Perfect Bott-Morse Function on Polygon Space

Takahiko Yoshida

Abstract

Let M_n be the moduli space of spatial polygons with *n*-edges. There is a function f_1 on M_n which associates a square of the norm of the *j*-th diagonal $||a_1 + \cdots + a_{j+1}||^2$ to $P = (a_1, \dots, a_n) \in M_n$. In this paper, we show that f_1 is a perfect Bott-Morse function. We use this function to give the simple geometric computation for Betti numbers.

1 Introduction

Let M_n $(n \ge 3)$ be the moduli space of spatial polygons with *n*-edges defined by

$$M_n = \{P = (a_1, \cdots, a_n) \in (S^2)^n \mid a_1 + \cdots + a_n = 0\}/SO(3),$$

where SO(3) acts on $(S^2)^n$ diagonally. If n is odd, the space M_n is a (2n-6)-dimensional smooth symplectic manifold. For j = 1, ..., n - 3, there is a function l_j on M_n which is defined by

$$l_j(P) = ||a_1 + \dots + a_{j+1}|| \tag{1.1}$$

i.e. the norm of the *j*-th diagonal for $P \in M_n$. Since the function l_j is not smooth at points $P \in l_j^{-1}(0)$, the Hamiltonian flow of l_j is defined only on the open dense set

$$U_j = \{ P = (a_1, \cdots, a_n) \in M_n | a_1 + \cdots + a_{j+1} \neq 0 \}.$$
(1.2)

In [7], Kapovich-Millson showed that each of these Hamiltonian flows induces the circle action on U_j , thus the function $l_j|_{U_j}$ is a moment map of this action. In [4], it is known that if a circle acts globally on a symplectic manifold in a Hamiltonian fashion, then a moment map of this action is a perfect Bott-Morse function. In the above case, these Hamiltonian circle actions are defined only on the open dense sets of M_n . Now we have one natural question: Can we think l_j is a perfect Bott-Morse function? Since l_j is smooth only on the open dense set, it is not a Bott-Morse function. But

²⁰⁰⁰ Mathematical Subject Classification. Primary 58K05, 57R70; Secondary 53D20.

the caution why l_j is not smooth at points $P \in l_j^{-1}(0)$ is that we take the norm of the diagonal, i.e. we take a square root! Instead of l_j , considering the new function f_j on M_n (j = 1, ..., n - 3), which is defined by

$$f_j(P) = (l_j(P))^2 = ||a_1 + \dots + a_{j+1}||^2,$$

for $P \in M_n$, we can obtain the following result.

Theorem 1.1 The function f_1 , f_{n-3} are perfect Bott-Morse functions.

In contrast to f_1 and f_{n-3} , this is false for j = 2, ..., n-4, as described in Remark 2.6.

If a *n*-dimensional torus T^n acts effectively on a 2n-dimensional symplectic manifold (M^{2n}, ω) in a Hamiltonian fashion, (M^{2n}, ω) is equivariantly symplectomorphic to a toric variety [3]. A toric variety has been studied by many people and many important results are obtained, for example [1], [5]. In this paper, we call (M^{2n}, ω) a symplectic toric manifold. In our case, it was also shown in [7] that the Hamiltonian flows of all l_j commute each other, hence there is an effective T^n -action on $U = \bigcap_{j=1}^{n-3} U_j$ with $\overrightarrow{l} = (l_1, \dots, l_{n-3}) : U \to \mathbb{R}^{n-3}$ as a moment map. Then the polygon space M_n has an 'almost' symplectic toric structure on the moduli space of flat connections on a Riemann surface, too. We want to know the differences between a symplectic toric and an 'almost' symplectic toric manifold. It's the first and the most important motivation.

This paper is organized as follows. In the next section, we recall Kapovich-Millson's results about the polygon space, the functions l_j for j = 1, ..., n-3 on M_n , and its Hamiltonian flows. Then we use these results to compute Betti numbers of M_n . Section 3 is devoted to prove Theorem 1.1.

Unless otherwise specified, all cohomologies are with rational coefficients.

2 Polygon Space

2.1 Polygon Space and Bending Flow

In this subsection, we recall the basic facts about the polygon space and the bending flow in [7].

