ADIABATIC LIMITS, THETA FUNCTIONS, AND GEOMETRIC QUANTIZATION

TAKAHIKO YOSHIDA

ABSTRACT. Let 7: (M,w) — B be a (non-singular) Lagrangian torus fibration on a compact, complete
base B with prequantum line bundle (L, VX) — (M,w). For a positive integer N and a compatible
almost complex structure J on (M, w) invariant along the fiber of 7, let D be the associated Spin® Dirac
operator with coefficients in L®Y . Then, we give an orthogonal family {gb}beBBs of sections of L&N
indexed by the Bohr-Sommerfeld points Bpg, and show that each 51, converges to a delta-function section
supported on the corresponding Bohr-Sommerfeld fiber 7—1(b) and the L2-norm of ng converges to 0
by the adiabatic(-type) limit. Moreover, if J is integrable, we also give an orthogonal basis {9y }sc B4 of
the space of holomorphic sections of L®N indexed by By, and show that each 9, converges to a delta-
function section supported on the corresponding Bohr-Sommerfeld fiber 71 (b) by the adiabatic(-type)
limit. We also explain the relation of 95, with Jacobi’s theta functions when (M, w) is T2™.
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The purpose of this paper is to show the Spin® quantization converges to the real quantization by
the adiabatic(-type) limit for a Lagrangian torus fibration on a compact complete base and a compatible
almost complex structures on its total space which is invariant along the fiber. In this paper, a Lagrangian
torus fibration is assumed to be non-singular unless otherwise stated. First let us explain the motivation
which comes from geometric quantization. For geometric quantization, see [17, 22, 32, 38]. In physics,

quantization is the procedure for building quantum mechanics starting from classical mechanics.

In

the mathematical context, it is often thought of as a representation of the Poisson algebra consisting
of certain functions on a symplectic manifold to some Hilbert space, so called the quantum Hilbert
space, and the geometric quantization gives us the method to construct a quantum Hilbert space and a
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representation from a given symplectic manifold (M, w) and a prequantum line bundle (L, V¥) — (M, w)
in the geometric way. In the theory of geometric quantization by Kostant and Souriau [25, 34, 33], we
need an additional structure which is called a polarization to obtain the quantum Hilbert space. By
definition, a polarization is an integrable Lagrangian distribution P of the complexified tangent bundle
TM ® C of (M,w). For a polarization P, the quantum Hilbert space is naively given as the closure of
the space of smooth, square-integrable sections of (L, V) which are covariant constant along P.

A common example is the Kihler polarization. When (M, w) is Kihler and (L, V¥) is a holomorphic
line bundle with canonical connection, we can take 7% M as a polarization, and the obtained quantum
Hilbert space is nothing but the space of holomorphic sections H°(M, Or). This polarization is called the
Kahler polarization and the quantization procedure is called the Kéhler quantization. Note that when M
is compact and the Kodaira vanishing theorem holds, its dimension is equal to the index of the Dolbeault
operator with coefficients in L.

Another example is a real polarization. Suppose (M,w) admits a structure of a Lagrangian torus
fibration 7: (M,w) — B. For each point b € B of the base manifold B, the restriction (L, VL) le=1(8)
of (L,V*) to the fiber 771(b) is a flat line bundle. Let H® (7=!(b); (L, V¥) |z-1()) be the space of
covariant constant sections of (L7 VL) |lz~1(s)- Then, an element b € B is said to be Bohr-Sommerfeld
if HO (7=1(b); (L, VE) |a-1)) # {0}. It is well-known that Bohr-Sommerfeld points appear discretely.
In this case, we can take T, M ® C, the complexified tangent bundle along fibers of 7 as a polarization,
and if M is compact, the quantum Hilbert space is defined by @pep, s H° (ﬂfl(b); (L, VL) |,,_1(b)), where
the sum is taken over all Bohr-Sommerfeld points. See [32] for more details. In this paper, we call this
quantization the real quantization.

When a Lagrangian torus fibration 7: (M,w) — B with closed total space M and a prequantum line
bundle (L, V%) — (M,w) are given, it is natural to ask whether the quantum Hilbert space obtained
by the Kéhler quantization is isomorphic to the one obtained by the real quantization. A completely
integrable system can be thought of as a Lagrangian fibration with singular fibers. In the case of the the
moment map of a projective toric variety, Danilov has shown in [9] that H°(M, Q1) has the irreducible
decomposition H°(M,Or) = @®meant; G as a compact torus representation, where A is the moment
polytope, t; is the weight lattice, and C,, is the irreducible representation of the torus with weight m.
Since A Nt} is identified with the set of Bohr-Sommerfeld points, this implies the dimensions of the
quantum Hilbert spaces obtained by the above quantizations agree. A similar equality of the dimensions
has been also shown for the Gelfand-Cetlin system on the flag variety [16], the Goldman system on the
moduli space of flat SU(2) connections on a surface [20], and the Kapovich-Millson system on the polygon
space. [21].

Moreover, in the case of smooth projective toric varieties, not only the numerical equality for the
dimensions, but also a geometric correspondence between the Kéhler and the real quantizations has been
shown concretely by Baier-Florentino-Mourao-Nunes in [3]. Namely, they have given a one-parameter
family of complex structures {J;};c(0,00) and a basis {sj" };neane; of the space of holomorphic sections
associated with the complex structure J; for each t such that each section s converges to the delta
function section supported on the corresponding Bohr-Sommerfeld fiber as ¢ goes to co. The similar
result has been also obtained for flag manifolds in [19] and smooth irreducible complex algebraic varieties
by [18]. But in [19] and [18] the convergence has been shown only for the non-singular Bohr-Sommerfeld
fibers whereas in [3] it has been shown for all Bohr-Sommerfeld fibers.

The Kahler quantization can be generalized to a non-integrable compatible almost complex structure
on a closed (M,w). When a compatible almost complex structure J on (M, w) is given, we can consider
the associated Spin® Dirac operator D acting on I' (/\'T*MO’1 ® L). It is well-known that D is a formally
self-adjoint, first order, elliptic differential operator of degree-one, and if J is integrable, D agrees with
the Dolbeault operator up to constant. If J is not integrable, T%! M is no more polarization. But, even
in this case, since D is Fredholm, we can still take the element of the K-theory of a point

(1.1) ker (D

/\e'uenT*MO,l@L) — ker (D|/\uddT*MO,1®L) S K(pt)

as a (virtual) quantum Hilbert space. Its virtual dimension is equal to the index of D. We call this
quantization the Spin® quantization. It has been shown in [1, 13, 26] that the above equality between
dimensions of two quantum Hilbert spaces still holds by replacing the Kahler quantization with the Spin®©
quantization by using the index theory.
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In this paper, we generalize the approach taken in [3] for the Kéhler quantization to the Spin® quanti-
zation of Lagrangian torus fibrations. Let m: (M,w) — B be a Lagrangian torus fibration on a compact,
complete base B with prequantum line bundle (L, VL) — (M, w). For a positive integer N and a compat-
ible almost complex structure J of (M, w) invariant along the fiber of 7 (in the sense of Lemma 3.6), let
D be the associated Spin® Dirac operator with coefficients in L&Y. Then, the main result is as follows.
This theorem is a combination of Theorem 5.2 and Theorem 5.3.

Theorem 1.1. For the above data, we give one-parameter families of
. {{t}bo compatible almost complex structures of (M,w) with J* = J
o {9 }hen,s sets of sections on L®N indexed by the Bohr-Sommerfeld points Bgs
such that
(1) any pair in {gg}beBBs are orthogonal to each other,

(2) each 9} converges as a delta-function section supported on 77 Y(b) as t — oo in the following
sense, for any section s of L&V,

It n(n—1) W"
lim/ s, _b > (-1)" = *:/ (8,0b) pen |dyl,
teo M< 198110 / Lon nh S

where (, ) pen is the Hermitian metric of LN, 8, is the covariant constant section of LN |1
defined by (4.9), and |dy| is the natural one-density on w=! (b),

(3) tlim | D'} || = = 0.
—00

By the Spin€¢ Dirac vanishing theorem due to Borthwick-Uribe [7], ker (D|poda7 010~ ) vanishes for
a sufficiently large N. So, (3) implies the the complex vector space spanned by {ﬁi}be Bps approximates
the quantum Hilbert space of the Spin® quantization for a sufficiently large N.

If J is integrable, we also give the following refinement of Theorem 1.1, which is immediately obtained
by putting Corollary 4.3 and Theorem 4.12 together.

Theorem 1.2. Under the above setting, assume J is integrable. Then, with a technical assumption, we
give one-parameter families of

o {J'}y~0 compatible complex structures of (M,w) with J' = J
o {V}hep,s orthogonal bases of holomorphic sections of LN — (M, Nw, J*) indexed by Bps

such that each 9} converges as a delta-function section supported on w=1(b) as t — oo in the following
sense, for any section s of LN,

ﬁt > n(n—1) W
lim 5, —0 -1 T—:/ s, 0p dy|.
t=oo S < ”ﬂinLl LON (=1) n! 1) ( >L®N |dy|

One of examples of the total space of a Lagrangian torus fibration with complete base is an abelian
variety. In this case, we show that each ¥} coincides with Jacobi’s theta functions up to function on the
base space (Theorem 4.7). For the theta functions, see [28, 29].

We should remark there are several works which deal with theta functions from the viewpoint of
geometric quantization of Lagrangian fibrations, for example, [29], [4], [30, 31]. In [7], Borthwick-Uribe
have introduced another approach to generalize the Kahler quantization to non-integrable almost complex
structures by using the metric Laplacian of the connection on the prequantum line bundle instead of
Spin® Dirac operator. Their approach is called the almost Kéahler quantization. In the almost K&ahler
quantization of the Kodaira-Thurston manifold, Kirwin-Uribe and Egorov have constructed an analog of
the theta function as an element of the quantum Hilbert space [23], [12]. In [11], Egorov has also shown
the similar result for Lagrangian T2?-fibrations on T2 with zero Euler class.

