Perfect Bott-Morse Function on Polygon Space

Takahiko Yoshida

Abstract

Let M_{n} be the moduli space of spatial polygons with n-edges. There is a function f_{1} on M_{n} which associates a square of the norm of the j-th diagonal $\left\|a_{1}+\cdots+a_{j+1}\right\|^{2}$ to $P=\left(a_{1}, \ldots, a_{n}\right) \in M_{n}$. In this paper, we show that f_{1} is a perfect Bott-Morse function. We use this function to give the simple geometric computation for Betti numbers.

1 Introduction

Let $M_{n}(n \geq 3)$ be the moduli space of spatial polygons with n-edges defined by

$$
M_{n}=\left\{P=\left(a_{1}, \cdots, a_{n}\right) \in\left(S^{2}\right)^{n} \mid a_{1}+\cdots+a_{n}=0\right\} / S O(3)
$$

where $S O(3)$ acts on $\left(S^{2}\right)^{n}$ diagonally. If n is odd, the space M_{n} is a $(2 n-6)$ dimensional smooth symplectic manifold. For $j=1, \ldots, n-3$, there is a function l_{j} on M_{n} which is defined by

$$
\begin{equation*}
l_{j}(P)=\left\|a_{1}+\cdots+a_{j+1}\right\| \tag{1.1}
\end{equation*}
$$

i.e. the norm of the j-th diagonal for $P \in M_{n}$. Since the function l_{j} is not smooth at points $P \in l_{j}^{-1}(0)$, the Hamiltonian flow of l_{j} is defined only on the open dense set

$$
\begin{equation*}
U_{j}=\left\{P=\left(a_{1}, \cdots, a_{n}\right) \in M_{n} \mid a_{1}+\cdots+a_{j+1} \neq 0\right\} \tag{1.2}
\end{equation*}
$$

In [7], Kapovich-Millson showed that each of these Hamiltonian flows induces the circle action on U_{j}, thus the function $\left.l_{j}\right|_{U_{j}}$ is a moment map of this action. In [4], it is known that if a circle acts globally on a symplectic manifold in a Hamiltonian fashion, then a moment map of this action is a perfect Bott-Morse function. In the above case, these Hamiltonian circle actions are defined only on the open dense sets of M_{n}. Now we have one natural question: Can we think l_{j} is a perfect Bott-Morse function? Since l_{j} is smooth only on the open dense set, it is not a Bott-Morse function. But

[^0]the caution why l_{j} is not smooth at points $P \in l_{j}^{-1}(0)$ is that we take the norm of the diagonal, i.e. we take a square root! Instead of l_{j}, considering the new function f_{j} on $M_{n}(j=1, \ldots, n-3)$, which is defined by
$$
f_{j}(P)=\left(l_{j}(P)\right)^{2}=\left\|a_{1}+\cdots+a_{j+1}\right\|^{2}
$$
for $P \in M_{n}$, we can obtain the following result.
Theorem 1.1 The function f_{1}, f_{n-3} are perfect Bott-Morse functions.
In contrast to f_{1} and f_{n-3}, this is false for $j=2, \ldots, n-4$, as described in Remark 2.6.

If a n-dimensional torus T^{n} acts effectively on a $2 n$-dimensional symplectic manifold $\left(M^{2 n}, \omega\right)$ in a Hamiltonian fashion, $\left(M^{2 n}, \omega\right)$ is equivariantly symplectomorphic to a toric variety [3]. A toric variety has been studied by many people and many important results are obtained, for example [1], [5]. In this paper, we call $\left(M^{2 n}, \omega\right)$ a symplectic toric manifold. In our case, it was also shown in [7] that the Hamiltonian flows of all l_{j} commute each other, hence there is an effective T^{n}-action on $U=\cap_{j=1}^{n-3} U_{j}$ with $\vec{l}=\left(l_{1}, \ldots, l_{n-3}\right): U \rightarrow \mathbb{R}^{n-3}$ as a moment map. Then the polygon space M_{n} has an 'almost' symplectic toric structure. As Jeffrey-Weitsman showed in [6], there is an 'almost' symplectic toric structure on the moduli space of flat connections on a Riemann surface, too. We want to know the differences between a symplectic toric and an 'almost' symplectic toric manifold. It's the first and the most important motivation.

This paper is organized as follows. In the next section, we recall KapovichMillson's results about the polygon space, the functions l_{j} for $j=1, \ldots, n-3$ on M_{n}, and its Hamiltonian flows. Then we use these results to compute Betti numbers of M_{n}. Section 3 is devoted to prove Theorem 1.1.

Unless otherwise specified, all cohomologies are with rational coefficients.

