EQUIVARIANT LOCAL INDEX AND SYMPLECTIC CUT

TAKAHIKO YOSHIDA

1. Introduction

This is a survey article of [7]. In the joint work [1, 2, 3] with Fujita and Furuta we developed an index theory for Dirac-type operators on possibly non-compact Riemannian manifolds. We call the index in our theory the local index and also call its equivariant version the equivariant local index. As an application to Hamiltonian S^{1}-actions on prequantizable closed symplectic manifolds we can show that the equivariant Riemann-Roch index is obtained as the sum of the equivariant local indices for the inverse images of the integer lattice points by the moment map. When the lattice point is a regular value of the moment map we can compute its equivariant local index, see $[3,6]$. So the problem is how to compute the equivariant local index when the lattice point is a critical value. The purpose of this paper is to give a formula for the equivariant local index for the reduced space in a symplectic cut space which is a special case of critical lattice points (Theorem 3.4).

This paper is organized as follows. In Section 2 we briefly recall the equivariant local index in the case of the Hamiltonian S^{1}-actions. After that we give the setting and the main theorem in Section 3.

Notation. In this paper we use the notation $\mathbb{C}_{(n)}$ for the irreducible representation of S^{1} with weight n.

2. EQuivariant local index

Let (M, ω) be a prequantizable Hamiltonian S^{1}-manifold and $\left(L, \nabla^{L}\right)$ an S^{1}-equivariant prequantum line bundle on (M, ω). We do not assume M is compact. Since all orbits are isotropic the restriction of $\left(L, \nabla^{L}\right)$ to each orbit is flat.

Definition 2.1. An orbit \mathcal{O} is said to be L-acyclic if $H^{0}\left(\mathcal{O} ;\left.\left(L, \nabla^{L}\right)\right|_{\mathcal{O}}\right)=0$.
Let V be an S^{1}-invariant open set whose complement is compact and which contains only L-acyclic orbits. For these data we give the following theorem.

Theorem $2.2([1,2,3])$. There exists an element $\operatorname{ind}_{S^{1}}(M, V ; L) \in R\left(S^{1}\right)$ of the representation ring such that $\operatorname{ind}_{S^{1}}(M, V ; L)$ satisfies the following properties:

[^0](1) $\operatorname{ind}_{S^{1}}(M, V ; L)$ is invariant under continuous deformation of the data.
(2) If M is closed, then $\operatorname{ind}_{S^{1}}(M, V ; L)$ is equal to the equivariant RiemannRoch index $\operatorname{ind}_{S^{1}}(M ; L)$.
(3) If M^{\prime} is an S^{1}-invariant open neighborhood of $M \backslash V$, then $\operatorname{ind}_{S^{1}}(M, V ; L)$ satisfies the following excision property
$$
\operatorname{ind}_{S^{1}}(M, V ; L)=\operatorname{ind}_{S^{1}}\left(M^{\prime}, M^{\prime} \cap V ;\left.L\right|_{M^{\prime}}\right)
$$
(4) $\operatorname{ind}_{S^{1}}(M, V ; L)$ satisfies a product formula.

We call $\operatorname{ind}_{S^{1}}(M, V ; L)$ the equivariant local index.
Example 2.3. For small positive real number $\varepsilon>0$ which is less than 1 let $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)=\left\{z \in \mathbb{C}_{(1)}| | z \mid<\varepsilon\right\}$ be the 2-dimensional disc of radius ε. As $\left(L, \nabla^{L}\right) \rightarrow(M, \omega)$ we consider

$$
\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(m)}, d+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right) \rightarrow\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right), \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}\right)
$$

First let us detect non L-acyclic orbits. Suppose the orbit \mathcal{O} through $z \in$ $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)$ has a non-trivial parallel section $s \in H^{0}\left(\mathcal{O} ;\left.(L, \nabla)\right|_{\mathcal{O}}\right)$. Then s satisfies the following equation

$$
0=\nabla_{\partial_{\theta}}^{L} s=\frac{\partial s}{\partial \theta}-2 \pi \sqrt{-1} r^{2} s
$$

where we use the polar coordinates $z=r e^{2 \pi \sqrt{-1} \theta}$. Hence s is of the form $s(\theta)=s_{0} e^{2 \pi \sqrt{-1} r^{2} \theta}$ for some non-zero constant s_{0}. Since s is a global section on $\mathcal{O} s$ satisfies $s(0)=s(1)$. This implies $r=0$.

