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Abstract. Let π : (M,ω) → B be a (non-singular) Lagrangian torus fibration on a compact, complete

base B with prequantum line bundle (L,∇L) → (M,ω). For a positive integer N and a compatible
almost complex structure J on (M,ω) invariant along the fiber of π, let D be the associated Spinc Dirac

operator with coefficients in L⊗N . Then, we give an orthogonal family {ϑ̃b}b∈BBS
of sections of L⊗N

indexed by the Bohr-Sommerfeld points BBS , and show that each ϑ̃b converges to a delta-function section

supported on the corresponding Bohr-Sommerfeld fiber π−1(b) and the L2-norm of Dϑ̃b converges to 0
by the adiabatic(-type) limit. Moreover, if J is integrable, we also give an orthogonal basis {ϑb}b∈BBS

of

the space of holomorphic sections of L⊗N indexed by BBS , and show that each ϑb converges to a delta-
function section supported on the corresponding Bohr-Sommerfeld fiber π−1(b) by the adiabatic(-type)

limit. We also explain the relation of ϑb with Jacobi’s theta functions when (M,ω) is T 2n.
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1. Motivation and Main Theorems

The purpose of this paper is to show the Spinc quantization converges to the real quantization by
the adiabatic(-type) limit for a Lagrangian torus fibration on a compact complete base and a compatible
almost complex structures on its total space which is invariant along the fiber. In this paper, a Lagrangian
torus fibration is assumed to be non-singular unless otherwise stated. First let us explain the motivation
which comes from geometric quantization. For geometric quantization, see [17, 22, 32, 38]. In physics,
quantization is the procedure for building quantum mechanics starting from classical mechanics. In
the mathematical context, it is often thought of as a representation of the Poisson algebra consisting
of certain functions on a symplectic manifold to some Hilbert space, so called the quantum Hilbert
space, and the geometric quantization gives us the method to construct a quantum Hilbert space and a
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representation from a given symplectic manifold (M,ω) and a prequantum line bundle (L,∇L) → (M,ω)
in the geometric way. In the theory of geometric quantization by Kostant and Souriau [25, 34, 33], we
need an additional structure which is called a polarization to obtain the quantum Hilbert space. By
definition, a polarization is an integrable Lagrangian distribution P of the complexified tangent bundle
TM ⊗ C of (M,ω). For a polarization P , the quantum Hilbert space is naively given as the closure of
the space of smooth, square-integrable sections of (L,∇L) which are covariant constant along P .

A common example is the Kähler polarization. When (M,ω) is Kähler and (L,∇L) is a holomorphic
line bundle with canonical connection, we can take T 0,1M as a polarization, and the obtained quantum
Hilbert space is nothing but the space of holomorphic sections H0(M,OL). This polarization is called the
Kähler polarization and the quantization procedure is called the Kähler quantization. Note that whenM
is compact and the Kodaira vanishing theorem holds, its dimension is equal to the index of the Dolbeault
operator with coefficients in L.

Another example is a real polarization. Suppose (M,ω) admits a structure of a Lagrangian torus
fibration π : (M,ω) → B. For each point b ∈ B of the base manifold B, the restriction

(
L,∇L

)
|π−1(b)

of (L,∇L) to the fiber π−1(b) is a flat line bundle. Let H0
(
π−1(b);

(
L,∇L

)
|π−1(b)

)
be the space of

covariant constant sections of
(
L,∇L

)
|π−1(b). Then, an element b ∈ B is said to be Bohr-Sommerfeld

if H0
(
π−1(b);

(
L,∇L

)
|π−1(b)

)
̸= {0}. It is well-known that Bohr-Sommerfeld points appear discretely.

In this case, we can take TπM ⊗ C, the complexified tangent bundle along fibers of π as a polarization,
and ifM is compact, the quantum Hilbert space is defined by ⊕b∈BBS

H0
(
π−1(b);

(
L,∇L

)
|π−1(b)

)
, where

the sum is taken over all Bohr-Sommerfeld points. See [32] for more details. In this paper, we call this
quantization the real quantization.

When a Lagrangian torus fibration π : (M,ω) → B with closed total space M and a prequantum line
bundle (L,∇L) → (M,ω) are given, it is natural to ask whether the quantum Hilbert space obtained
by the Kähler quantization is isomorphic to the one obtained by the real quantization. A completely
integrable system can be thought of as a Lagrangian fibration with singular fibers. In the case of the the
moment map of a projective toric variety, Danilov has shown in [9] that H0(M,OL) has the irreducible
decomposition H0(M,OL) = ⊕m∈∆∩t∗Z

Cm as a compact torus representation, where ∆ is the moment
polytope, t∗Z is the weight lattice, and Cm is the irreducible representation of the torus with weight m.
Since ∆ ∩ t∗Z is identified with the set of Bohr-Sommerfeld points, this implies the dimensions of the
quantum Hilbert spaces obtained by the above quantizations agree. A similar equality of the dimensions
has been also shown for the Gelfand-Cetlin system on the flag variety [16], the Goldman system on the
moduli space of flat SU(2) connections on a surface [20], and the Kapovich-Millson system on the polygon
space. [21].

Moreover, in the case of smooth projective toric varieties, not only the numerical equality for the
dimensions, but also a geometric correspondence between the Kähler and the real quantizations has been
shown concretely by Baier-Florentino-Mourão-Nunes in [3]. Namely, they have given a one-parameter
family of complex structures {Jt}t∈[0,∞) and a basis {smt }m∈∆∩t∗Z

of the space of holomorphic sections
associated with the complex structure Jt for each t such that each section smt converges to the delta
function section supported on the corresponding Bohr-Sommerfeld fiber as t goes to ∞. The similar
result has been also obtained for flag manifolds in [19] and smooth irreducible complex algebraic varieties
by [18]. But in [19] and [18] the convergence has been shown only for the non-singular Bohr-Sommerfeld
fibers whereas in [3] it has been shown for all Bohr-Sommerfeld fibers.

The Kähler quantization can be generalized to a non-integrable compatible almost complex structure
on a closed (M,ω). When a compatible almost complex structure J on (M,ω) is given, we can consider
the associated Spinc Dirac operator D acting on Γ

(
∧•T ∗M0,1 ⊗ L

)
. It is well-known that D is a formally

self-adjoint, first order, elliptic differential operator of degree-one, and if J is integrable, D agrees with
the Dolbeault operator up to constant. If J is not integrable, T 0,1M is no more polarization. But, even
in this case, since D is Fredholm, we can still take the element of the K-theory of a point

(1.1) ker (D|∧evenT∗M0,1⊗L)− ker (D|∧oddT∗M0,1⊗L) ∈ K(pt)

as a (virtual) quantum Hilbert space. Its virtual dimension is equal to the index of D. We call this
quantization the Spinc quantization. It has been shown in [1, 13, 26] that the above equality between
dimensions of two quantum Hilbert spaces still holds by replacing the Kähler quantization with the Spinc

quantization by using the index theory.



ADIABATIC LIMITS, THETA FUNCTIONS, AND GEOMETRIC QUANTIZATION 3

In this paper, we generalize the approach taken in [3] for the Kähler quantization to the Spinc quanti-
zation of Lagrangian torus fibrations. Let π : (M,ω) → B be a Lagrangian torus fibration on a compact,
complete base B with prequantum line bundle (L,∇L) → (M,ω). For a positive integer N and a compat-
ible almost complex structure J of (M,ω) invariant along the fiber of π (in the sense of Lemma 3.6), let
D be the associated Spinc Dirac operator with coefficients in L⊗N . Then, the main result is as follows.
This theorem is a combination of Theorem 5.2 and Theorem 5.3.

Theorem 1.1. For the above data, we give one-parameter families of

• {J t}t>0 compatible almost complex structures of (M,ω) with J1 = J

• {ϑ̃tb}b∈BBS
sets of sections on L⊗N indexed by the Bohr-Sommerfeld points BBS

such that

(1) any pair in {ϑ̃tb}b∈BBS
are orthogonal to each other,

(2) each ϑ̃tb converges as a delta-function section supported on π−1(b) as t → ∞ in the following
sense, for any section s of L⊗N ,

lim
t→∞

∫
M

⟨
s,

ϑ̃tb

∥ϑ̃tb∥L1

⟩
L⊗N

(−1)
n(n−1)

2
ωn

n!
=

∫
π−1(b)

⟨s, δb⟩L⊗N |dy|,

where ⟨ , ⟩L⊗N is the Hermitian metric of L⊗N , δb is the covariant constant section of L⊗N |π−1(b)

defined by (4.9), and |dy| is the natural one-density on π−1 (b),

(3) lim
t→∞

∥Dtϑ̃tb∥L2 = 0.

By the Spinc Dirac vanishing theorem due to Borthwick-Uribe [7], ker (D|∧oddT∗M0,1⊗L⊗N ) vanishes for

a sufficiently large N . So, (3) implies the the complex vector space spanned by {ϑ̃tb}b∈BBS
approximates

the quantum Hilbert space of the Spinc quantization for a sufficiently large N .
If J is integrable, we also give the following refinement of Theorem 1.1, which is immediately obtained

by putting Corollary 4.3 and Theorem 4.12 together.

Theorem 1.2. Under the above setting, assume J is integrable. Then, with a technical assumption, we
give one-parameter families of

• {J t}t>0 compatible complex structures of (M,ω) with J1 = J
• {ϑtb}b∈BBS

orthogonal bases of holomorphic sections of L⊗N → (M,Nω, J t) indexed by BBS

such that each ϑtb converges as a delta-function section supported on π−1(b) as t → ∞ in the following
sense, for any section s of L⊗N ,

lim
t→∞

∫
M

⟨
s,

ϑtb
∥ϑtb∥L1

⟩
L⊗N

(−1)
n(n−1)

2
ωn

n!
=

∫
π−1(b)

⟨s, δb⟩L⊗N |dy|.

One of examples of the total space of a Lagrangian torus fibration with complete base is an abelian
variety. In this case, we show that each ϑb coincides with Jacobi’s theta functions up to function on the
base space (Theorem 4.7). For the theta functions, see [28, 29].

We should remark there are several works which deal with theta functions from the viewpoint of
geometric quantization of Lagrangian fibrations, for example, [29], [4], [30, 31]. In [7], Borthwick-Uribe
have introduced another approach to generalize the Kähler quantization to non-integrable almost complex
structures by using the metric Laplacian of the connection on the prequantum line bundle instead of
Spinc Dirac operator. Their approach is called the almost Kähler quantization. In the almost Kähler
quantization of the Kodaira-Thurston manifold, Kirwin-Uribe and Egorov have constructed an analog of
the theta function as an element of the quantum Hilbert space [23], [12]. In [11], Egorov has also shown
the similar result for Lagrangian T 2-fibrations on T 2 with zero Euler class.

The idea used in this paper is quite simple. One of two key facts is Corollary 2.25 which claims
that any Lagrangian torus fibration π : (M,ω) → B with complete base B and a prequantum line bundle(
L,∇L

)
→ (M,ω) can be obtained as the quotient of a π1(B)-action on the standard Lagrangian fibration(

M̃, ω0

)
:= (Rn × Tn,

∑n
i=1 dxi ∧ dyi) → Rn with the standard prequantum line bundle. In particular,

any compatible almost complex structure on (M,ω) is induced from a π1(B)-equivariant one on
(
M̃, ω0

)
,
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and the set of compatible almost complex structures on
(
M̃, ω0

)
corresponds one-to-one to the set of

smooth maps from M̃ to the Siegel upper half space. We show that there exists a π1(B)-invariant
compatible almost complex structure J whose corresponding map is invariant along the fiber (Lemma 3.6).
For the Spinc Dirac operator D associated with such an almost complex structure J , we consider the

problem on the existence of non-trivial degree-zero harmonic spinors, i.e., sections of L̃⊗N contained

in the kernel of D. By taking the Fourier series expansion of a section s of L̃⊗N with respect to the
fiber coordinates, the equation Ds = 0 can be reduced to a system of partial differential equations
on Rn. The other key fact is Proposition 3.12 in which we give a necessary and sufficient condition
in order that the system of partial differential equations has non-trivial solutions and show that it is

equal to the integrability condition for J , i.e.,
(
M̃, ω0, J

)
is Kähler. Moreover, in this case, we give a

family of π1(B)-equivariant solutions of Ds = 0 indexed by the Bohr-Sommerfeld points, each of which
is expressed by the formal Fourier series. If they converge absolutely and uniformly, this gives a linear

basis of the space of holomorphic sections of
(
L,∇L

)⊗N → (M,Nω, J) → B. We also give a sufficient
condition for their convergence. Even if J is not integrable, by considering an approximation of D, we
can obtain an orthogonal family of sections of L⊗N indexed by the Bohr-Sommerfeld points BBS . The
limit used in this paper is slightly different from the adiabatic limit in Riemannian geometry. When a
fiber bundle π : M → B and a Riemannian metric g on M are given, we can consider the decomposition
(TM, g) = (V, gV )⊕ (H, gH), where V is the tangent bundle along the fiber with fiber metric gV := g|V
and H is the orthogonal complement of V with respect to g with fiber metric gH := g|H . For each t > 0,
define the Riemannian metric gt to be gt := gV ⊕tgH . Then, in Riemannian geometry, the adiabatic limit
is the procedure for taking the limit of geometric objects depending on gt as t → ∞. But, since such a
deformation of Riemannian metrics does not fit into our symplectic context, we modify the deformation.
Namely, in this paper, we use a one-parameter family {J t}t>0 of compatible almost complex structures on
(M,ω) such that the corresponding one-parameter family of Riemannian metrics is {gt = 1

t gV ⊕ tgH}t>0,

and investigate the behavior of ϑ̃tb (resp. ϑtb) when t goes to ∞.
The paper is organized as follows. In section 2, we first briefly review some well-known facts about

integral affine geometry and Lagrangian fibrations. Then, by using these, we prove Corollary 2.25. In
Section 3, we discuss the π1(B)-equivariant Spinc quantization of (Rn × Tn,

∑n
i=1 dxi ∧ dyi) → Rn with

the standard prequantum line bundle and prove Proposition 3.12. In Section 4, we prove Theorem 1.2 step
by step, and explain the relation between ϑtb and Jacobi’s classical theta function. Finally, in Section 5
we prove Theorem 1.1.

Acknowledgment The most part of this work had been done while the author stayed in McMaster
university. The author would like to thank the department of Mathematics and Statistics, McMaster
university and especially Megumi Harada for their hospitality. This work is supported by Grant-in-Aid
for Scientific Research (C) 15K04857.

1.1. Notations. For x = t(x1, . . . , xn) and y = t(y1, . . . , yn) ∈ Rn, let us denote the standard inner

product
∑n

i=1 xiyi by x · y. ∂xi
denotes

∂

∂xi
. In this paper, all manifolds and maps are supposed to be

smooth.

2. Developing Lagrangian fibrations

2.1. Integral affine structures. Let B be a manifold.

Definition 2.1. An integral affine atlas of B is an atlas {(Uα, ϕα)} of B on each of whose non-empty
overlap Uαβ , the transition function ϕα◦ϕ−1

β is an integral affine transformation, namely, ϕα◦ϕ−1
β is of the

form ϕα◦ϕ−1
β (x) = Aαβx+cαβ for some locally constant maps Aαβ : Uαβ → GLn(Z) and cαβ : Uαβ → Rn.

Two integral affine atlases {(Uα, ϕα)} and {(U ′
β , ϕ

′
β)} of B are said to be equivalent if on each non-empty

overlap Uα ∩ U ′
β , the transition function ϕα ◦ (ϕ′β)

−1 is an integral affine transformation. An integral
affine structure on B is an equivalence class of integral affine atlases of B. A manifold equipped with
integral affine structure is called an integral affine manifold.

Example 2.2. An n-dimensional Euclidean space Rn is equipped with a natural integral affine structure.
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Let us give examples of integral affine manifolds obtained from integral affine actions on Rn.

Example 2.3. (1) Let v1, . . . , vn ∈ Rn be a linear basis of Rn and C = (v1 · · · vn) ∈ GLn(R) the matrix
whose ith column vector is vi for i = 1, . . . , n. Zn acts on Rn by

ργ(x) := x+ Cγ

for γ ∈ Zn and x ∈ Rn. Since the action preserves the natural integral affine structure on Rn, the quotient
space, which is topologically Tn, is equipped with an integral affine structure.
(2) Let λ ∈ N be a positive integer and a, b ∈ R>0 positive real numbers. Define Z2-action on R2 as
follows. First, for the standard basis e1, e2 of Z2, let us define the integral affine transform ρe1 , ρe2 by

ρe1(x) := x+

(
a
0

)
, ρe2(x) :=

(
1 λ
0 1

)
x+

(
0
b

)
for x ∈ R2. Since ρe1 and ρe2 are commutative, they form the Z2-action on R2 by

ργ(x) := ργ1
e1 ◦ ργ2

e2 (x)

for each γ = t(γ1, γ2) ∈ Z2. In the same manner as in (1), the quotient space is equipped with an integral
affine structure. It is shown in [27, Theorem A] that the quotient space is topologically T 2, but the
induced integral affine structure is not isomorphic to that obtained in (1) for n = 2 and there are only
these two integral affine structures on T 2 up to isomorphism.

Example 2.4. For γ = t(γ1, γ2, γ3), γ
′ = t(γ′1, γ

′
2, γ

′
3) ∈ Z3 define the product γ ◦ γ′ ∈ Z3 by

γ ◦ γ′ :=

1 0 0
0 0 −1
0 −1 0

γ1

γ′ + γ.

Then, Z3 with product ◦ is a non abelian group
(
Z3, ◦

)
.
(
Z3, ◦

)
acts on R3 by

ργ(x) :=

1 0 0
0 0 −1
0 −1 0

γ1

x+ γ.

Then, the quotient space R3/
(
Z3, ◦

)
is equipped with the integral affine structure induced from that of

R3.

Example 2.5. Let n ≥ 2. For γ = t(γ1, . . . , γn), γ
′ = t(γ′1, . . . , γ

′
n) ∈ Zn define the product γ ◦ γ′ ∈ Zn

by

γ ◦ γ′ :=


1

(−1)γ1

. . .

(−1)γn−1

 γ′ + γ.

Then, Zn with product ◦ is a non abelian group (Zn, ◦). (Zn, ◦) acts on Rn by

ργ(x) :=


1

(−1)γ1

. . .

(−1)γn−1

x+ γ.

Then, the quotient space Rn/ (Zn, ◦) is equipped with the integral affine structure induced from that of
Rn. For n = 2, the quotient space is topologically a Klein bottle.

Example 2.6. Let n ≥ 2 and λ1, . . . λn−1 ∈ Z. For γ = t(γ1, . . . , γn), γ
′ = t(γ′1, . . . , γ

′
n) ∈ Zn define the

product γ ◦ γ′ ∈ Zn by

γ ◦ γ′ :=


1 λ1

1 λ2
. . .

. . .

1 λn−1

1


γn

γ′ + γ.
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Zn with product ◦ is a group (Zn, ◦), which is non abelian for n ≥ 3. (Zn, ◦) acts on Rn by

ργ(x) :=


1 λ1

1 λ2
. . .

. . .

1 λn−1

1


γn

x+ γ.