2 Polygon Space

2.1 Polygon Space and Bending Flow

In this subsection, we recall the basic facts about the polygon space and the bending flow in [7].

Let $\left(\left(S^{2}\right)^{n}, v o l\right)$ be the 2-dimensional sphere with the $S O(3)$-invariant volume form on S^{2} with the volume equal to 4π. For n-tuple of integral numbers $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N}^{n}$, we give the n-products of 2 -sphere $\left(S^{2}\right)^{n}$ the symplectic form $\omega=\sum_{j=1}^{n} p_{j}{ }^{*} r_{j}$ vol, where $p_{j}:\left(S^{2}\right)^{n} \rightarrow S^{2}$ is the j th projection. $S O(3)$ acts diagonally on $\left(\left(S^{2}\right)^{n}, \omega\right)$ with the moment map $\mu_{n, r}:\left(S^{2}\right)^{n} \rightarrow \mathfrak{s u}(3)^{*} \cong \mathbb{R}^{3}$ is defined by

$$
\mu_{n, r}(P)=\sum_{j=1}^{n} r_{j} a_{j}
$$

for $P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}$. The moduli space $M_{n}\left(r_{1}, \ldots, r_{n}\right)$ of polygons with edge lengths $r=\left(r_{1}, \ldots, r_{n}\right)$ is defined by the symplectic quotient

$$
\begin{equation*}
M_{n}\left(r_{1}, \ldots, r_{n}\right)=\mu_{n, r}^{-1}(0) / S O(3) \tag{2.1}
\end{equation*}
$$

The critical points $P=\left(a_{1}, \ldots, a_{n}\right)$ of $\mu_{n, r}$ is the points P such that all a_{j} lie on a same line in \mathbb{R}^{3} through 0 . Such points exist if and only if $r=\left(r_{1}, \ldots, r_{n}\right)$ satisfies the following condition
"There exists a subset $I \subset\{1, \ldots, n\}$ such that $\sum_{i \in I} r_{i}-\sum_{j \in I^{c}} r_{j}=0$."
If the edge lengths $r=\left(r_{1}, \ldots, r_{n}\right)$ equal to $(1, \ldots, 1)$, critical points do not consist in the level set $\mu_{n}^{-1}(0)$ of the moment map $\mu_{n}=\mu_{n,(1, \ldots, 1)}$ for n odd $n \geq 3$. Hence $M_{n}=M_{n}(1, \ldots, 1)$ is a smooth $(2 n-6)$-dimensional symplectic manifold. Moreover, in [7], M_{n} has a Kähler structure as follows. The tangent space at $P=\left(a_{1}, \ldots, a_{n}\right) \in M_{n}$ consists of the set of vectors $v_{i} \in \mathbb{R}^{3}$ for $i=1, \ldots, n$ under the following conditions

$$
\left\{\begin{array}{l}
\cdot\left\langle a_{i}, v_{i}\right\rangle=0 \text { for } i=1, \ldots, n \tag{2.2}\\
\cdot v_{1}+\cdots+v_{n}=0 \\
\cdot \sum_{i=1}^{n} v_{i} \times a_{i}=0
\end{array}\right.
$$

where $\langle\rangle,, \times$ are the inner product, the vector product in \mathbb{R}^{3}, respectively. Then the symplectic form ω, the complex structure J, and the Riemann metric g are defined by the formula

$$
\begin{aligned}
& \cdot \omega(u, v)=\sum_{i=1}^{n}\left\langle u_{i} \times v_{i}, a_{i}\right\rangle \\
& \cdot J: v=\left(v_{1}, \ldots, v_{n}\right) \mapsto\left(a_{1} \times v_{1}, \ldots, a_{n} \times v_{n}\right) \\
& \cdot g(u, v)=\sum_{i=1}^{n}\left\langle u_{i}, v_{i}\right\rangle
\end{aligned}
$$

for $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in T_{P} M_{n}$.
In the following, we shall assume n is odd and $n \geq 3$, i.e. M_{n} is a smooth manifold.

In [7], Kapovich-Millson discovered a symplectic toric structure on an open dense set of M_{n} as follows. For $j=1, \ldots, n-3$, the function l_{j} on M_{n} is defined in (1.1). Since l_{j} is not smooth at points $P \in l_{j}{ }^{-1}(0)$, the Hamiltonian flow φ_{j}^{t} of l_{j} is defined only on the open dense set U_{j} (for the definition of U_{j}, see (1.2)). The flow φ_{j}^{t} induces the circle action on U_{j} with the following geometric description. If $P \in U_{j}$, the j-th diagonal $a_{1}+\cdots+$ a_{j+1} divides the polygon P into two pieces. The first piece has a_{1}, \ldots, a_{j+1}, and $a_{1}+\cdots a_{j+1}$ as edges, and vectors a_{j+2}, \ldots, a_{n}, and $a_{1}+\cdots a_{j+1}$ are the
edges of the second piece. φ_{j}^{t} keeps the second piece and rotates the first piece around the j-th diagonal with the angular velocity equal to 2π. In [7], these flows φ_{j}^{t} are called bending flows. It is easy to see that bending flows commute each other, then there is a symplectic toric structure on $U=\cap_{j=1}^{n-3} U_{j}$. But these flows do not extend globally on M_{n}.