The idea used in this paper is quite simple. One of two key facts is Corollary 2.25 which claims
that any Lagrangian torus fibration m: (M,w) — B with complete base B and a prequantum line bundle
(L, V%) = (M,w) can be obtained as the quotient of a 71 (B)-action on the standard Lagrangian fibration

(M7 wo) = R x T, 3" dz; Ady;) — R™ with the standard prequantum line bundle. In particular,

any compatible almost complex structure on (M, w) is induced from a 7, (B)-equivariant one on (]T/f , wo),
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and the set of compatible almost complex structures on (M , wo) corresponds one-to-one to the set of

smooth maps from M to the Siegel upper half space. We show that there exists a 7 (B)-invariant
compatible almost complex structure J whose corresponding map is invariant along the fiber (Lemma 3.6).
For the Spin® Dirac operator D associated with such an almost complex structure J, we consider the
problem on the existence of non-trivial degree-zero harmonic spinors, le., sections of L®N contained
in the kernel of D. By taking the Fourier series expansion of a section s of L®V with respect to the
fiber coordinates, the equation Ds = 0 can be reduced to a system of partial differential equations
on R™. The other key fact is Proposition 3.12 in which we give a necessary and sufficient condition
in order that the system of partial differential equations has non-trivial solutions and show that it is

equal to the integrability condition for J, i.e., (M ,wo, J ) is Kéhler. Moreover, in this case, we give a

family of 71 (B)-equivariant solutions of Ds = 0 indexed by the Bohr-Sommerfeld points, each of which
is expressed by the formal Fourier series. If they converge absolutely and uniformly, this gives a linear
basis of the space of holomorphic sections of (L, VL)®N — (M,Nw,J) — B. We also give a sufficient
condition for their convergence. Even if J is not integrable, by considering an approximation of D, we
can obtain an orthogonal family of sections of L®" indexed by the Bohr-Sommerfeld points Bgg. The
limit used in this paper is slightly different from the adiabatic limit in Riemannian geometry. When a
fiber bundle 7: M — B and a Riemannian metric g on M are given, we can consider the decomposition
(TM,g) = (V,gv) ® (H,gn), where V is the tangent bundle along the fiber with fiber metric gy := g|v
and H is the orthogonal complement of V' with respect to g with fiber metric gy := g|g. For each ¢ > 0,
define the Riemannian metric g* to be ¢' := gy ®tgy. Then, in Riemannian geometry, the adiabatic limit
is the procedure for taking the limit of geometric objects depending on g* as t — oco. But, since such a
deformation of Riemannian metrics does not fit into our symplectic context, we modify the deformation.
Namely, in this paper, we use a one-parameter family {J%};~¢ of compatible almost complex structures on
(M,w) such that the corresponding one-parameter family of Riemannian metrics is {g* = % gv Btgm }e>0,

and investigate the behavior of ﬁi (resp. ¥%) when t goes to oco.

The paper is organized as follows. In section 2, we first briefly review some well-known facts about
integral affine geometry and Lagrangian fibrations. Then, by using these, we prove Corollary 2.25. In
Section 3, we discuss the m (B)-equivariant Spin® quantization of (R” x T™, %" | dx; A dy;) — R™ with
the standard prequantum line bundle and prove Proposition 3.12. In Section 4, we prove Theorem 1.2 step
by step, and explain the relation between 9} and Jacobi’s classical theta function. Finally, in Section 5
we prove Theorem 1.1.

Acknowledgment The most part of this work had been done while the author stayed in McMaster
university. The author would like to thank the department of Mathematics and Statistics, McMaster
university and especially Megumi Harada for their hospitality. This work is supported by Grant-in-Aid
for Scientific Research (C) 15K04857.

1.1. Notations. For x = (xy,...,2,) and y = *(y1,...,yn) € R™, let us denote the standard inner

product ZZ;I z;y; by x - y. 0y, denotes . In this paper, all manifolds and maps are supposed to be

a.’Ei

smooth.

2. DEVELOPING LAGRANGIAN FIBRATIONS
2.1. Integral affine structures. Let B be a manifold.

Definition 2.1. An integral affine atlas of B is an atlas {(U,, ¢)} of B on each of whose non-empty
overlap U,g, the transition function ¢, oqbgl is an integral affine transformation, namely, ¢,, oqs/;l is of the
form ¢, ocbgl(x) = Anpx+cqp for some locally constant maps Aqg: Uag — GL,(Z) and cap: Uag — R™.
Two integral affine atlases {(Ua, ¢a)} and {(Ug, ¢5)} of B are said to be equivalent if on each non-empty
overlap U, N U é, the transition function ¢, o (gb,'@)’l is an integral affine transformation. An integral
affine structure on B is an equivalence class of integral affine atlases of B. A manifold equipped with
integral affine structure is called an integral affine manifold.

Example 2.2. An n-dimensional Euclidean space R" is equipped with a natural integral affine structure.
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Let us give examples of integral affine manifolds obtained from integral affine actions on R™.

Example 2.3. (1) Let vy,...,v, € R™ be a linear basis of R” and C' = (v; -+ v,) € GL,(R) the matrix
whose ith column vector is v; for 1 = 1,...,n. Z™ acts on R™ by
py(z) =2+ Cy

for v € Z™ and x € R™. Since the action preserves the natural integral affine structure on R", the quotient
space, which is topologically T", is equipped with an integral affine structure.

(2) Let A € N be a positive integer and a,b € R~ positive real numbers. Define Z2-action on R? as
follows. First, for the standard basis e, e of Z2, let us define the integral affine transform pe,, pe, by

pe. () =7 + (8) L Pey(T) = <(1) i) z+ (2)

for z € R2. Since p., and p., are commutative, they form the Z?-action on R? by

py(x) = pl} o pl(x)
for each v = t(y1,72) € Z2. In the same manner as in (1), the quotient space is equipped with an integral
affine structure. It is shown in [27, Theorem A] that the quotient space is topologically T2, but the

induced integral affine structure is not isomorphic to that obtained in (1) for n = 2 and there are only
these two integral affine structures on 72 up to isomorphism.

Example 2.4. For v = *(v1,72,73),7 = (¥}, 7%, v%) € Z? define the product yo ' € Z3 by

1 0 o\™"
vyoy =10 0 —1] 5'+7.
0 -1 0
Then, Z? with product o is a non abelian group (Z3, 0). (Z3, O) acts on R? by
1 0 o\™"
py(x):=10 0 -1 x + 7.
0 -1 0

Then, the quotient space R3/ (Z3, O) is equipped with the integral affine structure induced from that of
R3.

Example 2.5. Let n > 2. For v ="(v1,...,7),7 =t(7},...,7,) € Z" define the product y o' € Z"
by

1
(7]_)“/1
oy = . v+
(_1)’)’71—1
Then, Z™ with product o is a non abelian group (Z",0). (Z",0) acts on R™ by
1
(_1)’Y1
py(x) = . T+

(~ 1yt
Then, the quotient space R™/ (Z",0) is equipped with the integral affine structure induced from that of
R™. For n = 2, the quotient space is topologically a Klein bottle.
Example 2.6. Let n > 2 and Ay,... A\, 1 € Z. For v =4(v1,...,7),7 =41, ...,7,) € Z"™ define the
product yo v’ € Z™ by
1 )\1 Tn
1 A

yor = v 4.
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Z™ with product o is a group (Z", o), which is non abelian for n > 3. (Z",0) acts on R" by

1 )\1 Tn
1 A

pry () = T +7.
1 )\n—l
1

Then, the quotient space R™/(Z™,0) is equipped with the integral affine structure induced from that
of R™. In the case where n = 2 and Ay > 0, it coincides with the one given in Example 2.3 (2) with
a=b=1.

10 0 -1 ) .
Example 2.7. Let Z/47Z = < + 0 1 , =+ 1 0 act on (R*)™ ~\ {0} naturally. Then, the quotient

space is a non-compact manifold and equipped with the integral affine structure induced from that of
(R?)™ ~ {0}

As we can guess from above examples, every integral affine manifold is obtained from a group action.
Let B be an n-dimensional connected integral affine manifold, p: B — B the universal covering of B.
It is clear that B is also equipped with the integral affine structure so that p is an integral affine map.
We set I' := m1(B). T acts on B from the right as a deck transformation. For each v € I" we denote
by o, the inverse of the deck transformation corresponding to . Then, o: v+ o, defines a left action

o € Hom (F,Aut(g)).
We assume that all the actions considered in this paper are left actions unless otherwise stated.
The following proposition is well known in affine geometry.

Proposition 2.8. There exists an integral affine immersion dev: B R" and a homomorphism p: I' —
GL,(Z)xR"™ such that the image of dev is an open set of R™ and dev is equivariant with respect to o and
p. Such an integral affine immersion is unique up to the composition of an integral affine transformation
on R™.

See [15, p.641] for a proof. We will prove a version of this proposition (Proposition 2.22) when B is
equipped with a Lagrangian fibration on it in Section 2.

Proposition 2.9. Let B, p: B — B, dev: B — R™, and p: T' = GL,(Z) x R™ be as in Proposition 2.8.
Suppose that B is compact and the I'-action p on R™ is properly discontinuous. Then, dev is surjective.