Next, we put $V=D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \backslash\{0\}$ and let us compute $\operatorname{ind}_{S^{1}}(M, V ; L)$. We recall the definition of $\operatorname{ind}_{S^{1}}(N, V ; L)$. For $t \geq 0$ consider the following perturbation of the Spin^{c} Dirac operator $D: \Gamma\left(\wedge^{0, *} T^{*} M \otimes L\right) \rightarrow$ $\Gamma\left(\wedge^{0, *} T^{*} M \otimes L\right)$ associated with the standard Hermitian structure on $M=$ $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)$

$$
D_{t}=D+t \rho D_{S^{1}}
$$

where ρ is a cut-off function of V and $D_{S^{1}}$ is a first order formally self-adjoint differential operator of degree-one

$$
D_{S^{1}}: \Gamma\left(\left.\left(\wedge^{\star} T^{*} M^{0,1} \otimes L\right)\right|_{V}\right) \rightarrow \Gamma\left(\left.\left(\wedge^{\star} T^{*} M^{0,1} \otimes L\right)\right|_{V}\right)
$$

that satisfies the following conditions:
(1) $D_{S^{1}}$ contains only derivatives along orbits.
(2) The restriction $\left.D_{S^{1}}\right|_{\mathcal{O}}$ to an orbit \mathcal{O} is the de Rham operator with coefficients in $\left.L\right|_{\mathcal{O}}$.
(3) For any S^{1}-equivariant section u of the normal bundle $\nu_{\mathcal{O}}$ of \mathcal{O} in $M, D_{S^{1}}$ anti-commutes with the Clifford multiplication of u.
See $[1,2,3]$ for more details. From the second condition and $\{0\}$ is the unique non L-acyclic orbit we can see $\operatorname{ker}\left(\left.D_{S^{1}}\right|_{\mathcal{O}}\right)=0$ for all orbits $\mathcal{O} \neq\{0\}$. Extend the complement of a neighborhood of 0 in $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)$ cylindrically so that all the data are translationally invariant. Then we showed in [1, 2] that for a sufficiently large $t D_{t}$ is Fredholm, namely, $\operatorname{ker} D_{t} \cap L^{2}$ is finite
dimensional and its super-dimension is independent of a sufficiently large t. So we define

$$
\operatorname{ind}_{S^{1}}(M, V ; L)=\operatorname{ker} D_{t}^{0} \cap L^{2}-\operatorname{ker} D_{t}^{1} \cap L^{2}
$$

for a sufficiently large t. In this case, by the direct computation using the Fourier expansion of s with respect to θ, we can show that

$$
\operatorname{ker} D_{t}^{0} \cap L^{2} \cong \mathbb{C}, \quad \operatorname{ker} D_{t}^{1} \cap L^{2}=0
$$

and $\operatorname{ker} D_{t}^{0} \cap L^{2}$ is spanned by a certain L^{2}-function $a_{0}(r)$ on $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)$ which depends only on $r=|z|$. Since the S^{1}-action on $\operatorname{ker} D_{t}^{0} \cap L^{2}$ is given by pull-back and the S^{1}-action on the fiber is given by $\mathbb{C}_{(m)}$ we obtain

$$
\begin{aligned}
\operatorname{ind}_{S^{1}}(M, V ; L) & =\operatorname{ind}_{S^{1}}\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right), D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \backslash\{0\} ; D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(m)}\right) \\
& =\mathbb{C}_{(-m)}
\end{aligned}
$$