2.2 Bott-Morse Theory on M_{n}

In this subsection, we give a short review of Bott-Morse theory. For more details, see [1], [9]. Let M be a compact manifold. A smooth function $f: M \rightarrow \mathbb{R}$ is called a Bott-Morse function if its critical point set is a finitely disjoint union of connected submanifolds called critical manifolds, and the Hessian of f is nondegenerate (fibrewisely) on the normal bundle of critical manifolds. An index $\lambda(C)$ of the critical manifold C is the dimension of the negative eigenspace of the Hessian of f on the normal bundle of C.

For a Bott-Morse function f, the famous Morse inequalities holds as follows. For a manifold M, let $P_{t}(M)$ be the Poincaré series defined by

$$
P_{t}(M)=\sum_{j \geq 0} t^{j} \cdot \operatorname{dim}^{j}(M ; \mathbb{Q})
$$

Then Morse inequalities say that

$$
\sum_{C} t^{\lambda(C)} P_{t}(C)-P_{t}(M)=(1+t) R(t)
$$

where $R(t)$ is a series with non negative integer coefficients and the sum runs over all critical manifolds. A Bott-Morse function f is called perfect if Morse inequalities are equalities, that is

$$
\begin{equation*}
P_{t}(M)=\sum_{C} t^{\lambda(C)} P_{t}(C) \tag{2.3}
\end{equation*}
$$

In our case, to see the meaning of Theorem 1.1 concretely, let us compute Morse equalities (2.3).

Lemma $2.1 f_{1}$ has the following three kinds of critical manifolds.
(i) The S^{2} bundle E_{n-2} on M_{n-2} defined by

$$
E_{n-2}=\mu_{n-2}^{-1}(0) \times_{S O(3)} S^{2} \longrightarrow M_{n-2}
$$

The index of E_{n-2} is 0.
(ii) The polygon space $M_{n-1}(2,1, \ldots, 1)$ defined in (2.1). The index of $M_{n-1}(2,1, \ldots, 1)$ is 2.
(iii) Polygons $P=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{k}= \pm\left(a_{1}+a_{2}\right)$ for $k=3, \ldots, n$. The all indices of these polygons are $n-3$.

Proof. The S^{2} bundle E_{n-2} corresponds to the critical manifold for the minimum value. Since 0 is the minimum value of f_{1}, the level set of 0
$f_{1}^{-1}(0)=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n} \mid a_{1}+\cdots+a_{n}=0, a_{1}+a_{2}=0\right\} / S O(3)$
is the critical manifold. It is easy to see that $f_{1}^{-1}(0)$ is diffeomorphic to E_{n-2}. This fibre bundle has the section $s: M_{n-2} \rightarrow E_{n-2}$ which is defined by

$$
s(P)=\left[a_{3},\left(a_{3}, \ldots, a_{n}\right)\right]
$$

for $P=\left(a_{3}, \ldots, a_{n}\right) \in M_{n-2}$. Hence the Euler class vanishes and by LerayHirsh's Theorem (see [2]), the following equality holds

$$
\mathrm{H}^{*}\left(E_{n-2}\right)=\oplus \mathrm{H}^{*}\left(M_{n-2}\right) \otimes \mathrm{H}^{*}\left(S^{2}\right)
$$

Since 0 is the minimum value, the index of $f_{1}^{-1}(0)$ is 0 .
Similarly the polygon space $M_{n-1}(2,1, \ldots, 1)$ corresponds to the critical manifold for the maximum value 4 . The level set

$$
f_{1}^{-1}(4)=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n} \mid a_{1}+\cdots+a_{n}=0, a_{1}=a_{2}\right\} / S O(3)
$$

is naturally identified with $M_{n-2}(2,1, \ldots, 1)$. The index of $f_{1}^{-1}(4)$ is equal to the codimension of $f_{1}^{-1}(4)$, which is 2 .

