
LOCALLY STANDARD TORUS FIBRATIONS

TAKAHIKO YOSHIDA

1. Introduction

Recently topological counterparts of toric varieties are actively investigated and
this research field are now called toric topology [3], [4], [6], [13], [14], etc. In this
area, various researches have been done from the viewpoint of the theory of trans-
formation groups and many interesting results have been obtained.

On the other hand, when we glance at not torus actions themselves, but their
orbit maps, we can find a structure of certain singular torus fibrations behind them.
This talk focuses on this structure. The purpose of this talk is to formulate such
singular torus fibrations and to investigate their properties.

2. From torus actions to torus fibrations

2.1. Locally standard torus actions. Let S1 be the unit circle in C and Tn

the n-dimensional compact torus (S1)n. Tn acts on Cn by complex multiplication.
This action is called the standard Tn-action on Cn. Suppose that Tn acts on a
2n-dimensional manifold X. A standard chart of X consists of

(i) a Tn-invariant open set U ⊂ X,
(ii) an automorphism ρ : Tn → Tn, and
(iii) a ρ-equivariant diffeomorphism ϕ : U → V from U to some Tn-invariant

open subset V in Cn.
The latter means ϕ(tx) = ρ(t)ϕ(x) for t ∈ Tn and x ∈ X. The action of Tn on X
is said to be locally standard if every point in X lies in some standard chart.

Example 2.1. An effective Tn-action on a 2n-dimensional manifold X without
nontrivial finite stabilizers are locally standard because of the slice theorem. The
four-dimensional case of these actions has been studied by Orlik-Raymond in [18].

2.2. An observation. We observe the orbit maps of locally standard torus actions.
Suppose that an 2n-dimensional manifold X is equipped with a locally standard
Tn-action. By the slice theorem the orbit space X/Tn has a structure of a manifold
with corners. We denote by B the orbit space and denote by µ : X → B the orbit
map. Define the map µCn : Cn → Rn+ by

µCn(z) = (|z1|2, . . . , |zn|2),
where Rn+ is the positive cone

Rn+ = {ξ ∈ Rn : ξi ≥ 0 for i = 1, . . . , n}.
Note that µCn is naturally identified with the orbit map of the standard Tn-action
on Cn. The orbit map µ : X → B satisfies the following condition.
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Condition A. For each b ∈ B, there exist a coordinate neighborhood (U,ϕB)
around b and a diffeomorphism ϕX : µ−1(U) → µ−1

Cn (ϕB(U)) such that the following
diagram commutes

X

µ

²²

⊃ µ−1(U)
ϕX

//

µ

²²

µ−1
Cn (ϕB(U))

µCn

²²

⊂ Cn

µCn

²²
B ⊃ U

ϕB

// ϕB(U)

©

⊂ Rn+.

Since Tn acts freely on the inverse image µ−1(B\∂B) of B\∂B by µ, it has a
structure of a principal Tn-bundle. But once we forget this structure of the principal
bundle and focus on Condition A, we can see that the restriction of µ to µ−1(B\∂B)
admits a structure of a fiber bundle with fiber Tn. In fact, the local identification
ϕX in Condition A defines a local trivialization φ : µ−1(U\∂B) → U\∂B × Tn for
the fiber bundle by

φ(x) =
(
µ(x),

(
ϕX1 (x)
|ϕX1 (x)| , . . . ,

ϕXn (x)
|ϕXn (x)|

))
, (2.1)

where ϕXi is the ith component of ϕX . Note that none of components of ϕX(x)
vanish for x ∈ µ−1(U\∂B). Moreover the orbit map µ of the locally standard torus
action also satisfies the following condition.

Condition B. The transition functions with respect to local trivializations defined
by (2.1) take values in the semidirect product Tn o Aut(Tn) of Tn and the group
Aut(Tn) of automorphisms of Tn as a Lie group.

2.3. A definition and examples. Inspired by this observation, we give the fol-
lowing definition. Let X be a closed, connected 2n-dimensional manifold and B an
n-dimensional manifold with corners. Suppose that µ : X → B is a map, which is
not necessarily the orbit map of a locally standard Tn-action.

Definition 2.2. The map µ : X → B is called a locally standard torus fibration if
µ satisfies Condition A and B.

Remark 2.3. In general, Condition B does not follow Condition A automatically.