Let $((S^2)^n, vol)$ be the 2-dimensional sphere with the SO(3)-invariant volume form on S^2 with the volume equal to 4π . For *n*-tuple of integral numbers $r = (r_1, ..., r_n) \in \mathbb{N}^n$, we give the *n*-products of 2-sphere $(S^2)^n$ the symplectic form $\omega = \sum_{j=1}^n p_j^* r_j vol$, where $p_j : (S^2)^n \to S^2$ is the *j*th projection. SO(3) acts diagonally on $((S^2)^n, \omega)$ with the moment map $\mu_{n,r} : (S^2)^n \to \mathfrak{su}(3)^* \cong \mathbb{R}^3$ is defined by

$$\mu_{n,r}(P) = \sum_{j=1}^{n} r_j a_j$$

for $P = (a_1, ..., a_n) \in (S^2)^n$. The moduli space $M_n(r_1, ..., r_n)$ of polygons with edge lengths $r = (r_1, ..., r_n)$ is defined by the symplectic quotient

$$M_n(r_1, ..., r_n) = \mu_{n,r}^{-1}(0) / SO(3)$$
(2.1)

The critical points $P = (a_1, ..., a_n)$ of $\mu_{n,r}$ is the points P such that all a_j lie on a same line in \mathbb{R}^3 through 0. Such points exist if and only if $r = (r_1, ..., r_n)$ satisfies the following condition

"There exists a subset $I \subset \{1, ..., n\}$ such that $\sum_{i \in I} r_i - \sum_{j \in I^c} r_j = 0$."

If the edge lengths $r = (r_1, ..., r_n)$ equal to (1, ..., 1), critical points do not consist in the level set $\mu_n^{-1}(0)$ of the moment map $\mu_n = \mu_{n,(1,...,1)}$ for n odd $n \ge 3$. Hence $M_n = M_n(1, ..., 1)$ is a smooth (2n - 6)-dimensional symplectic manifold. Moreover, in [7], M_n has a Kähler structure as follows. The tangent space at $P = (a_1, ..., a_n) \in M_n$ consists of the set of vectors $v_i \in \mathbb{R}^3$ for i = 1, ..., n under the following conditions

$$\begin{cases} \cdot \langle a_i, v_i \rangle = 0 \text{ for } i = 1, ..., n, \\ \cdot v_1 + \dots + v_n = 0, \\ \cdot \sum_{i=1}^n v_i \times a_i = 0, \end{cases}$$
(2.2)

where $\langle , \rangle, \times$ are the inner product, the vector product in \mathbb{R}^3 , respectively. Then the symplectic form ω , the complex structure J, and the Riemann metric g are defined by the formula

for $u = (u_1, ..., u_n), v = (v_1, ..., v_n) \in T_P M_n$.

In the following, we shall assume n is odd and $n \ge 3$, i.e. M_n is a smooth manifold.

In [7], Kapovich-Millson discovered a symplectic toric structure on an open dense set of M_n as follows. For j = 1, ..., n - 3, the function l_j on M_n is defined in (1.1). Since l_j is not smooth at points $P \in l_j^{-1}(0)$, the Hamiltonian flow φ_j^t of l_j is defined only on the open dense set U_j (for the definition of U_j , see (1.2)). The flow φ_j^t induces the circle action on U_j with the following geometric description. If $P \in U_j$, the *j*-th diagonal $a_1 + \cdots + a_{j+1}$ divides the polygon P into two pieces. The first piece has $a_1, ..., a_{j+1}$, and $a_1 + \cdots + a_{j+1}$ as edges, and vectors $a_{j+2}, ..., a_n$, and $a_1 + \cdots + a_{j+1}$ are the edges of the second piece. φ_j^t keeps the second piece and rotates the first piece around the *j*-th diagonal with the angular velocity equal to 2π . In [7], these flows φ_j^t are called bending flows. It is easy to see that bending flows commute each other, then there is a symplectic toric structure on $U = \bigcap_{j=1}^{n-3} U_j$. But these flows do not extend globally on M_n .

2.2 Bott-Morse Theory on M_n

In this subsection, we give a short review of Bott-Morse theory. For more details, see [1], [9]. Let M be a compact manifold. A smooth function $f: M \to \mathbb{R}$ is called a Bott-Morse function if its critical point set is a finitely disjoint union of connected submanifolds called critical manifolds, and the Hessian of f is nondegenerate (fibrewisely) on the normal bundle of critical manifolds. An index $\lambda(C)$ of the critical manifold C is the dimension of the negative eigenspace of the Hessian of f on the normal bundle of C.