Are there another critical manifolds? In $f_{1}^{-1}((0,4))$, the critical points of $\left.f_{1}\right|_{f_{1}^{-1}((0,4))}$ coincide with those of $\left.l_{1}\right|_{f_{1}^{-1}((0,4))}$. Since $\left.l_{1}\right|_{U_{1}}$ is a moment map, critical points of $\left.l_{1}\right|_{f_{1}^{-1}((0,4))}$ are equal to the fixed points of the bending flow of l_{1}. It is easy to see that the fixed points in $f_{1}^{-1}((0,4))$ correspond to the degenerate polygons $P=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{k}= \pm\left(a_{1}+a_{2}\right)$ for $k \geq 2$. Let I^{+}, I^{-}be the subset in $\{3,4, \ldots, n\}$ defined by

$$
\begin{aligned}
& I^{+}=\left\{i \mid a_{i}=a_{1}+a_{2}\right\} \\
& I^{-}=\left\{j \mid a_{j}=-\left(a_{1}+a_{2}\right)\right\}
\end{aligned}
$$

Since polygons are closed, i.e. $a_{1}+\cdots+a_{n}=0$, the cardinaries of I^{+}, I^{-}are equal to $\frac{n-3}{2}, \frac{n-1}{2}$, respectively. Hence there are exactly $\binom{n-2}{\frac{n-3}{2}}$ such polygons.

Now we find out these indices. Let $P=\left(a_{1}, \ldots, a_{n}\right)$ be the polygon corresponding to the fixed point. Then the bending flow φ_{1}^{t} of l_{1} induces the infinitesimal action $d_{P} \varphi_{1}^{t}$ on the tangent space $T_{P} M_{n}$ at P. By [9], the index of P is equal to twice the numbers of negative weights of this action. To see the index of these fixed points, it is sufficient to identify the index of the following polygons $P=\left(a_{1}, \ldots, a_{n}\right)$, where $a_{1}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$, $a_{2}=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}, 0\right), a_{i}=(1,0,0)$ for $i \in I^{+}$, and $a_{j}=(-1,0,0)$ for $j \in I^{-}$. From (2.2), all vectors v_{i} for $i \in I^{+}$and any $\frac{n-3}{2}$ vectors in v_{j} for $j \in I^{-}$ form the basis of $T_{P} M_{n}$ as a complex vector space. In these coordinates
$v_{k}, d_{P} \varphi_{1}^{t}$ acts diagonally on $T_{P} M_{n} \cong \mathbb{C}^{n-3}$ for $t \in S^{1}$, and $d_{P} \varphi_{1}^{t}$ sends v_{k} to $e^{\mp t i} v_{k}$, where the sign - or + is taken according to $k \in I^{+}$or $k \in I^{-}$, respectively. Then the number of the negative weights are equal to $\frac{n-3}{2}$. Thus the index of P is $n-3$.

Corollary 2.2 The critical manifold $f_{1}^{-1}(0) \cong E_{n-2} \subset M_{n}$ is a coisotropic submanifold of codimension equal to 2. The symplectic form ω vanishes along the fibre of E_{n-2}. For the special case of $n=5, f_{1}^{-1}(0) \cong S^{2}$ is a Lagrangian submanifold.

From the above argument, we can compute Morse inequalities (2.3).
Corollary 2.3 The Poincaré series of M_{n} satisfies the following relation.

$$
P_{t}\left(M_{n}\right)=\left(1+t^{2}\right) P_{t}\left(M_{n-2}\right)+\binom{n-2}{\frac{n-3}{2}} t^{n-3}+t^{2} P_{t}\left(M_{n-1}(2,1, \ldots, 1)\right)
$$

Example 2.4 (1) For $n=5$, we have

$$
P_{t}\left(M_{5}\right)=\left(1+t^{2}\right) P_{t}\left(M_{3}\right)+3 t^{2}+t^{2} P_{t}\left(M_{4}(2,1, \ldots, 1)\right)
$$

But it is easy to see that $M_{3}=\{1$-point $\}$ and $M_{4}(2,1, \ldots, 1)$ is biholomorphic to $\mathbb{C} P^{1}$. Then we have

$$
\begin{aligned}
P_{t}\left(M_{5}\right) & =1+t^{2}+3 t^{2}+t^{2}\left(1+t^{2}\right) \\
& =1+5 t^{2}+t^{4}
\end{aligned}
$$

(2) For $n=7$, we have

$$
P_{t}\left(M_{7}\right)=\left(1+t^{2}\right) P_{t}\left(M_{5}\right)+10 t^{4}+t^{2} P_{t}\left(M_{6}(2,1, \ldots, 1)\right)
$$