In the rest of this talk, we focus on the case where all transition functions in
Condition B take values in Aut(Tn) for simplicity.

Example 2.4 (Complete, nonsingular toric varieties). A complete, nonsingular
toric variety X together with the orbit map of the compact torus action is an
example of locally standard torus fibrations. This can be seen as follows. X is
covered by open sets Uσ each of which is determined by a top dimensional cone
σ in the fan associated with X. Since each σ is nonsingular, the lattice vectors
which generate σ can be taken to be a basis of the lattice and each Uσ is identified
with the standard torus actions. Suppose that σ1 and σ2 are two top dimensional
cones. Then the two bases of the lattice which generate σ1 and σ2 determine the
automorphism of the lattice. Then the automorphism induces the automorphism
of the torus which is the transition function with respect to local trivializations
obtained from Uσi

. For toric varieties, see [5], [8], [17].

Example 2.5 (Quasi-toric manifolds). A quasi-toric manifold together with the
orbit map is an example of locally quasi toric fibrations on a simple polytope. This
can be seen from the construction of the canonical model. See [6, Proposition 1.8]
for canonical models.

The following example does not come from torus actions.
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Example 2.6. Let B be a compact, connected, and oriented surface of genus
one with one boundary component and one corner points, B1 the set of interior
points B\∂B of B. Let us consider the principal SL2(Z)-bundle P on B which is

B2

αβ

γ

B1

Figure 1. B

determined by the representation ρ : π1(B) → SL2(Z)

ρ(α) =
(

1 0
−1 1

)
, ρ(β) =

(
1 −1
0 1

)
, ρ(γ) =

(
3 1
−1 0

)
.

We denote by πT : T 2 → B its associated T 2-bundle by the natural action of
SL2(Z) on T 2. Let us construct a structure of locally standard torus fibrations on
a neighborhood of ∂B as follows. We define subsets B2, U1, and U2 of R2

+ by

B2 = {ξ ∈ R2 : 0 ≤ ξ1 < 4, 0 ≤ ξ2 < 1} ∪ {ξ ∈ R2 : 0 ≤ ξ1 < 1, 0 ≤ ξ2 < 4},
U1 = {ξ ∈ R2 : 3 < ξ1 < 4, 0 ≤ ξ2 < 1},
U2 = {ξ ∈ R2 : 0 ≤ ξ1 < 1, 3 < ξ2 < 4},

and also define diffeomorphisms ϕB : U1 → U2 and ϕX : µ−1
C2 (U1) → µ−1

C2 (U2) by

ϕB(ξ) = (ξ2, 7− ξ1),

ϕX(z) = (
z3
1z2
|z1|3 ,

√
7− |z1|2

(
z1
|z1|

)−1

).

Note that ϕB and ϕX commute with µC2 . We denote by X2 the manifold which is
obtained from µ−1

C2 (B2) by gluing µ−1
C2 (U1) and µ−1

C2 (U2) with ϕX and denote by B2

the surface with one corner which is obtained from B2 by gluing U1 and U2 with
ϕB . B2 can be identified with a neighborhood of the boundary of B. Since ϕB and

U1

U2

Figure 2. B2

ϕX commute with µC2 , µC2 descends to the map from X2 to B2. We denote it by



4 TAKAHIKO YOSHIDA

µ2 : X2 → B2. It is easy to see that the restriction µ2

∣∣
µ−1

2 (B1∩B2)
: µ−1

2 (B1∩B2) →
B1 ∩ B2 is a T 2-bundle with the structure group SL2(Z) and it is isomorphic to
πT

∣∣
B1∩B2

: T 2
∣∣
B1∩B2

→ B1 ∩ B2. Thus we can patch πT
∣∣
B1

: T 2
∣∣
B1

→ B1 with
µ2 : X2 → B2 by this isomorphism to get the locally standard torus fibration
µ : X → B associated with π : P → B.

Given a locally standard torus fibration µ : X → B, we can construct new locally
standard torus fibrations from µ : X → B.

Example 2.7 (pullback). Suppose that B1 and B2 are n-dimensional manifolds
with corners and that f : B1 → B2 is a map which preserves the natural strati-
fications induced from the structures of manifolds with corners. Let µ : X → B2

be a locally standard torus fibration. The pullback of µ : X → B2 by f , which is
denoted by f∗X, is the fiber product of B1 and X. In the similar way to the case of
original fiber bundles, we can show that f∗X has a structure of a locally standard
torus fibration.

