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1. Introduction

This is a survey article of [7]. In the joint work [1, 2, 3] with Fujita and
Furuta we developed an index theory for Dirac-type operators on possibly
non-compact Riemannian manifolds. We call the index in our theory the
local index and also call its equivariant version the equivariant local index.
As an application to Hamiltonian S1-actions on prequantizable closed sym-
plectic manifolds we can show that the equivariant Riemann-Roch index is
obtained as the sum of the equivariant local indices for the inverse images
of the integer lattice points by the moment map. When the lattice point
is a regular value of the moment map we can compute its equivariant local
index, see [3, 6]. So the problem is how to compute the equivariant local
index when the lattice point is a critical value. The purpose of this paper
is to give a formula for the equivariant local index for the reduced space
in a symplectic cut space which is a special case of critical lattice points
(Theorem 3.4).

This paper is organized as follows. In Section 2 we briefly recall the
equivariant local index in the case of the Hamiltonian S1-actions. After
that we give the setting and the main theorem in Section 3.

Notation. In this paper we use the notation C(n) for the irreducible repre-

sentation of S1 with weight n.

2. Equivariant local index

Let (M,ω) be a prequantizable Hamiltonian S1-manifold and (L,∇L) an
S1-equivariant prequantum line bundle on (M,ω). We do not assume M
is compact. Since all orbits are isotropic the restriction of (L,∇L) to each
orbit is flat.

Definition 2.1. An orbit O is said to be L-acyclic ifH0
(
O; (L,∇L)|O

)
= 0.

Let V be an S1-invariant open set whose complement is compact and
which contains only L-acyclic orbits. For these data we give the following
theorem.

Theorem 2.2 ([1, 2, 3]). There exists an element indS1 (M,V ;L) ∈ R(S1)
of the representation ring such that indS1 (M,V ;L) satisfies the following
properties:
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(1) indS1 (M,V ;L) is invariant under continuous deformation of the
data.

(2) If M is closed, then indS1 (M,V ;L) is equal to the equivariant Riemann-
Roch index indS1 (M ;L).

(3) If M ′ is an S1-invariant open neighborhood of M∖V , then indS1 (M,V ;L)
satisfies the following excision property

indS1 (M,V ;L) = indS1

(
M ′,M ′ ∩ V ;L|M ′

)
.

(4) indS1 (M,V ;L) satisfies a product formula.

We call indS1 (M,V ;L) the equivariant local index.

Example 2.3. For small positive real number ε > 0 which is less than 1 let
Dε

(
C(1)

)
= {z ∈ C(1) | |z| < ε} be the 2-dimensional disc of radius ε. As

(L,∇L) → (M,ω) we consider(
Dε

(
C(1)

)
× C(m), d+

1

2
(zdz̄ − z̄dz)

)
→
(
Dε

(
C(1)

)
,

√
−1

2π
dz ∧ dz̄

)
.

First let us detect non L-acyclic orbits. Suppose the orbit O through z ∈
Dε

(
C(1)

)
has a non-trivial parallel section s ∈ H0 (O; (L,∇)|O). Then s

satisfies the following equation

0 = ∇L
∂θ
s =

∂s

∂θ
− 2π

√
−1r2s,

where we use the polar coordinates z = re2π
√
−1θ. Hence s is of the form

s(θ) = s0e
2π

√
−1r2θ for some non-zero constant s0. Since s is a global section

on O s satisfies s(0) = s(1). This implies r = 0.
Next, we put V = Dε

(
C(1)

)
∖ {0} and let us compute indS1(M,V ;L).

We recall the definition of indS1(N,V ;L). For t ≥ 0 consider the fol-
lowing perturbation of the Spinc Dirac operator D : Γ

(
∧0,∗T ∗M ⊗ L

)
→

Γ
(
∧0,∗T ∗M ⊗ L

)
associated with the standard Hermitian structure on M =

Dε

(
C(1)

)
Dt = D + tρDS1 ,

where ρ is a cut-off function of V andDS1 is a first order formally self-adjoint
differential operator of degree-one

DS1 : Γ
(
(∧⋆T ∗M0,1 ⊗ L)|V

)
→ Γ

(
(∧⋆T ∗M0,1 ⊗ L)|V

)
that satisfies the following conditions:

(1) DS1 contains only derivatives along orbits.
(2) The restriction DS1 |O to an orbit O is the de Rham operator with

coefficients in L|O.
(3) For any S1-equivariant section u of the normal bundle νO of O in

M , DS1 anti-commutes with the Clifford multiplication of u.

