EQUIVARIANT LOCAL INDEX AND SYMPLECTIC CUT

TAKAHIKO YOSHIDA

1. INTRODUCTION

This is a survey article of [7]. In the joint work [1, 2, 3] with Fujita and Furuta we developed an index theory for Dirac-type operators on possibly non-compact Riemannian manifolds. We call the index in our theory the *local index* and also call its equivariant version the *equivariant local index*. As an application to Hamiltonian S^1 -actions on prequantizable closed symplectic manifolds we can show that the equivariant Riemann-Roch index is obtained as the sum of the equivariant local indices for the inverse images of the integer lattice points by the moment map. When the lattice point is a regular value of the moment map we can compute its equivariant local index, see [3, 6]. So the problem is how to compute the equivariant local index when the lattice point is a critical value. The purpose of this paper is to give a formula for the equivariant local index for the reduced space in a symplectic cut space which is a special case of critical lattice points (Theorem 3.4).

This paper is organized as follows. In Section 2 we briefly recall the equivariant local index in the case of the Hamiltonian S^1 -actions. After that we give the setting and the main theorem in Section 3.

Notation. In this paper we use the notation $\mathbb{C}_{(n)}$ for the irreducible representation of S^1 with weight n.

2. Equivariant local index

Let (M, ω) be a prequantizable Hamiltonian S^1 -manifold and (L, ∇^L) an S^1 -equivariant prequantum line bundle on (M, ω) . We do not assume M is compact. Since all orbits are isotropic the restriction of (L, ∇^L) to each orbit is flat.

Definition 2.1. An orbit \mathcal{O} is said to be *L*-acyclic if $H^0\left(\mathcal{O}; (L, \nabla^L)|_{\mathcal{O}}\right) = 0$.

Let V be an S^1 -invariant open set whose complement is compact and which contains only L-acyclic orbits. For these data we give the following theorem.

Theorem 2.2 ([1, 2, 3]). There exists an element $\operatorname{ind}_{S^1}(M, V; L) \in R(S^1)$ of the representation ring such that $\operatorname{ind}_{S^1}(M, V; L)$ satisfies the following properties:

 $^{2010\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 19K56;\ Secondary\ 53D20.$

Key words and phrases. Equivariant local index, symplectic cut.

Partly supported by Grant-in-Aid for Scientific Research (C) 24540095.

- (1) $\operatorname{ind}_{S^1}(M,V;L)$ is invariant under continuous deformation of the data.
- (2) If M is closed, then $\operatorname{ind}_{S^1}(M, V; L)$ is equal to the equivariant Riemann-Roch index $\operatorname{ind}_{S^1}(M; L)$.
- (3) If M' is an S^1 -invariant open neighborhood of $M \smallsetminus V$, then $\operatorname{ind}_{S^1}(M, V; L)$ satisfies the following excision property

$$\operatorname{ind}_{S^1}(M, V; L) = \operatorname{ind}_{S^1}(M', M' \cap V; L|_{M'}).$$

(4) $\operatorname{ind}_{S^1}(M,V;L)$ satisfies a product formula.

We call $\operatorname{ind}_{S^1}(M,V;L)$ the equivariant local index.

Example 2.3. For small positive real number $\varepsilon > 0$ which is less than 1 let $D_{\varepsilon}(\mathbb{C}_{(1)}) = \{z \in \mathbb{C}_{(1)} \mid |z| < \varepsilon\}$ be the 2-dimensional disc of radius ε . As $(L, \nabla^L) \to (M, \omega)$ we consider

$$\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right)\times\mathbb{C}_{(m)},d+\frac{1}{2}(zd\bar{z}-\bar{z}dz)\right)\rightarrow\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right),\frac{\sqrt{-1}}{2\pi}dz\wedge d\bar{z}\right).$$

First let us detect non *L*-acyclic orbits. Suppose the orbit \mathcal{O} through $z \in D_{\varepsilon}(\mathbb{C}_{(1)})$ has a non-trivial parallel section $s \in H^0(\mathcal{O}; (L, \nabla)|_{\mathcal{O}})$. Then s satisfies the following equation

$$0 = \nabla^L_{\partial_\theta} s = \frac{\partial s}{\partial \theta} - 2\pi \sqrt{-1}r^2 s,$$

where we use the polar coordinates $z = re^{2\pi\sqrt{-1}\theta}$. Hence s is of the form $s(\theta) = s_0 e^{2\pi\sqrt{-1}r^2\theta}$ for some non-zero constant s_0 . Since s is a global section on \mathcal{O} s satisfies s(0) = s(1). This implies r = 0.