We must calculate the Poincaré series $P_{t}\left(M_{6}(2,1, \ldots, 1)\right)$ of $M_{6}(2,1, \ldots, 1)$. Consider the function f on $M_{6}(2,1, \ldots, 1)$ defined by

$$
f(P)=\left\|2 a_{1}+a_{2}\right\|
$$

for $P \in M_{6}(2,1, \ldots, 1)$. In this case, f is smooth totally on $M_{6}(2,1, \ldots, 1)$ and its Hamiltonian flow induces the bending flow on $M_{6}(2,1, \ldots, 1)$ as in the case of M_{n} (see [7]). Thus f is a moment map of the bending flow, that is a perfect Bott-Morse function. Morse inequalities (2.3) for f hold

$$
P_{t}\left(M_{6}(2,1, \ldots, 1)\right)=P_{t}\left(M_{5}\right)+4 t^{4}+t^{2} P_{t}\left(M_{5}(3,1, \ldots, 1)\right)
$$

Repeating the same argument for $M_{5}(3,1, \ldots, 1)$, we have

$$
P_{t}\left(M_{5}(3,1, \ldots, 1)\right)=1+t^{2}+t^{4}
$$

Then we have the following formula

$$
\begin{gathered}
P_{t}\left(M_{6}(2,1, \ldots, 1)\right)=1+5 t^{2}+t^{4}+4 t^{4}+t^{2}\left(1+t^{2}+t^{4}\right) \\
=1+6 t^{2}+6 t^{4}+t^{6}
\end{gathered} \begin{gathered}
P_{t}\left(M_{7}\right)=\left(1+t^{2}\right)\left(1+5 t^{2}+t^{4}\right)+10 t^{4} \\
\left.+t^{2}\left(1+6 t^{2}+6 t^{4}+t^{6}\right)\right) \\
=1+7 t^{2}+22 t^{4}+7 t^{6}+t^{8}
\end{gathered}
$$

For generally n, to calculate $P_{t}\left(M_{n}\right)$, we need to know the Poincaré series of the polygon space $M_{n}(n-2 k, 1, \ldots, 1)$ for $k=1, \ldots, \frac{n-2}{2}$. Let f_{k} be the function on $M_{n}(n-2 k, 1, \ldots, 1)$ for $k=1, \ldots, \frac{n-2}{2}$, which is defined by

$$
f_{k}(P)=\left\|(n-2 k) a_{1}+a_{2}\right\|
$$

for $P \in M_{n}(n-2 k, 1, \ldots, 1)$. Using the same argument for the function f_{k} on $M_{n}(n-2 k, 1, \ldots, 1)$, we obtain

$$
\begin{aligned}
P_{t}\left(M_{n}(n-2 k, 1, \ldots, 1)\right)=P_{t}\left(M_{n-1}\right. & (n-1-2 k, 1, \ldots, 1)) \\
+ & \binom{n-2}{k-1} t^{2 n-2 k-4} \\
& +t^{2} P_{t}\left(M_{n-1}(n+1-2 k, 1, \ldots, 1)\right.
\end{aligned}
$$

for $k=2, \ldots, \frac{n-2}{2}$, and

$$
\begin{aligned}
P_{t}\left(M_{n}(n-2,1, \ldots, 1)\right)= & P_{t}\left(M_{n-1}(n-3,1, \ldots, 1)\right) \\
& +t^{2 n-6} P_{t}\left(M_{3}(n-2,1, n-2)\right)
\end{aligned}
$$

for $k=1$. From the above formulae, we can calculate the Poincaré series $P_{t}\left(M_{n}(n-2 k, 1, \ldots, 1)\right)$ of $M_{n}(n-2 k, 1, \ldots, 1)$ by the induction.

Lemma 2.5 For $k=1, \ldots, \frac{n-2}{2}$, the Poincaré series $P_{t}\left(M_{n}(n-2 k, 1, \ldots, 1)\right)$ is given by the formula

$$
\begin{aligned}
& P_{t}\left(M_{n}(n-2 k, 1, \ldots, 1)\right) \\
& =\sum_{j=0}^{k-1}\left\{1+\binom{n-1}{1}+\cdots+\binom{n-1}{j}\right\}\left(t^{2 j}+t^{2 n-6-2 j}\right) \\
& \quad+\left\{1+\binom{n-1}{1}+\cdots+\binom{n-1}{k-1}\right\} \sum_{j=k}^{n-3-k} t^{2 j}
\end{aligned}
$$

From Corollary 2.3 and Lemma 2.5, we can get the Poincaré series of M_{n}.