See [1, 2, 3] for more details. From the second condition and {0} is the
unique non L-acyclic orbit we can see ker (DS1 |O) = 0 for all orbits O ̸= {0}.
Extend the complement of a neighborhood of 0 in Dε

(
C(1)

)
cylindrically so

that all the data are translationally invariant. Then we showed in [1, 2]
that for a sufficiently large t Dt is Fredholm, namely, kerDt ∩ L2 is finite
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dimensional and its super-dimension is independent of a sufficiently large t.
So we define

indS1 (M,V ;L) = kerD0
t ∩ L2 − kerD1

t ∩ L2

for a sufficiently large t. In this case, by the direct computation using the
Fourier expansion of s with respect to θ, we can show that

kerD0
t ∩ L2 ∼= C, kerD1

t ∩ L2 = 0,

and kerD0
t ∩ L2 is spanned by a certain L2-function a0(r) on Dε

(
C(1)

)
which depends only on r = |z|. Since the S1-action on kerD0

t ∩ L2 is given
by pull-back and the S1-action on the fiber is given by C(m) we obtain

indS1 (M,V ;L) = indS1

(
Dε

(
C(1)

)
, Dε

(
C(1)

)
∖ {0};Dε

(
C(1)

)
× C(m)

)
= C(−m).

For more details see [1, Remark 6.10], or [5, Section 5.3.2].

It is well-known that the lift of S1-action on M to L defines the moment
map µ : M → R by the Kostant formula

(2.1) LXs = ∇L
Xs+ 2π

√
−1µs,

where s is a section of L, X is the vector field which generates the S1-action
on (M,ω), and LXs is the Lie derivative which is defined by

LXs(x) =
d

dθ

∣∣∣
θ=0

e−2π
√
−1θs(e2π

√
−1θx).

Lemma 2.4. If an orbit O is not L-acyclic, namely, H0
(
O; (L,∇L)|O

)
̸= 0,

then, µ(O) ∈ Z.

If M is closed, then we have the following localization formula for the
equivariant Riemann-Roch index.

Corollary 2.5. Suppose M is closed. For i ∈ µ(M) ∩ Z let Vi be an S1-
invariant open neighborhood of µ−1(i) such that they are mutually disjoint,
namely, Vi ∩ Vj ̸= ∅ for all i ̸= j. Then,

(2.2) indS1 (M ;L) =
⊕

i∈µ(M)∩Z

indS1 (Vi, Vi ∩ V ;L|Vi) .

3. the setting and the main theorem

Let (M,ω) be a Hamiltonian S1-space with moment map µ : M → R. For
a real number n the cut spaceMµ≤n of (M,ω) by the symplectic cutting [4] is

the reduced space of the diagonal S1-action on (M,ω)×
(
C(1),

√
−1
2π dz ∧ dz̄

)
,

namely,

Mµ≤n =

{
(x, z) ∈ (M,ω)×

(
C(1),

√
−1

2π
dz ∧ dz̄

)∣∣∣∣µ(x) + |z|2 = n

}
/S1.

We denote the reduced space µ−1(n)/S1 by Mn.
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Proposition 3.1. (1) If S1 acts on µ−1(n) freely, then, Mµ≤n is a smooth
Hamiltonian S1-space. The S1-action is given as

(3.1) t[x, z] = [tx, z]

for t ∈ S1 and [x, z] ∈ Mµ≤n.
(2) Under the assumption in (1), the reduced space Mn and {x ∈ M | µ(x) ≤
n} are symplectically embedded into Mµ≤n by Mn ∋ [x] 7→ [x, 0] ∈ Mµ≤n

and {x ∈ M | µ(x) ≤ n} ∋ x 7→
[
x,
√

n− µ(x)
]
∈ Mµ≤n, respectively. In

particular, Mµ≤n can be identified with the disjoint union {x ∈ M | µ(x) ≤
n}
⨿

Mn and with this identification Mn is fixed by the S1-action (3.1).

Suppose that (M,ω) is equipped with a prequantum line bundle (L,∇L) →
(M,ω) and the S1-action lifts to (L,∇L) in such a way that µ satisfies the
Kostant formula (2.1).