For more details see [1, Remark 6.10], or [5, Section 5.3.2].
It is well-known that the lift of S^{1}-action on M to L defines the moment map $\mu: M \rightarrow \mathbb{R}$ by the Kostant formula

$$
\begin{equation*}
\mathcal{L}_{X} s=\nabla_{X}^{L} s+2 \pi \sqrt{-1} \mu s \tag{2.1}
\end{equation*}
$$

where s is a section of L, X is the vector field which generates the S^{1}-action on (M, ω), and $\mathcal{L}_{X} s$ is the Lie derivative which is defined by

$$
\mathcal{L}_{X} s(x)=\left.\frac{d}{d \theta}\right|_{\theta=0} e^{-2 \pi \sqrt{-1} \theta} s\left(e^{2 \pi \sqrt{-1} \theta} x\right)
$$

Lemma 2.4. If an orbit \mathcal{O} is not L-acyclic, namely, $H^{0}\left(\mathcal{O} ;\left.\left(L, \nabla^{L}\right)\right|_{\mathcal{O}}\right) \neq 0$, then, $\mu(\mathcal{O}) \in \mathbb{Z}$.

If M is closed, then we have the following localization formula for the equivariant Riemann-Roch index.

Corollary 2.5. Suppose M is closed. For $i \in \mu(M) \cap \mathbb{Z}$ let V_{i} be an S^{1} invariant open neighborhood of $\mu^{-1}(i)$ such that they are mutually disjoint, namely, $V_{i} \cap V_{j} \neq \emptyset$ for all $i \neq j$. Then,

$$
\begin{equation*}
\operatorname{ind}_{S^{1}}(M ; L)=\bigoplus_{i \in \mu(M) \cap \mathbb{Z}} \operatorname{ind}_{S^{1}}\left(V_{i}, V_{i} \cap V ;\left.L\right|_{V_{i}}\right) \tag{2.2}
\end{equation*}
$$

3. THE SETTING AND THE MAIN THEOREM

Let (M, ω) be a Hamiltonian S^{1}-space with moment map $\mu: M \rightarrow \mathbb{R}$. For a real number n the cut space $\bar{M}_{\mu \leq n}$ of (M, ω) by the symplectic cutting [4] is the reduced space of the diagonal S^{1}-action on $(M, \omega) \times\left(\mathbb{C}_{(1)}, \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}\right)$, namely,

$$
\bar{M}_{\mu \leq n}=\left\{(x, z) \in(M, \omega) \times\left(\mathbb{C}_{(1)}, \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}\right)\left|\mu(x)+|z|^{2}=n\right\} / S^{1}\right.
$$

We denote the reduced space $\mu^{-1}(n) / S^{1}$ by M_{n}.

Proposition 3.1. (1) If S^{1} acts on $\mu^{-1}(n)$ freely, then, $\bar{M}_{\mu \leq n}$ is a smooth Hamiltonian S^{1}-space. The S^{1}-action is given as

$$
\begin{equation*}
t[x, z]=[t x, z] \tag{3.1}
\end{equation*}
$$

for $t \in S^{1}$ and $[x, z] \in \bar{M}_{\mu \leq n}$.
(2) Under the assumption in (1), the reduced space M_{n} and $\{x \in M \mid \mu(x) \leq$ $n\}$ are symplectically embedded into $\bar{M}_{\mu \leq n}$ by $M_{n} \ni[x] \mapsto[x, 0] \in \bar{M}_{\mu \leq n}$ and $\{x \in M \mid \mu(x) \leq n\} \ni x \mapsto[x, \sqrt{n-\mu(x)}] \in \bar{M}_{\mu \leq n}$, respectively. In particular, $\bar{M}_{\mu \leq n}$ can be identified with the disjoint union $\{x \in M \mid \mu(x) \leq$ $n\} \amalg M_{n}$ and with this identification M_{n} is fixed by the S^{1}-action (3.1).