Example 2.8 (blowing up). First we shall explain the blowing up of the local
model µ : Cn → Rn+ at the origin of Cn. For a positive real number ε > 0, we
denote by Cn(ε) the quotient space of {(z, w) ∈ Cn × C : ‖z‖2 − |w|2 = ε} by the
circle action which is defined by

t · (z, w) := (tz1, . . . , tzn, t−1w).

We define the map µCn(ε) : Cn(ε) → Rn by

µCn(ε)([z, w]) = (|z1|2, . . . , |zn|2)
for [z, w] ∈ Cn(ε). The image of µCn(ε) is

Rnε := {ξ ∈ Rn+ :
n∑

i=1

ξi ≥ ε}.

We define the map ψε from the subset Cn\Dε(0) of Cn obtained by removing the
closed disc Dε(0) with center 0 and radius ε1/2 to {[z, w] ∈ Cn(ε) : w 6= 0} by

ψε(z) =
[
z, (‖z‖2 − ε)1/2

]

for z ∈ Cn\Dε(0). It is easy to see that ψε is a diffeomorphism and satisfies

µCn(z) = µCn(ε) ◦ ψε(z)
for z ∈ Cn\Dε(0). This is a smooth part of the symplectic blowing up by Guillemin-
Sternberg in [11].

Let µ : X → B be a locally standard torus fibration on an n-dimensional manifold
B with corners. Suppose that B has the non-empty zero-dimensional stratum and
that b is a point in 0-stratum. Then the fiber µ−1(b) of µ on b consists of one
point which is denoted by x. By definition of locally standard torus fibrations a
neighborhood of x can be identified with a neighborhood of the origin of the map
µCn : Cn → Rn+. With this identification, we remove a closed disc Dε(0) for a
sufficiently small ε > 0 from the neighborhood of x and glue µCn(ε) : Cn(ε) → Rnε
by ψε. Then the obtained map is a locally standard torus fibration which we call
the blowing up of µ : X → B at x.

Example 2.9 (gluing). Suppose that µ1 : X1 → B1 and µ2 : X2 → B2 are locally
standard torus fibrations on n-dimensional manifolds. Let Ui be an open set in the
n-dimensional stratum of Bi. If necessary, by taking Ui sufficiently small, we may
assume that the restriction of µi to the inverse image µ−1

i (U i) of the closure of Ui is
identified with the restriction of µCn to the inverse image µ−1

Cn (D) of a closed disc D
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in the interior of Rn+. In particular they are identified each other. Then, by gluing
X1\µ−1

1 (U1) and X2\µ−1
2 (U2) by the identification of µ−1

1 (∂U1) with µ−1
2 (∂U2), we

can obtain a new locally standard torus fibration on the connected sum B1#B2.

3. The topological classification

In [6] Davis-Januszkiewicz give a topological classification for quasi-toric mani-
folds. We generalize this classification to locally standard torus fibrations. To do
this, we recall some stuffs which are necessary to describing the classification. We
assume that ∂B 6= ∅.
Proposition 3.1. For any locally standard torus fibration µ : X → B, there exist
a fiber bundle πT : T nµ → B of B with fiber Tn and a surjective continuous map
ν : T nµ → X which satisfy the following condition: For each coordinate neighborhood
(U,ϕB) in Condition A, there exists a local trivialization ϕT : π−1

T (U) → U × Tn

such that the following diagram commutes

π−1
T (U)

ϕB×idT n ◦ϕT

//

ν

((PPPPPPPPPPPPP

πT

»»1
11

11
11

11
11

11
11

1
ϕB(U)× Tn

νCn

**VVVVVVVVVVVVVVVVVV

;;
;;

;;
;;

pr1

ÀÀ;
;;

;;
;;

;µ−1(U)
ϕX

//

µ

~~}}
}}

}}
}}

}
µ−1
Cn (ϕB(U))

µCn

xxqqqqqqqqqq

U
ϕB

// ϕB(U),

where νCn is the map νCn : Rn+ × Tn → Cn which is defined by

νCn(ξ, t) = (t1
√
ξ1, . . . , tn

√
ξn) (3.1)

for (ξ, t) ∈ Rn+ × Tn.