Then, the quotient space Rn/ (Zn, ◦) is equipped with the integral affine structure induced from that
of Rn. In the case where n = 2 and λ1 > 0, it coincides with the one given in Example 2.3 (2) with
a = b = 1.

Example 2.7. Let Z/4Z ∼=
{
±
(
1 0
0 1

)
,±
(
0 −1
1 0

)}
act on (R2)n∖ {0} naturally. Then, the quotient

space is a non-compact manifold and equipped with the integral affine structure induced from that of
(R2)n ∖ {0}.

As we can guess from above examples, every integral affine manifold is obtained from a group action.

Let B be an n-dimensional connected integral affine manifold, p : B̃ → B the universal covering of B.

It is clear that B̃ is also equipped with the integral affine structure so that p is an integral affine map.

We set Γ := π1(B). Γ acts on B̃ from the right as a deck transformation. For each γ ∈ Γ we denote
by σγ the inverse of the deck transformation corresponding to γ. Then, σ : γ 7→ σγ defines a left action

σ ∈ Hom
(
Γ,Aut(B̃)

)
.

We assume that all the actions considered in this paper are left actions unless otherwise stated.
The following proposition is well known in affine geometry.

Proposition 2.8. There exists an integral affine immersion dev : B̃ → Rn and a homomorphism ρ : Γ →
GLn(Z)⋉Rn such that the image of dev is an open set of Rn and dev is equivariant with respect to σ and
ρ. Such an integral affine immersion is unique up to the composition of an integral affine transformation
on Rn.

See [15, p.641] for a proof. We will prove a version of this proposition (Proposition 2.22) when B is
equipped with a Lagrangian fibration on it in Section 2.

Proposition 2.9. Let B, p : B̃ → B, dev : B̃ → Rn, and ρ : Γ → GLn(Z)⋉Rn be as in Proposition 2.8.
Suppose that B is compact and the Γ-action ρ on Rn is properly discontinuous. Then, dev is surjective.

Proof. We denote the image of dev by O. By proposition 2.8, O is an open set in Rn. So, it is sufficient
to show that O is closed in Rn. Since the Γ-action ρ on Rn is properly discontinuous, the quotient
space Rn/Γ becomes a Hausdorff space and the natural projection q : Rn → Rn/Γ is continuous. O is
preserved by the Γ-action ρ on Rn since dev is Γ-equivariant. Then, dev induces a continuous surjective

map dev : B = B̃/Γ → O/Γ. Since B is compact, O/Γ is a compact subset in the Hausdorff space Rn/Γ.
In particular, it is also closed. Hence, O = q−1 (O/Γ) is also closed in Rn. □

Corollary 2.10. Let B, p : B̃ → B, dev : B̃ → Rn, and ρ : Γ → GLn(Z) ⋉ Rn be as in Proposition 2.8
and assume that B compact. If the image of ρ lies in (GLn(Z) ∩O(n)) ⋉ Rn and the subgroup ρ(Γ) of
(GLn(Z) ∩O(n))⋉Rn is discrete, then, dev is surjective.

Proof. It follows from [37, Theorem 3.1.3]. □
Definition 2.11. The integral affine immersion dev is called a developing map. B is said to be
complete if dev is bijective. B is said to be incomplete if B is not complete.

Example 2.12. All the above examples are complete other than Example 2.7 for n ≥ 2.

Example 2.13. Let B be an n-dimensional compact integral affine manifold B with integral affine atlas
{(Uα, ϕα)} as in Definition 2.1. If on each non-empty overlap Uαβ , the Jacobi matrix of the coordinate

changing map D
(
ϕα ◦ ϕ−1

β

)
lies in GLn(Z) ∩ O(n), then, B has a flat Riemannian metric. Hence, by

Bieberbach’s theorem [5, 6], B is finitely covered by Tn. In particular, B is complete. For flat Riemannian
manifolds, see [37, Chapter 3].
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2.2. Lagrangian fibrations. In this section let us recall Lagrangian fibrations and explain how integral
affine structures are associated with Lagrangian fibrations. After that let us recall their classification by
Duistermaat. For more details, see [10, 39].

Let (M,ω) be a symplectic manifold.

Definition 2.14. A map π : (M,ω) → B from (M,ω) to a manifold B is called a Lagrangian fibration if
π is a fiber bundle whose fiber is a Lagrangian submanifold of (M,ω).

Example 2.15. Let Tn = (R/Z)n be an n-dimensional torus. Rn × Tn admits a standard symplectic
structure ω0 =

∑
i dxi ∧ dyi, where (x1, . . . , xn), (y1, . . . , yn) are the coordinates of Rn, Tn, respectively.

Then, the projection π0 : (Rn × Tn, ω0) → Rn to Rn is a Lagrangian fibration.

The following theorem shows that Example 2.15 is a local model of Lagrangian fibration.

Theorem 2.16 (Arnold-Liouville’s theorem [2]). Let π : (M,ω) → B be a Lagrangian fibration with
compact, path-connected fibers. Then, for each b ∈ B, there exists a chart (U, ϕ) containing b and a
symplectomorphism φ : (π−1(U), ω|π−1(U)) → (ϕ(U)× Tn, ω0) such that the following diagram commutes(

π−1(U), ω|π−1(U)

)
π

��

φ // (ϕ(U)× Tn, ω0)

π0

��
U

ϕ // ϕ(U).

In the rest of this paper we assume that every Lagrangian fibration has compact, path-connected
fibers.

Now we investigate automorphisms of the local model. By the direct computation shows the following
lemma. See also [35, Lemma 2.5].

Lemma 2.17. Let φ : (Rn×Tn, ω0) → (Rn×Tn, ω0) be a fiber-preserving symplectomorphism of π0 : (Rn×
Tn, ω0) → Rn which covers a map ϕ : Rn → Rn. Then, there exists a matrix A ∈ GLn(Z), a constant
c ∈ Rn, and a map u : Rn → Tn with tADu symmetric such that φ is written as

φ(x, y) =
(
Ax+ c, tA−1y + u(x)

)
for any (x, y) ∈ Rn × Tn, where Du is the Jacobi matrix of u.

By Theorem 2.16 and Lemma 2.17 we can obtain the following proposition.

Proposition 2.18. Let π : (M,ω) → B be a Lagrangian fibration. Then, there exists an atlas {(Uα, ϕα)}α∈A

of B and for each α ∈ A there exists a symplectomorphism φα :
(
π−1(Uα), ω|π−1(Uα)

)
→ (ϕα(Uα)× Tn, ω0)

such that the following diagram commutes

(π−1(Uα), ω|π−1(Uα))

π

��

φα // (ϕα(Uα)× Tn, ω0)

π0

��
Uα

ϕα // ϕα(Uα).

Moreover, on each non-empty overlap Uαβ := Uα ∩ Uβ there exist locally constant maps Aαβ : Uαβ →
GLn(Z), cαβ : Uαβ → Rn, and a map uαβ : Uαβ → Tn with tAαβD

(
uαβ ◦ ϕ−1

β

)
symmetric such that the

overlap map is written as

(2.1) φα ◦ φ−1
β (x, y) =

(
Aαβx+ cαβ ,

tA−1
αβy + uαβ ◦ ϕ−1

β (x)
)

for any (x, y) ∈ ϕβ(Uαβ)× Tn.

Proposition 2.18 implies that the base manifold of a Lagrangian fibration has an integral affine struc-
ture. Conversely, suppose that a manifold B admits an integral affine structure and let {(Uα, ϕα)}α∈A

be an integral affine atlas of B. Then, we can construct a Lagrangian fibration on B in the following
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way. For each α ∈ A let ϕα : T
∗B|Uα

→ ϕα(Uα) × Rn be the local trivialization of the cotangent bun-
dle T ∗B induced from (Uα, ϕα). On each nonempty overlap Uαβ , suppose that ϕα ◦ ϕ−1

β is written by

ϕα ◦ ϕ−1
β (x) = Aαβx+ cαβ as in Definition 2.1. Then, the overlap map is written as

(2.2) ϕα ◦ (ϕβ)−1(x, y) = (Aαβx+ cαβ ,
tA−1

αβy).

Since Aαβ lies in GLn(Z), (2.2) preserves the integer lattice Zn of the fiber Rn, hence, induces the fiber-
preserving symplectomorphism from π0 : (ϕβ(Uαβ)× Tn, ω0) → ϕβ(Uαβ) to π0 : (ϕα(Uαβ)× Tn, ω0) →
ϕα(Uαβ). Then, the Lagrangian fibrations {π0 : (ϕα(Uα)× Tn, ω0) → ϕα(Uα)}α∈A are patched together
by the symplectomorphisms to form a Lagrangian fibration πT : (T ∗BT , ωT∗BT

) → B, namely

(T ∗BT , ωT∗BT
) :=

⨿
α∈A

(ϕα(Uα)× Tn, ω0) / ∼

and

πT ([xα, yα]) := ϕ−1
α (xα)

for (xα, yα) ∈ ϕα(Uα)×Tn. This construction does not depend on the choice of equivalent integral affine
structures and depends only on the integral affine structure on B. We call πT : (T ∗BT , ωT∗BT

) → B the
canonical model.

We summarize the above argument to the following proposition.

Proposition 2.19. Let B be a manifold. B is a base space of a Lagrangian fibration if and only if B
admits an integral affine structure.

Let us give a classification theorem of Lagrangian fibrations in the required form in this paper. Let
π : (M,ω) → B be a Lagrangian fibration. Then, B has an integral affine structure by Proposition 2.19.
We take and fix an integral affine atlas {(Uα, ϕα)}α∈A on B and let πT : (T ∗BT , ωT∗BT

) → B be the canon-
ical model associated with the integral affine structure on B. On each Uα, let φα :

(
π−1(Uα), ω|π−1(Uα)

)
→

(ϕα(Uα)× Tn, ω0) be a local trivialization of π : (M,ω) → B as in Proposition 2.18, and ϕα :
(
π−1
T (Uα), ωT∗BT

)
→

(ϕα(Uα)× Tn, ω0) be the local trivialization of πT : (T ∗BT , ωT∗BT
) → B naturally induced from (Uα, ϕα)

as explained above.1 Then their composition

hα := ϕα
−1 ◦ φα :

(
π−1(Uα), ω|π−1(Uα)

)
→
(
π−1
T (Uα), ωT∗BT

)
gives a local identification between them.

On each Uα ∩ Uβ , suppose that φα ◦ φ−1
β is written as in (2.1). Then, hα ◦ h−1

β can be written as

hα ◦ h−1
β (p) = ϕα

−1
(
Aαβx+ cαβ ,

tA−1
αβy + uαβ(π(p))

)
,

where ϕβ(p) = (x, y). uαβ induces the local section ũαβ of πT : (T ∗BT , ωT∗BT
) → B on Uαβ by

ũαβ(b) := [ϕα(b), uαβ(b)]

for b ∈ Uαβ . It is easy to see that ũαβ satisfies ũ∗αβωT∗BT
= 0. A section with this condition is said to be

Lagrangian.
Let S be the sheaf of germs of Lagrangian section of πT : (T ∗BT , ωT∗BT

) → B. S is the sheaf
of Abelian groups since the fiber of πT : (T ∗BT , ωT∗BT

) → B has the structure of an Abelian group by
construction. By definition {ũαβ} forms a Čech one-cocycle on B with coefficients in S . The cohomology
class determined by {ũαβ} does not depend on the choice of a specific integral affine structure and depends
only on π : (M,ω) → B. We denote the cohomology class by u ∈ H1(B;S ). u is called the Chern class
of π : (M,ω) → B in [10].

Lagrangian fibrations on the same integral affine manifold are classified with the Chern classes.

Theorem 2.20 ([10]). For two Lagrangian fibrations π1 : (M1, ω1) → B and π2 :
(M2, ω2) → B on the same integral affine manifold B, there exists a fiber-preserving symplectomorphism
between them which covers the identity if and only if their Chern classes u1 and u2 agree with each other.
Moreover, if an integral affine manifold B and the cohomology class u ∈ H1(B;S ) are given, then, there
exists a Lagrangian fibration π : (M,ω) → B that realizes them.

1Here we use the same notation as the local trivialization of T ∗B because we have no confusion.
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Remark 2.21. By the construction of u, there exists a fiber-preserving symplectomorphism between
π : (M,ω) → B and πT : (T ∗BT , ωT∗BT

) → B that covers the identity of B if and only if u vanishes.
Since πT : (T ∗BT , ωT∗BT

) → B has the zero section which is Lagrangian, u is the obstruction class in
order that π : (M,ω) → B posses a Lagrangian section. In particular, any Lagrangian fibration with
Lagrangian section is identified with the canonical model.

2.3. Lagrangian fibrations with complete bases. Let π : (M,ω) → B be a Lagrangian fibration

with n-dimensional connected base manifold B, p : B̃ → B the universal covering of B. We denote by

π̃ : (M̃, ω̃) → B̃ the pullback of π : (M,ω) → B to B̃. Let Γ be the fundamental group of B and σ ∈
Hom

(
Γ,Aut(B̃)

)
the action of Γ defined as the inverse of the deck transformation as in Proposition 2.8.

By definition, M̃ admits a natural lift of σ which preserves ω̃. The Γ-action on (M̃, ω̃) is denoted by σ̃. By

Proposition 2.8 we have a developing map dev : B̃ → Rn and the homomorphism ρ : Γ → GLn(Z)⋉ Rn.
We denote the image of dev by O. Note that the Γ-action ρ on Rn preserves O since dev is Γ-equivariant.

Proposition 2.22. There exists a Lagrangian fibration π′ : (M ′, ω′) → O, a fiber-preserving symplectic

immersion d̃ev : (M̃, ω̃) → (M ′, ω′) which covers dev, and a lift ρ̃ of the Γ-action ρ on O to (M ′, ω′) such

that d̃ev is Γ-equivariant with respect to σ̃ and ρ̃.

Proof. By Proposition 2.19 B admits an integral affine structure determined by π, and it also induces the

integral affine structure on B̃. Let {(Uα, ϕ
′′
α)} be the integral affine atlas of B̃ and {(π̃−1(Uα), ω|π̃−1(Uα), φ

′′
α)}

the local trivializations of π̃ : (M̃, ω̃) → B̃ as in Proposition 2.18 so that on each non-empty over-
lap Uαβ , there exist locally constant maps Aαβ : Uαβ → GLn(Z) and c′αβ : Uαβ → Rn, and a map

u′αβ : Uαβ → Tn with tAαβD
(
u′αβ ◦ (ϕ′′β)−1

)
symmetric such that φ′′

α ◦ (φ′′
β)

−1 is written as in (2.1).

Then, Aαβ ’s form a Čech one-cocycle {Aαβ} ∈ C1({Uα}; GLn(Z)) and defines a cohomology class

[{Aαβ}] ∈ H1(B̃;GLn(Z)). It is well known that H1(B̃;GLn(Z)) is identified with the moduli space

of homomorphisms from π1(B̃) to GLn(Z). Since π1(B̃) is trivial, there exists a Čech zero-cocycle
{Aα} ∈ C0({Uα}; GLn(Z)) such that Aαβ = AαA

−1
β on each Uαβ . By using the cocycle we modify the

local trivializations {(π̃−1(Uα), ω|π̃−1(Uα), φ
′′
α)} and the integral affine atlas {(Uα, ϕ

′′
α)} by replacing φ′′

α,
ϕ′′α by

φ′
α(p̃) := (A−1

α × tAα) ◦ ϕ′′α(p̃), ϕ′α := A−1
α ϕ′′α

for each α ∈ A, respectively. Then, on each Uαβ , φ
′
α ◦ (φ′

β)
−1 is written as

φ′
α ◦ (φ′

β)
−1(x̃, y) =

(
x̃+ cαβ , y + uαβ ◦ (ϕ′β)−1(x̃)

)
,

where we set cαβ := A−1
α c′αβ and uαβ := tAαu

′
αβ . Then, cαβ ’s form a Čech one-cocycle {cαβ} ∈

C1({Uα};Rn) and defines a cohomology class [{cαβ}] ∈ H1(B̃;Rn). By the universal coefficients theorem,

H1(B̃;Rn) is identified with Hom(H1(B̃;Z),Rn), which is trivial. So there exists a Čech zero-cocycle
{cα} ∈ C0({Uα};Rn) such that cαβ = cα − cβ on each Uαβ . By using the cocycle, we again modify
{(π̃−1(Uα), ω|π̃−1(Uα), φ

′
α)} and {(Uα, ϕ

′
α)} by replacing φ′

α, ϕ
′
α by

φα(p̃) := φ′
α(p̃)− (cα, 0), ϕα(̃b) := ϕ′α(̃b)− cα,

respectively for each α ∈ A. Then, on each Uαβ , ϕα coincides with ϕβ and φα ◦ φ−1
β is written as

φα ◦ φ−1
β (x̃, y) = (x̃, y + uαβ ◦ ϕ−1

β (x̃)).

Now we define the map dev : B̃ → Rn by

dev(̃b) := ϕα(̃b)

if b̃ lies in Uα. It is well defined, and by construction, it is an integral affine immersion whose image is
∪α∈Aϕα(Uα). (M

′, ω′) is defined by

(M ′, ω′) :=
⨿
α∈A

(ϕα(Uα)× Tn, ω0) / ∼,
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where (xα, yα) ∈ ϕα(Uα) × Tn and (xβ , yβ) ∈ ϕβ(Uβ) × Tn are in the relation (xα, yα) ∼ (xβ , yβ) if

they satisfy (xα, yα) = φα ◦ φ−1
β (xβ , yβ), and π′ : (M ′, ω′) → O is defined to be the first projection.

d̃ev : (M̃, ω̃) → (M ′, ω′) is defined by

d̃ev(p̃) := [φα(p̃)]

if p̃ lies in π̃−1(Uα).
Without loss of generality, we can assume that each Uα is connected,and for each γ ∈ Γ and α ∈ A

there uniquely exists α′ ∈ A such that the deck transformation σγ maps Uα onto Uα′ . Then, its lift σ̃γ
to (M̃, ω̃) maps π̃−1(Uα) to π̃

−1(Uα′). By Lemma 2.17, ϕα′ ◦ σγ ◦ ϕ−1
α can be written as

ϕα′ ◦ σγ ◦ ϕ−1
α (x̃) = Aα′α

γ x̃+ cα
′α

γ

for some Aα′α
γ ∈ GLn(Z), cα

′α
γ ∈ Rn. Since ϕα coincides with ϕβ on each overlap Uαβ , ϕα′ ◦ ϕγ ◦ ϕα(x̃) =

Aα′α
γ x̃+ cα

′α
γ also agrees with ϕβ′ ◦ ϕγ ◦ ϕβ(x̃) = Aβ′β

γ x̃+ cβ
′β

γ on the overlap ϕα(Uαβ) = ϕβ(Uαβ). This

implies Aα′α
γ ’s and cα

′α
γ ’s do not depend on α and depends only on γ. In fact, for each γ ∈ Γ and α0 ∈ A,

we set

A0 := {α ∈ A | Aα′
0α0

γ = Aα′α
γ and c

α′
0α0

γ = cα
′α

γ }.
A0 contains all β ∈ A with Uα0β ̸= ∅. In particular, A0 is not empty since α0 ∈ A0. Then, we have

(∪α∈A0Uα) ∪ (∪α∈A∖A0Uα) = B̃, (∪α∈A0Uα) ∩ (∪α∈A∖A0Uα) = ∅.