Next, we put $V = D_{\varepsilon} (\mathbb{C}_{(1)}) \setminus \{0\}$ and let us compute $\operatorname{ind}_{S^1}(M, V; L)$. We recall the definition of $\operatorname{ind}_{S^1}(N, V; L)$. For $t \geq 0$ consider the following perturbation of the Spin^c Dirac operator $D \colon \Gamma (\wedge^{0,*}T^*M \otimes L) \to$ $\Gamma (\wedge^{0,*}T^*M \otimes L)$ associated with the standard Hermitian structure on $M = D_{\varepsilon} (\mathbb{C}_{(1)})$

$$D_t = D + t\rho D_{S^1},$$

where ρ is a cut-off function of V and D_{S^1} is a first order formally self-adjoint differential operator of degree-one

$$D_{S^1} \colon \Gamma\left((\wedge^* T^* M^{0,1} \otimes L)|_V\right) \to \Gamma\left((\wedge^* T^* M^{0,1} \otimes L)|_V\right)$$

that satisfies the following conditions:

- (1) D_{S^1} contains only derivatives along orbits.
- (2) The restriction $D_{S^1}|_{\mathcal{O}}$ to an orbit \mathcal{O} is the de Rham operator with coefficients in $L|_{\mathcal{O}}$.
- (3) For any S^1 -equivariant section u of the normal bundle $\nu_{\mathcal{O}}$ of \mathcal{O} in M, D_{S^1} anti-commutes with the Clifford multiplication of u.

See [1, 2, 3] for more details. From the second condition and $\{0\}$ is the unique non *L*-acyclic orbit we can see ker $(D_{S^1}|_{\mathcal{O}}) = 0$ for all orbits $\mathcal{O} \neq \{0\}$. Extend the complement of a neighborhood of 0 in $D_{\varepsilon}(\mathbb{C}_{(1)})$ cylindrically so that all the data are translationally invariant. Then we showed in [1, 2] that for a sufficiently large $t D_t$ is Fredholm, namely, ker $D_t \cap L^2$ is finite

dimensional and its super-dimension is independent of a sufficiently large t. So we define

$$\operatorname{ind}_{S^1}(M,V;L) = \ker D_t^0 \cap L^2 - \ker D_t^1 \cap L^2$$

for a sufficiently large t. In this case, by the direct computation using the Fourier expansion of s with respect to θ , we can show that

$$\ker D_t^0 \cap L^2 \cong \mathbb{C}, \quad \ker D_t^1 \cap L^2 = 0,$$

and ker $D_t^0 \cap L^2$ is spanned by a certain L^2 -function $a_0(r)$ on $D_{\varepsilon}(\mathbb{C}_{(1)})$ which depends only on r = |z|. Since the S^1 -action on ker $D_t^0 \cap L^2$ is given by pull-back and the S^1 -action on the fiber is given by $\mathbb{C}_{(m)}$ we obtain

$$\operatorname{ind}_{S^{1}}(M,V;L) = \operatorname{ind}_{S^{1}}\left(D_{\varepsilon}\left(\mathbb{C}_{(1)}\right), D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \smallsetminus \{0\}; D_{\varepsilon}\left(\mathbb{C}_{(1)}\right) \times \mathbb{C}_{(m)}\right) \\ = \mathbb{C}_{(-m)}.$$

For more details see [1, Remark 6.10], or [5, Section 5.3.2].

It is well-known that the lift of S^1 -action on M to L defines the moment map $\mu: M \to \mathbb{R}$ by the Kostant formula

(2.1)
$$\mathcal{L}_X s = \nabla_X^L s + 2\pi \sqrt{-1} \mu s,$$

where s is a section of L, X is the vector field which generates the S^1 -action on (M, ω) , and $\mathcal{L}_X s$ is the Lie derivative which is defined by

$$\mathcal{L}_X s(x) = \frac{d}{d\theta} \Big|_{\theta=0} e^{-2\pi\sqrt{-1}\theta} s(e^{2\pi\sqrt{-1}\theta}x).$$

Lemma 2.4. If an orbit \mathcal{O} is not L-acyclic, namely, $H^0\left(\mathcal{O}; (L, \nabla^L)|_{\mathcal{O}}\right) \neq 0$, then, $\mu(\mathcal{O}) \in \mathbb{Z}$.