Proof. We denote the image of dev by O. By proposition 2.8, O is an open set in R™. So, it is sufficient
to show that O is closed in R™. Since the I'-action p on R"™ is properly discontinuous, the quotient
space R™/I" becomes a Hausdorff space and the natural projection ¢q: R” — R"/I" is continuous. O is
preserved by the I'-action p on R™ since dev is I'-equivariant. Then, dev induces a continuous surjective
map dev: B = E/F — O/T. Since B is compact, O/ is a compact subset in the Hausdorff space R"/T.
In particular, it is also closed. Hence, O = ¢~ (O/T") is also closed in R™. O

Corollary 2.10. Let B, p: B — B, dev: B — R"™, and p: T = GL,(Z) x R™ be as in Proposition 2.8
and assume that B compact. If the image of p lies in (GL,(Z) N O(n)) x R™ and the subgroup p(I') of
(GL,(Z) N O(n)) x R™ is discrete, then, dev is surjective.

Proof. 1t follows from [37, Theorem 3.1.3]. O

Definition 2.11. The integral affine immersion dev is called a developing map. B is said to be
complete if dev is bijective. B is said to be incomplete if B is not complete.

Example 2.12. All the above examples are complete other than Example 2.7 for n > 2.

Example 2.13. Let B be an n-dimensional compact integral affine manifold B with integral affine atlas
{(Uq; ¢a)} as in Definition 2.1. If on each non-empty overlap U,g, the Jacobi matrix of the coordinate
changing map D (d)a o qﬁgl) lies in GL,(Z) N O(n), then, B has a flat Riemannian metric. Hence, by

Bieberbach’s theorem [5, 6], B is finitely covered by T". In particular, B is complete. For flat Riemannian
manifolds, see [37, Chapter 3].
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2.2. Lagrangian fibrations. In this section let us recall Lagrangian fibrations and explain how integral
affine structures are associated with Lagrangian fibrations. After that let us recall their classification by
Duistermaat. For more details, see [10, 39].

Let (M, w) be a symplectic manifold.

Definition 2.14. A map 7: (M,w) — B from (M, w) to a manifold B is called a Lagrangian fibration if
7 is a fiber bundle whose fiber is a Lagrangian submanifold of (M,w).

Example 2.15. Let 7" = (R/Z)"™ be an n-dimensional torus. R™ x T™ admits a standard symplectic
structure wo = >, dx; A dy;, where (x1,...,2,), (y1,...,Yn) are the coordinates of R™, T™, respectively.
Then, the projection mgp: (R™ x T" wp) — R™ to R™ is a Lagrangian fibration.

The following theorem shows that Example 2.15 is a local model of Lagrangian fibration.

Theorem 2.16 (Arnold-Liouville’s theorem [2]). Let 7: (M,w) — B be a Lagrangian fibration with
compact, path-connected fibers. Then, for each b € B, there exists a chart (U, $) containing b and a
symplectomorphism ¢: (1= (U), w|r-11)) = (6(U) x T™,wq) such that the following diagram commutes

<7T_1<U)’W|W*1(U)) < (¢(U) X Tnywo)

L

U o(U).

In the rest of this paper we assume that every Lagrangian fibration has compact, path-connected
fibers.

Now we investigate automorphisms of the local model. By the direct computation shows the following
lemma. See also [35, Lemma 2.5].

Lemma 2.17. Let p: (R"XT",wp) — (R"XT"™ wp) be a fiber-preserving symplectomorphism of mp: (R™x
T™ wy) — R™ which covers a map ¢: R™ — R™. Then, there exists a matric A € GL,(Z), a constant
c € R", and a map u: R® — T™ with YADu symmetric such that ¢ is written as

p(@,y) = (Az +¢," A7y + u(x))
for any (xz,y) € R™ x T™, where Du is the Jacobi matriz of .
By Theorem 2.16 and Lemma 2.17 we can obtain the following proposition.

Proposition 2.18. Let w: (M,w) — B be a Lagrangian fibration. Then, there exists an atlas {(Uy, o) taca
of B and for each o € A there exists a symplectomorphism ¢, (w_l(Ua), w\ﬂa(Ua)) = (o (Us) X T™, wp)
such that the following diagram commutes

(Tr_l(Uoz)aW‘Tr*I(Ua)) S ((ba(Ua) X Tn70~)0)

Moreover, on each non-empty overlap Uy,g := U, N Ug there exist locally constant maps Aqg: Uag —
GL,(Z), cap: Uag — R™, and a map uap: Uag — T™ with *AazD (uaﬂ o ¢El> symmetric such that the

overlap map is written as
(2.1 #a0 05 (@) = (Aap + can, " A by + tas 0 65" (@))

for any (z,y) € ¢pg(Usg) X T".

Proposition 2.18 implies that the base manifold of a Lagrangian fibration has an integral affine struc-
ture. Conversely, suppose that a manifold B admits an integral affine structure and let {(Uy, o) taca
be an integral affine atlas of B. Then, we can construct a Lagrangian fibration on B in the following
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way. For each a € A let ¢,: T* By, — ¢a(Us) x R™ be the local trivialization of the cotangent bun-
dle T*B induced from (Us, o). On each nonempty overlap U,g, suppose that ¢, o qﬁgl is written by

O © Qﬁgl(x) = A,px + cqp as in Definition 2.1. Then, the overlap map is written as

(2.2) a0 (@)™ (2,9) = (Aap + cap, "AZjY)-

Since Aqp lies in GL,(Z), (2.2) preserves the integer lattice Z™ of the fiber R™, hence, induces the fiber-
preserving symplectomorphism from my: (¢g(Uag) X T™,wo) = ¢5(Uag) to mo: (¢a(Uag) X T™, wo) —
¢a(Uqp). Then, the Lagrangian fibrations {mo: (¢a(Us) X T, wo) = ¢o(Ua)}aca are patched together
by the symplectomorphisms to form a Lagrangian fibration 7 : (T* Br,wr+p,) — B, namely

(T*Br,wr+p,) = | (¢a(Ua) x ", wp) / ~
acA
and
mr([Ta,Yal) = b5 (2a)
for (za,Ya) € ¢a(Us) x T™. This construction does not depend on the choice of equivalent integral affine
structures and depends only on the integral affine structure on B. We call ny: (T*Br,wr+p,) — B the
canonical model.
We summarize the above argument to the following proposition.

Proposition 2.19. Let B be a manifold. B is a base space of a Lagrangian fibration if and only if B
admits an integral affine structure.

Let us give a classification theorem of Lagrangian fibrations in the required form in this paper. Let
m: (M,w) — B be a Lagrangian fibration. Then, B has an integral affine structure by Proposition 2.19.
We take and fix an integral affine atlas {(U,, ¢« ) }aca on B and let 7p: (T* By, wr+p,.) — B be the canon-
ical model associated with the integral affine structure on B. On each U,, let ¢, : (7r’1 (Ua), w|w_1(Ua)) —
(¢a(Ua) x T™, wo) be a local trivialization of 7: (M,w) — B as in Proposition 2.18, and ¢, : (77" (Ua), wr+p,) —
(0o (Uq) X T™, wp) be the local trivialization of np: (T Br, wr~p, ) — B naturally induced from (Uy, ¢q)
as explained above.! Then their composition

ho = B0 0 gt (T Ul rwa) = (77" (Ua) o157

gives a local identification between them.
On each U, NUg, suppose that ¢, o apgl is written as in (2.1). Then, h, o h;l can be written as

— - -1 —
ha o B3 (1) = 3o (Aap® + Cap " Ashy + tias (n()))
where ¢4(p) = (#,y). uqp induces the local section tiqs of wp: (T* By, wr+p,) — B on Usg by

Uap(b) := [Pa(b), uas(b)]
for b € Uyp. It is easy to see that t,p satisfies ﬁszT*BT = 0. A section with this condition is said to be
Lagrangian.

Let . be the sheaf of germs of Lagrangian section of np: (I Bp,wr«p,.) — B. % is the sheaf
of Abelian groups since the fiber of wr: (T*Br,wr~p,) — B has the structure of an Abelian group by
construction. By definition {uas} forms a Cech one-cocycle on B with coefficients in .. The cohomology
class determined by {@as} does not depend on the choice of a specific integral affine structure and depends
only on 7: (M,w) — B. We denote the cohomology class by u € H*(B;.%). u is called the Chern class
of m: (M,w) — B in [10].

Lagrangian fibrations on the same integral affine manifold are classified with the Chern classes.

Theorem 2.20 ([10]). For two Lagrangian fibrations 7 : (M1,w1) — B and my:

(M3, w2) — B on the same integral affine manifold B, there exists a fiber-preserving symplectomorphism
between them which covers the identity if and only if their Chern classes u1 and uy agree with each other.
Moreover, if an integral affine manifold B and the cohomology class u € H'(B;.%) are given, then, there
exists a Lagrangian fibration w: (M,w) — B that realizes them.

IHere we use the same notation as the local trivialization of T* B because we have no confusion.
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Remark 2.21. By the construction of u, there exists a fiber-preserving symplectomorphism between
m: (M,w) — B and np: (T*Br,wpr+p,) — B that covers the identity of B if and only if u vanishes.
Since wp: (T*Br,wr+p.) — B has the zero section which is Lagrangian, u is the obstruction class in
order that 7: (M,w) — B posses a Lagrangian section. In particular, any Lagrangian fibration with
Lagrangian section is identified with the canonical model.

2.3. Lagrangian fibrations with complete bases. Let 7: (M,w) — B be a Lagrangian fibration
with Nn—dimensi~ona1 connected base manifold B, p: B~ — B the universal covering of B. We denote by
7: (M,w) — B the pullback of m: (M,w) — B to B. Let I' be the fundamental group of B and ¢ €

Hom (F, Aut(é)) the action of I' defined as the inverse of the deck transformation as in Proposition 2.8.