Suppose that (M, ω) is equipped with a prequantum line bundle $\left(L, \nabla^{L}\right) \rightarrow$ (M, ω) and the S^{1}-action lifts to $\left(L, \nabla^{L}\right)$ in such a way that μ satisfies the Kostant formula (2.1).
Proposition 3.2. If n is an integer and the S^{1}-action on $\mu^{-1}(n)$ is free, then $\bar{M}_{\mu \leq n}$ is prequantizable. In this case a prequantum line bundle ($\bar{L}, \nabla^{\bar{L}}$) on $\bar{M}_{\mu \leq n}$ is given by

$$
\left(\bar{L}, \nabla^{\bar{L}}\right)=\left.\left(\left(L, \nabla^{L}\right) \otimes \mathbb{C}_{(n)}\right) \boxtimes\left(\mathbb{C}_{(1)} \times \mathbb{C}_{(0)}, d+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right)\right|_{\Phi^{-1}(0)} / S^{1},
$$

where Φ is the moment map $\Phi: M \times \mathbb{C}_{(1)} \rightarrow \mathbb{R}$ associated to the lift of the diagonal S^{1}-action which is written as $\Phi(x, z)=\mu(x)+|z|^{2}-n$, and the lift of the S^{1}-action (3.1) on $\bar{M}_{\mu \leq n}$ to $\left(\bar{L}, \nabla^{\bar{L}}\right)$ is given by

$$
\begin{equation*}
t[u \otimes v \boxtimes(z, w)]=[(t u) \otimes v \boxtimes(z, w)] \tag{3.2}
\end{equation*}
$$

for $t \in S^{1}$ and $[u \otimes v \boxtimes(z, w)] \in \bar{L}$. The moment map $\bar{\mu}: \bar{M}_{\mu \leq n} \rightarrow \mathbb{R}$ associated with the lift (3.2) is written as $\bar{\mu}([x, z])=\mu(x)=n-|z|^{2}$.

See [4] for more details.
Remark 3.3. We denote the restriction of $\left(\bar{L}, \nabla^{\bar{L}}\right)$ to M_{n} by ($L_{n}, \nabla^{L_{n}}$). ($L_{n}, \nabla^{L_{n}}$) is a prequantum line bundle on M_{n}. The S^{1}-action (3.2) on L_{n} is given by the fiberwise multiplication with weight n. Recall that M_{n} is fixed by the S^{1}-action (3.1). See Proposition 3.1.

Suppose that n be an integer and the S^{1}-action on $\mu^{-1}(n)$ is free. Then, the cut space $\bar{M}_{\mu \leq n}$ becomes a prequantizable Hamiltonian S^{1}-manifold and the S^{1}-equivariant prequantum line bundle ($\bar{L}, \nabla^{\bar{L}}$) is given by Proposition 3.1 and Proposition 3.2.

Suppose also that $\mu^{-1}(n)$ is compact. We take a sufficiently small S^{1} invariant open neighborhood O of M_{n} in $\bar{M}_{\mu \leq n}$ so that the intersection $\bar{\mu}(O) \cap \mathbb{Z}$ consists of the unique point n. Then we can define the equivariant local index $\operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{O}\right)$ of M_{n} in $\bar{M}_{\mu \leq n}$. We give the following formula for $\operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{O}\right)$.
Theorem 3.4. Let $(M, \omega),\left(L, \nabla^{L}\right)$, and μ be as above. Let n be an integer. Suppose S^{1} acts on $\mu^{-1}(n)$ freely and $\mu^{-1}(n)$ is compact. Let O be a sufficiently small S^{1}-invariant open neighborhood of M_{n} in $\bar{M}_{\mu \leq n}$ which satisfies $\bar{\mu}(O) \cap \mathbb{Z}=\{n\}$. Then, the equivariant local index is given as