If M is closed, then we have the following localization formula for the equivariant Riemann-Roch index.

Corollary 2.5. Suppose M is closed. For $i \in \mu(M) \cap \mathbb{Z}$ let V_i be an S^1 -invariant open neighborhood of $\mu^{-1}(i)$ such that they are mutually disjoint, namely, $V_i \cap V_j \neq \emptyset$ for all $i \neq j$. Then,

(2.2)
$$\operatorname{ind}_{S^1}(M;L) = \bigoplus_{i \in \mu(M) \cap \mathbb{Z}} \operatorname{ind}_{S^1}(V_i, V_i \cap V; L|_{V_i}).$$

3. The setting and the main theorem

Let (M, ω) be a Hamiltonian S^1 -space with moment map $\mu \colon M \to \mathbb{R}$. For a real number *n* the cut space $\overline{M}_{\mu \leq n}$ of (M, ω) by the symplectic cutting [4] is the reduced space of the diagonal S^1 -action on $(M, \omega) \times \left(\mathbb{C}_{(1)}, \frac{\sqrt{-1}}{2\pi} dz \wedge d\overline{z}\right)$, namely,

$$\overline{M}_{\mu \le n} = \left\{ \left(x, z \right) \in (M, \omega) \times \left(\mathbb{C}_{(1)}, \frac{\sqrt{-1}}{2\pi} dz \wedge d\bar{z} \right) \middle| \mu(x) + |z|^2 = n \right\} / S^1.$$

We denote the reduced space $\mu^{-1}(n)/S^1$ by M_n .

Proposition 3.1. (1) If S^1 acts on $\mu^{-1}(n)$ freely, then, $\overline{M}_{\mu \leq n}$ is a smooth Hamiltonian S^1 -space. The S^1 -action is given as

$$(3.1) t[x,z] = [tx,z]$$

for $t \in S^1$ and $[x, z] \in \overline{M}_{\mu < n}$.

(2) Under the assumption in (1), the reduced space M_n and $\{x \in M \mid \mu(x) \leq 0\}$ n} are symplectically embedded into $\overline{M}_{\mu \leq n}$ by $M_n \ni [x] \mapsto [x,0] \in \overline{M}_{\mu \leq n}$ and $\{x \in M \mid \mu(x) \leq n\} \ni x \mapsto |x, \sqrt{n - \mu(x)}| \in \overline{M}_{\mu \leq n}$, respectively. In particular, $\overline{M}_{\mu \leq n}$ can be identified with the disjoint union $\{x \in M \mid \mu(x) \leq n\}$ $n \} \prod M_n$ and with this identification M_n is fixed by the S¹-action (3.1).

Suppose that (M, ω) is equipped with a prequantum line bundle $(L, \nabla^L) \rightarrow$ (M,ω) and the S¹-action lifts to (L,∇^L) in such a way that μ satisfies the Kostant formula (2.1).

Proposition 3.2. If n is an integer and the S¹-action on $\mu^{-1}(n)$ is free, then $\overline{M}_{\mu \leq n}$ is prequantizable. In this case a prequantum line bundle (\overline{L}, ∇^L) on $M_{\mu < n}$ is given by

$$(\overline{L}, \nabla^{\overline{L}}) = \left((L, \nabla^L) \otimes \mathbb{C}_{(n)} \right) \boxtimes \left(\mathbb{C}_{(1)} \times \mathbb{C}_{(0)}, d + \frac{1}{2} (zd\overline{z} - \overline{z}dz) \right) \Big|_{\Phi^{-1}(0)} / S^1,$$

where Φ is the moment map $\Phi: M \times \mathbb{C}_{(1)} \to \mathbb{R}$ associated to the lift of the diagonal S¹-action which is written as $\Phi(x,z) = \mu(x) + |z|^2 - n$, and the lift of the S¹-action (3.1) on $\overline{M}_{\mu < n}$ to $(\overline{L}, \nabla^{\overline{L}})$ is given by

(3.2) $t[u \otimes v \boxtimes (z, w)] = [(tu) \otimes v \boxtimes (z, w)]$

for $t \in S^1$ and $[u \otimes v \boxtimes (z, w)] \in \overline{L}$. The moment map $\overline{\mu} \colon \overline{M}_{\mu \leq n} \to \mathbb{R}$ associated with the lift (3.2) is written as $\overline{\mu}([x,z]) = \mu(x) = n - |z|^2$.