For a Bott-Morse function f, the famous Morse inequalities holds as follows. For a manifold M, let $P_t(M)$ be the Poincaré series defined by

$$P_t(M) = \sum_{j \ge 0} t^j \cdot \dim \mathrm{H}^j(M; \mathbb{Q}).$$

Then Morse inequalities say that

$$\sum_{C} t^{\lambda(C)} P_t(C) - P_t(M) = (1+t)R(t),$$

where R(t) is a series with non negative integer coefficients and the sum runs over all critical manifolds. A Bott-Morse function f is called perfect if Morse inequalities are equalities, that is

$$P_t(M) = \sum_C t^{\lambda(C)} P_t(C).$$
(2.3)

In our case, to see the meaning of Theorem 1.1 concretely, let us compute Morse equalities (2.3).

Lemma 2.1 f_1 has the following three kinds of critical manifolds. (i) The S^2 bundle E_{n-2} on M_{n-2} defined by

$$E_{n-2} = \mu_{n-2}^{-1}(0) \times_{SO(3)} S^2 \longrightarrow M_{n-2}.$$

The index of E_{n-2} is 0.

(ii) The polygon space $M_{n-1}(2, 1, ..., 1)$ defined in (2.1). The index of $M_{n-1}(2, 1, ..., 1)$ is 2.

(iii) Polygons $P = (a_1, ..., a_n)$ with $a_k = \pm (a_1 + a_2)$ for k = 3, ..., n. The all indices of these polygons are n - 3.

Proof. The S^2 bundle E_{n-2} corresponds to the critical manifold for the minimum value. Since 0 is the minimum value of f_1 , the level set of 0

$$f_1^{-1}(0) = \{P = (a_1, ..., a_n) \in (S^2)^n \mid a_1 + \dots + a_n = 0, \ a_1 + a_2 = 0\}/SO(3)$$

is the critical manifold. It is easy to see that $f_1^{-1}(0)$ is diffeomorphic to E_{n-2} . This fibre bundle has the section $s: M_{n-2} \to E_{n-2}$ which is defined by

$$s(P) = [a_3, (a_3, ..., a_n)]$$

for $P = (a_3, ..., a_n) \in M_{n-2}$. Hence the Euler class vanishes and by Leray-Hirsh's Theorem (see [2]), the following equality holds

$$\mathrm{H}^*(E_{n-2}) = \oplus \mathrm{H}^*(M_{n-2}) \otimes \mathrm{H}^*(S^2).$$

Since 0 is the minimum value, the index of $f_1^{-1}(0)$ is 0.

Similarly the polygon space $M_{n-1}(2, 1, ..., 1)$ corresponds to the critical manifold for the maximum value 4. The level set

$$f_1^{-1}(4) = \{ P = (a_1, ..., a_n) \in (S^2)^n \mid a_1 + \dots + a_n = 0, \ a_1 = a_2 \} / SO(3)$$

is naturally identified with $M_{n-2}(2, 1, ..., 1)$. The index of $f_1^{-1}(4)$ is equal to the codimension of $f_1^{-1}(4)$, which is 2.

Are there another critical manifolds? In $f_1^{-1}((0,4))$, the critical points of $f_1|_{f_1^{-1}((0,4))}$ coincide with those of $l_1|_{f_1^{-1}((0,4))}$. Since $l_1|_{U_1}$ is a moment map, critical points of $l_1|_{f_1^{-1}((0,4))}$ are equal to the fixed points of the bending flow of l_1 . It is easy to see that the fixed points in $f_1^{-1}((0,4))$ correspond to the degenerate polygons $P = (a_1, ..., a_n)$ with $a_k = \pm (a_1 + a_2)$ for $k \ge 2$. Let I^+ , I^- be the subset in $\{3, 4, ..., n\}$ defined by

$$I^{+} = \{i \mid a_{i} = a_{1} + a_{2}\},\$$
$$I^{-} = \{j \mid a_{j} = -(a_{1} + a_{2})\}$$

Since polygons are closed, i.e. $a_1 + \cdots + a_n = 0$, the cardinaries of I^+ , I^- are equal to $\frac{n-3}{2}$, $\frac{n-1}{2}$, respectively. Hence there are exactly $\binom{n-2}{\frac{n-3}{2}}$ such polygons.