Corollary 2.6 The Poincaré series $P_{t}\left(M_{n}\right)$ of M_{n} satisfies the following formula

$$
\begin{aligned}
& P_{t}\left(M_{n}\right)=1+\left\{1+\binom{n-1}{1}\right\} t^{2} \\
& \vdots \\
&+\left\{1+\binom{n-1}{1}+\binom{n-1}{2}+\cdots+\binom{n-1}{\frac{n-5}{2}}\right\} t^{n-5} \\
&+\left\{1+\binom{n-1}{1}+\binom{n-1}{2}+\cdots+\binom{n-1}{\frac{n-3}{2}}\right\} t^{n-3} \\
&+\left\{1+\binom{n-1}{1}+\binom{n-1}{2}+\cdots+\binom{n-1}{\frac{n-5}{2}}\right\} t^{n-1} \\
& \vdots \\
&+\left\{1+\binom{n-1}{1}\right\} t^{2 n-8}+t^{2 n-6} .
\end{aligned}
$$

Remark 2.7 (1) The Poincaré series of the polygon space M_{n} for odd $n \geq 3$ were first calculated by Kirwan in [8].
(2) In contrast to f_{1}, f_{n-3}, the function f_{j} is not a Bott-Morse function for $j=2, \ldots, n-4$. In fact, the level set of the minimum value 0 is identified with the bundle $\mu_{j+1}^{-1}(0) \times{ }_{S O(3)} \mu_{n-j-1}^{-1}(0)$. Since either $j+1$ or $n-j-1$ is even, $f_{j}^{-1}(0)$ has a singular point.

If M_{n} is a symplectic toric manifold, all f_{j} are perfect Bott-Morse functions, and all critical manifolds are symplectic submanifolds. Corollary 2.2 and the above observation represent the difference between a symplectic toric and an 'almost' symplectic toric manifolds.

3 The proof of Theorem

The proof of Theorem 1.1 consists of 2 steps. First we shall prove that f_{1}, f_{n-3} are Bott-Morse functions in Lemma 3.1, then that they are perfect in Lemma 3.4. Though we prove Theorem 1.1 only for f_{1}, the proof for f_{n-3} is similar to the case of f_{1}.

Lemma $3.1 f_{1}$ is a Bott-Morse function.
Since $\left.l_{1}\right|_{U_{1}}: U_{1} \rightarrow \mathbb{R}$ is a moment map, $\left.l_{1}\right|_{U_{1}}$ is a Bott-Morse function. So is $\left.f_{1}\right|_{U_{1}}: U_{1} \rightarrow \mathbb{R}$. Then it is sufficient to show that the Hessian of f_{1} is nondegenerate fibrewisely on the normal bundle of $f_{1}^{-1}(0)$. The following Lemma describes the behavior of f_{1} on the neighborhood of $f_{1}^{-1}(0)$.

Lemma 3.2 There is a diffeomorphism from a neighborhood of $f_{1}^{-1}(0) \subset$ M_{n} to that of $\left(\operatorname{graph}(-i d) \times \mu_{n-2}^{-1}(0)\right) / S O(3) \subset\left(S^{2} \times S^{2} \times \mu_{n-2}^{-1}(0)\right) / S O(3)$,
where $S O(3)$ acts diagonally on $S^{2} \times S^{2} \times \mu_{n-2}^{-1}(0)$, and $\operatorname{graph}(-i d)$ is the graph of the involution $-i d: S^{2} \rightarrow S^{2}$, associating the antipodal point $-a$ to $a \in S^{2}$. Under this diffeomorphism, f_{1} is identified with the function $\left(S^{2} \times\right.$ $\left.S^{2} \times \mu_{n-2}^{-1}(0)\right) / S O(3) \rightarrow \mathbb{R}$ by taking the norm $\left\|a_{1}+a_{2}\right\|^{2}$ to $\left[a_{1}, a_{2}, P\right] \in$ $\left(S^{2} \times S^{2} \times \mu_{n-2}^{-1}(0)\right) / S O(3)$.

We define the function $\widetilde{f}_{1}: \mu_{n}^{-1}(0) \rightarrow \mathbb{R}$ by

$$
\widetilde{f}_{1}(P)=\left\|a_{1}+a_{2}\right\|^{2}
$$

for $P \in \mu_{n}^{-1}(0)$. To prove Lemma 3.2, we need the following Lemma.
Lemma 3.3 The map $\psi: \mu_{n}^{-1}(0) \rightarrow S^{2} \times S^{2}$ taking the first two factors of $\mu_{n}^{-1}(0) \subset\left(S^{2}\right)^{n}$ is a submersion at points in $\widetilde{f}_{1}^{-1}(0)$, i.e. the differential of ψ at $P \in \widetilde{f}_{1}^{-1}(0)$ is surjective.