$$
\operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{4}\right)=\operatorname{ind}\left(M_{n} ; L_{n}\right) \mathbb{C}_{(n)},
$$

where $\operatorname{ind}\left(M_{n} ; L_{n}\right)$ is the Riemann-Roch number of M_{n}.
Remark 3.5. By replacing $\mathbb{C}_{(1)}$ with $\mathbb{C}_{(-1)}$ in the above construction we obtain the other cut space $\bar{M}_{\mu \geq n}=\left\{(x, z) \in M \times \mathbb{C}_{-1}: \mu(x)-|z|^{2}=n\right\} / S^{1}$. Theorem 3.4 also holds for $\bar{M}_{\mu \geq n}$.
The outline of the proof of Theorem 3.4. By the definition of the symplectic cutting, the normal bundle ν of M_{n} in $\bar{M}_{\mu \leq n}$ is given by

$$
\nu=\mu^{-1}(N) \times{ }_{S^{1}} \mathbb{C}_{(1)} .
$$

For a sufficiently small $\varepsilon>0$ let $D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)=\left\{z \in \mathbb{C}_{(1)}:|z|<\varepsilon\right\}$ be the open disc of radius ε. We put $D_{\varepsilon}(\nu)=\mu^{-1}(n) \times{ }_{S^{1}} D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)$, and define an S^{1}-action on $D_{\varepsilon}(\nu)$ by

$$
\begin{equation*}
t[x, z]=[t x, z] . \tag{3.3}
\end{equation*}
$$

Let $p: D_{\varepsilon}(\nu) \rightarrow M_{n}$ be the natural projection. We define a complex line bundle $L_{D_{\varepsilon}(\nu)}$ on $D_{\varepsilon}(\nu)$ by

$$
L_{D_{\varepsilon}(\nu)}=p^{*} L_{n} \otimes\left(\mu^{-1}(n) \times_{S^{1}}\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(0)}\right)\right),
$$

and define an lift of the S^{1}-action (3.3) to $L_{D_{\varepsilon}(\nu)}$ by

$$
\begin{equation*}
t\left(([x, z],[u \otimes v]) \otimes\left[x^{\prime}, z^{\prime}, w\right]\right)=\left(([t x, z],[(t u) \otimes v]) \otimes\left[t x^{\prime}, z^{\prime}, w\right]\right) . \tag{3.4}
\end{equation*}
$$

Then we can show that for a sufficiently small $\varepsilon>0 L_{D_{\varepsilon}(\nu)}$ on $D_{\varepsilon}(\nu)$ is equivariantly identified with \bar{L} restricted to certain neighborhood of M_{n} in $\bar{M}_{\mu \leq n}$. By using this identification and the equivariant version of the product formula [2, Theorem 8.8] we obtain

$$
\begin{aligned}
& \operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{O}\right) \\
& =\operatorname{ind}_{S^{1}}\left(D_{\varepsilon}(\nu), D_{\varepsilon}(\nu) \backslash M_{n} ; L_{D_{\varepsilon}(\nu)}\right) \\
& =\operatorname{ind}_{S^{1}}\left(M_{n} ; L_{n} \otimes \mu^{-1}(n) \times_{S^{1}} \operatorname{ind}_{S^{1}}\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right), D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \backslash\{0\} ; D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(0)}\right)\right) .
\end{aligned}
$$

Note that the product formula for the S^{1}-equivariant local index holds since the S^{1}-action preserves all the data. See [3, Section 6.2] for more details. From Example 2.3 the equivariant local index $\operatorname{ind}_{S^{1}}\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right), D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)\right.$ \} $\left.\{0\} ; D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(0)}\right)$ is equal to $\mathbb{C}_{(0)}$. By definition, L_{n} is naturally identified with the restriction of \bar{L} to M_{n}. With this identification we can see that the restriction of the S^{1}-action (3.2) to $L_{n} \rightarrow M_{n}$ is nothing but the fiberwise multiplication of t^{-n}. Since the S^{1}-action on $\operatorname{ind}_{S^{1}}\left(M_{n} ; L_{n}\right)$ is defined by the pull-back, the S^{1}-action on $\operatorname{ind}_{S^{1}}\left(M_{n} ; L_{n}\right)$ is given by the multiplication of t^{n} as we mentioned in Remark 3.3. This proves the theorem.