A sketch of the proof. The fiber bundle πT : T nµ → B in Proposition 3.1 is an
extension of the restriction µ

∣∣
µ−1(B\∂B)

: µ−1(B\∂B) → B\∂B to the whole B.
Since the automorphism group of Tn is discrete, such a fiber bundle exists. Next
we describe the map ν : T n → B. On each open set Uα of B in Condition A, we
denote by να : ϕBα (Uα)×Tn → µ−1

Cn (ϕBα (Uα)) the restriction of the map νCn defined
by (3.1) to ϕBα (Uα)× Tn. On each nonempty intersection Uαβ = Uα ∩Uβ , we have
the following diagram

ϕBα (Uαβ)× Tn

να

²²

π−1
T (Uαβ)

ϕB
α×idT n ◦ϕT

αoo
ϕB

β ×idT n ◦ϕT
β// ϕBβ (Uαβ)× Tn

νβ

²²
µ−1
Cn (ϕBα (Uαβ)) µ−1(Uαβ)

ϕX
αoo

ϕX
β // µ−1

Cn (ϕBβ (Uαβ)).

We claim that this diagram commutes for all intersections. In fact, this is true
for (ξ, t) ∈ ϕBα (Uαβ\∂B)× Tn by the construction of the local trivializations (2.1).
Since ϕBα (Uαβ\∂B) is dense in ϕBα (Uαβ) and since νCn is continuous, this diagram
must commute. Then we can glue the local maps {να} together to get the map ν :
T nµ → X which satisfies the desired condition. 2

The structure group of the fiber bundle πT : T nµ → B is contained in Aut(Tn).
We call it a structure group of µ : X → B. Let G be the structure group of
µ : X → B. We denote by πPµ

: Pµ → B the principal G-bundle on B associated
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with the Tn-bundle πTµ
: T nµ → B and call it the underlying principal G-bundle of

µ.
Let B be an n-dimensional manifold with corners. We do not assume that B is a

base space of a locally standard torus fibration. Since B is a manifold with corners,
B is equipped with a natural stratification. We denote by S(k)B the k-dimensional
stratum of B. That is, S(k)B consists of those points which have exactly k nonzero
components in the local coordinate ϕB in Condition A. Let G be a subgroup of the
group of automorphisms of Tn and πP : P → B a principal G-bundle on B. Since
the differential of any automorphism of Tn at the unit element preserves the integral
lattice Λ of Tn, there is a natural homomorphism ρ : G → GL(Λ). We denote by
πΛ : ΛP → B the Λ-bundle associated with P by ρ. Let πL : L → S(n−1)B be a
rank one sub-lattice bundle of the restriction of ΛP to the codimension one stratum
S(n−1)B. For each k and any point b ∈ S(k)B, let U be an open neighborhood of
b in B on which P is trivialize and ϕP : π−1

P (U) ∼= U × G a local trivialization
of P . Then ϕP induces the local trivialization of πΛ : ΛP → B which is denoted
by ϕΛ : π−1

Λ (U) ∼= U × Λ. If necessary, by shrinking U , we can assume that the
intersection U ∩ S(n−1)B of U with the codimension one stratum S(n−1)B has
exactly n− k connected components, say, (U ∩ S(n−1)B)1, . . ., (U ∩ S(n−1)B)n−k.
Since Λ is discrete, there exist n− k rank one sub-lattices L1, . . ., Ln−k in Λ such
that ϕΛ sends the inverse image of each connected component (U ∩ S(n−1)B)a by
πL identically to (U ∩ S(n−1)B)a × La.

π−1
Λ (U)

ϕΛ

∼= U × Λ
∪ ∪

π−1
Λ

(
(U ∩ S(n−1)B)a

) ∼= (U ∩ S(n−1)B)a × Λ
∪ ∪

π−1
L

(
(U ∩ S(n−1)B)a

) ∼= (U ∩ S(n−1)B)a × La

Definition 3.2. πL : L → S(n−1)B is said to be unimodular, if for each k and any
point b ∈ S(k)B, the sub-lattice L1+· · ·+Ln−k generated by L1, . . ., Ln−k is a rank
n−k direct summand of Λ. (In [6], such a sub-lattice is called an (n−k)-dimensional
unimodular subspace of Λ.)