By definition, M admits a natural lift of o which preserves w. The I'-action on (M ,w) is denoted by o. By
Proposition 2.8 we have a developing map dev: B — R"™ and the homomorphism p: I' = GL,,(Z) x R™.
We denote the image of dev by O. Note that the I'-action p on R™ preserves O since dev is ['-equivariant.

Proposition 2.22. There exists a Lagrangian fibration ©': (M',w') — O, a fiber-preserving symplectic
immersion dev: (M,w) — (M',w’) which covers dev, and a lift p of the I'-action p on O to (M',w’) such
that dev is I'-equivariant with respect to o and p.

Proof. By Proposition 2.19 B admits an integral affine structure determined by 7, and it also induces the
integral affine structure on B. Let {(Us, ¢/)} be the integral affine atlas of B and {(7~1(U,), Wlz-1(U.), o)}
the local trivializations of 7: (M ,0) — B as in Proposition 2.18 so that on each non-empty over-
lap Uap, there exist locally constant maps Aag: Usg — GLn(Z) and c,5: Usg — R”, and a map
ugﬁz Uap — T™ with A,pD (u’aﬂ o (d)g)*l) symmetric such that ¢ o (apg)’l is written as in (2.1).
Then, A,p’s form a Cech one-cocycle {A,5} € C'({U,};GL,(Z)) and defines a cohomology class
[{Aas}] € HY(B;GL,(Z)). It is well known that H'(B;GLy(Z)) is identified with the moduli space
of homomorphisms from 7 (B) to GL,(Z). Since m(B) is trivial, there exists a Cech zero-cocycle
{A,} € C°({U,}; GL,(Z)) such that A,p = AQAE1 on each U,g. By using the cocycle we modify the
local trivializations {(7~(Ua),w|7-1(v.), ¥)} and the integral affine atlas {(Uy, ¢[)} by replacing ¢/,
$a by
Pa(P) = (AT" x "Aa) 0 90(P), ¢4 = AT

-1

for each v € A, respectively. Then, on each Uyg, ¢, © (ap%) is written as

QD; © (30/[3)71(%3 y) = (E+ CaBr Y + Uap © (qb/ﬁ)il(%)) )
where we set cop = A;lc’aﬁ and uqg = tAau:w. Then, c,p’s form a Cech one-cocycle {cap} €
C ({U,}; R™) and defines a cohomology class [{cas}] € H'(B;R™). By the universal coefficients theorem,
H'(B;R") is identified with Hom(H,(B;Z),R™), which is trivial. So there exists a Cech zero-cocycle

{ca} € C°({U,};R™) such that c,s = co — cg on each U,p. By using the cocycle, we again modify
{F 1 (Ua), wlz-1(v.), ¢a)} and {(Ua, ¢5,)} by replacing ¢, ¢, by

¢a(p) == Spla(ﬁ) —(cas0), ¢a(b) = ¢:x(b) = Cas
respectively for each o € A. Then, on each U,g, ¢, coincides with ¢g and ¢, o gogl is written as
Pa © 90,(;1(%7 y) = (Ea Y+ Uag © ngl(f))

Now we define the map dev: B 5 R" by

dev(b) := ¢y (b)

if b lies in U,. Tt is well defined, and by construction, it is an integral affine immersion whose image is
Ua€A¢a(Ua)~ (M/,OJ/) is defined by

(M, 0") = [ (@a(Ua) x T" wp) / ~,

acA
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where (2Zq,%a) € 0a(Ua) x T™ and (zg,y3) € ¢g(Ug) x T™ are in the relation (zq,ya) ~ (z8,y3) if
they satisfy (Ta,Ya) = Pa © @Bl(:cﬂ,yﬁ), and 7': (M’,w') — O is defined to be the first projection.

dev: (M,o) — (M’,w') is defined by
dev(p) := [¢a(P)]
if p lies in 71 (U,).
Without loss of generality, we can assume that each U, is connected,and for each v € ' and o € A
there uniquely exists o’ € A such that the deck transformation ¢, maps U, onto U,s. Then, its lift &,

to (M, &) maps 7 2(U,) to @ 1(Uy ). By Lemma 2.17, ¢ 0 0 0 ¢ can be written as
Gar 00 0 931 (T) = AL OF + 2@

for some Aﬁ’;/a € GL,(2), cf;/“ € R™. Since ¢, coincides with ¢z on each overlap Uag, ¢or © ¢y 0 ¢ () =
A,‘;‘/aer CS’Y‘,“ also agrees with ¢g o0 ¢ 0 p5(Z) = A5/55+ cﬁlﬂ on the overlap ¢o(Uag) = ¢3(Uag). This

’
oo

implies A?Y‘,a’s and ¢ *’s do not depend on o and depends only on 7. In fact, for each v € I' and o € A,

we set
/ ’ ! ’
R Qo0 . paa a0 o'
Agi={a € A| A" = AT % and ;""" = ¢ “}.

Ag contains all 8 € A with U,,p # 0. In particular, Ay is not empty since ap € Ag. Then, we have

(UDLGA[)UQ) U (UaeA\Aan) = §7 (UOzEAan) N (UQGA\AOUa) = (Z)

If the compliment A \ Aq is not empty, this contradicts to the connectedness of B. So we denote them
by A, and c,, respectively. Thus, we define the homomorphism p : I' = GL,(Z) x R™ by

Py = (Ayscy).
I' acts on R™ by p,(z) = A,z + ¢, for v € I" and = € R™. The lift p, of p, to (M’,w’) is defined by

Py ([TarYal) = [Par 05y 0 05 (Ta Ya)]

if (Za, Yo ) lies in ¢4 (U, ) xT™. By construction, pis a lift of p, and p and p satisfy agf(a, (p)) = ﬁ,y(cfigz(fﬁ)
and dev(o, (b)) = py(dev(b)), respectively. O

Remark 2.23. (1) By construction, the n-dimensional torus T acts freely on M’ preserving '’ from
the right so that #’: M’ — O is a principal T"-bundle.

(2) When 7: (M,w) — B admits a Lagrangian section, the restriction of mg: (R™ x T", wg) — R" to
O can be taken as n’: (M',w’) — O. In fact, in this case, since 7: (M,w) — B is identified with the
canonical model, we can take a system of local trivializations {(7~(Uy), o)} with uas = 0 on each
overlaps U,p. By applying the construction of #': (M’,w’) — O given in the proof of Proposition 2.22
to such a {(771(Uy), ¥a)} We can show the claim.

Suppose that (M,w) is prequantizable and let (L, V*) — (M,w) be a prequantum line bundle. We
denote by (Z,VZ) — (M, @) the pullback of (L,V%) — (M,w) to (M,(IJ). By definition, L admits a
natural lift of the I'-action ¢ on (M ,w) which preserves VL. The T-action on (L, vi ) is denoted by o.
Then, we have the following prequantum version of Proposition 2.22.

Proposition 2.24. There exists a prequantum line bundle (L’,VL/) — (M',w), a bundle immersion
dev: (L, VE) — (L', VL) which covers dev, and a lift j of the -action p on (M’ ) to (L', V') such

that dev is equivariant with respect to o and p.

Proof. Let {(Ua; ¢a)} and {(71(Ua),w|7-1(v.)s Pa)} be the integral affine atlas of B and the local
trivializations of 7: (M W) — B obtained in the proof of Proposition 2.22, respectively. Then, for each
o € A there exists a prequantum line bundle (¢a (Ua) x T" x C, VEa) = (¢a(Us) X T™, wp) and a bundle
isomorphism o : (L, VE)|z-117,) = (#a(Ua) x T™ x C, VEe) which covers ¢. Now we define (L', vt
by

(@, V) i= I (#a(Ua) x T" x €, V5 ) / ~,

a€cA
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where (T, Yas 2a) € ¢a(Ua) X T™ x C and (zg,ys, 25) € qﬁg(Ug) x T™x C are in the relation (24, Yo, Za) ~
(3, yp, 2p) if they satisfy (zg,ys, 23) = 1a © % (8, Y8, 28)- dev: (L,VL) (L',VL ) is defined by

dev(?) = [tha ()]
if ¥ lies in (L, VE) |z-1(0,).
Suppose that for each v € T" the deck transformatlon o, maps each U, to some U, as before. Then,
07 maps L~—1( ) to L~ 7-1(v,,)- Then, the I'-action p is defined by

py(xavya7za> = ["/}a’ 0&7 0’(/107 (xa,ya,za)]
f(xavyaaza) lies in (Zsa( ) x T™ x C. O

In the case where B is complete, we obtain the following corollary.

Corollary 2.25. Let w: (M,w) — B be a Lagrangian fibration with connected n-dimensional base B
and (L,VL) — (M,w) a prequantum line bundle on (M,w). Let p: B — B be the universal cover-
ing of B. Let us denote by (M w) the pullback of (M,w) to B and denote by (L VL) the pullback of
(L,VFE) to (M w). If B is complete, there exist an integral affine isomorphism dev: Bi R™, a fiber-
preserving symplectomorphism dev: (J,\z@) = (R™ x T™, wy), and a bundle isomorphism dev: (E, Vz) —
(R” xT" x C,d — 2n/—1x - dy) such that dev covers dev and dev covers cﬁv, respectively. Here x - dy
denotes Y.!_, x;dy;. Moreover, let o be the I-action on B defined as the inverse of deck transforma-
tions, o the natural lift of o to (M, @), and & the natural lift of & to (E,VZ), respectively. Then, there
exist an integral affine I'-action p: T' — GLn(Z) x R™ on R, its lifts p and p to (R" x T",wp) and
(R" xT" x C,d—2myv/—1zx - dy), respectively such that dev, (Te;, and dev are I'-equivariant.