Proposition 3.2. If n is an integer and the S1-action on µ−1(n) is free,

then Mµ≤n is prequantizable. In this case a prequantum line bundle (L,∇L)

on Mµ≤n is given by

(L,∇L) =
(
(L,∇L)⊗ C(n)

)
⊠
(
C(1) × C(0), d+

1

2
(zdz̄ − z̄dz)

) ∣∣∣
Φ−1(0)

/S1,

where Φ is the moment map Φ: M × C(1) → R associated to the lift of the

diagonal S1-action which is written as Φ(x, z) = µ(x)+ |z|2−n, and the lift

of the S1-action (3.1) on Mµ≤n to (L,∇L) is given by

(3.2) t[u⊗ v ⊠ (z, w)] = [(tu)⊗ v ⊠ (z, w)]

for t ∈ S1 and [u ⊗ v ⊠ (z, w)] ∈ L. The moment map µ : Mµ≤n → R
associated with the lift (3.2) is written as µ([x, z]) = µ(x) = n− |z|2.

See [4] for more details.

Remark 3.3. We denote the restriction of (L,∇L) to Mn by (Ln,∇Ln).
(Ln,∇Ln) is a prequantum line bundle on Mn. The S

1-action (3.2) on Ln is
given by the fiberwise multiplication with weight n. Recall that Mn is fixed
by the S1-action (3.1). See Proposition 3.1.

Suppose that n be an integer and the S1-action on µ−1(n) is free. Then,
the cut space Mµ≤n becomes a prequantizable Hamiltonian S1-manifold

and the S1-equivariant prequantum line bundle (L,∇L) is given by Propo-
sition 3.1 and Proposition 3.2.

Suppose also that µ−1(n) is compact. We take a sufficiently small S1-
invariant open neighborhood O of Mn in Mµ≤n so that the intersection
µ(O)∩Z consists of the unique point n. Then we can define the equivariant
local index indS1

(
O,O ∖Mn;L|O

)
of Mn in Mµ≤n. We give the following

formula for indS1

(
O,O ∖Mn;L|O

)
.

Theorem 3.4. Let (M,ω), (L,∇L), and µ be as above. Let n be an in-
teger. Suppose S1 acts on µ−1(n) freely and µ−1(n) is compact. Let O be
a sufficiently small S1-invariant open neighborhood of Mn in Mµ≤n which
satisfies µ(O) ∩ Z = {n}. Then, the equivariant local index is given as

indS1

(
O,O ∖Mn;L|O

)
= ind(Mn;Ln)C(n),
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where ind(Mn;Ln) is the Riemann-Roch number of Mn.

Remark 3.5. By replacing C(1) with C(−1) in the above construction we

obtain the other cut space Mµ≥n = {(x, z) ∈ M×C−1 : µ(x)−|z|2 = n}/S1.

Theorem 3.4 also holds for Mµ≥n.

The outline of the proof of Theorem 3.4. By the definition of the symplectic
cutting, the normal bundle ν of Mn in Mµ≤n is given by

ν = µ−1(N)×S1 C(1).

For a sufficiently small ε > 0 let Dε(C(1)) = {z ∈ C(1) : |z| < ε} be the

open disc of radius ε. We put Dε(ν) = µ−1(n)×S1 Dε(C(1)), and define an

S1-action on Dε(ν) by

(3.3) t[x, z] = [tx, z].

Let p : Dε(ν) → Mn be the natural projection. We define a complex line
bundle LDε(ν) on Dε(ν) by

LDε(ν) = p∗Ln ⊗
(
µ−1(n)×S1 (Dε(C(1))× C(0))

)
,

and define an lift of the S1-action (3.3) to LDε(ν) by

(3.4) t
(
([x, z], [u⊗ v])⊗ [x′, z′, w]

)
=
(
([tx, z], [(tu)⊗ v])⊗ [tx′, z′, w]

)
.

Then we can show that for a sufficiently small ε > 0 LDε(ν) on Dε(ν) is

equivariantly identified with L restricted to certain neighborhood of Mn

in Mµ≤n. By using this identification and the equivariant version of the
product formula [2, Theorem 8.8] we obtain

indS1

(
O,O ∖Mn;L|O

)
= indS1

(
Dε(ν), Dε(ν)∖Mn;LDε(ν)

)
= indS1

(
Mn;Ln ⊗ µ−1(n)×S1 indS1(Dε(C(1)), Dε(C(1))∖ {0};Dε(C(1))× C(0))

)
.