If the compliment A ∖ A0 is not empty, this contradicts to the connectedness of B̃. So we denote them
by Aγ and cγ , respectively. Thus, we define the homomorphism ρ : Γ → GLn(Z)⋉Rn by

ργ := (Aγ , cγ).

Γ acts on Rn by ργ(x) = Aγx+ cγ for γ ∈ Γ and x ∈ Rn. The lift ρ̃γ of ργ to (M ′, ω′) is defined by

ρ̃γ ([xα, yα]) := [φα′ ◦ σ̃γ ◦ φ−1
α (xα, yα)]

if (xα, yα) lies in ϕα(Uα)×Tn. By construction, ρ̃ is a lift of ρ, and ρ̃ and ρ satisfy d̃ev(σ̃γ(p̃)) = ρ̃γ(d̃ev(p̃))

and dev(σγ (̃b)) = ργ(dev(̃b)), respectively. □

Remark 2.23. (1) By construction, the n-dimensional torus Tn acts freely on M ′ preserving ω′ from
the right so that π′ : M ′ → O is a principal Tn-bundle.
(2) When π : (M,ω) → B admits a Lagrangian section, the restriction of π0 : (Rn × Tn, ω0) → Rn to
O can be taken as π′ : (M ′, ω′) → O. In fact, in this case, since π : (M,ω) → B is identified with the
canonical model, we can take a system of local trivializations {(π−1(Uα), φα)} with uαβ = 0 on each
overlaps Uαβ . By applying the construction of π′ : (M ′, ω′) → O given in the proof of Proposition 2.22
to such a {(π−1(Uα), φα)} we can show the claim.

Suppose that (M,ω) is prequantizable and let (L,∇L) → (M,ω) be a prequantum line bundle. We

denote by (L̃,∇L̃) → (M̃, ω̃) the pullback of (L,∇L) → (M,ω) to (M̃, ω̃). By definition, L̃ admits a

natural lift of the Γ-action σ̃ on (M̃, ω̃) which preserves ∇L̃. The Γ-action on (L̃,∇L̃) is denoted by ˜̃σ.
Then, we have the following prequantum version of Proposition 2.22.

Proposition 2.24. There exists a prequantum line bundle (L′,∇L′
) → (M ′, ω′), a bundle immersion˜̃dev : (L̃,∇L̃) → (L′,∇L′

) which covers d̃ev, and a lift ˜̃ρ of the Γ-action ρ̃ on (M ′, ω′) to (L′,∇L′
) such

that ˜̃dev is equivariant with respect to ˜̃σ and ˜̃ρ.
Proof. Let {(Uα, ϕα)} and {(π̃−1(Uα), ω|π̃−1(Uα), φα)} be the integral affine atlas of B̃ and the local

trivializations of π̃ : (M̃, ω̃) → B̃ obtained in the proof of Proposition 2.22, respectively. Then, for each

α ∈ A there exists a prequantum line bundle (ϕα(Uα)×Tn×C,∇L̃α) → (ϕα(Uα)×Tn, ω0) and a bundle

isomorphism ψα : (L̃,∇L̃)|π̃−1(Uα) → (ϕα(Uα) × Tn × C,∇L̃α) which covers φ. Now we define (L′,∇L′
)

by

(L′,∇L′
) :=

⨿
α∈A

(
ϕα(Uα)× Tn × C,∇L̃α

)
/ ∼,
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where (xα, yα, zα) ∈ ϕα(Uα)×Tn×C and (xβ , yβ , zβ) ∈ ϕβ(Uβ)×Tn×C are in the relation (xα, yα, zα) ∼
(xβ , yβ , zβ) if they satisfy (xβ , yβ , zβ) = ψα ◦ ψ−1

β (xβ , yβ , zβ).
˜̃dev : (L̃,∇L̃) → (L′,∇L′

) is defined by˜̃dev(ṽ) := [ψα(ṽ)]

if ṽ lies in (L̃,∇L̃)|π̃−1(Uα).
Suppose that for each γ ∈ Γ the deck transformation σγ maps each Uα to some Uα′ as before. Then,˜̃σγ maps L̃π̃−1(Uα) to L̃π̃−1(Uα′ ). Then, the Γ-action ˜̃ρ is defined by˜̃ργ(xα, yα, zα) := [ψα′ ◦ ˜̃σγ ◦ ψ−1

α (xα, yα, zα)]

if (xα, yα, zα) lies in ϕα(Uα)× Tn × C. □

In the case where B is complete, we obtain the following corollary.

Corollary 2.25. Let π : (M,ω) → B be a Lagrangian fibration with connected n-dimensional base B

and (L,∇L) → (M,ω) a prequantum line bundle on (M,ω). Let p : B̃ → B be the universal cover-

ing of B. Let us denote by (M̃, ω̃) the pullback of (M,ω) to B̃ and denote by (L̃,∇L̃) the pullback of

(L,∇L) to (M̃, ω̃). If B is complete, there exist an integral affine isomorphism dev : B̃ → Rn, a fiber-

preserving symplectomorphism d̃ev : (M̃, ω̃) → (Rn × Tn, ω0), and a bundle isomorphism ˜̃dev : (L̃,∇L̃) →(
Rn × Tn × C, d− 2π

√
−1x · dy

)
such that d̃ev covers dev and ˜̃dev covers d̃ev, respectively. Here x · dy

denotes
∑n

i=1 xidyi. Moreover, let σ be the Γ-action on B̃ defined as the inverse of deck transforma-

tions, σ̃ the natural lift of σ to (M̃, ω̃), and ˜̃σ the natural lift of σ̃ to (L̃,∇L̃), respectively. Then, there

exist an integral affine Γ-action ρ : Γ → GLn(Z) ⋉ Rn on Rn, its lifts ρ̃ and ˜̃ρ to (Rn × Tn, ω0) and(
Rn × Tn × C, d− 2π

√
−1x · dy

)
, respectively such that dev, d̃ev, and ˜̃dev are Γ-equivariant.

Proof. By construction of d̃ev given in the proof of Proposition 2.22, if dev is bijective, so is d̃ev. The
argument in [10, p.696] and Theorem 2.20 also show that π0 : (Rn × Tn, ω0) → Rn is the unique La-
grangian fibration on Rn up to fiber-preserving symplectomorphism covering the identity. In particular,
π′ : (M ′, ω′) → Rn is identified with π0 : (Rn × Tn, ω0) → Rn.

Concerning the prequantum line bundle, it is sufficient to show that (Rn × Tn, ω0) has a unique pre-
quantum line bundle

(
Rn × Tn × C, d− 2π

√
−1x · dy

)
up to bundle isomorphism. Since ω0 is exact, any

prequantum line bundle on (Rn × Tn, ω0) is trivial as a complex line bundle. Let
(
Rn × Tn × C, d− 2π

√
−1α

)
be a prequantum line bundle on (Rn × Tn, ω0) with connection d − 2π

√
−1α. Then, α − x · dy defines

a de Rham cohomology class in H1 (Rn × Tn;R). Since H1 (Rn × Tn;R) is isomorphic to H1(Tn;R), in
terms of the generators dyi’s of H

1(Tn;R), α− x · dy can be described as

α− x · dy =

n∑
i=1

τidyi + df

for some τ1, . . . , τn ∈ R and f ∈ C∞(Rn×Tn). Now we define the bundle isomorphism ψ : Rn×Tn×C →
Rn × Tn × C by

ψ(x, y, z) :=
(
x+ (τi), y, e

−2π
√
−1f(x,y)z

)
.

Then, ψ satisfies ψ∗ (d− 2π
√
−1x · dy

)
= d− 2π

√
−1α. □

Remark 2.26. By Corollary 2.25, any Lagrangian fibration π : (M,ω) → B on a connected, complete
B with prequantum line bundle (L,∇L) → (M,ω) is obtained as the quotient space of the Γ-action on
π0 : (Rn × Tn, ω0) → Rn with prequantum line bundle (Rn × Tn ×C, d− 2π

√
−1x · dy) → (Rn × Tn, ω0).

By definition, the prequantum line bundle (L,∇L) → (M,ω) is equipped with a Hermitian metric ⟨·, ·⟩L
compatible with ∇L.2 The pull-back of ⟨·, ·⟩L to (Rn × Tn × C, d − 2π

√
−1x · dy) → (Rn × Tn, ω0)

coincides with the one induced from the standard Hermitian inner product on C up to constant. In
fact, it is easy to see that, up to constant, it is the unique Hermitian metric on (Rn × Tn × C, d −
2π

√
−1x · dy) → (Rn × Tn, ω0) compatible with d − 2π

√
−1x · dy. In the rest of this paper, we assume

2A Hermitian metric ⟨·, ·⟩L on L is compatible with ∇L if it satisfies d
(
⟨s1, s2⟩L

)
=

⟨
∇Ls1, s2

⟩
L
+

⟨
s1,∇Ls2

⟩
L

for all

s1, s2 ∈ Γ (L).
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that (Rn × Tn × C, d − 2π
√
−1x · dy) → (Rn × Tn, ω0) is always equipped with the Hermitian metric

though we do not specify it.

2.4. The lifting problem of the Γ-action to the prequantum line bundle. In the rest of this
section, we investigate the condition for the Γ-action on π0 : (Rn × Tn, ω0) → Rn to have a lift to
(Rn × Tn × C, d− 2π

√
−1x · dy) → (Rn × Tn, ω0) in detail. Let ρ : Γ → GLn(Z)⋉ Rn be a Γ-action on

Rn and ρ̃ its lift to (Rn × Tn, ω0). By Lemma 2.17, for each γ ∈ Γ, there exist Aγ ∈ GLn(Z), cγ ∈ Rn,
and a map uγ : Rn → Tn with tAγDuγ symmetric such that ργ and ρ̃γ can be described as follows

(2.3) ργ(x) = Aγx+ cγ , ρ̃γ(x, y) =
(
Aγx+ cγ ,

tA−1
γ y + uγ(x)

)
.

Note that since (2.3) is a Γ-action, Aγ , cγ , and uγ satisfy the following conditions

(2.4)


Aγ1γ2

= Aγ1
Aγ2

cγ1γ2
= Aγ1

cγ2
+ cγ1

uγ1γ2
(x) = tA−1

γ1
uγ2

(x) + uγ1
(ργ2

(x))

for γ1, γ2 ∈ Γ, and x ∈ Rn. Let ũγ = t(ũ1γ , . . . , ũ
n
γ ) : Rn → Rn be a lift of uγ . For ũγ and i = 1, . . . , n, we

put ∫ xi

0

ũγ(x)dxi :=
t

(∫ xi

0

ũ1γ(x)dxi, . . . ,

∫ xi

0

ũnγ (x)dxi

)
and

F i
γ(x) :=

(
tAγ

∫ xi

0

ũγ(x)dxi

)
i

=

n∑
j=1

(
tAγ

)
ij

∫ xi

0

ũjγ(x)dxi.

Let N ∈ N be a positive integer. The Γ-action ρ̃ also preserves Nω0. Then, we can show the following
lemma.

Lemma 2.27. (1) For each γ ∈ Γ, there exists a bundle automorphism ˜̃ργ of
(
Rn × Tn × C, d− 2π

√
−1Nx · dy

)
which covers ρ̃γ and preserves the connection if and only if cγ lies in 1

NZn. Moreover, in this case, ˜̃ργ
can be described as follows

(2.5) ˜̃ργ(x, y, z) = (ρ̃γ(x, y), gγe2π√−1N{g̃γ(x)+cγ ·(tA−1
γ y)}z

)
,

where gγ is an arbitrary element in U(1) and

(2.6) g̃γ(x) := ργ(x) · ũγ(x)− cγ · ũγ(0)−
n∑

i=1

F i
γ(0, . . . , 0, xi, . . . , xn).

The formula (2.5) does not depend on the choice of ũγ .
3

(2) Under the condition given in (1), the map ˜̃ρ : Γ → Aut
((
Rn × Tn × C, d− 2π

√
−1Nx · dy

))
defined

by (2.5) is a homomorphism if and only if the map g : Γ ∋ γ 7→ gγ ∈ U(1) is a homomorphism and for
all γ1, γ2 ∈ Γ and x ∈ Rn, the following condition holds{

−cγ1
· uγ1

(0) + cγ1
· tA−1

γ1
uγ2(0) + ργ1(cγ2) · uγ1 (ργ2(0))

}
−

n∑
i=1

(
tAγ1

∫ (ργ2
(x))i

0

uγ1
(0, . . . , 0, τi, (ργ2

(x))i+1, . . . , (ργ2
(x))n) dτi

)
i

+

n∑
i=1

(
tAγ2

tAγ1

∫ xi

0

uγ1
(ργ2

(0, . . . 0, τi, xi+1, . . . , xn)) dτi

)
i

∈ 1

N
Z.

Proof. For each γ ∈ Γ we put

˜̃ργ(x, y, z) = (ρ̃γ(x, y), e2π{g̃R
γ (x,y)+

√
−1g̃I

γ(x,y)}z
)
,

3In the rest of this paper, we often use the notation uγ instead of ũγ .
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where g̃Rγ and g̃Iγ are real valued functions on Rn × Tn. By the direct computation, it is easy to see that˜̃ργ preserves d− 2π
√
−1Nx · dy if and only if g̃Rγ is constant and g̃Iγ satisfy the following conditions

∂xi
g̃Iγ = N(Aγx+ cγ) · ∂xi

ũγ(2.7)

∂yi g̃
I
γ = N(A−1

γ cγ)i(2.8)

for i = 1, . . . , n. From (2.7) we obtain

(2.9) g̃Iγ(x, y) = g̃Iγ(x1, . . . , xi−1, 0, xi+1, . . . , xn, y) +N
{
[ργ(x) · ũγ(x)]xi=xi

xi=0 − F i
γ(x)

}
.

Using (2.9) recursively, we obtain

(2.10) g̃Iγ(x, y) = g̃Iγ(0, y) +N

{
ργ(x) · ũγ(x)− cγ · ũγ(0)−

n∑
i=1

F i
γ (0, . . . , 0, xi, . . . , xn)

}
.

(2.10) does not depend on the order of applying (2.9) to xi’s. In fact, by applying (2.9) first to xi, then
next to xj , we obtain

1

N
g̃Iγ(x, y) =

1

N
g̃Iγ(x1, . . . , xi−1, 0, xi+1, . . . , xn, y) +

∫ xi

0

(Aγx+ cγ) · ∂xi
uγ(x)dxi

=
1

N
g̃Iγ(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . , xn, y)

+

∫ xj

0

(Aγx+ cγ) · ∂xj
uγ(x)dxj

∣∣∣
xi=0

+

∫ xi

0

(Aγx+ cγ) · ∂xi
uγ(x)dxi.

So, in order to see this, it is sufficient to show∫ xj

0

(Aγx+ cγ) · ∂xj
uγ(x)dxj

∣∣∣
xi=0

+

∫ xi

0

(Aγx+ cγ) · ∂xi
uγ(x)dxi

−
∫ xi

0

(Aγx+ cγ) · ∂xiuγ(x)dxi

∣∣∣
xj=0

−
∫ xj

0

(Aγx+ cγ) · ∂xjuγ(x)dxj

(2.11)

vanishes. Since tAγDuγ is symmetric, we have (tAγ∂xi
uγ(x))j = (tAγDuγ(x))ji = (tAγDuγ(x))ij =(

tAγ∂xj
uγ(x)

)
i
for all i, j = 1, . . . , n. By using this, we can show

(2.11) =

∫ xj

0

∂xj

(∫ xi

0

(Aγx+ cγ) · ∂xi
uγ(x)dxi

)
dxj −

∫ xi

0

∂xi

(∫ xj

0

(Aγx+ cγ) · ∂xj
uγ(x)dxj

)
dxi

=

∫ xj

0

∫ xi

0

(
∂xj (Aγx+ cγ)

)
· ∂xiuγ(x)dxidxj +

∫ xj

0

∫ xi

0

(Aγx+ cγ) · ∂xj∂xiuγ(x)dxidxj

−
∫ xi

0

∫ xj

0

(∂xi
(Aγx+ cγ)) · ∂xj

uγ(x)dxjdxi −
∫ xi

0

∫ xj

0

(Aγx+ cγ) · ∂xi
∂xj

uγ(x)dxjdxi

=

∫ xj

0

∫ xi

0

(
tAγ∂xi

uγ(x)
)
j
dxidxj −

∫ xi

0

∫ xj

0

(
tAγ∂xj

uγ(x)
)
i
dxjdxi

= 0.

By the same way, from (2.8) we obtain

(2.12) g̃Iγ(x, y) = g̃Iγ(x, 0) +Ncγ · tA−1
γ y.

Thus, from (2.10) and (2.12) we have

(2.13) g̃Iγ(x, y) = g̃Iγ(0, 0)+N

{
ργ(x) · ũγ(x)− cγ · ũγ(0)−

n∑
i=1

F i
γ(0, . . . , 0, xi, . . . , xn) + cγ · tA−1

γ y

}
.

Since y ∈ Tn, g̃Iγ should satisfies e2π
√
−1g̃I

γ(0,ei) = e2π
√
−1g̃I

γ(0,0) for all i = 1, . . . , n and γ ∈ Γ. This holds

if and only if A−1
γ Ncγ · ei ∈ Z for all i = 1, . . . , n and γ ∈ Γ. Since Aγ ∈ GLn(Z) this is equivalent to the

condition Ncγ ∈ Zn. In this case, we put gγ := e2π(g̃
R
γ (0,0)+

√
−1g̃I

γ(0,0)). Since ˜̃ργ preserves the Hermitian

metric on (Rn × Tn ×C, d− 2π
√
−1x · dy) → (Rn × Tn, ω0), gγ lies in U(1). The formula (2.5) does not

depend on the choice of ũγ since the difference of two lifts of uγ lies in Zn. This proves (1).
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The map ˜̃ρ defined in (2) is a homomorphism if and only if g̃Iγ(x, y)− g̃Iγ(0, 0) defined by (2.13) satisfies
the cocycle condition. By a direct computation using (2.4), it is equivalent to the ones given in (2). □

Example 2.28. Let B be the n-dimensional integral affine torus given in Example 2.3 (1) for a linear
basis v1, . . . , vn ∈ Rn. The product B × Tn admits a symplectic structure ω so that the trivial torus
bundle π : (B × Tn, ω) → B becomes a Lagrangian fibration. This is obtained as the quotient space of
the action of Γ := Zn on π0 : (Rn × Tn, ω0) → Rn which is defined by

ρ̃γ(x, y) = (x+ Cγ, y)

for γ ∈ Γ and (x, y) ∈ Rn×Tn, where C = (v1 · · · vn) ∈ GLn(R). Let N ∈ N be a positive number. The
Γ-action ρ̃ on (Rn × Tn, Nω0) has a lift to the prequantum line bundle (Rn×Tn×C, d−2π

√
−1Nx·dy) →

(Rn × Tn, Nω0) if and only if all vi’s lie in 1
NZn, and in this case ˜̃ρ is given by

˜̃ργ(x, y, z) = (ρ̃γ(x, y), gγe2π√−1NCγ·yz
)

for γ ∈ Γ and (x, y, z) ∈ Rn × Tn × C, where g : Γ ∋ γ 7→ gγ ∈ U(1) is an arbitrary homomorphism.