Proof. By construction of dev given in the proof of Proposition 2.22, if dev is bijective, so is dev. The
argument in [10, p.696] and Theorem 2.20 also show that mp: (R™ X T™ wg) — R™ is the unique La-
grangian fibration on R™ up to fiber-preserving symplectomorphism covering the identity. In particular,
7' (M',w') — R™ is identified with 7o: (R™ x T™, wg) — R™.

Concerning the prequantum line bundle, it is sufficient to show that (R™ x T™, wp) has a unique pre-
quantum line bundle (R" x T x C,d —2ny/—1z - dy) up to bundle isomorphism. Since wy is exact, any
prequantum line bundle on (R™ x T, wy) is trivial as a complex line bundle. Let (R” xT" x C,d— 27r\/—71a)
be a prequantum line bundle on (R™ x T™, wg) with connection d — 2my/—1a. Then, a — z - dy defines
a de Rham cohomology class in H! (R™ x T";R). Since H! (R™ x T™;R) is isomorphic to H(T";R), in
terms of the generators dy;’s of H'(T™;R), a — x - dy can be described as

oa—x-dy= ZTidyi—&—df
i=1
for some 71,...,7, € Rand f € C°(R" xT™). Now we define the bundle isomorphism ¢: R" xT" x C —
R™ x T™ x C by
blw,y,2) = (24 (1), g, e 27702
Then, ¢ satisfies ¢* (d — 2m/—1z - dy) = d — 27/ —1a. O

Remark 2.26. By Corollary 2.25, any Lagrangian fibration 7: (M,w) — B on a connected, complete
B with prequantum line bundle (L, V¥*) — (M, w) is obtained as the quotient space of the I'-action on
7o: (R™ x T™, wy) — R™ with prequantum line bundle (R" x T" x C,d — 2rwv/—1z - dy) — (R™ x T™, wy).
By definition, the prequantum line bundle (L, V) — (M, w) is equipped with a Hermitian metric (-, -),
compatible with VZ.2 The pull-back of (-, ), to (R" x T" x C,d — 2m/—1z - dy) — (R™ x T",wy)
coincides with the one induced from the standard Hermitian inner product on C up to constant. In
fact, it is easy to see that, up to constant, it is the unique Hermitian metric on (R™ x T™ x C,d —
21/ =1z - dy) — (R™ x T",wg) compatible with d — 2mv/—1z - dy. In the rest of this paper, we assume

2A Hermitian metric (-, ), on L is compatible with VL if it satisfies d ((31, SQ)L) = <VL51, 82>L + <sl, VL52>L for all
s1,s2 € I'(L).
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that (R™ x T™ x C,d — 27nv/—1z - dy) — (R™ x T™, wy) is always equipped with the Hermitian metric
though we do not specify it.

2.4. The lifting problem of the I'-action to the prequantum line bundle. In the rest of this
section, we investigate the condition for the I'-action on mg: (R™ x T wg) — R™ to have a lift to
(R* x T™ x C, d — 27/—12 - dy) — (R™ x T™, wp) in detail. Let p: I' — GL,(Z) x R" be a I'-action on
R™ and p its lift to (R™ x T™,wp). By Lemma 2.17, for each v € T, there exist A, € GL,(Z), ¢, € R",
and a map u,: R" — T™ with A, Du, symmetric such that p., and p, can be described as follows

(2.3) py(2) = Ayx +cyy py(2,y) = (A'yx + ¢y, tA;ly + u’y(x)) :

Note that since (2.3) is a I'-action, A,, ¢y, and u., satisfy the following conditions

A71’Y2 = A’YlA’Yz
(2'4) Cyivyz = A’Yl Cyy + Cyy

Uy (T) = tA%luw () + Uy, (py,(2))
for 71, v2 €I', and « € R™. Let uy = t(ﬂ}y,...,ﬂ;‘): R™ — R™ be a lift of u,. For w, and ¢ =1,...,n, we
put

z; T T
0 0 0

and

F;(x) = (tA7 /:i ﬁv(x)da@)i = i (tA'Y)ij /Oxi ﬂjv(ac)dacZ

j=1
Let N € N be a positive integer. The I'-action p also preserves Nwg. Then, we can show the following
lemma.

Lemma 2.27. (1) For each~y € T, there exists a bundle automorphism Fﬁv of (R" xT" xC,d—2my/—1Nzx - dy)

which covers p., and preserves the connection if and only if c, lies in %Z". Moreover, in this case, p.,
can be described as follows

b

(25) ’;57(1', v, Z) _ (ﬁ’y(xa y)7 ngGQW\/le{%(I)Jrc”'(tA;ly)}Z)

where g is an arbitrary element in U(1) and
(2.6) Gy(x) = py () - Uy (2) — €y - Uy (0) = D FL(0,..., 0,24, .., 2p).
i=1

The formula (2.5) does not depend on the choice of ..
(2) Under the condition given in (1), the map p: T' — Aut ((R" x T" x C,d — 27v/—=1Nz - dy)) defined
by (2.5) is a homomorphism if and only if the map g: I' 3 v — g, € U(1) is a homomorphism and for
all v1,v2 € I' and x € R™, the following condition holds

{_C’Yl * Uy (0) + Coyy - tA;llu”rz (O) + Py (C’Yz) * Uy (p"/2 (O))}

n (Pya ()i
- Z (tA% /0 Uy, (O> oy 0,75, (p“/z (x))iJrlv AR (P"/z (x))n) dTi)
i=1

n T,
£ (1,
i=1

i

1
Z.

Uy, (pw(o,...07T¢,$¢+1,...,$n))d’fi> S N

Proof. For each v € T' we put
5101, = (Bolyy), B VT )

3Tn the rest of this paper, we often use the notation u~ instead of u-.
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where g g,y and ¢ g,Y are real valued functions on R™ x T™. By the direct computation, it is easy to see that
p7 preserves d — 2w/ —1Nzx - dy if and only if g gw is constant and g gv satisfy the following conditions

(2.7) 6751‘,9’}/ = N(Ayz +¢y) - O, Uy

(2.8) ayﬁi = N(A';lcv)i

for i =1,...,n. From (2.7) we obtain

(29)  Fy) =T w1, 0,301 y) + N oy @) Ty @5~ Fi@) )

Using (2.9) recursively, we obtain

(2.10) §fy(:c,y) = ﬁﬁ(O,y) +N {pv(a:) Uy () — ¢y - Uy (0) — ZF; (0,...,0,2,... ,xn)} .
i=1

(2.10) does not depend on the order of applying (2.9) to z;’s. In fact, by applying (2.9) first to z;, then
next to z;, we obtain

1 1 T;
NI @) =y B s 0 ) + [ (At ) O e)da
0
_ 1y
_Ng,y(xl,...,LL‘Z‘,1707Z‘1‘+1,...7.’L‘j,170,£L’j+17...,{En,y)

- / | (Ayx + ¢y) - O, uqy (z)d;
0

So, in order to see this, it is sufficient to show

| et e)-0nu (),
0

. + / (Ayx + cy) - Op,uy(x)d;.

Jr/ (Ayz + cy) - O uy(z)d;
:Ei:() 0
(2.11)

—/ (Ayz + ¢y) - Op,uy(z)da; . / (Ayx + cy) - Op;uqy(z)dy
0 )= 0

vanishes. Since *A,Du., is symmetric, we have (*A,0;,u,(2)); = (*A,Duy(v))ji = ("AyDuy(2))i; =
(waaij uﬂ,(x))l for all 3,5 = 1,...,n. By using this, we can show

(2.11):/ "0, (/ 1(A,yz+c,y)~3mu,y(a:)dxi) dxjf/ 0., </J(A.yx+c7)~arju,y(:r)dxj> dz,
0 0 0 0

J / 1 (0s, (Ay +¢3)) - O, us (2)dida; +/ J / 1 (Ay + ¢y) - O, O un () diidi

/ / (Ayz +cy)) - Oz uy(2)drjdr; — // ' (Ayz + cy) - Op, 0 ur (7)dz jd;

= A /0 (tAfyain'y(l'))j dz;dz; — /0 /0 (tA’Yaﬂfju'v(x))i dxjdz;
=0

By the same way, from (2.8) we obtain
(2.12) J5(x.y) = g5 (2,0) + Ney - P ATy,
Thus, from (2.10) and (2.12) we have

(2.13) §f/(ﬂc,y) = §§(070)+N {pv(x) Uy (x) — ey - Uy (0) — ZF};(O, 0,2, ) ey tA;ly} .