See [4] for more details.

Remark 3.3. We denote the restriction of $(\overline{L}, \nabla^{\overline{L}})$ to M_n by (L_n, ∇^{L_n}) . (L_n, ∇^{L_n}) is a prequantum line bundle on M_n . The S¹-action (3.2) on L_n is given by the fiberwise multiplication with weight n. Recall that M_n is fixed by the S^1 -action (3.1). See Proposition 3.1.

Suppose that n be an integer and the S¹-action on $\mu^{-1}(n)$ is free. Then, the cut space $\overline{M}_{\mu \leq n}$ becomes a prequantizable Hamiltonian S¹-manifold and the S¹-equivariant prequantum line bundle $(\overline{L}, \nabla^{\overline{L}})$ is given by Proposition 3.1 and Proposition 3.2.

Suppose also that $\mu^{-1}(n)$ is compact. We take a sufficiently small S¹invariant open neighborhood O of M_n in $M_{\mu \leq n}$ so that the intersection $\overline{\mu}(O) \cap \mathbb{Z}$ consists of the unique point n. Then we can define the equivariant local index $\operatorname{ind}_{S^1}(O, O \setminus M_n; \overline{L}|_O)$ of M_n in $\overline{M}_{\mu \leq n}$. We give the following formula for $\operatorname{ind}_{S^1}(O, O \setminus M_n; \overline{L}|_O)$.

Theorem 3.4. Let (M, ω) , (L, ∇^L) , and μ be as above. Let n be an integer. Suppose S^1 acts on $\mu^{-1}(n)$ freely and $\mu^{-1}(n)$ is compact. Let O be a sufficiently small S¹-invariant open neighborhood of M_n in $\overline{M}_{\mu < n}$ which satisfies $\overline{\mu}(O) \cap \mathbb{Z} = \{n\}$. Then, the equivariant local index is given as

$$\operatorname{ind}_{S^1}\left(O, O \smallsetminus M_n; \overline{L}|_O\right) = \operatorname{ind}(M_n; L_n)\mathbb{C}_{(n)},$$

where $ind(M_n; L_n)$ is the Riemann-Roch number of M_n .

Remark 3.5. By replacing $\mathbb{C}_{(1)}$ with $\mathbb{C}_{(-1)}$ in the above construction we obtain the other cut space $\overline{M}_{\mu \geq n} = \{(x, z) \in M \times \mathbb{C}_{-1} : \mu(x) - |z|^2 = n\}/S^1$. Theorem 3.4 also holds for $\overline{M}_{\mu \geq n}$.

The outline of the proof of Theorem 3.4. By the definition of the symplectic cutting, the normal bundle ν of M_n in $\overline{M}_{\mu \leq n}$ is given by

$$\nu = \mu^{-1}(N) \times_{S^1} \mathbb{C}_{(1)}.$$

For a sufficiently small $\varepsilon > 0$ let $D_{\varepsilon}(\mathbb{C}_{(1)}) = \{z \in \mathbb{C}_{(1)} : |z| < \varepsilon\}$ be the open disc of radius ε . We put $D_{\varepsilon}(\nu) = \mu^{-1}(n) \times_{S^1} D_{\varepsilon}(\mathbb{C}_{(1)})$, and define an S^1 -action on $D_{\varepsilon}(\nu)$ by

$$(3.3) t[x,z] = [tx,z]$$

Let $p: D_{\varepsilon}(\nu) \to M_n$ be the natural projection. We define a complex line bundle $L_{D_{\varepsilon}(\nu)}$ on $D_{\varepsilon}(\nu)$ by

$$L_{D_{\varepsilon}(\nu)} = p^* L_n \otimes \left(\mu^{-1}(n) \times_{S^1} \left(D_{\varepsilon}(\mathbb{C}_{(1)}) \times \mathbb{C}_{(0)} \right) \right),$$

and define an lift of the S¹-action (3.3) to $L_{D_{\varepsilon}(\nu)}$ by

$$(3.4) \quad t\left(([x,z],[u\otimes v])\otimes [x',z',w]\right) = \left(([tx,z],[(tu)\otimes v])\otimes [tx',z',w]\right).$$