Proof. From the definition of μ_{n}, it is clear that

$$
\begin{aligned}
d_{P} \mu_{n} & =d_{\left(a_{1}, a_{2}\right)} \mu_{2}+d_{\left(a_{3}, \ldots, a_{n}\right)} \mu_{n-2} \\
& : T_{P}\left(S^{2}\right)^{n}=T_{\left(a_{1}, a_{2}\right)}\left(S^{2}\right)^{2} \times T_{\left(a_{3}, \ldots, a_{n}\right)}\left(S^{2}\right)^{n-2} \longrightarrow \mathbb{R}^{3}
\end{aligned}
$$

for $P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}$. If P is in $\tilde{f}_{1}^{-1}(0), d_{\left(a_{3}, \ldots, a_{n}\right)} \mu_{n-2}$ is surjective. Then, for arbitrary $\left(\xi_{1}, \xi_{2}\right) \in T_{\left(a_{1}, a_{2}\right)}\left(S^{2}\right)^{2}$, there exists $\left(\xi_{3}, \ldots, \xi_{n}\right) \in$ $T_{\left(a_{3}, \ldots, a_{n}\right)}\left(S^{2}\right)^{n-2}$ such that $d_{\left(a_{3}, \ldots, a_{n}\right)} \mu_{n-2}\left(\xi_{3}, \ldots, \xi_{n}\right)=-d_{\left(a_{1}, a_{2}\right)} \mu_{2}\left(\xi_{1}, \xi_{2}\right)$. This implies $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \operatorname{ker} d_{P} \mu_{n}=T_{P} \mu_{n}^{-1}(0)$.

Proof of Lemma 3.2. It is clear that there is a natural $S O(3)$ equivariant diffeomorphism from $\widetilde{f}_{1}^{-1}(0)$ to $\operatorname{graph}(-i d) \times \mu_{n-2}^{-1}(0)$. We want to extend this diffeomorphism $S O(3)$ equivariantly to a neighborhood of $\tilde{f}_{1}^{-1}(0)$ and that of $\operatorname{graph}(-i d) \times \mu_{n-2}^{-1}(0)$. But from Lemma 3.3, it is easy to see that the map ψ induces the isomorphism between the normal bundle of ${\widetilde{f_{1}}}^{-1}(0) \subset \mu_{n}^{-1}(0)$ and that of $\operatorname{graph}(-i d) \times \mu_{n-2}^{-1}(0) \subset S^{2} \times S^{2} \times \mu_{n-2}^{-1}(0)$. Then using the equivariant tubular neighborhood Theorem [1], we can obtain the diffeomorphism we need in this Lemma.

Proof of Lemma 3.1. Locally f_{1} is identified with the function $f: S^{2} \times$ $S^{2} \rightarrow \mathbb{R}$ defined by $f\left(a_{1}, a_{2}\right)=\left\|a_{1}+a_{2}\right\|^{2}$. But it is easy to see that the Hessian of f is nondegenerate on the normal bundle of graph $(-i d) \subset S^{2} \times S^{2}$. This proves Lemma 3.1.

It remains to show that f_{1} is perfect.
Lemma 3.4 f_{1} is perfect.

Proof. Let $\phi=V_{0} \subset V_{1} \subset V_{2} \subset V_{3}=M_{n}$ be the filtration of M_{n} by the open sets V_{j}, which are defined by

$$
\begin{aligned}
& V_{0}=f_{1}^{-1}\left(\left(-\frac{1}{2},-\frac{1}{2}\right)\right), V_{1}=f_{1}^{-1}\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right), V_{2}=f_{1}^{-1}\left(\left(-\frac{1}{2}, 2\right)\right), \\
& \text { and } V_{3}=f_{1}^{-1}\left(\left(-\frac{1}{2}, 5\right)\right) .
\end{aligned}
$$

This filtration induces the filtration of the cochain complex of M_{n}
$\{0\}=C^{*}\left(M_{n}, V_{3}\right) \stackrel{\pi}{\hookrightarrow} C^{*}\left(M_{n}, V_{2}\right) \stackrel{\pi}{\hookrightarrow} C^{*}\left(M_{n}, V_{1}\right) \stackrel{\pi}{\hookrightarrow} C^{*}\left(M_{n}, V_{0}\right)=C^{*}\left(M_{n}\right)$.
Consider the spectral sequence of this filtered complex. As described in [2], there is a short exact sequence

$$
0 \rightarrow \oplus_{j} C^{*}\left(M_{n}, V_{j}\right) \xrightarrow{\pi} \oplus_{j} C^{*}\left(M_{n}, V_{j}\right) \rightarrow \oplus_{j} C^{*}\left(V_{j}, V_{j-1}\right) \rightarrow 0 .
$$