Example 3.6 (Complex projective space). As $(L, \nabla) \rightarrow(M, \omega)$ we adopt

$$
\left(\left(\mathbb{C}_{(1)}\right)^{m} \times \mathbb{C}_{(0)}, d+\frac{1}{2} \sum_{i=1}^{m}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) \rightarrow\left(\left(\mathbb{C}_{(1)}\right)^{m}, \frac{\sqrt{-1}}{2 \pi} \sum_{i=1}^{m} d z_{i} \wedge d \bar{z}_{i}\right) .
$$

For $n=1$ the obtained $\bar{M}_{\mu \leq n}, \bar{L}$, and M_{n} are $\mathbb{C} P^{m}, \mathcal{O}(1)$, and $\mathbb{C} P^{m-1}$, respectively. The induced S^{1}-actions on $\mathbb{C} P^{m}$ and $\mathcal{O}(1)$ are given by

$$
\begin{align*}
t\left[z_{0}: z_{1}: \cdots: z_{m}\right] & =\left[z_{0}: t z_{1}: \cdots: t z_{m}\right], \\
t\left[z_{0}: z_{1}: \cdots: z_{m}, w\right] & =\left[z_{0}: t z_{1}: \cdots: t z_{m}, w\right] . \tag{3.5}
\end{align*}
$$

The moment map $\bar{\mu}$ associated to the S^{1}-action (3.5) is given by $\bar{\mu}\left(\left[z_{0}\right.\right.$: $\left.\left.\cdots: z_{m}\right]\right)=\sum_{i=1}^{m}\left|z_{i}\right|^{2}$. For $k=0,1$ let O_{k} be a sufficient small S^{1} invariant open neighborhood of $\bar{\mu}^{-1}(k)$. Then the equivariant local index $\operatorname{ind}_{S^{1}}\left(O_{k}, O_{k} \backslash \bar{\mu}^{-1}(k) ;\left.\bar{L}\right|_{O_{k}}\right)$ is defined and By Corollary 2.2 the equivariant Riemann-Roch index $\operatorname{ind}_{S^{1}}\left(\bar{M}_{\mu \leq n}, \bar{L}\right)$ satisfies following equality

$$
\begin{align*}
& \operatorname{ind}_{S^{1}}\left(\bar{M}_{\mu \leq n}, \bar{L}\right)=\operatorname{ind}_{S^{1}}\left(O_{0}, O_{0} \backslash \bar{\mu}^{-1}(0) ;\left.\bar{L}\right|_{O_{0}}\right) \tag{3.6}\\
&+\operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \backslash \bar{\mu}^{-1}(1) ;\left.\bar{L}\right|_{O_{1}}\right) .
\end{align*}
$$

The left hand side is computed as

$$
\begin{equation*}
\operatorname{ind}_{S^{1}}\left(\bar{M}_{\mu \leq n}, \bar{L}\right)=\operatorname{ind}_{S^{1}}\left(\mathbb{C} P^{m}, \mathcal{O}(1)\right)=\mathbb{C}_{(0)} \oplus m \mathbb{C}_{(1)} \tag{3.7}
\end{equation*}
$$