Since y € T™, ’g§ should satisfies 2™V =185 (0:e0) = 27V=185(0.0) fop 1] § = 1,...,n and v € I'. This holds
if and only if A;lNcA, e €Zforalli=1,...,nand v €I'. Since A, € GL,(Z) this is equivalent to the
condition Ncy € Z™. In this case, we put g := 2735 (0.0)+v=15,(0,0)) " Gipce 7;77 preserves the Hermitian
metric on (R" x T™ x C,d — 2my/—1z - dy) — (R™ x T™,wy), g+ lies in U(1). The formula (2.5) does not
depend on the choice of u, since the difference of two lifts of w., lies in Z™. This proves (1).
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The map p defined in (2) is a homomorphism if and only if §§ (z,v) fﬁf{ (0,0) defined by (2.13) satisfies
the cocycle condition. By a direct computation using (2.4), it is equivalent to the ones given in (2). O

Example 2.28. Let B be the n-dimensional integral affine torus given in Example 2.3 (1) for a linear
basis v1,...,v, € R™ The product B x T™ admits a symplectic structure w so that the trivial torus
bundle 7: (B x T™,w) — B becomes a Lagrangian fibration. This is obtained as the quotient space of
the action of T := Z™ on m: (R™ x T™,wp) — R™ which is defined by
py(z,y) = (2 4+ Cv, y)

for v € T and (x,y) € R” xT™, where C' = (vy -+ v,) € GL,(R). Let N € N be a positive number. The
I-action p on (R™ x T™, Nwy) has a lift to the prequantum line bundle (R" xT" x C,d—2mv/—1Nz-dy) —
(R™ x T™, Nwy) if and only if all v;’s lie in %Z”, and in this case p is given by

P (,9,2) = (P (2,y), gye27V IV 1)

for y €I and (z,y,2) € R" x T™ x C, where g: I' 3 v — g, € U(1) is an arbitrary homomorphism.
Example 2.29 (The Kodaira-Thurston manifold). Let I be Z2. Consider the I'-action on 7p: (R? x T2, wp) —
R? which is defined by

py(@) =T, Py(@) = (9 @),y + 1y ()
for v € T and (z,y) € R? x T2, where u,(z) = (0, v122). The Lagrangian fibration given by the quotient
of this action is denoted by 7: (M,w) — B. M was first observed by Kodaira in [24] and Thurston [36]
pointed out in [36] that (M,w) does not admits any Kéhler structure. M is nowadays called the Kodaira-
Thurston manifold. Let N € N be a positive number. The I'-action p on (R2 x T2, Nwo) has a lift to the
prequantum line bundle (R? x T? x C,d — 2r/=1Nz - dy) — (R? x T? Nuwy) if and only if N is even,
and in this case the lift p is given by

P (@,y,2) = (ﬁv(%y),gwe%mN{%71“3+7”2“2+7'y}z)

for vy € ' and (z,y,2) € R* x T™ x C, where g: I 3 v — g, € U(1) is an arbitrary homomorphism.

Example 2.30. Let B be the n-dimensional integral affine torus given in Example 2.3 (2) for a linear basis
v1,...,0, € R™. When all v;’s are integer vectors, i.e., v1,...,v, € Z", we can generalize Example 2.28
and Example 2.29 in the following way. Namely, for ¢,5 = 1,...,n, let u;; be an integer vector with
u;j = uj;. For each v € I' := Z", define the map u,: R" — 1" by

Uy -7y -0 Uln " Y

and define the action of T on mp: (R™ x T™ wy) — R™ by
(2.14) py(@,y) = (24 Cv, y+uy(2))

for vy € T" and (z,y) € R® x T™, where C = (v; --- v,). Then, the quotient 7: (M,w) — B obtained
as the I'-action (2.14) is a Lagrangian fibration on B. Let N € N be a positive number. The I'-action
pon (R™ x T" Nwg) has a lift to the prequantum line bundle (R™ x T" x C,d — 2mv/—1Nx - dy) —
(R™ x T™, Nwy) if and only if %vi -Ujv; € Z for all 4,5 = 1,...,n, where

(ua); -+ (uan);
Uj; == . .
(un1)j -+ (unn);
And in this case the lift p is given by

F’Y (;)37 Y, z) = (ﬁ,y(;a y)7 97627T\/_71N[%{p7 (@) uy (Pw(I))_PW(0)'UW(PW(O))}+PW(0)'?!]Z)

for vy € T and (z,y,2) € R" x T™ x C, where g: I 3 v — g, € U(1) is an arbitrary homomorphism.
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Example 2.31. Let n > 2 and Ay,...A,—1 € Z. Let T" be the group (Z", o) given in Example 2.6. For
each v €I, let A, be the matrix

1 )\1 In
1 A
A, =
1 )\nfl
1
and uy: R® — T™ the map defined by
0
! 0
TnTn

Consider the T-action p on m: (R™ x T™ w) — R™ which is defined by
(2.15) py(2,y) = (Ayz 4+, AT y 4+ uy ()

for y € I" and (z,y) € R” x T™, where C' = (vy --- v,). Then, the quotient 7: (M,w) — B obtained as
the T-action (2.15) is a Lagrangian fibration on the integral affine manifold B obtained in Example 2.6.
Let N € N be a positive number. The T'-action p on (R™ x T™, Nwy) has a lift to the prequantum line
bundle (R" x T" x C,d — 2mv/—1Nx - dy) — (R™ x T™, Nwy) if and only if N is even, and in this case
the lift p is given by

70,0, = (B (0.9), go2 TV Gnsa (i (470) )

for vy € T and (z,y,2) € R* x T™ x C, where g: I' 3 v — g, € U(1) is an arbitrary homomorphism.

3. DEGREE-ZERO HARMONIC SPINORS AND INTEGRABILITY OF ALMOST COMPLEX STRUCTURES

Let N € N be a positive integer. For a compatible almost complex structure J on the total space of
the Lagrangian fibration mo: (R™ x T™, Nwy) — R™, let D be the associated Spin® Dirac operator with
coefficients in the prequantum line bundle (R" x T x C,d — 2rv/—1Nz - dy) — (R™ x T™, Nw). An
element in the kernel ker D of D is called a harmonic spinor. In this section, for J which is invariant
along the fiber, we investigate the existence condition of non-trivial degree-zero harmonic spinors, i.e.,
non-trivial sections which lie in ker D. In the rest of this paper, we put M :=R" x T" and (Z, VL) =

(R* x T™ x C, d — 2m/—1x - dy) for simplicity.

3.1. Bohr-Sommerfeld points. Let 7w: (M,w) — B be a Lagrangian fibration with prequantum line
bundle (L, VE) — (M,w). We recall the definition of Bohr-Sommerfeld points.

Definition 3.1. A point b € B is said to be Bohr-Sommerfeld if (L, VL) |=—1(») admits a non-trivial
covariant constant section. We denote the set of Bohr-Sommerfeld points by Bpg.

— ~ -\ ON
Let us detect Bohr-Sommerfeld points for 7 : (M, Nwg) — R™ with prequantum line bundle (L7 vE ) —

(M, Nuwy).
Lemma 3.2. z € R" is a Bohr-Sommerfeld if and only if x lies in %Z", i.e., Rpg = %Z". Moreover,

~ _\O®N
for a Bohr-Sommerfeld point x € %Z”, a covariant constant section s of (L, VL) is of the
o ' (@)

form s(y) = 3(0)62”‘/?“\/”"9.

~ ®N
Proof. For a fixed x € R”, (L, VL) — Ty !(x) admits a non-trivial covariant constant section

o ()
s if and only if s satisfies

0= ngNs =0y, 5 — 2mvV—1Nx;s
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for i =1,...,n. Hence, s should be of the form s(y) = s(0)e2™V=IN=¥_ Since s is global, 5(0) = s(e;) =
5(0)e*™V=IN=i This implies Na; € Z for i = 1,...,n. O

Remark 3.3. Suppose that m: (M , Nwy) — R™ is equipped with an action of a group I" which preserves
~ ~ -\ ®N
all the data, and its lift p to (L, VL> is given by (2.5). Then, by Lemma 2.27 (1), the I-action p

on R™ preserves R%5 5. When the I'-action p on R" is properly discontinuous and free, let /' C R™ be a
fundamental domain of the I'-action p on R™. Then, the map

(3.1) T x (Fm ;Z”> > (% %) —+ Np, (%) c 7"

can be defined and is bijective. In particular, let 7: (M, Nw) — B be a Lagrangian fibration with
prequantum line bundle (L, VF)®N — (M, Nw) obtained as the quotient space of the I'-action. Then,
F N +Z" is identified with Bps.

3.2. Almost complex structures. Let S,, be the Siegel upper half space, namely, the space of n x n
symmetric complex matrices whose imaginary parts are positive definite

S ={Z=X+V-1Y € M,,(C) | X,Y € M,,(R),'Z = Z,and Y is positive definite}.

It is well known that S,, is identified with the space of compatible complex structures on the 2n-

dimensional standard symplectic vector space.
n

For a tangent vector u = > .| {(uy)iOz, + (uy)i0y,} € T(Ly)]/\\i/ at a point (z,y) € M we use the
following notation

where

aﬂ?:(6$1a'~-va??n)v ay:(ayu---aayn)a Uy = sy Uy =

(ua:)n (uy)n

In terms of the notations of tangent vectors u = (95, dy) <Zz> and v = (0, Oy) (Zz> € Tz,yyM, wo can
y

be described by
0 I\ (v,
wo(u,v) = (t“xvtuy) (_I O> <vy> '

Since the tangent bundle T M is trivial, the space of C*° maps from M to S, is identified with the
space of compatible almost complex structures on (M, wp). For Z = X +/—-1Y € C* (M, Sn), the

corresponding almost complex structure Jz is given as follows

Xy-! -y -Xy-lx Uz
(32) Jzu = (azvay) ( y-1 -Y'X >($ ) ( >

Uy
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Uy
Uy

for u = (0, 0y) (
described by

) € T(m)y)]T/f 4 Then, the Riemannian metric g determined by wy and .J; can be

g(u,v) : = wo(u, Jv)

(a0 1 XY~! Y - XY X\ (.
(3.3) = Wla )\ o)\ vt —Yy-lx vy
= () y-! —Y-lx Vs
W)\ _xy-t y+xv-ix ) \v, )

Let J = Jz be the almost complex structure on (]T/L wo) corresponding to a given Z = X ++/—1Y €
c> <M7 Sn). Then, (—J0y, 0y) = (—=J0y,,...,—J0y,, 04, ..., 0y,) is also a basis of the tangent space

of (M, wo). With this basis, each tangent vector u € T(xyy)]/\\/f can be written as

w= (- 0,) + (w0} = (-7, 0,) (7).

uy
Then, we have the following transition formula between (95, 9,) and (—J9y, d,)

e () () () ()

By this formula, we obtain the following lemma.