Remark 3.3. Definition 3.2 does not depend on the choice of a neighborhood U and
a local trivialization ϕP because the condition for a sub-lattice to be unimodular
is invariant by an automorphism of Λ.

For i = 1, 2, let (Pi,Li) be a pair of a principal G-bundle πPi
: Pi → B and a

unimodular rank one sub-lattice bundle πLi
: Li → S(n−1)B of the restriction of

the associated Λ-bundle πΛi
: ΛPi

→ B of Pi by ρ to the codimension one stratum
S(n−1)B of B.

Definition 3.4. They are isomorphic, if there exists a bundle isomorphism ψP :
P1 → P2 such that its associated lattice bundle isomorphism ψΛ : ΛP1 → ΛP2 sends
L1 isomorphically to L2.

Let µ : X → B be a locally standard torus fibration with structure group G and
πPµ

: Pµ → B its underlying principal G-bundle. As we showed in [20], the map µ
determines the unique unimodular rank one sub-lattice bundle πLµ

: Lµ → S(n−1)B
of the restriction of the associated Λ-bundle πΛ : ΛPµ

→ B of Pµ by ρ to the
codimension one stratum S(n−1)B. We call Lµ a characteristic bundle of µ. This
is a generalization of a characteristic function of quasi-toric manifolds, or torus
manifolds.

In [6, Section 1.5], Davis-Januszkiewicz constructed the canonical model of a
quasi-toric manifold from the based polytope and the characteristic function. The
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similar construction for locally standard torus manifolds has been done by Masuda-
Panov in [15, Section 3.2]. In the case of locally standard torus fibrations, we can
construct the canonical model of a locally standard torus fibration from the pair
of the underlying principal G-bundle and the characteristic bundle in the following
way. Let µ : X → B be a locally standard torus fibration and (Pµ,Lµ) the pair of
the underlying principal G-bundle and the characteristic bundle of µ. For any point
b ∈ B, there is a unique stratum which contains b. Suppose b is contained in the
k-dimensional stratum S(k)B. By definition of Lµ, if we take a sufficiently small
open neighborhood U of b and a local trivialization ϕP : π−1

Pµ
(U) → U × G of Pµ,

there exist n− k rank one sub-lattices L1, . . ., Ln−k of Λ which are determined by
the local trivialization ϕP : π−1

Pµ
(U) → U×G of Pµ and Lµ. Since Lµ is unimodular,

L1, . . ., Ln−k generate the (n − k)-dimensional sub-torus of Tn which is denoted
by Tb,ϕP . Note that Tb,ϕP depends on the choice of ϕP : π−1

Pµ
(U) → U × G. Let

πTµ : T nµ → B be the Tn-bundle associated with P by the natural action ofG on Tn.
The local trivialization ϕP : π−1

Pµ
(U) → U ×G of Pµ induces the local trivialization

ϕT : π−1
Tµ

(U) → U×Tn of T nµ on U . Let zi ∈ π−1
Tµ

(U) with (b, ti) = ϕT (zi) for i = 1,
2. z1 and z2 are said to be fiberwisely equivalent, or z1 ∼Lµ

z2, if t−1
2 t1 ∈ Tb,ϕP .

Note that ∼Lµ does not depend on the choice of ϕP : π−1
Pµ

(U) → U×G, but depends
only on Lµ since the structure group G of Pµ is a subgroup of the automorphism
group of Tn. We define an equivalent relation of T nµ as follows. Two elements
z1 and z2 of T nµ are equivalent, or z1 ∼ z2, if and only if πT (z1) = πT (z2) and
z1 ∼Lµ z2. We denote the quotient space T nµ / ∼ by X(Pµ,Lµ). The projection
πT : T nµ → B descends to the projection µ(Pµ,Lµ) : X(Pµ,Lµ) → B. Since Lµ is
unimodular and B is a manifold with corners, we can show that the space X(Pµ,Lµ)

is a closed, connected, topological 2n-dimensional manifold and the continuous map
µ(Pµ,Lµ) : X(Pµ,Lµ) → B admits a structure of a topological locally standard torus
fibration by the similar way to that of Davis-Januszkiewicz [6, Section 1.5], or
Masuda-Panov [15, Section 3.2]. The following is a straightforward generalization
of the result [6, Proposition 1.8] by Davis-Januszkiewicz and the result [15, Lemma
3.6] by Masuda-Panov.