Example 2.29 (The Kodaira-Thurston manifold). Let Γ be Z2. Consider the Γ-action on π0 :
(
R2 × T 2, ω0

)
→

R2 which is defined by

ργ(x) := x+ γ, ρ̃γ(x, y) := (ργ(x), y + uγ(x))

for γ ∈ Γ and (x, y) ∈ R2×T 2, where uγ(x) =
t(0, γ1x2). The Lagrangian fibration given by the quotient

of this action is denoted by π : (M,ω) → B. M was first observed by Kodaira in [24] and Thurston [36]
pointed out in [36] that (M,ω) does not admits any Kähler structure. M is nowadays called the Kodaira-
Thurston manifold. Let N ∈ N be a positive number. The Γ-action ρ̃ on

(
R2 × T 2, Nω0

)
has a lift to the

prequantum line bundle (R2 × T 2 × C, d − 2π
√
−1Nx · dy) →

(
R2 × T 2, Nω0

)
if and only if N is even,

and in this case the lift ˜̃ρ is given by

˜̃ργ(x, y, z) = (ρ̃γ(x, y), gγe2π√−1N{ 1
2γ1x

2
2+γ1γ2x2+γ·y}z

)
for γ ∈ Γ and (x, y, z) ∈ Rn × Tn × C, where g : Γ ∋ γ 7→ gγ ∈ U(1) is an arbitrary homomorphism.

Example 2.30. Let B be the n-dimensional integral affine torus given in Example 2.3 (2) for a linear basis
v1, . . . , vn ∈ Rn. When all vi’s are integer vectors, i.e., v1, . . . , vn ∈ Zn, we can generalize Example 2.28
and Example 2.29 in the following way. Namely, for i, j = 1, . . . , n, let uij be an integer vector with
uij = uji. For each γ ∈ Γ := Zn, define the map uγ : Rn → Tn by

uγ(x) :=

u11 · γ · · · u1n · γ
...

...
un1 · γ · · · unn · γ

x,

and define the action of Γ on π0 : (Rn × Tn, ω0) → Rn by

(2.14) ρ̃γ(x, y) = (x+ Cγ, y + uγ(x))

for γ ∈ Γ and (x, y) ∈ Rn × Tn, where C = (v1 · · · vn). Then, the quotient π : (M,ω) → B obtained
as the Γ-action (2.14) is a Lagrangian fibration on B. Let N ∈ N be a positive number. The Γ-action
ρ̃ on (Rn × Tn, Nω0) has a lift to the prequantum line bundle (Rn × Tn × C, d − 2π

√
−1Nx · dy) →

(Rn × Tn, Nω0) if and only if N
2 vi · Ujvi ∈ Z for all i, j = 1, . . . , n, where

Uj :=

(u11)j · · · (u1n)j
...

...
(un1)j · · · (unn)j

 .

And in this case the lift ˜̃ρ is given by

˜̃ργ(x, y, z) = (ρ̃γ(x, y), gγe2π√−1N[ 12{ργ(x)·uγ(ργ(x))−ργ(0)·uγ(ργ(0))}+ργ(0)·y]z
)

for γ ∈ Γ and (x, y, z) ∈ Rn × Tn × C, where g : Γ ∋ γ 7→ gγ ∈ U(1) is an arbitrary homomorphism.
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Example 2.31. Let n ≥ 2 and λ1, . . . λn−1 ∈ Z. Let Γ be the group (Zn, ◦) given in Example 2.6. For
each γ ∈ Γ, let Aγ be the matrix

Aγ :=


1 λ1

1 λ2
. . .

. . .

1 λn−1

1


γn

and uγ : Rn → Tn the map defined by

uγ(x) :=


0
...
0

γnxn

 .

Consider the Γ-action ρ̃ on π0 : (Rn × Tn, ω) → Rn which is defined by

(2.15) ρ̃γ(x, y) :=
(
Aγx+ γ, tA−1

γ y + uγ(x)
)

for γ ∈ Γ and (x, y) ∈ Rn × Tn, where C = (v1 · · · vn). Then, the quotient π : (M,ω) → B obtained as
the Γ-action (2.15) is a Lagrangian fibration on the integral affine manifold B obtained in Example 2.6.
Let N ∈ N be a positive number. The Γ-action ρ̃ on (Rn × Tn, Nω0) has a lift to the prequantum line
bundle (Rn × Tn × C, d − 2π

√
−1Nx · dy) → (Rn × Tn, Nω0) if and only if N is even, and in this case

the lift ˜̃ρ is given by ˜̃ργ(x, y, z) = (ρ̃γ(x, y), gγe2π√−1N{γnxn( 1
2xn+γn)+γ·(tA−1

γ y)}z
)

for γ ∈ Γ and (x, y, z) ∈ Rn × Tn × C, where g : Γ ∋ γ 7→ gγ ∈ U(1) is an arbitrary homomorphism.

3. Degree-zero harmonic spinors and integrability of almost complex structures

Let N ∈ N be a positive integer. For a compatible almost complex structure J on the total space of
the Lagrangian fibration π0 : (Rn × Tn, Nω0) → Rn, let D be the associated Spinc Dirac operator with
coefficients in the prequantum line bundle

(
Rn × Tn × C, d− 2π

√
−1Nx · dy

)
→ (Rn × Tn, Nω0). An

element in the kernel kerD of D is called a harmonic spinor. In this section, for J which is invariant
along the fiber, we investigate the existence condition of non-trivial degree-zero harmonic spinors, i.e.,

non-trivial sections which lie in kerD. In the rest of this paper, we put M̃ := Rn × Tn and
(
L̃,∇L̃

)
:=

(Rn × Tn × C, d− 2π
√
−1x · dy) for simplicity.

3.1. Bohr-Sommerfeld points. Let π : (M,ω) → B be a Lagrangian fibration with prequantum line
bundle (L,∇L) → (M,ω). We recall the definition of Bohr-Sommerfeld points.

Definition 3.1. A point b ∈ B is said to be Bohr-Sommerfeld if
(
L,∇L

)
|π−1(b) admits a non-trivial

covariant constant section. We denote the set of Bohr-Sommerfeld points by BBS .

Let us detect Bohr-Sommerfeld points for π0 : (M̃,Nω0) → Rn with prequantum line bundle
(
L̃,∇L̃

)⊗N

→

(M̃,Nω0).

Lemma 3.2. x ∈ Rn is a Bohr-Sommerfeld if and only if x lies in 1
NZn, i.e., Rn

BS = 1
NZn. Moreover,

for a Bohr-Sommerfeld point x ∈ 1
NZn, a covariant constant section s of

(
L̃,∇L̃

)⊗N ∣∣∣
π−1
0 (x)

is of the

form s(y) = s(0)e2π
√
−1Nx·y.

Proof. For a fixed x ∈ Rn,
(
L̃,∇L̃

)⊗N ∣∣∣
π−1
0 (x)

→ π−1
0 (x) admits a non-trivial covariant constant section

s if and only if s satisfies

0 = ∇L̃⊗N

∂yi
s = ∂yi

s− 2π
√
−1Nxis
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for i = 1, . . . , n. Hence, s should be of the form s(y) = s(0)e2π
√
−1Nx·y. Since s is global, s(0) = s(ei) =

s(0)e2π
√
−1Nxi . This implies Nxi ∈ Z for i = 1, . . . , n. □

Remark 3.3. Suppose that π0 : (M̃,Nω0) → Rn is equipped with an action of a group Γ which preserves

all the data, and its lift ˜̃ρ to
(
L̃,∇L̃

)⊗N

is given by (2.5). Then, by Lemma 2.27 (1), the Γ-action ρ

on Rn preserves Rn
BS . When the Γ-action ρ on Rn is properly discontinuous and free, let F ⊂ Rn be a

fundamental domain of the Γ-action ρ on Rn. Then, the map

(3.1) Γ×
(
F ∩ 1

N
Zn

)
∋
(
γ,
m

N

)
7→ Nργ

(m
N

)
∈ Zn

can be defined and is bijective. In particular, let π : (M,Nω) → B be a Lagrangian fibration with
prequantum line bundle (L,∇L)⊗N → (M,Nω) obtained as the quotient space of the Γ-action. Then,
F ∩ 1

NZn is identified with BBS .

3.2. Almost complex structures. Let Sn be the Siegel upper half space, namely, the space of n × n
symmetric complex matrices whose imaginary parts are positive definite

Sn := {Z = X +
√
−1Y ∈Mn(C) | X,Y ∈Mn(R), tZ = Z, and Y is positive definite}.

It is well known that Sn is identified with the space of compatible complex structures on the 2n-
dimensional standard symplectic vector space.

For a tangent vector u =
∑n

i=1 {(ux)i∂xi
+ (uy)i∂yi

} ∈ T(x,y)M̃ at a point (x, y) ∈ M̃ we use the
following notation

u = (∂x1
, . . . , ∂xn

, ∂y1
, . . . , ∂yn

)



(ux)1
...

(ux)n
(uy)1

...
(uy)n


= (∂x, ∂y)

(
ux
uy

)
,

where

∂x = (∂x1
, . . . , ∂xn

), ∂y = (∂y1
, . . . , ∂yn

), ux =

(ux)1
...

(ux)n

 , uy =

(uy)1
...

(uy)n

 .

In terms of the notations of tangent vectors u = (∂x, ∂y)

(
ux
uy

)
and v = (∂x, ∂y)

(
vx
vy

)
∈ T(x,y)M̃ , ω0 can

be described by

ω0(u, v) =
(
tux,

tuy
)( 0 I

−I 0

)(
vx
vy

)
.

Since the tangent bundle TM̃ is trivial, the space of C∞ maps from M̃ to Sn is identified with the

space of compatible almost complex structures on (M̃, ω0). For Z = X +
√
−1Y ∈ C∞

(
M̃,Sn

)
, the

corresponding almost complex structure JZ is given as follows

(3.2) JZu := (∂x, ∂y)

(
XY −1 −Y −XY −1X
Y −1 −Y −1X

)
(x,y)

(
ux
uy

)
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for u = (∂x, ∂y)

(
ux
uy

)
∈ T(x,y)M̃ .4 Then, the Riemannian metric g determined by ω0 and JZ can be

described by

g(u, v) : = ω0(u, Jv)

=
(
tux,

tuy
)( 0 I

−I 0

)(
XY −1 −Y −XY −1X
Y −1 −Y −1X

)(
vx
vy

)
=
(
tux,

tuy
)( Y −1 −Y −1X

−XY −1 Y +XY −1X

)(
vx
vy

)
.

(3.3)

Let J = JZ be the almost complex structure on
(
M̃, ω0

)
corresponding to a given Z = X +

√
−1Y ∈

C∞
(
M̃,Sn

)
. Then, (−J∂y, ∂y) = (−J∂y1

, . . . ,−J∂yn
, ∂y1

, . . . , ∂yn
) is also a basis of the tangent space

of
(
M̃, ω0

)
. With this basis, each tangent vector u ∈ T(x,y)M̃ can be written as

u =
∑
i

{(uH)i(−J∂yi) + (uV )i∂yi} = (−J∂y, ∂y)
(
uH
uV

)
.

Then, we have the following transition formula between (∂x, ∂y) and (−J∂y, ∂y)

u = (−J∂y, ∂y)
(
uH
uV

)
= (∂x, ∂y)

((
−XY −1 Y +XY −1X
−Y −1 Y −1X

)(
0
uH

)
+

(
0
uV

))
.

By this formula, we obtain the following lemma.

Lemma 3.4. In terms of this notation, the Riemannian metric g defined by (3.3) can be described by

g(u, v) = (0, tuH)

(
Y −1 −Y −1X

−XY −1 Y +XY −1X

)(
0
vH

)
+ (0, tuV )

(
Y −1 −Y −1X

−XY −1 Y +XY −1X

)(
0
vV

)
.

Suppose that a group Γ acts on π0 : (M̃, ω0) → Rn and the Γ-actions ρ on Rn and ρ̃ on (M̃, ω0) are
written as in (2.3). Then, it is easy to see the following lemma.

Lemma 3.5. The Γ-action ρ̃ on (M̃, ω0) preserves the almost complex structure J = JZ on (M̃, ω0)

corresponding to Z = X +
√
−1Y ∈ C∞

(
M̃,Sn

)
if and only if the following conditions hold

Aγ(XY
−1)(x,y) = (XY −1)ρ̃γ(x,y)Aγ −

(
Y +XY −1X

)
ρ̃γ(x,y)

(Duγ)x(3.4)

Aγ(Y +XY −1X)(x,y) =
(
Y +XY −1X

)
ρ̃γ(x,y)

tA−1
γ(3.5)

(Duγ)x(XY
−1)(x,y) +

tA−1
γ Y −1

(x,y) = Y −1
ρ̃γ(x,y)

Aγ − (Y −1X)ρ̃γ(x,y)(Duγ)x.(3.6)

Proof. For all γ ∈ Γ and (x, y) ∈ (M̃, ω0), the condition (dρ̃γ)(x,y) ◦ J(x,y) = Jρ̃γ(x,y) ◦ (dρ̃γ)(x,y) implies

above three equalities together with the following equality

(Duγ)x(Y +XY −1X)(x,y) +
tA−1

γ (Y −1X)(x,y) = (Y −1X)ρ̃γ(x,y)
tA−1

γ .

But, this can be obtained from (3.4), (3.5), and t (tAγ(Duγ)x) =
tAγ(Duγ)x. □

Let π : (M,ω) → B be a Lagrangian fibration with connected n-dimensional complete base B and

p : B̃ → B the universal covering of B. By Corollary 2.25, the pullback of π : (M,ω) → B to B̃ is

identified with π0 : (M̃, ω0) → Rn and π : (M,ω) → B can be obtained as the quotient of the Γ = π1(B)-

action on π0 : (M̃, ω0) → Rn. In particular, for each compatible almost complex structure J on (M,ω),

there exists a map ZJ = X+
√
−1Y ∈ C∞

(
M̃,Sn

)
such that the pullback p∗J of J to p∗(M,ω) coincides

with JZJ
. Then, we have the following lemma.

4
(
XY −1 −Y −XY −1X

Y −1 −Y −1X

)
(x,y)

, (XY −1)(x,y) etc. are the values of the maps

(
XY −1 −Y −XY −1X

Y −1 −Y −1X

)
, XY −1 etc.

at (x, y). We will often omit the subscript “(x,y)” for simplicity unless it causes confusion.
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Lemma 3.6 ([14, Corollary 9.15]). For any Lagrangian fibration π : (M,ω) → B, there exists a compatible
almost complex structure J such that the corresponding map ZJ does not depend on y1, . . . , yn. We say
such J to be invariant along the fiber.

Proof. Take a Riemannian metric g′ on (M,ω). Then, the pullback p∗g′ is π1(B)-invariant. Moreover,
p∗(M,ω) admits a free Tn-action, and this Tn-action together with the π1(B)-action forms an action of
the semi-direct product π1(B)⋉Tn of Tn and π1(B). By averaging p∗g′ over Tn, we obtain a Riemannian
metric on p∗M invariant under the π1(B) ⋉ Tn-action. It is easy to see that p∗ω is also π1(B) ⋉ Tn-
invariant, so by the standard method using the π1(B)⋉Tn-invariant Riemannian metric and p∗ω, we can
obtain a π1(B)⋉Tn-invariant compatible almost complex structure on p∗(M,ω). In particular, since the
almost complex structure is still invariant under π1(B)-action, it descends to (M,ω). This is the required
almost complex structure. □

3.3. The existence condition of non-trivial harmonic spinors of degree-zero. For a map Z =

X +
√
−1Y ∈ C∞

(
M̃,Sn

)
, we set

(3.7) Ω :=
(
Y +XY −1X

)−1
ZY −1.

Ω has the following properties.

Lemma 3.7. (1) Ω = Z
−1

, where Z = X −
√
−1Y .

(2) Ω is symmetric, i.e., tΩ = Ω.

Proof. A direct computation shows that ΩZ = I. This proves (1). (2) follows from (1) since Z is
symmetric. □

Let N ∈ N be a positive integer. Let J = JZ be the compatible almost complex structure on
(
M̃,Nω0

)
corresponding to a given Z = X+

√
−1Y ∈ C∞

(
M̃,Sn

)
. Then, the Riemannian metricNg := Nω0(·, J ·)

defines an isomorphism f : T ∗M̃ ∼= TM̃ by τ = Ng (f(τ), ·) for τ ∈ T ∗M̃ . For i = 1, . . . , n, let Ωi denote
the ith column vector of Ω, and ReΩi and ImΩi be the real and imaginary parts of Ωi, respectively.
Then, we can show the following lemma.

Lemma 3.8. For i = 1, . . . , n,

f(dxi) = − 1

N
J∂yi , f(dyi) = (−J∂y, ∂y)

(
1
N ReΩi
1
N ImΩi

)
.

Proof. We prove the latter. The former can be proved by the same way. Put f(dyi) = (−J∂y, ∂y)
(
Y i
H

Y i
V

)
.

By definition, for each i, j = 1, . . . , n, we have

dyi(−J∂yj ) = Ng

(
(−J∂y, ∂y)

(
Y i
H

Y i
V

)
, (−J∂y, ∂y)

(
ej
0

))
(3.8)

dyi(∂yj
) = Ng

(
(−J∂y, ∂y)

(
Y i
H

Y i
V

)
, (−J∂y, ∂y)

(
0
ej

))
.(3.9)

Since −J∂yj
is written as

−J∂yj
= (∂x, ∂y)

(
−XY −1 Y +XY −1X
−Y −1 Y −1X

)(
0
ej

)
by (3.2), the left hand side of (3.8) is

(
Y −1X

)
ij
. On the other hand, by Lemma 3.4, the right hand side

of (3.8) can be described as NY i
H · (Y +XY −1X)ej . This implies Y −1X = N t(Y 1

H · · ·Y n
H)(Y +XY −1X).

Since Y is positive definite, so is Y + XY −1X. In particular, N(Y + XY −1X) is invertible. By using
tX = X, tY = Y together with this fact, we can obtain (Y 1

H · · ·Y n
H) = 1

N (Y +XY −1X)−1XY −1. By the

same way, from (3.9), we obtain I = N t(Y 1
V · · ·Y n

V )(Y +XY −1X), i.e., (Y 1
V · · ·Y n

V ) = 1
N (Y +XY −1X)−1.

Hence, 1
NΩ = (Y 1

H · · ·Y n
H) +

√
−1(Y 1

V · · ·Y n
V ). □
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Define the Hermitian metric on (M̃,Nω0, Ng, J) by

(3.10) h(u, v) := Ng(u, v) +
√
−1Ng(u, Jv)

for u, v ∈ T(x,y)M̃ . Let (W, c) be the Clifford module bundle associated with (Ng, J), i.e., as a complex
vector bundle, W is defined by

W := ∧•
(
TM̃, J

)
⊗C

(
L̃⊗N

)
.