For $k=1$, since $\bar{\mu}^{-1}(1)=M_{n}$, by Theorem $3.4 \operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \backslash \bar{\mu}^{-1}(1) ;\left.\bar{L}\right|_{O_{1}}\right)$ is given as

$$
\begin{align*}
\operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \backslash \bar{\mu}^{-1}(1) ;\left.\bar{L}\right|_{O_{1}}\right) & =\operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \backslash M_{n} ;\left.\bar{L}\right|_{O_{1}}\right) \\
& =\operatorname{ind}\left(\mathbb{C P}^{m-1} ; \mathcal{O}(1)\right) \mathbb{C}_{(1)} \tag{3.8}\\
& =m \mathbb{C}_{(1)}
\end{align*}
$$

For $k=0$, it is easy to see that $\bar{\mu}^{-1}(0)=\left\{\left[z_{0}: 0: \cdots: 0\right]\right\}$ and $\left.\left(\bar{L}, \nabla^{\bar{L}}\right)\right|_{\left[z_{0}: 0: \cdots: 0\right]} \cong\left(\mathbb{C}_{(0)}, d+\frac{1}{2}(\bar{z} d z-z d \bar{z})\right)$. We can take O_{0} in such a way that O_{0} is identified with a sufficiently small open disc $D=\left\{\left(z_{1}, \ldots, z_{m}\right) \in\right.$ $\left.\mathbb{C}^{m}: \sum_{i=1}^{m}\left|z_{i}\right|^{2} \leq \varepsilon\right\}$ with S^{1}-action $t\left(z_{1}, \ldots, z_{m}\right)=\left(t z_{1}, \ldots, t z_{m}\right)$. Then, by (3.6), (3.7), and (3.8) we obtain the following formula

$$
\operatorname{ind}_{S^{1}}\left(D, D \backslash\{0\} ; D \times \mathbb{C}_{0}\right)=\mathbb{C}_{(0)}
$$

In the case of $m=1$ this formula can be obtained in [1, Remark 6.10] and [5, Section 5.3.2].
Example 3.7 (Exceptional divisor). Let n and $(L, \nabla) \rightarrow(M, \omega)$ be as in Example 3.6. Then the obtained cut space $\bar{M}_{\mu \geq n}$ is the blow-up $\widetilde{\mathbb{C}}^{m}$ of the origin in \mathbb{C}^{m}, and M_{n} and L_{n} are the exceptional divisor $\mathbb{C} P^{m-1}$ and $\mathcal{O}(n)$, respectively. We take a sufficiently small invariant open neighborhood O of M_{n}. Then, by Theorem 3.4 the equivariant local index $\operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{O}\right)$ is given by

$$
\operatorname{ind}_{S^{1}}\left(O, O \backslash M_{n} ;\left.\bar{L}\right|_{O}\right)=\operatorname{ind}\left(\mathbb{C P}^{m-1} ; \mathcal{O}(n)\right) \mathbb{C}_{(n)}=\binom{m-1+n}{m-1} \mathbb{C}_{(n)}
$$

References

[^1]Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan

E-mail address: takahiko@meiji.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 19K56; Secondary 53D20.
 Key words and phrases. Equivariant local index, symplectic cut.
 Partly supported by Grant-in-Aid for Scientific Research (C) 24540095.

[^1]: 1. H. Fujita, M. Furuta, and T. Yoshida, Torus fibrations and localization of index I, J. Math. Sci. Univ. Tokyo 17 (2010), no. 1, 1-26.
 2._, Torus fibrations and localization of index II, Comm. Math. Phys. 326 (2014), no. 3, 585-633.
 3._, Torus fibrations and localization of index III, Comm. Math. Phys. 327 (2014), no. 3, 665-689.
 2. E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258.
 3. T. Yoshida, $R R=\# B S$ via localization of index, Trends in Math. 12 (2010), no. 1, 1-41.
 4. _ Equivariant local index, RIMS Kôkyûroku Bessatsu B39 (2013), 215-232.
 5. \qquad The equivariant local index of the reduced space in the symplectic cutting, arXiv:1402.6437, 2014.