Lemma 3.5. Let µ : X → B be a locally standard torus fibration with structure
group G and (Pµ,Lµ) the pair of the underlying principal G-bundle and the charac-
teristic bundle of µ : X → B. Then there is a homeomorphism ψµ : X(Pµ,Lµ) → X
such that such that the diagram

X(Pµ,Lµ)

µ(Pµ,Lµ)
##HHHHHHHHH

ψµ // X

µ
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

B

©

is commutative and the restriction of ψµ to µ−1
(Pµ,Lµ)(B\∂B) is a bundle isomor-

phism.

In fact, by proposition 3.1, there is a map ν : T nµ → X. Then it is easy to see from
the construction of X(Pµ,Lµ) that the map ν descends to the required fiberwisely
homeomorphism. We call the map ψµ in Lemma 3.5 a fiberwisely homeomorphism.
More precisely, let µi : Xi → B be a locally standard torus fibration with structure
group G for i = 1, 2.
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Definition 3.6. They are fiberwisely homeomorphic if there exists a homeomor-
phism ψX : X1 → X2 such that the diagram

X1

µ1 ÃÃB
BB

BB
BB

B
ψX

// X2

µ2~~}}
}}

}}
}}

B,

©

is commutative and the restriction of ψX to µ−1
1 (B\∂B) is a bundle isomorphism.

As topological spaces, locally standard torus fibrations are classified by the pair
of the underlying principal G-bundle together with the characteristic bundle.

Theorem 3.7 ([21]). By associating the pair (Pµ,Lµ) to a locally standard torus
fibration µ : X → B with structure group G, the set of fiberwisely homeomorphism
classes of locally standard torus fibrations corresponds one-to-one to the set of iso-
morphism classes of a pair of a principal G-bundle πP : P → B together with a
unimodular rank one sub-lattice bundle πL : L → S(n−1)B of the restriction of
the associated Λ-bundle πΛ : ΛP → B of P by ρ to the codimension one stratum
S(n−1)B of B.

Remark 3.8 (Smoothness). We constructed the canonical model of a locally stan-
dard torus fibration from the pair of the underlying principal G-bundle together
with the characteristic bundle topologically. We can equip the canonical model
with a smooth structure if the base manifold B has a coordinate neighborhood sys-
tem {(Uα, ϕBα )}α∈A which satisfies the following condition: On a nonempty overlap
Uαβ = Uα ∩ Uβ , suppose that the coordinate changing map ϕBβα := ϕBβ

∣∣
Uαβ

◦
(ϕBα

∣∣
Uαβ

)−1 sends {ξ ∈ ϕBα (Uαβ) : ξi = 0} to {ζ ∈ ϕBβ (Uαβ) : ζj = 0} for some i, j.

Then the jth component ϕBβαj of ϕBβα satisfies

ϕBβαj(ξ) = ξi

on a sufficiently small neighborhood of {ξ ∈ ϕα(Uαβ) : ξi = 0} of ϕα(Uαβ). Note
that convex polytopes and surfaces have such coordinate neighborhood systems.
For more details, see [20].

4. Topology

4.1. Fundamental groups. Let µ : X → B be a locally standard torus fibration.
Take a point b in the interior of B and a point x in the fiber µ−1(b) as base points
of B and X, respectively. Comparing the fundamental group of T nµ with that of
X by using the homomorphism induced from ν : T nµ → X, we have the following
result.

Theorem 4.1 ([20], [21]). Suppose that B has the nonempty zero-dimensional
stratum. Then the map µ induces the isomorphism µ∗ : π1(X,x) ∼= π1(B, b) of
fundamental groups.

4.2. Cohomology groups. Suppose that B is equipped with a CW complex struc-
ture so that each p-cell e(p) is contained in some stratum S(k)B of B. Let B(p) be
the p-skeleton and X(p) = µ−1(B(p)) its inverse image by µ. We consider the co-
homology Leray spectral sequence of the map µ : X → B, that is, the spectral
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sequence {(EX)p,qr , dXr } associated with the exact couple

⊕
p,q A

p,q i //
⊕

p,q A
p,q

jxxqqqqqqqqqq

⊕
p,q E

p,q,

k

ffMMMMMMMMMM

where

Ap,q := Hp+q(X,X(p−1);Z), Ep,q := Hp+q(X(p), X(p−1);Z)

and i, j are the maps

i : Ap,q → Ap−1,q+1, j : Ap,q → Ep,q

induced from inclusions (X,X(p−2)) ⊂ (X,X(p−1)) and (X(p), X(p−1)) ⊂ (X,X(p−1)),
respectively, and k is the map

k : Ep,q → Ap+1,q

which is the connecting homomorphism of the exact sequence of the triple (X,X(p),
X(p−1)). We denote the barycenter of a p-cell e(p) by c(p) and the restriction of the
map ν : T nµ → X in Proposition 3.1 to the fiber π−1

T (c(p)) by

νc(p) : π−1
T (c(p)) → µ−1(c(p)).