W is equipped with the Hermitian metric induced from h and that on L̃, and also equipped with the

Hermitian connection, which is denoted by ∇W , induced from the Levi-Civita connection ∇LC of
(
M̃, g

)
and ∇L̃. c is the Clifford multiplication c : TM̃ → EndC(W ) defined by

c(u)(τ) := u ∧ τ − u ⌞h τ

for u ∈ TM̃ and τ ∈ W , where ⌞h is the contraction with respect to the Hermitian metric h on

(M̃,Nω0, Ng, J). It is well known that W is identified with ∧•(T ∗M̃)0,1 ⊗C

(
L̃⊗N

)
as a Clifford module

bundle.
Now let us define the Spinc Dirac operator D : Γ(W ) → Γ(W ) by the composition of the following

maps

D : Γ(W )
∇W

// Γ(T ∗M̃ ⊗W )
f⊗idW // Γ(TM̃ ⊗W )

c // Γ(W ).

We compute the action of D on a degree zero element in Γ(W ). We identify a section of L̃ with a complex

valued function on M̃ . By using Lemma 3.8, for a section s of L̃⊗N , Ds can be computed as

Ds = c ◦ (f ⊗ idW ) ◦ ∇W s

= c ◦ (f ⊗ idW )(ds− 2π
√
−1Nx · dys)

=

n∑
i=1

{
c (f(dxi)) (∂xi

s) + c (f(dyi))
(
∂yi

s− 2π
√
−1Nxis

)}
= −

√
−1

N

n∑
i=1

∂yi ⊗C

∂xis+

n∑
j=1

Ωij

(
∂yjs− 2π

√
−1Nxjs

) .

In particular, the equality Ds = 0 is equivalent to

(3.11) 0 =

∂x1
s

...
∂xn

s

+Ω

∂y1
s− 2π

√
−1Nx1s

...
∂yns− 2π

√
−1Nxns

 .

Suppose that Z does not depend on y1, . . . , yn as in Lemma 3.6. Then, by substituting a Fourier

expansion s =
∑

m∈Zn am(x)e2π
√
−1m·y of s with respect to yi’s into (3.11), (3.11) can be reduced to the

following system of differential equations for am’s with variables x1, . . . , xn

(3.12) 0 =

∂x1am
...

∂xnam

+ 2π
√
−1amΩ(m−Nx)

for all m ∈ Zn.

Lemma 3.9. Let am be a solution of (3.12) for some m ∈ Zn. If there exists p ∈ Rn such that am(p) = 0.
Then, am(x) = 0 for all x ∈ Rn.

Proof. First, fix variables x2, . . . , xn with p2, . . . , pn. Then, the first entry of (3.12), i.e., 0 = ∂x1am +
2π

√
−1am (Ω(m−Nx))1 can be thought of as an ordinary differential equation on x1, and am(x1, p2, . . . , pn)

is its solution with initial condition am(p) = 0. On the other hand, the trivial solution also has
the same initial condition. By the uniqueness of the solution of the ordinary differential equation,
am(x1, p2, . . . , pn) = 0 for any x1. Next, by fixing variables x3, . . . , xn with p3, . . . , pn and fixing x1
with arbitrary value, am(x1, x2, p3, . . . , pn) is a solution of 0 = ∂x2

am + 2π
√
−1am (Ω(m−Nx))2 with
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initial condition am(x1, p2, . . . , pn) = 0. Then, am(x1, x2, p3, . . . , pn) = 0 for any x1, x2. By repeating the
process for x3, . . . , xn, we can show that am(x) = 0. □

Lemma 3.10. If am is a non trivial smooth solution of (3.12) for some m ∈ Zn, then, the condition

(3.13) ((∂xi
Ω)x (m−Nx))

j
=
((
∂xj

Ω
)
x
(m−Nx)

)
i
for all i, j = 1, . . . , n, and all x ∈ Rn

holds.Conversely, if there exists m ∈ Zn such that (3.13) holds, then, (3.12) has a unique non trivial
solution up to constant. Moreover, in this case, each solution am of (3.12) has the following form

(3.14) am(x) = am

(m
N

)
e−2π

√
−1

∑n
i=1 Gi

m(
m1
N ,...,

mi−1
N ,xi,...,xn),

where am
(
m
N

)
can be taken as an arbitrary constant in C and

Gi
m(x) :=

(∫ xi

mi
N

Ω(m−Nx)dxi

)
i

.

Proof. Since am is smooth, am satisfies ∂xi
∂xj

am = ∂xj
∂xi

am for all i, j = 1, . . . , n. By differentiating
(3.12), we have

∂xi∂xjam = −2π
√
−1am

{
−2π

√
−1

n∑
k=1

Ωik(mk −Nxk)

n∑
l=1

Ωjl(ml −Nxl) +

n∑
l=1

(∂xiΩjl) (ml −Nxl)−NΩji

}
for i, j = 1, . . . , n and x ∈ Rn. The condition (3.13) is obtained from this equation.

Conversely, suppose there exists m ∈ Zn such that (3.13) holds. By solving the differential equation
appeared as the ith component of (3.12) for i = 1, . . . , n, we have

(3.15) am(x) = am

(
x1, . . . , xi−1,

mi

N
,xi+1, . . . , xn

)
e−2π

√
−1Gi

m(x).

Using (3.15) recursively, we obtain the formula (3.14). By using (3.13), we can show that (3.14) does
not depend on the order of applying (3.15) to xi’s as in the proof of Lemma 2.27. Hence, (3.14) is
well-defined. □

For each m ∈ Zn for which the condition (3.13) holds, define the section sm ∈ Γ
(
L̃⊗N

)
by

(3.16) sm(x, y) := e2π
√
−1{−∑n

i=1 Gi
m(

m1
N ,...,

mi−1
N ,xi,...,xn)+m·y}.

By the elliptic regularity of D and Lemma 3.10, we can obtain the following.

Proposition 3.11. If s =
∑

m∈Zn am(x)e2π
√
−1m·y ∈ Γ

(
L̃⊗N

)
is a non trivial solution of 0 = Ds, then,

the condition (3.13) holds for all m ∈ Zn with am ̸= 0. Conversely, suppose that there exists m ∈ Zn

such that (3.13) holds. Then, the section sm defined by (3.16) satisfies 0 = Dsm. In particular, if (3.13)

holds for all m ∈ Zn, then, {sm}m∈Zn is a linear basis of Γ
(
L̃⊗N

)
∩ kerD.

The following proposition gives a geometric interpretation of the condition (3.13).

Proposition 3.12. The following conditions are equivalent:
(1) The condition (3.13) holds for all m ∈ Zn.
(2) ∂xi

Ωjk = ∂xj
Ωik for all i, j, k = 1, . . . , n.

(3) ∇LCJ = 0, where ∇LC is the Levi-Civita connection with respect to g.

Proof. If (3.13) holds for all m ∈ Zn, then, by putting m = 0, we have ((∂xiΩ)x x)j =
((
∂xjΩ

)
x
x
)
i
. By

substituting this to (3.13), we can see the condition ((∂xi
Ω)xm)

j
=
((
∂xj

Ω
)
x
m
)
i
holds for all m ∈ Zn.

In particular, by substituting m = ek to this condition for each k = 1, . . . , n, we can obtain (2). (2) ⇒ (1)
is trivial.

We show (2) ⇔ (3). (2) is equivalent to the following two conditions((
Y +XY −1X

)−1
∂xi

(
XY −1

))
jk

=
((
Y +XY −1X

)−1
∂xj

(
XY −1

))
ik

(3.17)

∂xi

(
Y +XY −1X

)−1

jk
= ∂xj

(
Y +XY −1X

)−1

ik
(3.18)
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for i, j, k = 1, . . . , n. For i = 1, . . . , 2n, we set

Γi :=

Γ1
i 1 · · · Γ1

i 2n
...

...
Γ2n
i 1 · · · Γ2n

i 2n

 ,

where Γk
ij is the Christoffel symbol. Then, (3) is equivalent to

0 = ∂iJ + ΓiJ − JΓi (i = 1, . . . , 2n),

where

∂i =

{
∂xi (i = 1, . . . , n)

∂yi−n
(i = n+ 1, . . . , 2n).

It is also equivalent to the following conditions

XY −1

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

(3.19)

− (Y +XY −1X)

∂x1
(Y −1)1i − ∂x1

(Y −1)1i · · · ∂xn
(Y −1)1i − ∂x1

(Y −1)ni
...

...
∂x1

(Y −1)ni − ∂xn
(Y −1)1i · · · ∂xn

(Y −1)ni − ∂xn
(Y −1)ni


=

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

XY −1,

Y −1

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

(3.20)

− Y −1X

∂x1(Y
−1)1i − ∂x1(Y

−1)1i · · · ∂xn(Y
−1)1i − ∂x1(Y

−1)ni
...

...
∂x1(Y

−1)ni − ∂xn(Y
−1)1i · · · ∂xn(Y

−1)ni − ∂xn(Y
−1)ni


=

∂x1
(Y −1)1i − ∂x1

(Y −1)1i · · · ∂xn
(Y −1)1i − ∂x1

(Y −1)ni
...

...
∂x1

(Y −1)ni − ∂xn
(Y −1)1i · · · ∂xn

(Y −1)ni − ∂xn
(Y −1)ni

XY −1

+

∂x1
(Y −1X)i1 · · · ∂x1

(Y −1X)in
...

...
∂xn

(Y −1X)i1 · · · ∂xn
(Y −1X)in

Y −1,

(Y +XY −1X)

∂x1
(Y −1X)i1 · · · ∂x1

(Y −1X)in
...

...
∂xn

(Y −1X)i1 · · · ∂xn
(Y −1X)in

(3.21)

=

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

 (Y +XY −1X),



22 T. YOSHIDA

Y −1X

∂x1
(Y −1X)i1 · · · ∂x1

(Y −1X)in
...

...
∂xn

(Y −1X)i1 · · · ∂xn
(Y −1X)in

(3.22)

=

∂x1(Y
−1)1i − ∂x1(Y

−1)1i · · · ∂xn(Y
−1)1i − ∂x1(Y

−1)ni
...

...
∂x1(Y

−1)ni − ∂xn(Y
−1)1i · · · ∂xn(Y

−1)ni − ∂xn(Y
−1)ni

 (Y +XY −1)

+

∂x1
(Y −1X)i1 · · · ∂x1

(Y −1X)in
...

...
∂xn

(Y −1X)i1 · · · ∂xn
(Y −1X)in

Y −1X,

XY −1

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

(3.23)

+ (Y +XY −1X)

−∂x1
(Y −1X)1i + ∂x1

(XY −1)i1 · · · −∂xn
(Y −1X)1i + ∂x1

(XY −1)in
...

...
−∂x1

(Y −1X)ni + ∂xn
(XY −1)i1 · · · −∂xn

(Y −1X)ni + ∂xn
(XY −1)in


=

∂x1(Y +XY −1X)1i · · · ∂xn(Y +XY −1X)1i
...

...
∂x1(Y +XY −1X)ni · · · ∂xn(Y +XY −1X)ni

XY −1,

Y −1

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

(3.24)

+ Y −1X

−∂x1
(Y −1X)1i + ∂x1

(XY −1)i1 · · · −∂xn
(Y −1X)1i + ∂x1

(XY −1)in
...

...
−∂x1

(Y −1X)ni + ∂xn
(XY −1)i1 · · · −∂xn

(Y −1X)ni + ∂xn
(XY −1)in


= −

−∂x1
(Y −1X)1i + ∂x1

(XY −1)i1 · · · −∂xn
(Y −1X)1i + ∂x1

(XY −1)in
...

...
−∂x1

(Y −1X)ni + ∂xn
(XY −1)i1 · · · −∂xn

(Y −1X)ni + ∂xn
(XY −1)in

XY −1

+

∂x1(Y +XY −1X)i1 · · · ∂x1(Y +XY −1X)in
...

...
∂xn(Y +XY −1X)i1 · · · ∂xn(Y +XY −1X)in

Y −1,

(Y +XY −1X)

∂x1
(Y +XY −1X)i1 · · · ∂x1

(Y +XY −1X)in
...

...
∂xn

(Y +XY −1X)i1 · · · ∂xn
(Y +XY −1X)in

(3.25)

=

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

 (Y +XY −1X),
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Y −1X

∂x1
(Y +XY −1X)i1 · · · ∂x1

(Y +XY −1X)in
...

...
∂xn

(Y +XY −1X)i1 · · · ∂xn
(Y +XY −1X)in

(3.26)

= −

−∂x1(Y
−1X)1i + ∂x1(XY

−1)i1 · · · −∂xn(Y
−1X)1i + ∂x1(XY

−1)in
...

...
−∂x1(Y

−1X)ni + ∂xn(XY
−1)i1 · · · −∂xn(Y

−1X)ni + ∂xn(XY
−1)in

 (Y +XY −1X)

+

∂x1
(Y +XY −1X)i1 · · · ∂x1

(Y +XY −1X)in
...

...
∂xn

(Y +XY −1X)i1 · · · ∂xn
(Y +XY −1X)in

Y −1X.

for i = 1, . . . , n. It is easy to see that (3.22) and (3.26) are obtained by transposing (3.19) and (3.23),
respectively. First, we show that (3.17) is equivalent to (3.21). In fact, (3.17) implies∂x1

(XY −1)1k · · · ∂x1
(XY −1)nk

...
...

∂xn
(XY −1)1k · · · ∂xn

(XY −1)nk

 (Y +XY −1X)−1

is symmetric for k = 1, . . . , n. Since X, Y is symmetric, this implies (3.21). Next, we show (3.25) is
equivalent to (3.18). (3.25) is equivalent to∂x1

(Y +XY −1X)i1 · · · ∂x1
(Y +XY −1X)in

...
...

∂xn
(Y +XY −1X)i1 · · · ∂xn

(Y +XY −1X)in

 (Y +XY −1X)−1(3.27)

= (Y +XY −1X)−1

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

 .

By computing the (j, k)-components of the both sides of (3.27), we obtain

n∑
l=1

(
∂xj (Y +XY −1X)−1

kl

)
(Y +XY −1X)li =

n∑
l=1

(
∂xk

(Y +XY −1X)−1
jl

)
(Y +XY −1X)li

for i, j, k = 1, . . . , n. Here, we used

0 =∂xj

((
Y +XY −1X

) (
Y +XY −1X

)−1
)

=
(
∂xj

(
Y +XY −1X

)) (
Y +XY −1X

)−1
+
(
Y +XY −1X

)
∂xj

(
Y +XY −1X

)−1

and so on. Thus,

∂xj
(Y +XY −1X)−1

km =

n∑
i=1

n∑
l=1

∂xj

(
(Y +XY −1X)−1

kl

)
(Y +XY −1X)li(Y +XY −1X)−1

im

=

n∑
i=1

n∑
l=1

(
∂xk

(Y +XY −1X)−1
jl

)
(Y +XY −1X)li(Y +XY −1X)−1

im

= ∂xk
(Y +XY −1X)−1

jm.

This implies (3.18). In particular, this means (3) ⇒ (2).
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We show (3.19), (3.20), (3.23), and (3.24) are obtained from (2). To show (3.23), it is sufficient to
show

0 =(Y +XY −1X)−1XY −1

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

(3.28)

−

∂x1(Y
−1X)1i · · · ∂xn(Y

−1X)1i
...

...
∂x1(Y

−1X)ni · · · ∂xn(Y
−1X)ni


− (Y +XY −1X)−1

∂x1(Y +XY −1X)1i · · · ∂xn(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

XY −1

+

∂x1
(XY −1)i1 · · · ∂x1

(XY −1)in
...

...
∂xn

(XY −1)i1 · · · ∂xn
(XY −1)in

 .

Since Ω is symmetric, so is its real part ReΩ = (Y +XY −1X)−1XY −1. By taking the real part of (2)
we also have

∂xi

(
(Y +XY −1X)−1XY −1

)
jk

= ∂xj

(
(Y +XY −1X)−1XY −1

)
ik
.

By using these as well as (3.17) and (3.18), the (j, k)-component of the first two terms of the right hand
side of (3.28) can be computed as∑

l

(
(Y +XY −1X)−1XY −1

)
jl
∂xk

(Y +XY −1X)li − ∂xk
(Y −1X)ji

=
∑
l

(
Y −1X(Y +XY −1X)−1

)
jl
∂xk

(Y +XY −1X)li − ∂xk
(Y −1X)ji

=∂xk

(∑
l

(
Y −1X(Y +XY −1X)−1

)
jl
(Y +XY −1X)li

)
−
∑
l

(
∂xk

(
Y −1X(Y +XY −1X)−1

)
jl

)
(Y +XY −1X)li − ∂xk

(Y −1X)ji

=−
∑
l

(
∂xk

(
Y −1X(Y +XY −1X)−1

)
jl

)
(Y +XY −1X)li

=−
∑
l

(
∂xj

(
(Y +XY −1X)−1XY −1

)
kl

)
(Y +XY −1X)li.

On the other hand, the (j, k)-component of the last two terms of the right hand side of (3.28) can be
computed as

−
∑
m,l

(Y +XY −1X)−1
jl

(
∂xm(Y +XY −1X)li

)
(XY −1)mk + ∂xj (XY

−1)ik

=
∑
m,l

(
∂xm

(Y +XY −1X)−1
jl

)
(Y +XY −1X)li(XY

−1)mk + ∂xj
(XY −1)ik

=
∑
m,l

(Y +XY −1X)li
(
∂xj

(Y +XY −1X)−1
ml

)
(XY −1)mk +

∑
m,l

(Y +XY −1X)li(Y +XY −1X)−1
ml∂xj

(XY −1)mk

=
∑
l

(
∂xj

(
(Y +XY −1X)−1XY −1

)
kl

)
(Y +XY −1X)li.
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This proves (3.28). We show (3.24). We put

W :=

∂x1
(Y +XY −1X)1i · · · ∂xn

(Y +XY −1X)1i
...

...
∂x1

(Y +XY −1X)ni · · · ∂xn
(Y +XY −1X)ni

 .

By (3.23) and (3.25), we obtain

−∂x1
(Y −1X)1i + ∂x1

(XY −1)i1 · · · −∂xn
(Y −1X)1i + ∂x1

(XY −1)in
...

...
−∂x1

(Y −1X)ni + ∂xn
(XY −1)i1 · · · −∂xn

(Y −1X)ni + ∂xn
(XY −1)in


= (Y +XY −1X)−1WXY −1 − (Y +XY −1X)−1XY −1W

and

(Y +XY −1X)tW =W (Y +XY −1X).

In order to show (3.24) it is sufficient to check

0 =Y −1W + Y −1X(Y +XY −1X)−1WXY −1 − Y −1X(Y +XY −1X)−1XY −1W(3.29)

+ (Y +XY −1X)−1WXY −1XY −1 − (Y +XY −1X)−1XY −1WXY −1 − tWY −1.

By using above equalities, the right hand side of (3.29) can be computed as

Y −1W − Y −1X(Y +XY −1X)−1XY −1W + (Y +XY −1X)−1WXY −1XY −1 − tWY −1

=Y −1W − (Y +XY −1X)−1XY −1XY −1W + (Y +XY −1X)−1WXY −1XY −1

− (Y +XY −1X)−1W (Y +XY −1X)Y −1

=Y −1W − (Y +XY −1X)−1XY −1XY −1W + (Y +XY −1X)−1WXY −1XY −1

− (Y +XY −1X)−1W − (Y +XY −1X)−1WXY −1XY −1

=Y −1W − {(Y +XY −1X)−1XY −1X + (Y +XY −1X)−1Y }Y −1W

=0.