Now we find out these indices. Let $P = (a_1, ..., a_n)$ be the polygon corresponding to the fixed point. Then the bending flow φ_1^t of l_1 induces the infinitesimal action $d_P \varphi_1^t$ on the tangent space $T_P M_n$ at P. By [9], the index of P is equal to twice the numbers of negative weights of this action. To see the index of these fixed points, it is sufficient to identify the index of the following polygons $P = (a_1, ..., a_n)$, where $a_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2}, 0)$, $a_2 = (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$, $a_i = (1, 0, 0)$ for $i \in I^+$, and $a_j = (-1, 0, 0)$ for $j \in I^-$. From (2.2), all vectors v_i for $i \in I^+$ and any $\frac{n-3}{2}$ vectors in v_j for $j \in I^$ form the basis of $T_P M_n$ as a complex vector space. In these coordinates $v_k, d_P \varphi_1^t$ acts diagonally on $T_P M_n \cong \mathbb{C}^{n-3}$ for $t \in S^1$, and $d_P \varphi_1^t$ sends v_k to $e^{\mp ti} v_k$, where the sign - or + is taken according to $k \in I^+$ or $k \in I^-$, respectively. Then the number of the negative weights are equal to $\frac{n-3}{2}$. Thus the index of P is n-3. \Box

Corollary 2.2 The critical manifold $f_1^{-1}(0) \cong E_{n-2} \subset M_n$ is a coisotropic submanifold of codimension equal to 2. The symplectic form ω vanishes along the fibre of E_{n-2} . For the special case of n = 5, $f_1^{-1}(0) \cong S^2$ is a Lagrangian submanifold.

From the above argument, we can compute Morse inequalities (2.3).

Corollary 2.3 The Poincaré series of M_n satisfies the following relation.

$$P_t(M_n) = (1+t^2)P_t(M_{n-2}) + \binom{n-2}{\frac{n-3}{2}}t^{n-3} + t^2P_t(M_{n-1}(2,1,...,1)).$$

Example 2.4 (1) For n = 5, we have

$$P_t(M_5) = (1+t^2)P_t(M_3) + 3t^2 + t^2P_t(M_4(2,1,...,1)).$$

But it is easy to see that $M_3 = \{1\text{-point}\}$ and $M_4(2, 1, ..., 1)$ is biholomorphic to $\mathbb{C}P^1$. Then we have

$$P_t(M_5) = 1 + t^2 + 3t^2 + t^2(1 + t^2)$$

= 1 + 5t² + t⁴.

(2) For n = 7, we have

$$P_t(M_7) = (1+t^2)P_t(M_5) + 10t^4 + t^2P_t(M_6(2,1,...,1)).$$

We must calculate the Poincaré series $P_t(M_6(2, 1, ..., 1))$ of $M_6(2, 1, ..., 1)$. Consider the function f on $M_6(2, 1, ..., 1)$ defined by

$$f(P) = \|2a_1 + a_2\|$$

for $P \in M_6(2, 1, ..., 1)$. In this case, f is smooth totally on $M_6(2, 1, ..., 1)$ and its Hamiltonian flow induces the bending flow on $M_6(2, 1, ..., 1)$ as in the case of M_n (see [7]). Thus f is a moment map of the bending flow, that is a perfect Bott-Morse function. Morse inequalities (2.3) for f hold

$$P_t(M_6(2,1,...,1)) = P_t(M_5) + 4t^4 + t^2 P_t(M_5(3,1,...,1)).$$

Repeating the same argument for $M_5(3, 1, ..., 1)$, we have

$$P_t(M_5(3,1,...,1)) = 1 + t^2 + t^4$$

Then we have the following formula

$$P_t(M_6(2, 1, ..., 1)) = 1 + 5t^2 + t^4 + 4t^4 + t^2(1 + t^2 + t^4)$$

= 1 + 6t^2 + 6t^4 + t^6.

$$P_t(M_7) = (1+t^2)(1+5t^2+t^4)+10t^4 + t^2(1+6t^2+6t^4+t^6))$$
$$= 1+7t^2+22t^4+7t^6+t^8. \ \Box$$