Let (Cp(B;Hq
T ), δ) be the cochain complex of the CW complex B with the Serre

local system Hq
T of the qth cohomology with Z-coefficient for the fiber bundle

πT : T nµ → B. We denote by Cp(B;Hq
X) the subset of Cp(B;Hq

T ) whose cochain

takes a value in the image ν∗
c
(p)
λ

(
Hq(µ−1(c(p)λ );Z)

)
of Hq(µ−1(c(p)λ );Z) by ν∗

c
(p)
λ

for

each p-cell e(p)λ .

Theorem 4.2 ([20], [21]). The subset Cp(B;Hq
X) is preserved by the differential δ

of Cp(B;Hq
T ), that is, Cp(B;Hq

X) is a sub-complex of (Cp(B;Hq
T ), δ). We denote

its cohomology by Hp(B;Hq
X). Then we have the isomorphisms

(EX)p,q1
∼= Cp(B;Hq

X), (EX)p,q2
∼= Hp(B;Hq

X),

(EX)p,q∞ = F pHp+q(X;Z)/F p+1Hp+q(X;Z),

where F lHk(X;Z) is the image of the map Hk(X,X(l−1);Z) → Hk(X;Z).

For the spectral sequence of cohomology groups, see [12].

Remark 4.3. (1) For q = 0, it is easy to see that (EX)p,02
∼= Hp(B;Hq

X) ∼=
Hp(B;Z). Moreover (EX)p,q1 = 0, if q or p is greater than half the dimension of X.
(2) If n = 2 and ∂B 6= ∅, we can take a cell decomposition of B so that all zero cells
are included in ∂B. In this case, the Leray spectral sequence {(EX)p,qr , dXr } degen-
erates at E2-term. In fact, ∂B 6= ∅ implies (EX)2,02

∼= H2(B;H0
X) ∼= H2(B;Z) = 0,

and since e(0)λ ∈ ∂B, the fiber µ−1(e(0)λ ) of µ on e
(0)
λ is diffeomorphic to the torus

whose dimension is equal or less than one. Then (EX)0,22
∼= (EX)0,21

∼= C0(B;H2
X) =

0.

Corollary 4.4 ([20], [21]). The Euler characteristic χ(X) is equal to the number
of elements in the zero-dimensional stratum S(0)B of B.
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4.3. K-groups. By replacing the cohomology functorH∗( ) by theK-functorK∗( )
in the cohomology Leray spectral sequence of the map µ : X → B, the similar
method is available for computing K-groups. We also denote such a spectral se-
quence by the same notation {(EX)p,qr , dXr } and call it an Atiyah-Hirzebruch type
spectral sequence for the map µ : X → B. For K-theory, see [1] and for the spectral
sequence of K-theory, see [2]. Let (Cp(B;KqT ), δ) be the cochain complex of the CW
complex B with the local system KqT with respect to the qth K-group of the fiber of
the fiber bundle πT : T nµ → B. We denote by Cp(B;KqX) the subset of Cp(B;KqT )
whose cochain takes a value in the image ν∗

c(p)

(
Kq(µ−1(c(p)))

)
of Kq(µ−1(c(p))) by

ν∗
c(p) for each p-cell e(p).

Theorem 4.5 ([21]). The subset Cp(B;KqX) is preserved by the differential δ of
Cp(B;KqT ), that is, Cp(B;KqX) is a sub-complex of (Cp(B;KqT ), δ). We denote by
Hp(B;KqX) its cohomology. Then we have the isomorphisms

(EX)p,q1
∼= Cp(B;KqX), (EX)p,q2

∼= Hp(B;KqX),

(EX)p,q∞ = F pKp+q(X)/F p+1Kp+q(X),

where F pK∗(X) is the image of the map K∗(X,X(p−1)) → K∗(X).