This proves (3.24).
We show (3.19). To see this, we show

0 =(Y +XY −1X)−1XY −1

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

(3.30)

−

∂x1
(Y −1)1i − ∂x1

(Y −1)1i · · · ∂xn
(Y −1)1i − ∂x1

(Y −1)ni
...

...
∂x1

(Y −1)ni − ∂xn
(Y −1)1i · · · ∂xn

(Y −1)ni − ∂xn
(Y −1)ni


− (Y +XY −1X)−1

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

XY −1.
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The (j, k)-component of the right hand side of (3.30) is∑
l

(
(Y +XY −1X)−1XY −1

)
jl
∂xk

(XY −1)li − ∂xk
Y −1
ji + ∂xj

Y −1
ki −

∑
l,m

(Y +XY −1X)−1
jm∂xl

(XY −1)mi(XY
−1)lk

=
(
(Y +XY −1X)−1XY −1∂xk

(XY −1)
)
ji
− ∂xk

Y −1
ji + ∂xj

Y −1
ki −

∑
l,m

(Y +XY −1X)−1
lm∂xj

(XY −1)mi(XY
−1)lk

=
(
(Y +XY −1X)−1

{
∂xk

(
(Y +XY −1X)Y −1

)
− ∂xk

(XY −1)XY −1
})

ji
− ∂xk

Y −1
ji + ∂xjY

−1
ki

−
∑
l,m

(Y +XY −1X)−1
ml(XY

−1)lk∂xj (XY
−1)mi

=
(
(Y +XY −1X)−1

(
∂xk

(Y +XY −1X)
)
Y −1 + ∂xk

Y −1 − (Y +XY −1X)−1∂xk
(XY −1)XY −1

)
ji

− ∂xk
Y −1
ji + ∂xjY

−1
ki −

∑
m

(
(Y +XY −1X)−1XY −1

)
mk

∂xj (XY
−1)mi

=
(
(Y +XY −1X)−1

(
∂xk

(Y +XY −1X)
)
Y −1

)
ji
−
(
(Y +XY −1X)−1∂xk

(XY −1)XY −1
)
ji
+ ∂xj

Y −1
ki

−
∑
m

(
(Y +XY −1X)−1XY −1

)
km

∂xj
(XY −1)mi

=
(
(Y +XY −1X)−1

(
∂xk

(Y +XY −1X)
)
Y −1

)
ji
−
(
(Y +XY −1X)−1∂xk

(XY −1)XY −1
)
ji

+
(
∂xj

Y −1 − (Y +XY −1X)−1XY −1∂xj
(XY −1)

)
ki

=
(
−
(
∂xk

(Y +XY −1X)−1
)
(Y +XY −1X)Y −1

)
ji
−
∑
l

(
(Y +XY −1X)−1∂xk

(XY −1)
)
jl
XY −1

li

+
(
∂xjY

−1 − (Y +XY −1X)−1XY −1∂xj (XY
−1)
)
ki

=−
∑
l

∂xk
(Y +XY −1X)−1

jl

(
(Y +XY −1X)Y −1

)
li
−
∑
l

(
(Y +XY −1X)−1∂xj

(XY −1)
)
kl
XY −1

li

+
(
∂xj

Y −1 − (Y +XY −1X)−1XY −1∂xj
(XY −1)

)
ki

=−
∑
l

∂xj (Y +XY −1X)−1
kl

(
(Y +XY −1X)Y −1

)
li
−
(
(Y +XY −1X)−1∂xj (XY

−1)XY −1
)
ki

+
(
∂xjY

−1 − (Y +XY −1X)−1XY −1∂xj (XY
−1)
)
ki

=
(
−
(
∂xj

(Y +XY −1X)−1
)
(Y +XY −1X)Y −1

)
ki
−
(
(Y +XY −1X)−1∂xj

(XY −1)XY −1
)
ki

+
(
∂xjY

−1 − (Y +XY −1X)−1XY −1∂xj (XY
−1)
)
ki

=
(
(Y +XY −1X)−1

(
∂xj

(Y +XY −1X)
)
Y −1

)
ki
−
(
(Y +XY −1X)−1∂xj

(XY −1)XY −1
)
ki

+
(
∂xjY

−1 − (Y +XY −1X)−1XY −1∂xj (XY
−1)
)
ki

=
(
(Y +XY −1X)−1

{(
∂xj

(Y +XY −1X)
)
Y −1 + (Y +XY −1X)∂xj

Y −1 − ∂xj
(XY −1)XY −1 −XY −1∂xj

(XY −1)
})

ki

=
(
(Y +XY −1X)−1

{
∂xj ((Y +XY −1X)Y −1)− ∂xj (XY

−1XY −1)
})

ki

=0.

This proves (3.19).
Finally, we show (3.20). We put

V :=

∂x1
(XY −1)1i · · · ∂xn

(XY −1)1i
...

...
∂x1

(XY −1)ni · · · ∂xn
(XY −1)ni

 .

By (3.19) and (3.21), we obtain∂x1(Y
−1)1i − ∂x1(Y

−1)1i · · · ∂xn(Y
−1)1i − ∂x1(Y

−1)ni
...

...
∂x1

(Y −1)ni − ∂xn
(Y −1)1i · · · ∂xn

(Y −1)ni − ∂xn
(Y −1)ni


= (Y +XY −1X)−1XY −1V − (Y +XY −1X)−1V XY −1
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and
(Y +XY −1X)tV = V (Y +XY −1X).

In order to show (3.20) it is sufficient to check

0 =Y −1V − Y −1X(Y +XY −1X)−1XY −1V + Y −1X(Y +XY −1X)−1V XY −1(3.31)

+ (Y +XY −1X)−1V XY −1XY −1 − (Y +XY −1X)−1XY −1V XY −1 − tV Y −1.

Then, (3.31) can be checked in the same way as (3.29). □

Remark 3.13. When one of (hence, all) the conditions in Proposition 3.12 holds,
(
M̃, ω0, J, g

)
is a

Kähler manifold and J induces a natural holomorphic structure on L̃ such that ∇L̃ is the canonical
connection.

3.4. The Γ-equivariant case. Suppose that π0 : (M̃,Nω0, J) → Rn with prequantum line bundle(
L̃,∇L̃

)⊗N

→ (M̃,Nω0, J) is equipped with an action of a group Γ which preserves all the data, and

the Γ-actions are described by (2.3) and (2.5) as before. We assume that the Γ-action ρ on Rn is prop-
erly discontinuous and free. Since the Γ-action preserves all the data, the Spinc Dirac operator D is

Γ-equivariant. In particular, Γ acts on Γ
(
L̃⊗N

)
∩ kerD.

Lemma 3.14. Let s =
∑

m∈Zn am(x)e2π
√
−1m·y be a section of L̃⊗N . s is Γ-equivariant, i.e., ˜̃ργ◦s = s◦ρ̃γ

for all γ ∈ Γ if and only if am satisfies the following condition

(3.32) aNργ(m
N ) (ργ(x)) = gγam(x)e2π

√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}

for all γ ∈ Γ, m ∈ Zn, and x ∈ Rn. In particular, any Γ-equivariant section of L̃⊗N can be written as
follows
(3.33)

s(x, y) =
∑

(γ,mN )∈Γ×(F∩ 1
N Zn)

gγam
(
ργ−1(x)

)
e2π

√
−1N{g̃γ(ργ−1 (x))−ργ(m

N )·uγ(ργ−1 (x))}e2π
√
−1Nργ(m

N )·y.

Proof. By computing the both sides separately, we have˜̃ργ ◦ s(x, y) = gγe
2π

√
−1N{g̃γ(x)+cγ ·tA−1

γ y} ∑
m∈Zn

am(x)e2π
√
−1m·y

= gγ
∑

m∈Zn

am(x)e2π
√
−1Ng̃γ(x)e2π

√
−1Nργ(m

N )·tA−1
γ y,(3.34)

s ◦ ρ̃γ(x, y) =
∑
l∈Zn

al (ργ(x)) e
2π

√
−1l·(tA−1

γ y+uγ(x))

=
∑

m∈Zn

aNργ(m
N ) (ργ(x)) e

2π
√
−1Nργ(m

N )·uγ(x)e2π
√
−1Nργ(m

N )·tA−1
γ y.(3.35)

Here, in the last equality, we replace l with Nργ
(
m
N

)
. Note that the map Zn ∋ m 7→ Nργ

(
m
N

)
∈ Zn is

bijective. Then, ˜̃ργ ◦ s = s ◦ ρ̃γ for all γ ∈ Γ implies

gγam(x)e2π
√
−1Ng̃γ(x) = aNργ(m

N ) (ργ(x)) e
2π

√
−1Nργ(m

N )·uγ(x)

for all m ∈ Zn. In particular, by (3.1) and (3.32), s can be rewritten as follows

s(x, y) =
∑
l∈Zn

al(x)e
2π

√
−1l·y

(3.1)
=

∑
(γ,mN )∈Γ×(F∩ 1

N Zn)

aNργ(m
N )(x)e

2π
√
−1Nργ(m

N )·y

(3.32)
=

∑
(γ,mN )∈Γ×(F∩ 1

N Zn)

gγam
(
ργ−1(x)

)
e2π

√
−1N{g̃γ(ργ−1 (x))−ργ(m

N )·uγ(ργ−1 (x))}e2π
√
−1Nργ(m

N )·y.

□
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In the Γ-equivariant case, the condition (3.13) has a symmetry in the following sense.

Lemma 3.15. The condition (3.13) holds for some m0 ∈ Zn with m0

N ∈ F if and only if for any γ ∈ Γ,

(3.13) holds for m = Nργ
(
m0

N

)
. Moreover, let am0

be a non trivial solution of (3.12) for m0. For each
γ ∈ Γ, we define aNργ(m0

N ) in such a way that it satisfies (3.32). Then, aNργ(m0
N ) is a non trivial solution

of (3.12) for m = Nργ
(
m0

N

)
.

Proof. Suppose that there existsm0 ∈ Zn with m0

N ∈ F such that (3.13) holds. By Lemma 3.10, (3.12) for
m0 has a non trivial solution am0

. Then, for each γ ∈ Γ, define aNργ(m0
N ) by (3.32). By Lemma 3.10 again,

in order to show this lemma, it is sufficient to prove aNργ(m0
N ) is a solution of (3.12) for m = Nργ

(
m0

N

)
.

Let us compute the Jacobi matrix of the both sides of (3.32). The left hand side is

D
(
aNργ(m0

N ) ◦ ργ
)
x
=
(
DaNργ(m0

N )

)
ργ(x)

(Dργ)x(3.36)

=
(
∂x1aNργ(m0

N ), . . . , ∂xnaNργ(m0
N )

)
ργ(x)

Aγ .

The right hand side is

D
(
gγam(x)e2π

√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}
)
x

(3.37)

= gγe
2π

√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}(Dam)x + gγam(x)D
(
e2π

√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}
)

(3.12)
= −2π

√
−1gγe

2π
√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}am(x)t (Ωx(m−Nx))

+ 2π
√
−1Ngγam(x)e2π

√
−1N{g̃γ(x)−ργ(m

N )·uγ(x)}D
(
g̃γ(x)− ργ

(m
N

)
· uγ(x)

)
(3.32)
= −2π

√
−1aNργ(m0

N ) (ργ(x))
t
(
ΩxA

−1
γ

(
Nργ

(m
N

)
−Nργ(x)

))
+ 2π

√
−1NaNργ(m0

N ) (ργ(x))D
(
g̃γ(x)− ργ

(m
N

)
· uγ(x)

)
.

For each i = 1, . . . , n, the direct computation shows

∂xi

(
g̃γ(x)− ργ

(m
N

)
· uγ(x)

)
= (∂xi

uγ)x ·
(
ργ(x)− ργ

(m
N

))
+
(
tAγuγ(x)

)
i
−
(
tAγuγ(0, . . . , 0, xi, . . . , xn)

)
i

−
∑
j<i

∫ xj

0

(
tAγDuγ

)
ji
(0, . . . , 0, xj , . . . , xn)dxj

= (∂xi
uγ)x ·

(
ργ(x)− ργ

(m
N

))
+
∑
j<i

∫ xj

0

∂xj

(
tAγuγ(0, . . . , 0, xj , . . . , xn)

)
i
dxj −

∑
j<i

∫ xj

0

(
tAγDuγ

)
ji
(0, . . . , 0, xj , . . . , xn)dxj

= (∂xi
uγ)x ·

(
ργ(x)− ργ

(m
N

))
+
∑
j<i

∫ xj

0

(
tAγDuγ

)
ij
(0, . . . , 0, xj , . . . , xn)dxj −

∑
j<i

∫ xj

0

(
tAγDuγ

)
ji
(0, . . . , 0, xj , . . . , xn)dxj

= −(∂xi
uγ)x ·

(
ργ

(m
N

)
− ργ(x)

)
.

In the last equality, we used t (tAγDuγ) =
tAγDuγ . Hence, we have

(3.38) D
(
g̃γ(x)− ργ

(m
N

)
· uγ(x)

)
= −t

(
ργ

(m
N

)
− ργ(x)

)
(Duγ)x .

By (3.36), (3.37), and (3.38), we obtain

tAγ
t
(
DaNργ(m0

N )

)
ργ(x)

= −2π
√
−1aNργ(m0

N ) (ργ(x))
(
ΩxA

−1
γ + t(Duγ)x

) (
Nργ

(m
N

)
−Nργ(x)

)
.



ADIABATIC LIMITS, THETA FUNCTIONS, AND GEOMETRIC QUANTIZATION 29

On the other hand, by (3.4) and (3.5), we have

(3.39) tAγΩργ(x) = ΩxA
−1
γ + t (Duγ)x .

This proves the lemma. □

Remark 3.16. By Remark 3.3 and Lemma 3.15, the condition (3.13) holds for all m
N ∈ F ∩ 1

NZn if and
only if the condition (1), hence all conditions in Proposition 3.12 holds.

4. The integrable case

4.1. Definition and properties of ϑm
N
. We use the settting and the notations introduced in the previ-

ous section. Let m
N ∈ F ∩ 1

NZn be the point for which the condition (3.13) holds, and am the non trivial

solution of (3.12) of the form (3.14) with am
(
m
N

)
= 1. For each γ ∈ Γ, define aNργ(m

N ) in such a way that

it satisfies (3.32). As we showed in Lemma 3.15, aNργ(m
N ) is a non trivial solution of (3.12) for Nργ

(
m
N

)
.

Then, we can define the formal Fourier series ϑm
N

by

(4.1) ϑm
N
(x, y) :=

∑
γ∈Γ

aNργ(m
N )(x)e

2π
√
−1Nργ(m

N )·y.

Proposition 4.1. (1) ϑm
N

has the following expression

ϑm
N
(x, y) =

∑
γ∈Γ

gγe
2π

√
−1

[
−

∑n
i=1 Gi

m

(
m1
N ,...,

mi−1
N ,(ργ−1 (x))

i
,...,(ργ−1 (x))

n

)
+N{g̃γ(ργ−1 (x))−ργ(m

N )·uγ(ργ−1 (x))+ργ(m
N )·y}

]
.

(2) ϑm
N

can be described as ϑm
N

=
∑

γ∈Γ
˜̃ργ ◦ sm ◦ ρ̃γ−1 , where sm is the section defined by (3.16).

(3) If Y +XY −1X is constant, then, ϑm
N

converges absolutely and uniformly on any compact set.

Proof. (1) and (2) are obtained by (3.32), (3.14), (2.5), and (3.16). Let us prove (3). By (2.4) and (3.5),
we obtain

tAγ−1

(
Y +XY −1X

)−1
Aγ−1 =

(
Y +XY −1X

)−1
.

By using this formula together with the assumption, the expression in (1) can be rewritten as

ϑm
N
(x, y) =

∑
γ∈Γ

gγe
2π

√
−1

[√
−1N
2 (x−ργ(m

N ))·(Y+XY −1X)
−1
(x−ργ(m

N ))+real part
]
.

Since
(
Y +XY −1X

)−1
is positive definite, there exists a positive constant c > 0 such that

(
Y +XY −1X

)−1 ≥
cI. Then, ∣∣∣∣gγe2π√−1

[√
−1N
2 (x−ργ(m

N ))·(Y+XY −1X)
−1
(x−ργ(m

N ))+real part
]∣∣∣∣

= e−Nπ(x−ργ(m
N ))·(Y+XY −1X)

−1
(x−ργ(m

N ))

≤ e−cNπ∥x−ργ(m
N )∥2

= e−cNπ∥x− l
N ∥2

(put l := Nργ

(m
N

)
)

=

n∏
i=1

e
−cNπ

(
xi−

li
N

)2

.

Hence, the series is dominated by
∏n

i=1

∑
li∈Z e

−cNπ(
li
N −xi)

2

. Any compact set is contained in a product

of closed intervals I1 × · · · × In, so it is sufficient to show that
∑

l∈Z e
−cNπ( l

N −x)2 converges uniformly on

any closed interval I. Suppose that I is of the form I := [xm, xM ]. Set lM := max{l ∈ Z | l
N ∈ I} and
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lm := min{l ∈ Z | l
N ∈ I}. On I,

∑
−k≤l≤k e

−cNπ( l
N −x)2 can be estimated as

∑
−k≤l≤k

e−cNπ( l
N −x)2 =

 ∑
−k≤l<lm

+
∑

lm≤l≤lM

+
∑

lM≤l≤k

 e−cNπ( l
N −x)2

≤
∑

−k≤l<lm

e
−cπ
N (l−Nxm)2 + (lM − ln + 1) +

∑
lM<l≤k

e
−cπ
N (l−NxM )2

≤
∫ lm

−k

e
−cπ
N (τ−Nxm)2dτ + (lM − ln + 1) +

∫ k

lM

e
−cπ
N (τ−NxM )2dτ,

and it is well-known that both
∫ lm
−k

e
−cπ
N (τ−Nxm)2dτ and

∫ k

lM
e

−cπ
N (τ−NxM )2dτ converges as k → +∞. □

Theorem 4.2. If s ∈ Γ
(
L̃⊗N

)
is a non trivial Γ-equivariant solution of 0 = Ds, then, there exists

m ∈ Zn with m
N ∈ F such that the condition (3.13) holds. Conversely, suppose that the condition (3.13)

holds for some m
N ∈ F ∩ 1

NZn and ϑm
N

converges absolutely and uniformly. Then, ϑm
N

is a non trivial Γ-
equivariant solution of 0 = Ds. In particular, if J is integrable and ϑm

N
converges absolutely and uniformly

for any m
N ∈ F ∩ 1

NZn, then,
{
ϑm

N

}
m
N ∈F∩ 1

N Zn is a basis of the space of Γ-equivariant holomorphic sections

of
(
L̃,∇L̃

)⊗N

→ (M̃,Nω0, J).