Note that the product formula for the S1-equivariant local index holds since
the S1-action preserves all the data. See [3, Section 6.2] for more details.
From Example 2.3 the equivariant local index indS1(Dε(C(1)), Dε(C(1)) ∖
{0};Dε(C(1))×C(0)) is equal to C(0). By definition, Ln is naturally identified

with the restriction of L to Mn. With this identification we can see that the
restriction of the S1-action (3.2) to Ln → Mn is nothing but the fiberwise
multiplication of t−n. Since the S1-action on indS1(Mn;Ln) is defined by
the pull-back, the S1-action on indS1(Mn;Ln) is given by the multiplication
of tn as we mentioned in Remark 3.3. This proves the theorem. □
Example 3.6 (Complex projective space). As (L,∇) → (M,ω) we adopt(
(C(1))

m × C(0), d+
1

2

m∑
i=1

(zidz̄i − z̄idzi)

)
→

(
(C(1))

m,

√
−1

2π

m∑
i=1

dzi ∧ dz̄i

)
.

For n = 1 the obtained Mµ≤n, L, and Mn are CPm, O(1), and CPm−1,
respectively. The induced S1-actions on CPm and O(1) are given by

t[z0 : z1 : · · · : zm] = [z0 : tz1 : · · · : tzm],

t[z0 : z1 : · · · : zm, w] = [z0 : tz1 : · · · : tzm, w].
(3.5)
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The moment map µ associated to the S1-action (3.5) is given by µ([z0 :
· · · : zm]) =

∑m
i=1|zi|2. For k = 0, 1 let Ok be a sufficient small S1-

invariant open neighborhood of µ−1(k). Then the equivariant local index
indS1

(
Ok, Ok ∖ µ−1(k);L|Ok

)
is defined and By Corollary 2.2 the equivari-

ant Riemann-Roch index indS1

(
Mµ≤n, L

)
satisfies following equality

indS1

(
Mµ≤n, L

)
= indS1

(
O0, O0 ∖ µ−1(0);L|O0

)
+ indS1

(
O1, O1 ∖ µ−1(1);L|O1

)
.

(3.6)

The left hand side is computed as

(3.7) indS1

(
Mµ≤n, L

)
= indS1 (CPm,O(1)) = C(0) ⊕mC(1).

For k = 1, since µ−1(1) = Mn, by Theorem 3.4 indS1

(
O1, O1 ∖ µ−1(1);L|O1

)
is given as

indS1

(
O1, O1 ∖ µ−1(1);L|O1

)
= indS1

(
O1, O1 ∖Mn;L|O1

)
= ind(CPm−1;O(1))C(1)

= mC(1).

(3.8)

For k = 0, it is easy to see that µ−1(0) = {[z0 : 0 : · · · : 0]} and

(L,∇L)|[z0:0:···:0] ∼= (C(0), d + 1
2(z̄dz − zdz̄)). We can take O0 in such a way

that O0 is identified with a sufficiently small open disc D = {(z1, . . . , zm) ∈
Cm :

∑m
i=1|zi|2 ≤ ε} with S1-action t(z1, . . . , zm) = (tz1, . . . , tzm). Then,

by (3.6), (3.7), and (3.8) we obtain the following formula

indS1 (D,D ∖ {0};D × C0) = C(0).

In the case of m = 1 this formula can be obtained in [1, Remark 6.10] and
[5, Section 5.3.2].

Example 3.7 (Exceptional divisor). Let n and (L,∇) → (M,ω) be as

in Example 3.6. Then the obtained cut space Mµ≥n is the blow-up C̃m

of the origin in Cm, and Mn and Ln are the exceptional divisor CPm−1

and O(n), respectively. We take a sufficiently small invariant open neigh-
borhood O of Mn. Then, by Theorem 3.4 the equivariant local index
indS1

(
O,O ∖Mn;L|O

)
is given by

indS1

(
O,O ∖Mn;L|O

)
= ind

(
CPm−1;O(n)

)
C(n) =

(
m− 1 + n

m− 1

)
C(n).
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