For generally n, to calculate $P_t(M_n)$, we need to know the Poincaré series of the polygon space $M_n(n-2k, 1, ..., 1)$ for $k = 1, ..., \frac{n-2}{2}$. Let f_k be the function on $M_n(n-2k, 1, ..., 1)$ for $k = 1, ..., \frac{n-2}{2}$, which is defined by

$$f_k(P) = \|(n-2k)a_1 + a_2\|$$

for $P \in M_n(n-2k, 1, ..., 1)$. Using the same argument for the function f_k on $M_n(n-2k, 1, ..., 1)$, we obtain

$$P_t(M_n(n-2k,1,...,1)) = P_t(M_{n-1}(n-1-2k,1,...,1)) + {\binom{n-2}{k-1}}t^{2n-2k-4} + t^2 P_t(M_{n-1}(n+1-2k,1,...,1))$$

for $k = 2, ..., \frac{n-2}{2}$, and

$$P_t(M_n(n-2,1,...,1)) = P_t(M_{n-1}(n-3,1,...,1)) + t^{2n-6}P_t(M_3(n-2,1,n-2))$$

for k = 1. From the above formulae, we can calculate the Poincaré series $P_t(M_n(n-2k, 1, ..., 1))$ of $M_n(n-2k, 1, ..., 1)$ by the induction.

Lemma 2.5 For $k = 1, ..., \frac{n-2}{2}$, the Poincaré series $P_t(M_n(n-2k, 1, ..., 1))$ is given by the formula

$$P_t(M_n(n-2k,1,...,1)) = \sum_{j=0}^{k-1} \{1 + \binom{n-1}{1} + \dots + \binom{n-1}{j}\}(t^{2j} + t^{2n-6-2j}) + \{1 + \binom{n-1}{1} + \dots + \binom{n-1}{k-1}\}\sum_{j=k}^{n-3-k} t^{2j}.$$

From Corollary 2.3 and Lemma 2.5, we can get the Poincaré series of M_n .

Corollary 2.6 The Poincaré series $P_t(M_n)$ of M_n satisfies the following formula

$$P_{t}(M_{n}) = 1 + \left\{1 + \binom{n-1}{1}\right\}t^{2}$$

$$\vdots$$

$$+ \left\{1 + \binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{\frac{n-5}{2}}\right\}t^{n-5}$$

$$+ \left\{1 + \binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{\frac{n-3}{2}}\right\}t^{n-3}$$

$$+ \left\{1 + \binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{\frac{n-5}{2}}\right\}t^{n-1}$$

$$\vdots$$

$$+ \left\{1 + \binom{n-1}{1}\right\}t^{2n-8} + t^{2n-6}.$$

Remark 2.7 (1) The Poincaré series of the polygon space M_n for odd $n \ge 3$ were first calculated by Kirwan in [8].

(2) In contrast to f_1 , f_{n-3} , the function f_j is not a Bott-Morse function for j = 2, ..., n-4. In fact, the level set of the minimum value 0 is identified with the bundle $\mu_{j+1}^{-1}(0) \times_{SO(3)} \mu_{n-j-1}^{-1}(0)$. Since either j + 1 or n - j - 1 is even, $f_i^{-1}(0)$ has a singular point.

If M_n is a symplectic toric manifold, all f_j are perfect Bott-Morse functions, and all critical manifolds are symplectic submanifolds. Corollary 2.2 and the above observation represent the difference between a symplectic toric and an 'almost' symplectic toric manifolds. \Box

3 The proof of Theorem

The proof of Theorem 1.1 consists of 2 steps. First we shall prove that f_1 , f_{n-3} are Bott-Morse functions in Lemma 3.1, then that they are perfect in Lemma 3.4. Though we prove Theorem 1.1 only for f_1 , the proof for f_{n-3} is similar to the case of f_1 .

Lemma 3.1 f_1 is a Bott-Morse function.

Since $l_1|_{U_1}: U_1 \to \mathbb{R}$ is a moment map, $l_1|_{U_1}$ is a Bott-Morse function. So is $f_1|_{U_1}: U_1 \to \mathbb{R}$. Then it is sufficient to show that the Hessian of f_1 is nondegenerate fibrewisely on the normal bundle of $f_1^{-1}(0)$. The following Lemma describes the behavior of f_1 on the neighborhood of $f_1^{-1}(0)$.

Lemma 3.2 There is a diffeomorphism from a neighborhood of $f_1^{-1}(0) \subset M_n$ to that of $(\operatorname{graph}(-id) \times \mu_{n-2}^{-1}(0))/SO(3) \subset (S^2 \times S^2 \times \mu_{n-2}^{-1}(0))/SO(3)$,

where SO(3) acts diagonally on $S^2 \times S^2 \times \mu_{n-2}^{-1}(0)$, and $\operatorname{graph}(-id)$ is the graph of the involution $-id: S^2 \to S^2$, associating the antipodal point -a to $a \in S^2$. Under this diffeomorphism, f_1 is identified with the function $(S^2 \times S^2 \times \mu_{n-2}^{-1}(0))/SO(3) \to \mathbb{R}$ by taking the norm $||a_1 + a_2||^2$ to $[a_1, a_2, P] \in (S^2 \times S^2 \times \mu_{n-2}^{-1}(0))/SO(3)$.