Proof. Since s =
∑

l∈Zn al(x)e
2π

√
−1l·y is non trivial solution of 0 = Ds, by Proposition 3.11, there

exists l ∈ Zn such that al ̸= 0. On the other hand, as is noticed in Remark 3.3, there exists
(
γ, mN

)
∈

Γ ×
(
F ∩ 1

NZn
)
such that l = Nργ

(
m
N

)
. Since s is Γ-equivariant, by (3.32), 0 ̸= al = aNργ(m

N ) implies

am ̸= 0.
Let us prove the latter. It is trivial that

{
ϑm

N

}
m
N ∈F∩ 1

N Zn is linear independent. Let s be a Γ-equivariant

holomorphic section of L̃⊗N . By Lemma 3.14, s can be written as in (3.33). Then,

s(x, y)
(3.33)
=

∑
(γ,mN )∈Γ×(F∩ 1

N Zn)

gγam
(
ργ−1(x)

)
e2π

√
−1N{g̃γ(ργ−1 (x))−ργ(m

N )·uγ(ργ−1 (x))+ργ(m
N )·y}

(3.14)
=

∑
(γ,mN )∈Γ×(F∩ 1

N Zn)

gγam

(m
N

)
e
2π

√
−1

[
−

∑n
i=1 Gi

m

(
m1
N ,...,

mi−1
N ,(ργ−1 (x))

i
,...,(ργ−1 (x))

n

)

+N{g̃γ(ργ−1 (x))−ργ(m
N )·uγ(ργ−1 (x))+ργ(m

N )·y}]

=
∑

m
N ∈F∩ 1

N Zn

am

(m
N

)∑
γ∈Γ

gγe
2π

√
−1

[
−

∑n
i=1 Gi

m

(
m1
N ,...,

mi−1
N ,(ργ−1 (x))

i
,...,(ργ−1 (x))

n

)

+N{g̃γ(ργ−1 (x))−ργ(m
N )·uγ(ργ−1 (x))+ργ(m

N )·y}]

=
∑

m
N ∈F∩ 1

N Zn

am

(m
N

)
ϑm

N
(x, y).

This proves the theorem. □

By Corollary 2.25, any Lagrangian fibration π : (M,ω) → B on a connected complete base B with
prequantum line bundle (L,∇L) → (M,ω) are obtained as the quotient of the action of Γ := π1(B). Let
J be a compatible almost complex structure on (M,ω) which is invariant along the fiber in the sense
of Lemma 3.6 and DM the associated Spinc Dirac operator on (M,Nω) with coefficients in L⊗N . Since

the Γ-action preserves all the data, Γ(L⊗N )∩ kerDM is identified with
(
Γ
(
L̃⊗N

)
∩ kerD

)Γ
. Moreover,

F ∩ 1
NZn is identified with BBS as is noticed in Remark 3.3. Thus, we obtain the following corollary.

Corollary 4.3. Let π : (M,ω) → B be a Lagrangian fibration on a connected complete base B and
(L,∇L) → (M,ω) a prequantum line bundle. Let J be a compatible almost complex structure on (M,ω)
which is invariant along the fiber in the sense of Lemma 3.6. Assume that J is integrable and ϑm

N
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converges absolutely and uniformly for each m
N ∈ F ∩ 1

NZn. Then,
{
ϑm

N

}
m
N ∈F∩ 1

N Zn gives a basis of the

space of holomorphic sections of (L,∇L)⊗N → (M,Nω, J) indexed by the Bohr-Sommerfeld points.

Remark 4.4. When M is compact as well as the assumption of Corollary 4.3, we choose the orientation

on M so that (−1)
n(n−1)

2
(Nω)n

n! is a positive volume form, and define the Hermitian inner product of the

space of sections of L⊗N by

(s, s′)L⊗L :=

∫
M

⟨s, s′⟩L⊗N (−1)
n(n−1)

2
(Nω)

n

n!
,

where ⟨·, ·⟩L⊗N is the Hermitian metric of L⊗N . Then it is clear that
{
ϑm

N

}
m
N ∈F∩ 1

N Zn are orthogonal

basis.

Example 4.5. For Example 2.30, Z = X+
√
−1Y can be chosen so that Y +XY −1X is a constant map

and XY −1 and Y −1 satisfy

(XY −1)x = (Y +XY −1X)

u11 · C
−1x · · · u1n · C−1x

...
...

un1 · C−1x · · · unn · C−1x

 ,

(Y −1)x =

u11 · C
−1x · · · u1n · C−1x

...
...

un1 · C−1x · · · unn · C−1x

 (Y +XY −1X)

u11 · C
−1x · · · u1n · C−1x

...
...

un1 · C−1x · · · unn · C−1x


+ Y +XY −1X.

In this case, Y +XY −1X is necessarily I and Ω can be written as

Ωx =

u11 · C
−1x · · · u1n · C−1x

...
...

un1 · C−1x · · · unn · C−1x

+
√
−1(Y +XY −1X)−1,

and the condition (2) in Proposition 3.12 is equivalent to the following condition(
tC−1ujk

)
i
=
(
tC−1uik

)
j
for all i, j, k = 1, . . . , n.

Assume this condition as well as the condition N
2 vi · Ujvi ∈ Z for all i, j = 1, . . . , n. Then, for each

m
N ∈ F ∩ 1

NZn, ϑm
N

is described by

ϑm
N
(x, y) =

∑
γ∈Γ

gγ exp 2π
√
−1N


n∑

i=1

∑
j>i

(
ργ−1(x)− m

N

)
i

(
ργ−1(x)− m

N

)
j

(
tC−1uij

)
·



m1

N
...

mi−1

N
1
2

(
ργ−1(x) + m

N

)
i(

ργ−1(x)
)
i+1

...(
ργ−1(x)

)
n



+
1

2

n∑
i=1

(
ργ−1(x)− m

N

)2
i

(
tC−1uii

)
·



m1

N
...

mi−1

N
1
3

(
2ργ−1(x) + m

N

)
i(

ργ−1(x)
)
i+1

...(
ργ−1(x)

)
n



+
1

2

(
ργ−1(x)− m

N

)
·


u11 · γ · · · u1n · γ

...
...

un1 · γ · · · unn · γ

+
√
−1
(
Y +XY −1X

)−1

(ργ−1(x)− m

N

)
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−1

2

m

N
·

u11 · γ · · · u1n · γ
...

...
un1 · γ · · · unn · γ

 m

N
+ ργ

(m
N

)
· y

.
By Proposition 4.1 (3), ϑm

N
converges absolutely and uniformly on any compact set.

4.2. The case when Z is constant. Let π : (M,ω) → B be a Lagrangian fibration on a complete
n-dimensional B with prequantum line bundle (L,∇L) → (M,ω). Then, it is obtained as the quotient of

the Γ := π1(B)-action on π0 : (M̃, ω0) → Rn with prequantum line bundle
(
L̃,∇L̃

)
→ (M̃, ω0). Suppose

that the Γ-actions are described by (2.3) and (2.5) as before. Let J be a compatible almost complex

structure on (M,ω) and Z ∈ C∞(M̃,Sn) be the map corresponding to the pull-back of J to M̃ . A
situation in which (2) in Proposition 3.12 holds occurs when Z is a constant map. In this subsection, we
discuss this case in detail. Note that in this case, Duγ is a constant map for each γ ∈ Γ. It is obtained by
(3.4). Moreover, as a special case of the setting in the previous subsection, we can obtain the following
theorem.

Theorem 4.6. (1) For each m
N ∈ F ∩ 1

NZn, ϑm
N

can be described as follows

ϑm
N
(x, y) =

∑
γ∈Γ

gγe
2π

√
−1N[ 12{(ργ−1 (x)−m

N )·(Ω+tAγDuγ)(ργ−1 (x)−m
N )−m

N ·(tAγDuγ)
m
N }−ργ(m

N )·uγ(0)+ργ(m
N )·y].

(2) For each m
N ∈ F ∩ 1

NZn, ϑm
N

converges absolutely and uniformly on any compact set.

(3) J is integrable and
{
ϑm

N

}
m
N ∈F∩ 1

N Zn gives a basis of the space of holomorphic sections of (L,∇L)⊗N →
(M,Nω, J).

Proof. (1) is obtained from Proposition 4.1 (1). (2) is obtained by the assumption and Proposition 4.1 (3).
The first half of (3) is true since J is covariant constant with respect to the associated Levi-Civita
connection. The other half is obtained by Corollary 4.3. □

When Z is constant, the associated Riemannian metric of M is flat. So, by Bieberbach’s theorem,
if M is compact, then, M is finitely covered by the 2n-dimensional torus T 2n, hence, ϑm

N
’s should be

obtained from classical theta functions. So, let us see how ϑm
N
’s relate with classical theta functions for

Example 2.28 with C = I, in which M itself is T 2n. First, let us briefly recall classical theta functions.
For each T ∈ Sn and a, b ∈ Qn, the theta function with characteristics is a holomorphic section on the
trivial holomorphic line bundle Cn × C → Cn which is defined by

ϑ

[
a
b

]
(z, T ) :=

∑
γ∈Zn

eπ
√
−1(γ+a)·T (γ+a)+2π

√
−1(γ+a)·(z+b).

It is well-known that ϑ

[
a
b

]
(z, T ) has the following quasi-periodicity

ϑ

[
a
b

]
(z +m,T ) = e2π

√
−1a·mϑ

[
a
b

]
(z, T ) ,

ϑ

[
a
b

]
(z + Tm, T ) = e−2π

√
−1b·me−π

√
−1m·Tm−2π

√
−1m·zϑ

[
a
b

]
(z, T )

for m ∈ Zn. For more detail, see [28, Chapter II, §1] and [29, ß2]. Here we need the case when T = NΩ,
a = m

N , and b = 0. In this case, define the Z2n = Zn × Zn-action on Cn × C → Cn by

(γ, γ′) · (z, w) :=
(
z +N(−Ωγ + γ′), e−π

√
−1Nγ·Ωγ+2π

√
−1γ·zw

)
for (γ, γ′) ∈ Z2n and (z, w) ∈ Cn × C. Also define the Z2n-action on the trivial complex line bundle
R2n × C → R2n by

(4.2) (γ, γ′) · (x, y, w) :=
(
x+ γ, y + γ′, e2π

√
−1Nγ·yw

)
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for (γ, γ′) ∈ Z2n and (x, y, w) ∈ R2n × C. Note that by taking the quotient of the latter Zn-action of

(4.2), we can recover Example 2.28 with C = I and gγ = 1. Let F : R2n → Cn and F̃ : R2n×C → Cn×C
be the R-linear isomorphism and the bundle isomorphism covering F which are defined by

F (x, y) := N (−Ωx+ y) ,

F̃ (x, y, w) :=
(
N (−Ωx+ y) , e−π

√
−1Nx·Ωxw

)
.

Then, the direct computation shows the following theorem.

Theorem 4.7. (1) J√−1I ◦F = F ◦(JZ), i.e., F is a C-linear isomorphism from (R2n, JZ) to the standard
complex vector space (Cn, J√−1I).

(2) F̃ is equivariant with respect to the Z2n-actions defined above.

(3) ϑm
N

satisfies F̃ ◦ ϑm
N
(x, y) = ϑ

[
m
N
0

]
(F (x, y), NΩ), i.e.,

ϑm
N
(x, y) = eπ

√
−1Nx·Ωxϑ

[
m
N
0

]
(N(−Ωx+ y), NΩ) .

4.3. Adiabatic-type limit. In this subsection let us consider a one parameter family {(gt, J t)}t>0 of
the Riemannian metrics and the almost complex structures on a Lagrangian fibration so that the fiber
shrinks as t goes to ∞, and investigate the behavior of ϑm

N
defined by (4.1) when t goes to ∞. We use

the same notations introduced in the previous sections.

Let Z = X +
√
−1Y ∈ C∞

(
M̃,Sn

)
be the map independent of y1, . . . , yn. Let J = JZ be the

corresponding compatible almost complex structure on
(
M̃, ω0

)
. For each t > 0, we define the almost

complex structure J t by

J tu := (−J∂y, ∂y)
(
0 −1

t
t 0

)(
uH
uV

)
for u = (−J∂y, ∂y)

(
uH
uV

)
∈ T(x,y)M̃ . It is easy to see the following lemma.

Lemma 4.8. (1) For any t > 0, J t is compatible with ω0. The map Zt ∈ C∞
(
M̃,Sn

)
corresponding to

J t is described as

Zt =

(
1

t
X +

√
−1Y

)
Y −1

(
Y +XY −1X

)(
tY +

1

t
XY −1X

)−1

Y.

J t can be also written as

J t

(
(∂x, ∂y)

(
ux
uy

))
= (∂x, ∂y)

1

t

(
XY −1 −Y −XY −1X

Y −1
(
t2Y +XY −1X

) (
Y +XY −1X

)−1 −Y −1X

)(
ux
uy

)
.

(2) For any t > 0, let gt be the Riemannian metric corresponding to ω0 and J t. Then, for u =

(−J∂y, ∂y)
(
uH
uV

)
, v = (−J∂y, ∂y)

(
vH
vV

)
∈ T(x,y)M̃ , gt can be written by

gt(u, v) = ω0

(
u, J tv

)
= t(0, tuH)

(
Y −1 −Y −1X

−XY −1 Y +XY −1X

)(
0
vH

)
+

1

t
(0, tuV )

(
Y −1 −Y −1X

−XY −1 Y +XY −1X

)(
0
vV

)
.

Suppose that a group Γ acts on π0 : (M̃, ω0) → Rn and the Γ-actions ρ on Rn and ρ̃ on (M̃, ω0) are
written as in (2.3).

Lemma 4.9. The Γ-action ρ̃ preserves J t (hence, gt) for all t > 0 if and only if ρ̃ preserves J .

For J t and gt defined as above, the same arguments in Section 3.3 goes well, just by replacing J , g by
J t, gt. For each t > 0, let ϑtm

N
be the one defined by (4.1) for J t and gt. Let us investigate the behavior

of ϑtm
N

as t goes to infinity. For t > 0, Ωt defined by (3.7) for Zt can be described as

(4.3) Ωt =
(
Y +XY −1X

)−1 (
X + t

√
−1Y

)
Y −1.
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Let Dt be the corresponding Spinc Dirac operator. Then, for a section s of L̃⊗N , Dts can be described
as

Dts = −
√
−1

N

n∑
i=1

∂yi
⊗C

∂xi
s+

n∑
j=1

(
Ωt
)
ij

(
∂yj

s− 2π
√
−1Nxjs

) .(4.4)

It is clear that

Lemma 4.10. For any t > 0, the condition (2) in Proposition 3.12 holds for Ωt if and only if it holds
for Ω = Ω1. In particular, J t is integrable if and only if J is integrable.

Suppose that π0 : (M̃,Nω0, J) → Rn with prequantum line bundle
(
L̃,∇L̃

)⊗N

→ (M̃,Nω0, J) is

equipped with an action of a group Γ which preserves all the data, and the Γ-actions are described
by (2.3) and (2.5) as before. We assume that the Γ-action ρ on Rn is properly discontinuous, free,
and cocompact. Let π : (M,Nω) → B and (L,∇L)⊗N → (M,Nω) be the Lagrangian fibration and the
prequantum line bundle on it obtained by the quotient of the Γ-action. OnM , we consider the orientation

so that (−1)
n(n−1)

2
(Nω)n

n! is a positive volume form, and define the Lp-norm of a section s of L⊗N by

∥s∥Lp :=

(∫
M

⟨s, s⟩
p
2

L⊗N (−1)
n(n−1)

2
(Nω)

n

n!

) 1
p

,(4.5)

where ⟨·, ·⟩L⊗N is the Hermitian metric of L⊗N which is induced from the Hermitian metric ⟨·, ·⟩L̃⊗N of

L̃⊗N . As noticed in Remark 2.26, there exists a positive constant C such that ⟨·, ·⟩L̃⊗N can be written
as ⟨·, ·⟩L̃⊗N = C⟨·, ·⟩C, where ⟨·, ·⟩C is the standard Hermitian inner product on C.

For each t > 0 and each point m
N ∈ F ∩ 1

NZn for which the condition (3.13) holds, the corresponding

ϑtm
N

is defined by (4.1) for Ωt. We identify F ∩ 1
NZn with BBS the set of Bohr-Sommerfeld points of

π : (M,Nω) → B with prequantum line bundle (L,∇L)⊗N → (M,Nω) and identify ϑtm
N

with the section

of (L,∇L)⊗N → (M,Nω) which is induced from ϑtm
N
. Then, concerning the Lp-norm, we have the

following lemma.

Lemma 4.11. Suppose that Y + XY −1X is constant. Then, the Lp-norm of ϑtm
N

can be calculated as

follows

∥ϑtm
N
∥pLp = C

√
det (Y +XY −1X)

(
N

pt

)n
2

.

Proof. Let o(B) be the orientation bundle of B which is defined as the quotient bundle of the trivial real
line bundle Rn × R → Rn on the universal cover of B by the Γ-action ρ′γ(x, r) := (ργ(x), (detAγ)r) for

γ ∈ Γ and (x, r) ∈ Rn × R. Then, we have a push-forward map π∗ : Ω
k(M) → Ωk−n(B, o(B)), where

Ω•(B, o(B)) is the de Rham complex twisted by o(B). B has a natural density which we denote by |dx|.
For densities, see [8, Chapter I, §7]. Then,

∥ϑtm
N
∥pLp =

∫
M

⟨ϑtm
N
, ϑtm

N
⟩

p
2

L⊗N (−1)
n(n−1)

2
(Nω)

n

n!

=

∫
B

π∗

(
⟨ϑtm

N
, ϑtm

N
⟩

p
2

L⊗N (−1)
n(n−1)

2
(Nω)

n

n!

)
= CNn

∑
γ∈Γ

∫
F

e−pNπt(ργ−1 (x)−m
N )·(Y+XY −1X)

−1
(ργ−1 (x)−m

N )|dx|.(4.6)

By changing the coordinates as x′ = ργ−1(x),

(4.6) = CNn
∑
γ∈Γ

∫
ργ−1 (F )

e−pNπt(x′−m
N )·(Y+XY −1X)

−1
(x′−m

N )|dx′|

= CNn

∫
Rn

e−pNπt(x′−m
N )·(Y+XY −1X)

−1
(x′−m

N )|dx′|.(4.7)
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Since Y +XY −1X is positive definite, symmetric, there exists P ∈ O(n) such that

Y +XY −1X = tP

λ1 . . .

λn

P.

Then, we define a positive definite symmetric matrix
√
Y +XY −1X by

(4.8)
√
Y +XY −1X := tP


√
λ1

. . . √
λn

P,

and put τ :=
√
(Y +XY −1X)−1

(
x′ − m

N

)
. Then,

(4.7) = C
√

det (Y +XY −1X)Nn

∫
Rn

e−pNπt∥τ∥2

|dτ |

= C
√

det (Y +XY −1X)Nn
n∏

i=1

∫ ∞

−∞
e−pNπtτ2

i dτi

= C
√

det (Y +XY −1X)Nn

(√
1

pNt

)n

.

□

We define the section δm
N

of
(
L,∇L

)⊗N |π−1(m
N ) by

(4.9) δm
N
(y) :=

1

C
e2π

√
−1m·y.

By Lemma 3.2, δm
N

is a covariant constant section of
(
L,∇L

)⊗N |π−1(m
N ). Let T ∗

πM be the cotangent

bundle along the fiber of π. On (∧nT ∗
πM)⊗ π∗o(B)∗, there exists a natural section, i.e., a density along

the fiber of π, say |dy|, which satisfies
∫
π−1(x)

|dy| = 1 on each fiber of π. Then, we obtain the following

theorem.

