is a diffeomorphism
f : BX1 → BX2 which preserves the integral affine structures, then the canonical
models are same under the identification f . By definition, λ(Xi) measures the differ-
ence between µXi : (Xi, ωi) → BXi and its canonical model. So if λ(X1) = f∗λ(X2),
then their differences are same. This implies that they are fiber-preserving sym-
plectomorphic. For more details, see [11].
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