This leads to an exact couple

$$
\begin{gathered}
\oplus_{j} \mathrm{H}^{*}\left(M_{n}, V_{j}\right) \rightarrow \oplus_{j} \mathrm{H}^{*}\left(M_{n}, V_{j}\right) \\
\overleftarrow{\swarrow} \\
\oplus_{j} \mathrm{H}^{*}\left(V_{j}, V_{j-1}\right),
\end{gathered}
$$

whose derived couples abut to $\mathrm{H}^{*}\left(M_{n}\right)$. On the other hand, using the Morse lemma and the Thom isomorphism theorem, the following isomorphism holds

$$
\mathrm{H}^{*}\left(V_{j}, V_{j-1}\right) \cong \mathrm{H}^{*-\lambda\left(C_{j}\right)}\left(C_{j}\right),
$$

where C_{j} is the critical manifold contained in $V_{j} \backslash V_{j-1}$. This implies that the spectral sequence of this filtered complex has $\oplus_{j} \mathrm{H}^{*}\left(C_{j}\right)$ as E_{1}-term.

To prove Lemma 3.4, we need to show that all the differentials d_{r} of this spectral sequence are vanished. Since there are only three non zero terms in the cochain filtration, only the first two differentials d_{1} and d_{2} can possibly be zero. By the definition, the first differential d_{1} is the direct sum of maps $\mathrm{H}^{*}\left(C_{j}\right) \rightarrow \mathrm{H}^{*}\left(C_{j+1}\right)$ induced by the upper part of the following diagram.

$$
\begin{array}{cc}
\mathrm{H}^{k}\left(C_{j}\right) \\
\underbrace{\prime} \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)}\left(V_{j}, V_{j-1}\right) & \\
\substack{\downarrow \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)+1}\left(M_{n}, V_{j+1}\right) \rightarrow \\
\downarrow \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)+1}\left(M_{n}, V_{j}\right)} & \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)+1}\left(V_{j+2}, V_{j+1}\right) \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)+1}\left(V_{j+1}, V_{j}\right) \\
\mathrm{H}^{k+\lambda\left(C_{j}\right)+1-\lambda\left(C_{j+2}\right)}\left(C_{j+2}\right) & \mathrm{H}^{k+\lambda\left(C_{j}\right)+1-\lambda\left(C_{j+1}\right)}\left(C_{j+1}\right)
\end{array}
$$

Here all maps are induced by inclusions, except the diagonal arrows, which are Thom isomorphisms.

An element of $\mathrm{H}^{*}\left(C_{j}\right)$ is in the kernel of the first differential if only if it maps to $0 \in \mathrm{H}^{*}\left(V_{j+1}, V_{j}\right)$. By the exactness of the middle arrows, it comes from some element of $\mathrm{H}^{*}\left(M_{n}, V_{j+1}\right)$, and its image in $\mathrm{H}^{*}\left(C_{j+2}\right)$ is the value of the second differential.

Since we showed in Lemma 2.1 that all the indices $\lambda\left(C_{j}\right)$ are even, from the above diagram, d_{1} and d_{2} send the odd (resp. even) dimensional cohomology classes to the even (resp. odd) dimensional cohomology classes. But in $[8]$, it has shown that the odd degree cohomologies $\mathrm{H}^{\text {odd }}$ of the polygon spaces M_{n} and $M_{n-1}(2,1, \ldots, 1)$ vanish. This implies that d_{1} and d_{2} are vanishing.

References

[1] M. Audin: The topology of torus actions on symplectic manifold, Progress in Mathematics 93, Birkhäuser 1991.
[2] R. Bott, L. W. Tu: Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer-Verlag 1982.
[3] T. Delzant: Hamiltoniens periodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) N 3, 315-339.
[4] T. Frankel: Fixed points on Kähler manifolds, Ann. Math. 70 (1959), 1-8.
[5] W. Fulton: Introduction to toric varieties, Ann. of Math. Stud. Vol. 131, Princeton Univ. Press, Princeton, 1993
[6] L. Jeffrey, J. Weitsman: Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde Dimension formula, Commun. Math. Phys. 150 (1992), 593-630.
[7] M. Kapovich, J. J. Millson: The symplectic geometry of polygons in Euclidean space, J. Diff. Geom. 44 (1996), 479-513.
[8] F. C. Kirwan: Cohomology of quotients in algebraic and symplectic geometry, Mathematical Notes 31 Princeton 1984.
[9] D.McDuff, D.Salamon: Introduction to symplectic topology, Oxford University Press, 1994.

Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo
153-8914, Japan
e-mail: takahiko@ms.u-tokyo.ac.jp

[^0]: 2000 Mathematical Subject Classification. Primary 58K05, 57R70; Secondary 53D20.