Theorem 4.12. Suppose that Y +XY −1X is constant. Then, the section
ϑtm

N

∥ϑtm
N
∥L1

converges to a delta-

function section supported on the fiber π−1
(
m
N

)
as t goes to ∞ in the following sense: for any section s

of L⊗N ,

lim
t→∞

∫
M

⟨
s,

ϑtm
N

∥ϑtm
N
∥L1

⟩
L⊗N

(−1)
n(n−1)

2
(Nω)

n

n!
=

∫
π−1(m

N )

⟨
s, δm

N

⟩
L⊗N |dy|.

Proof. We denote by s̃ the pull-back of s to L̃⊗N → M̃ . Since s̃ is Γ-equivariant, the Fourier expansion
of s̃ can be written as in (3.33). Then, by using Proposition 4.1 (1),∫

M

⟨
s,

ϑtm
N

∥ϑtm
N
∥L1

⟩
L⊗N

(−1)
n(n−1)

2
(Nω)

n

n!

=

∫
B

π∗

(⟨
s,

ϑtm
N

∥ϑtm
N
∥L1

⟩
L⊗N

(−1)
n(n−1)

2
(Nω)

n

n!

)

=
CNn

∥ϑtm
N
∥L1

∑
γ∈Γ

∫
F

am
(
ργ−1(x)

)
e
−2π

√
−1

∑n
i=1 Gi

m

(
m1
N ,...,

mi−1
N ,(ργ−1 (x))

i
,...,(ργ−1 (x))

n

)
|dx|.(4.10)
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By putting x′ = ργ−1(x), we have

(4.10) =
CNn

∥ϑtm
N
∥L1

∑
γ∈Γ

∫
ργ−1 (F )

am (x′) e−2π
√
−1

∑n
i=1 Gi

m(
m1
N ,...,

mi−1
N ,x′

i,...,x
′
n)|dx′|

=
CNn

∥ϑtm
N
∥L1

∫
Rn

am (x′) e−2π
√
−1

∑n
i=1 Gi

m(
m1
N ,...,

mi−1
N ,x′

i,...,x
′
n)|dx′|

=
CNn

∥ϑtm
N
∥L1

∫
Rn

am (x′) e2π
√
−1

∑n
i=1 ReGi

m(
m1
N ,...,

mi−1
N ,x′

i,...,x
′
n)e−πNt(x′−m

N )·(Y+XY −1X)
−1
(x′−m

N )|dx′|.

(4.11)

We put f(x′) := am (x′) e2π
√
−1

∑n
i=1 ReGi

m(
m1
N ,...,

mi−1
N ,x′

i,...,x
′
n) and τ :=

√
(Y +XY −1X)−1

(
x′ − m

N

)
. By

using Lemma 4.11 for p = 1, (4.11) can be written as follows

(4.11) =
CNn

∥ϑtm
N
∥L1

∫
Rn

f(x′)e−πNt(x′−m
N )·(Y+XY −1X)

−1
(x′−m

N )|dx′|(4.12)

=
CNn

∥ϑtm
N
∥L1

√
det (Y +XY −1X)

∫
Rn

f
(√

Y +XY −1Xτ +
m

N

)
e−πNt∥τ∥2

|dτ |

= (Nt)
n
2

∫
Rn

f
(√

Y +XY −1Xτ +
m

N

)
e−πNt∥τ∥2

|dτ |.

It is well-known that

lim
t→∞

(4.12) = f
(m
N

)
= am

(m
N

)
.

On the other hand, by using the expression

s̃ =
∑

(γ,m′
N )∈Γ×(F∩ 1

N Zn)

aNργ(m′
N )(x)e

2π
√
−1Nργ

(
m′
N

)
·y
,

the right hand side can be computed as∫
π−1(m

N )

⟨
s, δm

N

⟩
L⊗N |dy| =

∫
Tn

⟨
s̃, δm

N

⟩
L̃⊗N |dy|

=
∑

(γ,m′
N )∈Γ×(F∩ 1

N Zn)

aNργ(m′
N )

(m
N

)∫
Tn

e
2π

√
−1

(
Nργ

(
m′
N

)
−m

)
·y|dy|.

∫
Tn e

2π
√
−1

(
Nργ

(
m′
N

)
−m

)
·y|dy| vanishes unless ργ

(
m′

N

)
= m

N . Since both m′

N and m
N lie in the fundamental

domain F , this implies γ = e and m′ = m, and in this case,
∫
Tn e

2π
√
−1

(
Nργ

(
m′
N

)
−m

)
·y|dy| = 1. Thus,∫

π−1(m
N )

⟨
s, δm

N

⟩
L⊗N |dy| = am

(m
N

)
.

This proves the theorem. □

5. The non-integrable case

We still use the same notations introduced in the previous sections. By Lemma 3.10, the equation
(3.12) has no smooth solution for m

N ∈ F ∩ 1
NZn such that (3.13) does not holds. For such m

N , instead of
(3.12), let us consider the following equation which is obtained from (3.12) by replacing Ω by its value
Ωm

N
at m

N

(5.1) 0 =

∂x1 ãm
...

∂xn ãm

+ 2π
√
−1ãmΩm

N
(m−Nx).

The equation (5.1) has a solution of the form

ãm(x) = ãm

(m
N

)
e
π
√
−1N(x−m

N )·Ωm
N
(x−m

N ).
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We put the initial condition ãm
(
m
N

)
= 1 on the above ãm, and for each γ ∈ Γ, define ãNργ(m

N ) in such a

way that it satisfies (3.32).

Lemma 5.1. ãNργ(m
N ) satisfies the following equality

0 =


∂x1

ãNργ(m
N )(x)

...
∂xn ãNργ(m

N )(x)

+ 2π
√
−1ãNργ(m

N )(x)Ωx

(
Nργ

(m
N

)
−Nx

)
(5.2)

+ 2π
√
−1ãNργ(m

N )(x)
tA−1

γ

(
Ωm

N
− Ωργ−1 (x)

)
A−1

γ

(
Nργ

(m
N

)
−Nx

)
.

Proof. By the same calculation as in the proof of Lemma 3.15, we have

tAγ


∂x1

ãNργ(m
N ) (ργ(x))

...
∂xn ãNργ(m

N ) (ργ(x))

 = −2π
√
−1ãNργ(m

N ) (ργ(x))
(
Ωm

N
A−1

γ + t (Duγ)x
) (
Nργ

(m
N

)
−Nργ(x)

)
.

(5.2) can be obtained from this equation and (3.39). □

By using ãNργ(m
N )’s, we define ϑ̃m

N
in the same manner as ϑm

N
, i.e.,

ϑ̃m
N
(x, y) =

∑
γ∈Γ

ãNργ(m
N )(x)e

2π
√
−1Nργ(m

N )·y.

ϑ̃m
N

converges absolutely and uniformly on any compact set and can be written as

ϑ̃m
N

=
∑
γ∈Γ

˜̃ργ ◦ s′m ◦ ρ̃γ−1 ,

where s′m is the section defined by

s′m(x, y) := e
π
√
−1N(x−m

N )·Ωm
N
(x−m

N )+2π
√
−1m·y

.

In particular, when M is compact, it defines a section of L⊗N → M . Moreover, these two sections with

different m
N and m′

N are orthogonal to each other. These can be proved by the same way as Proposition 4.1.
In the rest of this section, we assume that M is compact.

Next let us consider the one parameter family of J t and gt defined in Section 4.3. Then, corresponding

to J t and gt, we can obtain ϑ̃tm
N
, which can be explicitly describe as

ϑ̃tm
N
(x, y) =

∑
γ∈Γ

gγe
2π

√
−1N

[
1
2 (ργ−1 (x)−m

N )·Ωt
m
N
(ργ−1 (x)−m

N )+g̃γ(ργ−1 (x))−ργ(m
N )·uγ(ργ−1 (x))

]
e2π

√
−1Nργ(m

N )·y,

where Ωt
m
N

is the value of Ωt given in (4.3) at m
N . Then, ϑ̃tm

N
has the following property. The proof is

same as Theorem 4.12.

Theorem 5.2. For each m
N ∈ F ∩ 1

NZn, the section
ϑ̃tm

N

∥ϑ̃tm
N
∥L1

converges to a delta-function section

supported on the fiber π−1
(
m
N

)
as t goes to ∞ in the following sense: for any section s of L⊗N ,

lim
t→∞

∫
M

⟨
s,

ϑ̃tm
N

∥ϑ̃tm
N
∥L1

⟩
L⊗N

(−1)
n(n−1)

2
(Nω)

n

n!
=

∫
π−1(m

N )

⟨
s, δm

N

⟩
L⊗N |dy|.

ϑ̃tm
N

is not a solution of 0 = Dts, but we can show that ϑ̃tm
N

approximates the solution of this equation

in the following sense:

Theorem 5.3.

lim
t→∞

∥Dtϑ̃tm
N
∥L2((TM,Jt)⊗CL) = 0.
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Before proving the theorem, we have to make sure the meaning of L2-norm in the left hand side. Dtϑ̃tm
N

is a section of (TM, J t) ⊗C L, and (TM, J t) ⊗C L admits a Hermitian metric ⟨·, ·⟩(TM,Jt)⊗CL induced
by the one parameter version of (3.10) of (TM, J t) and the Hermitian metric of L. In terms of this
Hermitian metric, the L2-norm is defined as

∥Dtϑ̃tm
N
∥2L2((TM,Jt)⊗CL) :=

∫
M

⟨Dtϑ̃tm
N
, Dtϑ̃tm

N
⟩(TM,Jt)⊗CL(−1)

n(n−1)
2

(Nω)n

n!
.

Proof. For n = 1, it is clear that the condition 3.13 automatically holds for allm ∈ Z. Thus, it is sufficient

to prove the theorem for n ≥ 2. By the definition of ϑ̃tm
N

and (5.2), Dtϑ̃tm
N

can be written as

Dtϑ̃tm
N

= −
√
−1

N

n∑
i=1

∂yi
⊗C

∂xi
ϑ̃tm

N
+

n∑
j=1

(
Ωt

x

)
ij

(
∂yj

ϑ̃tm
N
− 2π

√
−1Nxj ϑ̃

t
m
N

)
= −

√
−1

N

n∑
i=1

∂yi
⊗C
∑
γ∈Γ

{
∂xi

ãNργ(m
N )(x) + 2π

√
−1ãNργ(m

N )(x)
(
Ωt

x

(
Nργ

(m
N

)
−Nx

))
i

}
e2π

√
−1Nργ(m

N )·y

= −2π

n∑
i=1

∂yi
⊗C
∑
γ∈Γ

ãNργ(m
N )(x)

(
tA−1

γ

(
Ωt

m
N
− Ωt

ργ−1 (x)

)(m
N

− ργ−1(x)
))

i
e2π

√
−1Nργ(m

N )·y.

Then,

⟨Dtϑ̃tm
N
, Dtϑ̃tm

N
⟩(TM,Jt)⊗CL

= (2π)2
∑

γ1,γ2∈Γ

∑
i1,i2

⟨ãNργ1(
m
N )(x)e

2π
√
−1Nργ1(

m
N )·y, ãNργ2(

m
N )(x)e

2π
√
−1Nργ2(

m
N )·y⟩L⊗NNgt

(
∂yi1

, ∂yi2

)
×
(

tA−1
γ1

(
Ωt

m
N
− Ωt

ρ
γ
−1
1

(x)

)(m
N

− ργ−1
1

(x)
))

i1

(
tA−1

γ2

(
Ωt

m
N
− Ωt

ρ
γ
−1
2

(x)

)(m
N

− ργ−1
2

(x)
))

i2

= (2π)2
N

t

∑
γ1,γ2∈Γ

⟨ãNργ1(
m
N )(x)e

2π
√
−1Nργ1(

m
N )·y, ãNργ2(

m
N )(x)e

2π
√
−1Nργ2(

m
N )·y⟩L⊗N

×
(

tA−1
γ1

(
Ωt

m
N
− Ωt

ρ
γ
−1
1

(x)

)(m
N

− ργ−1
1

(x)
))

·
(
Y +XY −1X

)
x

(
tA−1

γ2

(
Ωt

m
N
− Ωt

ρ
γ
−1
2

(x)

)(m
N

− ργ−1
2

(x)
))

.

For each x ∈ F and u ∈ Cn, define the norm of u with respect to (Y +XY −1X)x by

∥u∥2(Y+XY −1X)x
:= u · (Y +XY −1X)xu.

By (3.5), for each γ ∈ Γ, ∥u∥2(Y+XY −1X)x
satisfies

∥tAγu∥2(Y+XY −1X)x
= ∥u∥2(Y+XY −1X)ργ (x)

.

In terms of this norm, we obtain

∥Dtϑ̃tm
N
∥2L2((TM,Jt)⊗CL)

= (2π)2
CNn+1

t

∑
γ∈Γ

∫
F

e
−2πNt(ργ−1 (x)−m

N )·(Y+XY −1X)
−1
m
N
(ργ−1 (x)−m

N )

×
(
tA−1

γ

(
Ωt

m
N
− Ωt

ργ−1 (x)

)(m
N

− ργ−1(x)
))

·
(
Y +XY −1X

)
x

(
tA−1

γ

(
Ωt

m
N
− Ωt

ργ−1 (x)

)(m
N

− ργ−1(x)
))

|dx|

= (2π)2
CNn+1

t

∑
γ∈Γ

∫
F

e
−2πNt(ργ−1 (x)−m

N )·(Y+XY −1X)
−1
m
N
(ργ−1 (x)−m

N )

× ∥tAγ−1

(
Ωt

m
N
− Ωt

ργ−1 (x)

)(m
N

− ργ−1(x)
)
∥2(Y+XY −1X)x

|dx|

= (2π)2
CNn+1

t

∑
γ∈Γ

∫
F

e
−2πNt(ργ−1 (x)−m

N )·(Y+XY −1X)
−1
m
N
(ργ−1 (x)−m

N )
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× ∥
(
Ωt

m
N
− Ωt

ργ−1 (x)

)(m
N

− ργ−1(x)
)
∥2(Y+XY −1X)ρ

γ−1 (x)
|dx|

= (2π)2
CNn+1

t

∑
γ∈Γ

∫
ργ−1 (F )

e
−2πNt(x′−m

N )·(Y+XY −1X)
−1
m
N
(x′−m

N )

× ∥
(
Ωt

m
N
− Ωt

x′

)(m
N

− x′
)
∥2(Y+XY −1X)x′ |dx

′| (∵ x′ := ργ−1(x))

= (2π)2
CNn+1

t

∫
Rn

∥
(
Ωt

m
N
− Ωt

x′

)(m
N

− x′
)
∥2(Y+XY −1X)x′ e

−2πNt(x′−m
N )·(Y+XY −1X)

−1
m
N
(x′−m

N )|dx′|.

Since Ωt can be described as (4.3),

∥
(
Ωt

m
N
− Ωt

x′

)(m
N

− x′
)
∥2(Y+XY −1X)x′

= ∥
(
Re
(
Ωm

N
− Ωx′

)) (m
N

− x′
)
∥2(Y+XY −1X)x′ + t2∥

(
Im
(
Ωm

N
− Ωx′

)) (m
N

− x′
)
∥2(Y+XY −1X)x′ .

We put

R(x′) := ∥
(
Re
(
Ωm

N
− Ωx′

)) (m
N

− x′
)
∥2(Y+XY −1X)x′ ,

I(x′) := ∥
(
Im
(
Ωm

N
− Ωx′

)) (m
N

− x′
)
∥2(Y+XY −1X)x′ .

By changing coordinates as τ :=
√
(Y +XY −1X)−1

m
N

(
x′ − m

N

)
, ∥Dtϑ̃tm

N
∥2L2((TM,Jt)⊗CL) can be written by

∥Dtϑ̃tm
N
∥2L2((TM,Jt)⊗CL) = 22−

n
2 π2CN

n
2 +1
√
det(Y +XY −1X)m

N

×
{
t−1−n

2

∫
Rn

R
(√

(Y +XY −1X)m
N
τ +

m

N

)
(2Nt)

n
2 e−2πNt∥τ∥2

|dτ |

+t1−
n
2

∫
Rn

I
(√

(Y +XY −1X)m
N
τ +

m

N

)
(2Nt)

n
2 e−2πNt∥τ∥2

|dτ |
}
.

It is well-known that

lim
t→∞

∫
Rn

R
(√

(Y +XY −1X)m
N
τ +

m

N

)
(2Nt)

n
2 e−2πNt∥τ∥2

|dτ | = R
(m
N

)
= 0,

lim
t→∞

∫
Rn

I
(√

(Y +XY −1X)m
N
τ +

m

N

)
(2Nt)

n
2 e−2πNt∥τ∥2

|dτ | = I
(m
N

)
= 0.

Since n ≥ 2, this proves Theorem 5.2. □

Example 5.4. For Example 2.29, let us consider the compatible almost complex structure associated
with

Z :=

(
0 0
0 x1

)
+
√
−1

( 1
x2
1+1

0

0 1

)
.

The corresponding Ω is

Ωx =

(√
−1 0
0 x1 +

√
−1

)
.

This Z does not satisfies (2) in Proposition 3.12, nor the condition 3.13 for any m ∈ Z2. In fact, for

any m ∈ Z2, ((∂x1Ω) (m−Nx))2 = m2 − Nx2 while ((∂x2Ω) (m−Nx))1 = 0. In this case, ϑ̃tm
N

can be

written as

ϑ̃tm
N
(x, y) =

∑
γ∈Z2

gγe
2π

√
−1N[ 12{t

√
−1(x1−γ1−m1

N )2+(m1
N +t

√
−1)(x2−γ2−m2

N )2}

+(x2−γ2){ 1
2γ1(x2+γ2)−(m2

N +γ2)γ2}]e2π
√
−1(m+Nγ)·y.

Example 5.5. In the case where n = 2 of Example 2.31, we can take the compatible almost complex
structure associated with

Z :=
1

x22 + 1

(
λ2x32 λx22
λx22 x2

)
+

√
−1

x22 + 1

(
(1 + λ2)x22 + 1 λx2

λx2 1

)
.
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The corresponding Ω is

Ωx =

( √
−1 −

√
−1λx2

−
√
−1λx2 x2 +

√
−1(λ2x22 + 1)

)
.

In this case, ∂x2Ω12 = −
√
−1λ and ∂x1Ω22 = 0. So, Z satisfies (2) in Proposition 3.12 if and only if

λ = 0, which is the special case of Example 4.5. Equivalently, Z does not satisfy the condition 3.13 for
any m ∈ Z2 unless λ = 0. In fact, for any m ∈ Z2, ((∂x1

Ω) (m−Nx))2 = 0 while ((∂x2
Ω) (m−Nx))1 =

−
√
−1λ(m2 −Nx2). In this case, ϑ̃tm

N
can be written as

ϑ̃tm
N
(x, y) =

∑
γ∈Γ

gγe
2π

√
−1N

[
t
√

−1
2 {x1−γ1−γ2λ(x2−γ2)−m1

N }2−t
√
−1λ

m2
N {x1−γ1−γ2λ(x2−γ2)−m1

N }(x2−γ2−m2
N )

+ 1
2

{
m2
N +t

√
−1

(
λ2 m2

2
N2 +1

)}
(x2−γ2−m2

N )
2
+ 1

2γ2(x2−γ2)(x2+γ2)−(m2
N +γ2)γ2(x2−γ2)

]

× e2π
√
−1{(m1+γ2λm2+Nγ1)y1+(m2+Nγ2)y2}.
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