We define the function $\widetilde{f}_1: \mu_n^{-1}(0) \to \mathbb{R}$ by

$$\widetilde{f}_1(P) = ||a_1 + a_2||^2$$

for $P \in \mu_n^{-1}(0)$. To prove Lemma 3.2, we need the following Lemma.

Lemma 3.3 The map $\psi: \mu_n^{-1}(0) \to S^2 \times S^2$ taking the first two factors of $\mu_n^{-1}(0) \subset (S^2)^n$ is a submersion at points in $\tilde{f_1}^{-1}(0)$, i.e. the differential of ψ at $P \in \tilde{f_1}^{-1}(0)$ is surjective.

Proof. From the definition of μ_n , it is clear that

$$d_P \mu_n = d_{(a_1, a_2)} \mu_2 + d_{(a_3, \dots, a_n)} \mu_{n-2}$$

: $T_P(S^2)^n = T_{(a_1, a_2)}(S^2)^2 \times T_{(a_3, \dots, a_n)}(S^2)^{n-2} \longrightarrow \mathbb{R}^3$

for $P = (a_1, ..., a_n) \in (S^2)^n$. If P is in $\tilde{f_1}^{-1}(0), d_{(a_3,...,a_n)}\mu_{n-2}$ is surjective. Then, for arbitrary $(\xi_1, \xi_2) \in T_{(a_1,a_2)}(S^2)^2$, there exists $(\xi_3, ..., \xi_n) \in T_{(a_3,...,a_n)}(S^2)^{n-2}$ such that $d_{(a_3,...,a_n)}\mu_{n-2}(\xi_3,...,\xi_n) = -d_{(a_1,a_2)}\mu_2(\xi_1,\xi_2)$. This implies $(\xi_1, ..., \xi_n) \in \ker d_P\mu_n = T_P\mu_n^{-1}(0)$. \Box

Proof of Lemma 3.2. It is clear that there is a natural SO(3) equivariant diffeomorphism from $\tilde{f_1}^{-1}(0)$ to graph $(-id) \times \mu_{n-2}^{-1}(0)$. We want to extend this diffeomorphism SO(3) equivariantly to a neighborhood of $\tilde{f_1}^{-1}(0)$ and that of graph $(-id) \times \mu_{n-2}^{-1}(0)$. But from Lemma 3.3, it is easy to see that the map ψ induces the isomorphism between the normal bundle of $\tilde{f_1}^{-1}(0) \subset \mu_n^{-1}(0)$ and that of graph $(-id) \times \mu_{n-2}^{-1}(0) \subset S^2 \times S^2 \times \mu_{n-2}^{-1}(0)$. Then using the equivariant tubular neighborhood Theorem [1], we can obtain the diffeomorphism we need in this Lemma. \Box

Proof of Lemma 3.1. Locally f_1 is identified with the function $f: S^2 \times S^2 \to \mathbb{R}$ defined by $f(a_1, a_2) = ||a_1 + a_2||^2$. But it is easy to see that the Hessian of f is nondegenerate on the normal bundle of graph $(-id) \subset S^2 \times S^2$. This proves Lemma 3.1. \Box

It remains to show that f_1 is perfect.

Lemma 3.4 f_1 is perfect.

Proof. Let $\phi = V_0 \subset V_1 \subset V_2 \subset V_3 = M_n$ be the filtration of M_n by the open sets V_j , which are defined by

$$V_0 = f_1^{-1}((-\frac{1}{2}, -\frac{1}{2})), \ V_1 = f_1^{-1}((-\frac{1}{2}, \frac{1}{2})), \ V_2 = f_1^{-1}((-\frac{1}{2}, 2)),$$

and $V_3 = f_1^{-1}((-\frac{1}{2}, 5)).$

This filtration induces the filtration of the cochain complex of M_n

$$\{0\} = C^*(M_n, V_3) \stackrel{\pi}{\hookrightarrow} C^*(M_n, V_2) \stackrel{\pi}{\hookrightarrow} C^*(M_n, V_1) \stackrel{\pi}{\hookrightarrow} C^*(M_n, V_0) = C^*(M_n).$$