Lemma 3.4. In terms of this notation, the Riemannian metric g defined by (3.3) can be described by

y-! -Y-lX 0 y-! P, 0
— t t
g(u,v) = (0, ug) (—XYl v +XY1X> ('UH> + (0, ‘uy) (—XYl Y—i—XYlX) (M/) :

Suppose that a group I' acts on mg: (]\Aj7 wo) — R™ and the I'-actions p on R™ and p on (M, wp) are
written as in (2.3). Then, it is easy to see the following lemma.

Lemma 3.5. The I'-action p on (M, wo) preserves the almost complex structure J = Jz on (]T/f, wo)
corresponding to Z = X ++/—1Y € C* (M, Sn> if and only if the following conditions hold

(3.4) Ay (XY Ny = (XY D5 Ay — (Y + XYle)ﬁV(I}y) (D)
(3.5) A (Y + XY T Xy = (VY XYTIX) AT
(3.6) Duy)e (XY ey + 45V =Y ey = VT X 0 (D)o

Proof. For all v € T and (z,y) € (]Tj, wp), the condition (dp-)
above three equalities together with the following equality
tAzl,

(Duqy)o (Y + XY X)) + AT Y ' X) (o) = (Y ' X) 5 o) 45
But, this can be obtained from (3.4), (3.5), and * (*A,(Du,)z) = "Ay(Duy),. O

@) © J@y) = I, @y © (dDy) () implies

(z,y)

Let m: (M,w) — B be a Lagrangian fibration with connected n-dimensional complete base B and
p: B — B the universal covering of B. By Corollary 2.25, the pullback of m: (M,w) — B to B is
identified with 7o : (M,wp) — R™ and 7: (M,w) — B can be obtained as the quotient of the I' = 1 (B)-
action on 7y (M ,wp) — R™. In particular, for each compatible almost complex structure J on (M,w),
there exists amap Z; = X +v/—1Y € C*® (j\/[/7 Sn) such that the pullback p*J of J to p*(M,w) coincides

with Jz,. Then, we have the following lemma.

4(XY~L Yy - XY~ lX Xy-! v -Xvy-lXx
y-! . y-! -Y-lXx

at (z,y). We will often omit the subscript “(a,y)” for simplicity unless it causes confusion.

) , (XY 1),y etc. are the values of the maps ( ), XY~ ete.
(z,y)
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Lemma 3.6 ([14, Corollary 9.15]). For any Lagrangian fibration w: (M,w) — B, there exists a compatible
almost complex structure J such that the corresponding map Zj does not depend on y1,...,y,. We say
such J to be invariant along the fiber.

Proof. Take a Riemannian metric ¢’ on (M,w). Then, the pullback p*¢’ is 7 (B)-invariant. Moreover,
p*(M,w) admits a free T™-action, and this T"-action together with the 7 (B)-action forms an action of
the semi-direct product 71 (B) x T™ of T™ and 71 (B). By averaging p*¢’ over T", we obtain a Riemannian
metric on p*M invariant under the m (B) x T™-action. It is easy to see that p*w is also 71 (B) x T™-
invariant, so by the standard method using the 71 (B) x T™-invariant Riemannian metric and p*w, we can
obtain a m (B) x T™-invariant compatible almost complex structure on p*(M,w). In particular, since the
almost complex structure is still invariant under 71 (B)-action, it descends to (M,w). This is the required
almost complex structure. O

3.3. The existence condition of non-trivial harmonic spinors of degree-zero. For a map Z =

X++/—-1Y eC™ (M7Sn)7we set

(3.7) Q= (Y+ XY 'X) " Zzy L
Q) has the following properties.

Lemma 3.7. (1) Q=7 ', where Z = X — /=1

(2) Q is symmetric, i.e., 'Q = Q.

Proof. A direct computation shows that QZ = I. This proves (1). (2) follows from (1) since Z is
symmetric. O

Let N € N be a positive integer. Let J = Jz be the compatible almost complex structure on (M , N wo)
corresponding to a given Z = X++/—1Y € C® (M, Sn). Then, the Riemannian metric Ng := Nwq (-, J-)

defines an isomorphism f: T*M =~ TM by 7= Ng(f(r), ) for T € T*M. For i = 1,...,n, let Q; denote
the ith column vector of €, and Re(2; and Im(); be the real and imaginary parts of €2;, respectively.
Then, we can show the following lemma.

Lemma 3.8. Fori=1,...,n,

1 L ReQ
o) = =50 Fldn) = (-70,,0,) (Yo

i
Proof. We prove the latter. The former can be proved by the same way. Put f(dy;) = (—=J0y,0y) G?Z )

v
By definition, for each i,7 =1,...,n, we have

o aemse(cman (). cman 7))

Y} 0
(39) 5 (0,,) = Na ((-7,.0,) (1) - 7,.0) () )
\% J
Since —J0,; is written as

—XYyt! Y+XY1X) (o)
—Jo,, = (9,,0 _ -
Yj ( U) < —Y 1 Y lX ej

by (3.2), the left hand side of (3.8) is (Y_lX)ij. On the other hand, by Lemma 3.4, the right hand side
of (3.8) can be described as NY7, - (Y + XY "' X)e;. This implies Y 7! X = NY (Y4 - - Y2) (Y + XY 1 X).
Since Y is positive definite, so is Y + XY ~1X. In particular, N(Y + XY ~1X) is invertible. By using
tX = X, 'Y =Y together with this fact, we can obtain (Y} ---Y}) = +(Y + XY 'X)"!XY ! By the
same way, from (3.9), we obtain I = N*(Y} - Y?) (Y + XY 71X), ie., (Y- V) = (Y + XY 1X)7L,
Hence, +Q = (Y - Y) + V=1(Y} -+ - Y{1). O
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Define the Hermitian metric on (M, Nwy, Ng, J) by
(3.10) h(u,v) := Ng(u,v) + v—1Ng(u, Jv)
for u,v € T(z’y)M. Let (W, ¢) be the Clifford module bundle associated with (Ng, J), i.e., as a complex
vector bundle, W is defined by
W= A® (TJTJ, J) ®c (E®N) .
W is equipped with the Hermitian metric induced from h and that on Z7 and also equipped with the
Hermitian connection, which is denoted by V", induced from the Levi-Civita connection V¢ of (M , g)
and VL. ¢ is the Clifford multiplication c: TM — End¢(W) defined by
c(u)(r) i =uAT—uLyT
for u € TM and 7 € W, where L, is the contraction with respect to the Hermitian metric A on

(M, Nwo, Ng, J). 1t is well known that W is identified with A*(T*M)%! @¢ (Z®N) as a Clifford module

bundle.
Now let us define the Spin® Dirac operator D: I'(W) — I'(W) by the composition of the following
maps
vW v feidw ~ c
D:T(W)—T(T"MW)——=T(TM W) ——=T(W).
We compute the action of D on a degree zero element in I'(W). We identify a section of L with a complex
valued function on M. By using Lemma 3.8, for a section s of E®N, Ds can be computed as

Ds=co(f®idy)oVWs
=co (f ®idw)(ds — 2mv—1Nx - dys)

e (de) (02,5) + ¢ (f(dyi)) (9,5 — 2r/=1Nw;s))

\/jl n n
N Z Oy, ®c { Oz, s + Z Q5 (ayjs — 2/ —lejs)
i=1 j=1

In particular, the equality Ds = 0 is equivalent to
Oz, S Oy, s — 2m/—1Nwys
N Rt :
0z, S Oy, s — 2rv/—1Nx,s

Suppose that Z does not depend on y1,...,y, as in Lemma 3.6. Then, by substituting a Fourier
expansion s =) .. Gm (x)e?™V =1y of 5 with respect to y;’s into (3.11), (3.11) can be reduced to the

(3.11) 0=

following system of differential equations for a,,’s with variables x1,...,x,
aacl A

(3.12) 0= : + 27V —=1an,(m — Nzx)
Oz, Gm

for all m € Z™.

Lemma 3.9. Let a,, be a solution of (3.12) for some m € Z™. If there exists p € R™ such that a,,(p) = 0.
Then, am(z) =0 for all x € R™.

Proof. First, fix variables zs,..., 2, with ps,...,p,. Then, the first entry of (3.12), i.e., 0 = 9y, am +
21/ —1ay, ((m — Nz)), can be thought of as an ordinary differential equation on 1, and a, (21, p2, . .., Pn)

is its solution with initial condition a,,(p) = 0. On the other hand, the trivial solution also has
the same initial condition. By the uniqueness of the solution of the ordinary differential equation,
am(x1,p2,...,pn) = 0 for any z7. Next, by fixing variables 3, ..., 2, with ps,...,p, and fixing 2

with arbitrary value, a,,(x1,22,ps,...,pn) is a solution of 0 = 0y,am + 27V —1lay, (Q(m — Nz)), with
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initial condition a,,(z1,p2,...,pn) = 0. Then, a,,(x1,x2,p3,...,pn) = 0 for any x1,x5. By repeating the
process for z3,...,x,, we can show that a,,(z) = 0. O

Lemma 3.10. If a,, is a non trivial smooth solution of (3.12) for some m € Z™, then, the condition
(3.13) ((0:,9), (m — Na)), = ((8%{2)9; (m — Nx))l foralli,j=1,...,n, and all z € R"
holds. Conversely, if there exists m € Z™ such that (3.13) holds, then, (3.12) has a unique non trivial

solution up to constant. Moreover, in this case, each solution a,, of (3.12) has the following form

mi_q

(314) () =y (12 €2V Edey G P i),

where amy, (%) can be taken as an arbitrary constant in C and

Gi( ( / Qm — N:Jc)d:cz>.

i

Proof. Since a,, is smooth, a,, satisfies 0,,0;;a,, = 0y, 0r,ay, for all i,j = 1,...,n. By differentiating
(3.12), we have

6xi8$jam = =27v—1la,, { =27V — Zﬂlk my — Nxyg) ZQJI m; — le)+Z(8Iinl) (m; — Nxy) —NjS}
=1 =1
fori,j=1,...,n and z € R". The condltlon (3.13) is obtained from this equation.
Conversely, suppose there exists m € Z™ such that (3.13) holds. By solving the differential equation
appeared as the ith component of (3.12) for i = 1,...,n, we have
m;

(3.15) am (x) = am <$1,.--7$i71,ﬁ

Using (3.15) recursively, we obtain the formula (3.14). By using (3.13), we can show that (3.14) does
not depend on the order of applying (3.15) to z;’s as in the proof of Lemma 2.27. Hence, (3.14) is
well-defined. O

—2m/=1G]
7$i+17°"7xn)e T m(I)'

For each m € Z™ for which the condition (3.13) holds, define the section s,, € I' (E®N) by

(3.16) () v 27T T T (5 7 i ).
By the elliptic regularity of D and Lemma 3.10, we can obtain the following.