Then we can show that for a sufficiently small $\varepsilon > 0$ $L_{D_{\varepsilon}(\nu)}$ on $D_{\varepsilon}(\nu)$ is equivariantly identified with \overline{L} restricted to certain neighborhood of M_n in $\overline{M}_{\mu \leq n}$. By using this identification and the equivariant version of the product formula [2, Theorem 8.8] we obtain

$$\begin{aligned} &\operatorname{ind}_{S^{1}}\left(O, O \smallsetminus M_{n}; \overline{L}|_{O}\right) \\ &= \operatorname{ind}_{S^{1}}\left(D_{\varepsilon}(\nu), \ D_{\varepsilon}(\nu) \smallsetminus M_{n}; L_{D_{\varepsilon}(\nu)}\right) \\ &= \operatorname{ind}_{S^{1}}\left(M_{n}; L_{n} \otimes \mu^{-1}(n) \times_{S^{1}} \operatorname{ind}_{S^{1}}(D_{\varepsilon}(\mathbb{C}_{(1)}), D_{\varepsilon}(\mathbb{C}_{(1)}) \smallsetminus \{0\}; D_{\varepsilon}(\mathbb{C}_{(1)}) \times \mathbb{C}_{(0)})\right) \end{aligned}$$

Note that the product formula for the S^1 -equivariant local index holds since the S^1 -action preserves all the data. See [3, Section 6.2] for more details. From Example 2.3 the equivariant local index $\operatorname{ind}_{S^1}(D_{\varepsilon}(\mathbb{C}_{(1)}), D_{\varepsilon}(\mathbb{C}_{(1)}) \setminus \{0\}; D_{\varepsilon}(\mathbb{C}_{(1)}) \times \mathbb{C}_{(0)})$ is equal to $\mathbb{C}_{(0)}$. By definition, L_n is naturally identified with the restriction of \overline{L} to M_n . With this identification we can see that the restriction of the S^1 -action (3.2) to $L_n \to M_n$ is nothing but the fiberwise multiplication of t^{-n} . Since the S^1 -action on $\operatorname{ind}_{S^1}(M_n; L_n)$ is defined by the pull-back, the S^1 -action on $\operatorname{ind}_{S^1}(M_n; L_n)$ is given by the multiplication of t^n as we mentioned in Remark 3.3. This proves the theorem.

Example 3.6 (Complex projective space). As $(L, \nabla) \to (M, \omega)$ we adopt

$$\left((\mathbb{C}_{(1)})^m \times \mathbb{C}_{(0)}, d + \frac{1}{2} \sum_{i=1}^m (z_i d\bar{z}_i - \bar{z}_i dz_i) \right) \to \left((\mathbb{C}_{(1)})^m, \frac{\sqrt{-1}}{2\pi} \sum_{i=1}^m dz_i \wedge d\bar{z}_i \right)$$

For n = 1 the obtained $\overline{M}_{\mu \leq n}$, \overline{L} , and M_n are $\mathbb{C}P^m$, $\mathcal{O}(1)$, and $\mathbb{C}P^{m-1}$, respectively. The induced S^1 -actions on $\mathbb{C}P^m$ and $\mathcal{O}(1)$ are given by

(3.5)
$$t[z_0:z_1:\cdots:z_m] = [z_0:tz_1:\cdots:tz_m], \\t[z_0:z_1:\cdots:z_m,w] = [z_0:tz_1:\cdots:tz_m,w]$$

The moment map $\overline{\mu}$ associated to the S^1 -action (3.5) is given by $\overline{\mu}([z_0 : \cdots : z_m]) = \sum_{i=1}^m |z_i|^2$. For k = 0, 1 let O_k be a sufficient small S^1 -invariant open neighborhood of $\overline{\mu}^{-1}(k)$. Then the equivariant local index $\operatorname{ind}_{S^1}(O_k, O_k \setminus \overline{\mu}^{-1}(k); \overline{L}|_{O_k})$ is defined and By Corollary 2.2 the equivariant Riemann-Roch index $\operatorname{ind}_{S^1}(\overline{M}_{\mu \leq n}, \overline{L})$ satisfies following equality