Consider the spectral sequence of this filtered complex. As described in [2], there is a short exact sequence

$$0 \to \oplus_j C^*(M_n, V_j) \xrightarrow{\pi} \oplus_j C^*(M_n, V_j) \to \oplus_j C^*(V_j, V_{j-1}) \to 0.$$

This leads to an exact couple

$$\begin{array}{c} \oplus_{j} \mathrm{H}^{*}(M_{n}, V_{j}) \to \oplus_{j} \mathrm{H}^{*}(M_{n}, V_{j}) \\ & \swarrow \\ \oplus_{j} \mathrm{H}^{*}(V_{j}, V_{j-1}), \end{array}$$

whose derived couples abut to $H^*(M_n)$. On the other hand, using the Morse lemma and the Thom isomorphism theorem, the following isomorphism holds

$$\mathrm{H}^*(V_j, V_{j-1}) \cong \mathrm{H}^{*-\lambda(C_j)}(C_j),$$

where C_j is the critical manifold contained in $V_j \setminus V_{j-1}$. This implies that the spectral sequence of this filtered complex has $\oplus_j H^*(C_j)$ as E₁-term.

To prove Lemma 3.4, we need to show that all the differentials d_r of this spectral sequence are vanished. Since there are only three non zero terms in the cochain filtration, only the first two differentials d_1 and d_2 can possibly be zero. By the definition, the first differential d_1 is the direct sum of maps $H^*(C_j) \to H^*(C_{j+1})$ induced by the upper part of the following diagram.

$$\begin{split} & \operatorname{H}^{k}(C_{j}) \\ & \stackrel{\scriptstyle \bigvee}{\operatorname{H}^{k+\lambda(C_{j})+1}(M_{n},V_{j+1}) \to \operatorname{H}^{k+\lambda(C_{j})+1}(M_{n},V_{j}) \to \operatorname{H}^{k+\lambda(C_{j})+1}(V_{j+1},V_{j})} \\ & \stackrel{\scriptstyle \downarrow}{\operatorname{H}^{k+\lambda(C_{j})+1}(V_{j+2},V_{j+1})} \\ & \stackrel{\scriptstyle \bigvee}{\operatorname{H}^{k+\lambda(C_{j})+1-\lambda(C_{j+2})}(C_{j+2})} \end{split}$$

Here all maps are induced by inclusions, except the diagonal arrows, which are Thom isomorphisms.

An element of $H^*(C_j)$ is in the kernel of the first differential if only if it maps to $0 \in H^*(V_{j+1}, V_j)$. By the exactness of the middle arrows, it comes from some element of $H^*(M_n, V_{j+1})$, and its image in $H^*(C_{j+2})$ is the value of the second differential.

Since we showed in Lemma 2.1 that all the indices $\lambda(C_j)$ are even, from the above diagram, d_1 and d_2 send the odd (resp. even) dimensional cohomology classes to the even (resp. odd) dimensional cohomology classes. But in [8], it has shown that the odd degree cohomologies H^{odd} of the polygon spaces M_n and $M_{n-1}(2, 1, ..., 1)$ vanish. This implies that d_1 and d_2 are vanishing. \Box

References

- M. Audin: The topology of torus actions on symplectic manifold, Progress in Mathematics 93, Birkhäuser 1991.
- [2] R. Bott, L. W. Tu: Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer-Verlag 1982.
- [3] T. Delzant: Hamiltoniens periodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) N 3, 315–339.
- [4] T. Frankel: Fixed points on Kähler manifolds, Ann. Math. 70 (1959), 1-8.
- [5] W. Fulton: Introduction to toric varieties, Ann. of Math. Stud. Vol. 131, Princeton Univ. Press, Princeton, 1993
- [6] L. Jeffrey, J. Weitsman: Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde Dimension formula, Commun. Math. Phys. 150 (1992), 593–630.
- [7] M. Kapovich, J. J. Millson: The symplectic geometry of polygons in Euclidean space, J. Diff. Geom. 44 (1996), 479–513.
- [8] F. C. Kirwan: Cohomology of quotients in algebraic and symplectic geometry, Mathematical Notes 31 Princeton 1984.
- [9] D.McDuff, D.Salamon: Introduction to symplectic topology, Oxford University Press, 1994.

Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan e-mail: takahiko@ms.u-tokyo.ac.jp