Example 4.6. Let us compute K-groups of X in Example 2.6. We give B the
following cell decomposition. One-cells e(1)1 , e(1)2 , and e

(1)
3 correspond to α, β, and

B

e(0)

e
(1)
1

e
(1)
2

e(2)

e
(1)
3

Figure 3. A cell decomposition of B

the edge arc γ in Figure 1, respectively.
For even q, since a fiber of πT : T nµ → B is T 2, by [9] or [21, Lemma A.1], the

K-group of its fiber is isomorphic to Z⊕Z, and all homomorphisms between them
which are induced from parallel transports are identity. Also by [21], images of
ν∗
c
(p)
λ

: Kq(µ−1(c(p)λ )) → Kq(π−1
T (c(p)λ )) are computed as follows

ν∗
c
(p)
λ

(
Kq(µ−1(c(p)λ ))

)
=

{
Z⊕ 0 p = 0, or p = 1 and λ = 3
Z⊕ Z otherwise.

A similar computation in [20, Example 6.14] shows that

Hp(B;KqX) =





Z p = 0, 2
Z⊕4 p = 1
0 otherwise.



LOCALLY STANDARD TORUS FIBRATIONS 11

For odd q, by [21, Lemma A.3], we have an isomorphism

Hp(B;KqX) ∼= Hp(B;Hq
X).

Hp(B;Hq
X) is computed in [20, Example 6.14] and the result is given as follows

Hp(B;KqX) =

{
Z⊕3 p = 1
0 otherwise.

The table of E2-terms is in Figure 4. In particular, the spectral sequence is

q

Z Z

0

Z

0

Z

0 0

Z Z

Z⊕4

Z⊕3

Z⊕4

Z⊕3

Z⊕4

p

Figure 4. the table of (EX)p,q2 -terms

degenerate at E2-term, and K-groups of X are given by

Kk(X) =

{
Z⊕5 k : even
Z⊕4 k : odd.

5. Compatible symplectic forms

Suppose that µ : X → B is a locally standard torus fibration and ω is a sym-
plectic form on X. ω is said to be compatible with µ : X → B if for any b ∈ B, a co-
ordinate neighborhood (U,ϕB) and a diffeomorphism ϕX : µ−1(U) → µ−1

Cn (ϕB(U))
in Condition A can be taken so that ϕX is a symplectomorphism with respect to
ω and ωCn , where ωCn is the symplectic form on Cn which is defined by

ωCn = −
√−1
2π

n∑

i=1

dzi ∧ dzi.

The map µ : X → B with a compatible symplectic form is a singular Lagrangian
fibration with non-degenerate elliptic singularities. For more details, see [22, Section
4.1], [19, Section 4]. We give the necessary and sufficient condition when µ : X → B
admits a compatible symplectic form.

Definition 5.1. An integral affine structure on B compatible with µ : X → B is a
coordinate neighborhood system {(Uα, ϕBα )} of B such that each (Uα, ϕBα ) satisfies
Condition A and for each non-empty intersection Uαβ 6= ∅, the coordinate transition
function is of the form

ϕBβα(ξ) :=
(
ϕBβ

∣∣
Uαβ

)
◦

(
ϕBα

∣∣
Uαβ

)−1

(ξ) = gβα(ξ)−T ξ + cαβ ,
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where gβα : Uαβ → GLn(Z) is the transition function of πT : T nµ → B on Uαβ with
respect to local coordinates ϕT in Proposition 3.1 and cαβ is a constant. Here we
identify Aut(Tn) with GLn(Z) by using the decomposition Tn ∼= (S1)n.

Theorem 5.2 ([21]). Let µ : X → B be a locally standard torus fibration. µ :
X → B has a compatible symplectic form if and only if B admits an integral affine
structure compatible with µ : X → B.

Remark 5.3. For nonsingular Lagrangian fibrations, this theorem is well known.
For example, see [7], [19], [16]. Recently this result are extended to the case where
some degeneracy of a symplectic form is allowed by Gay-Symington [10].

Corollary 5.4 ([21]). If B admits an integral affine structure compatible with µ :
X → B, then the characteristic bundle πLµ

: Lµ → S(n−1)B of µ : X → B has a
section which generates L fiberwisely.
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