(3.6)
$$\operatorname{ind}_{S^1}\left(\overline{M}_{\mu\leq n}, \overline{L}\right) = \operatorname{ind}_{S^1}\left(O_0, O_0 \smallsetminus \overline{\mu}^{-1}(0); \overline{L}|_{O_0}\right) \\ + \operatorname{ind}_{S^1}\left(O_1, O_1 \smallsetminus \overline{\mu}^{-1}(1); \overline{L}|_{O_1}\right).$$

The left hand side is computed as

(3.7) $\operatorname{ind}_{S^1}\left(\overline{M}_{\mu\leq n},\overline{L}\right) = \operatorname{ind}_{S^1}\left(\mathbb{C}P^m,\mathcal{O}(1)\right) = \mathbb{C}_{(0)} \oplus m\mathbb{C}_{(1)}.$

For k = 1, since $\overline{\mu}^{-1}(1) = M_n$, by Theorem 3.4 ind_{S1} $(O_1, O_1 \setminus \overline{\mu}^{-1}(1); \overline{L}|_{O_1})$ is given as

(3.8)

$$\operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \smallsetminus \overline{\mu}^{-1}(1); \overline{L}|_{O_{1}}\right) = \operatorname{ind}_{S^{1}}\left(O_{1}, O_{1} \smallsetminus M_{n}; \overline{L}|_{O_{1}}\right)$$

$$= \operatorname{ind}(\mathbb{C}P^{m-1}; \mathcal{O}(1))\mathbb{C}_{(1)}$$

$$= m\mathbb{C}_{(1)}.$$

For k = 0, it is easy to see that $\overline{\mu}^{-1}(0) = \{[z_0 : 0 : \cdots : 0]\}$ and $(\overline{L}, \nabla^{\overline{L}})|_{[z_0:0:\cdots:0]} \cong (\mathbb{C}_{(0)}, d + \frac{1}{2}(\overline{z}dz - zd\overline{z}))$. We can take O_0 in such a way that O_0 is identified with a sufficiently small open disc $D = \{(z_1, \ldots, z_m) \in \mathbb{C}^m : \sum_{i=1}^m |z_i|^2 \leq \varepsilon\}$ with S^1 -action $t(z_1, \ldots, z_m) = (tz_1, \ldots, tz_m)$. Then, by (3.6), (3.7), and (3.8) we obtain the following formula

$$\operatorname{ind}_{S^1}(D, D \smallsetminus \{0\}; D \times \mathbb{C}_0) = \mathbb{C}_{(0)}.$$

In the case of m = 1 this formula can be obtained in [1, Remark 6.10] and [5, Section 5.3.2].

Example 3.7 (Exceptional divisor). Let n and $(L, \nabla) \to (M, \omega)$ be as in Example 3.6. Then the obtained cut space $\overline{M}_{\mu \geq n}$ is the blow-up $\widetilde{\mathbb{C}}^m$ of the origin in \mathbb{C}^m , and M_n and L_n are the exceptional divisor $\mathbb{C}P^{m-1}$ and $\mathcal{O}(n)$, respectively. We take a sufficiently small invariant open neighborhood O of M_n . Then, by Theorem 3.4 the equivariant local index ind_{S^1} $(O, O \smallsetminus M_n; \overline{L}|_O)$ is given by

$$\operatorname{ind}_{S^1}(O, O \smallsetminus M_n; \overline{L}|_O) = \operatorname{ind}\left(\mathbb{C}\mathrm{P}^{m-1}; \mathcal{O}(n)\right)\mathbb{C}_{(n)} = \binom{m-1+n}{m-1}\mathbb{C}_{(n)}.$$

References

- H. Fujita, M. Furuta, and T. Yoshida, Torus fibrations and localization of index I, J. Math. Sci. Univ. Tokyo 17 (2010), no. 1, 1–26.
- _____, Torus fibrations and localization of index II, Comm. Math. Phys. 326 (2014), no. 3, 585–633.
- _____, Torus fibrations and localization of index III, Comm. Math. Phys. 327 (2014), no. 3, 665–689.
- 4. E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258.
- T. Yoshida, RR = #BS via localization of index, Trends in Math. 12 (2010), no. 1, 1–41.
- 6. _____, Equivariant local index, RIMS Kôkyûroku Bessatsu B39 (2013), 215–232.
- 7. _____, The equivariant local index of the reduced space in the symplectic cutting, arXiv:1402.6437, 2014.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNI-VERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI, 214-8571, JAPAN *E-mail address:* takahiko@meiji.ac.jp