Proposition 3.11. Ifs =3 .. A (x)€2™V =Ty € T (E®N) is a non trivial solution of 0 = Ds, then,

the condition (3.13) holds for all m € Z™ with a,, # 0. Conversely, suppose that there exists m € Z"
such that (3.13) holds. Then, the section s,, defined by (3.16) satisfies 0 = Ds,,. In particular, if (3.13)

holds for all m € Z™, then, {sm} is a linear basis of T' (E‘X’N) Nker D.

mezn
The following proposition gives a geometric interpretation of the condition (3.13).

Proposition 3.12. The following conditions are equivalent:

(1) The condition (3.13) holds for all m € Z".

(2) 0z, Qjr = Op, Qg for all i, j,k=1,...,n

(3) VECJ =0, where VL€ is the Levi-Civita connection with respect to g.

Proof. If (3.13) holds for all m € Z", then, by putting m = 0, we have ((0,,Q), T); = ((0, Q)T 91:)z By
substituting this to (3.13), we can see the condition ((9,,9), ) ((67” Q) m)i holds for all m € Z".
In particular, by substituting m = ej, to this condition for each k =1, ..., n, we can obtain (2). (2) = (1)
is trivial.

We show (2) < (3). (2) is equivalent to the following two conditions

-1 —1

(3.17) ((r+xv1x) "o, (XY*l))jk:((Y+XY*1x) O, (XY71))

ik
(3.18) Oo, (V + XYTIX) =0, (V + XY TIX) )
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fori,j,k=1,...,n. Fort=1,...,2n, we set

1 1
Lip - Ligy
F’i = : )
2n 2n
Fi 1 e Fz 2n

where l"fj is the Christoffel symbol. Then, (3) is equivalent to
0=0,J+1;J—JT; (i:l,...,Qn),

where

9, — O, (i=1,...,n)
0y, (i=n+1,...,2n).

It is also equivalent to the following conditions

Opy (XY )i oo 0p (XY )y
(3.19) Xy! : :
Oy (XY 1) oo 0, (XY 1),
O, (V)1 =0, (Y )1 o0 02, (V)1 — 00, (VT s
— (Y + XY 'X) : :
Oy (V)i — 0, (Y )14 Oz, (Y V)i = 00, (Y™ s
Dy (XY 1)1 Dz, (XY 1)1
- : : Xyt
O, (XY 1), Op, (XY 1),
O, (XY 1), e, (XY 1)y,
(3.20) y~! : :
e (XYY, Op, (XY 1),
a:m(y_l)lz aazl(y_l)li 81,” (Y_l)h awl(Y_l)m
-YTX : :
O, (Y i = 0, Y N1e o0 0y (V)i — 02, (Vs
Oy (V)1 =0, YV D1 o0 02, (V)1 = 00, (VT s
= : : Xy
O, (Y Vi = 0, VN1 oo 00y (V)i = 02, (VT s
O, Y71X)in oo 0p, (Y1 X )i
+ : : Y
amn (YilX)il 83?7,, (YilX)in
O, (Y71 X))y -+ 05, (Y 71Xy
(3.21) (Y + XY 1X) : :
00, Y71 X)i1 -+ 05, (Y71X)ip
Op, (XY Yy oo 0, (XY Dy,

— 5 : (Y + XY 1X),
arl (XY?l)nl tee a:c (XY?l)nz

n
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&,1 (Y_lX)il o 8$1 (Y_lX)ln
(3.22) Yy lx : :

X oo 0p, (Y7 X )i

( =0, (Y D o 0, (V)1 = 0, (Vi
Dy (Y )i

: (Y + XY 1
- aln (Y_l)l’i e axn (Y_l)m - 81n (Y_l)ni

811( lX)zl T Bml(y_lX)m
+ : : YlX,
Oy (}f XV o O, (YT X )i

0u, Y + XY 'X)1; - 0, (Y + XY 71Xy,

n

(3.23) XV~! :
@4Y+XY1X%1-~ O, (V + XY 12X )z

=00, (YT X) 1 + 0, (XY )in -0 =00, (YT X )13 + 00, (XY )i
+ (Y + XY 1X) : :

—81;1 (Y_lX)nz + amn (XY_I)“ cee _a:rn (Yv_l)()nz + 8% (XY_I)”Z
8£1(Y+XY71X)11 8»5 (Y+XY71X)1Z

n

Xy~!

7

o (Y + XY 1X )i o O, (Y + XY 71X,

n

8T1(Y+XY71X)17 817L(Y+XY71X)11
(3.24) y—! :

O (Y + XY 1 X )i -+ 0y (Y +XY1X),;

=0 (Y7 X)) 1 4+ 00y (XY N)ip oo =05, (VI X)15 + 00, (XY 1),
+Y X : :

*811 (YﬁlX)nz + axn (XY?l)il tee *arn (YilX)ni + amn (XY?l)zn
=0, (V7' X)1i + 00, (XY N)in - =00, (YT X) 1 4 00y (XY )i,

. . XY_l
O (Y X )i + 00, (XY V)iy v =0, (Y 71X )i + 8, (XY )4,

oy Y+ XY I X)in - 0p, (Y + XY 1 X))

+ . : y-!

3

O (Y + XY71X) - Oy (Y +XY1X);,

n

O, Y + XY 1X);1 oo 0, (Y +XY1X)
(3.25) (Y + XY 1X) : :
O, (Y + XY 1X)yy -+ 0p, Y+ XY1X);,

n

811(Y+XY*1X)11 an(Y—kXY*lX)M

. : (Y+XY71X)7
O, (Y + XY 1 X )i -+ Op (Y + XY 1X)

n
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Oy YV +XY71X)1 oo 0, (Y + XY 1X);,
(3.26) Y'X : :
00, Y+ XY 'X)n -+ 0, (Y + XY 71X,
=0, (Y7 ' X)1i + 00, (XY Vir o+ =00, (VT X)) 1 4 00, (XY )i
= - : : (Y + XY 'X)
=0, (Y ' X )i + 00, (XY N1 oo =00, (V' X )i + 0a, (XY 1),
00, YV + XY 'X) -+ 0p, (Y + XY 71Xy,
+ : : YX.
Do, Y+ XY 1 X)iy - 0, (Y + XY T1X),,

for i =1,...,n. It is easy to see that (3.22) and (3.26) are obtained by transposing (3.19) and (3.23),
respectively. First, we show that (3.17) is equivalent to (3.21). In fact, (3.17) implies

89:1 (XY_l)lk o aﬂn (Xy_l)nk
: : (Y + XY 'X)™!
81 (XY_l)lk 830 (XY_l)nk

n n

is symmetric for £k = 1,...,n. Since X, Y is symmetric, this implies (3.21). Next, we show (3.25) is
equivalent to (3.18). (3.25) is equivalent to

Op, Y+ XY 1X)yy oo 0, (Y +XY71X),,
(3.27) : : (Y +xy'x) !
Op, (Y + XY 1X)yy -+ 0, (Y +XY1X);,

8m1(Y+XY*1X)11 8mn(Y+XY71X)1Z
=Y +XYy 'Xx)™! ; :
O (Y + XY 1 X)s - 0 (Y + XY 1 X)),

n

By computing the (4, k)-components of the both sides of (3.27), we obtain

S 0n, Y +XYTIX)) VXY T X)) =) (au (Y + Xy—l)()j;l) Y+ XY 'X),
=1 =1
for i,j5,k =1,...,n. Here, we used

0=0,, (v + Xy ~'x) (v + Xy X))
= (0, (Y + XY ' X)) (Y + XY 7' X) T 4 (Y + XY T'X) 8y, (Y + XY TIX) ™

J
and so on. Thus,

n

|

@
Il
—
Il

Op, (Y + XY 71X, 1

J

O, (Y + XY X)) (¥ + XY X)5(Y + XY X))
1

I
M-
M:

s
Il
-

(azk (Y + XY‘lX)]fll) (V + XY 1 X)u(Y + XY~1X); 2
=1
=0, Y+ XYy 'x):!

jm:*

This implies (3.18). In particular, this means (3) = (2).
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We show (3.19), (3.20), (3.23), and (3.24) are obtained from (2). To show (3.23), it is sufficient to
show

Ou, Y + XY 1X)y; -+ 0, (Y + XY 71Xy,
(3.28) 0=Y+XYy 'x)'xy! ; :
Oy (Y + XY 71X )i oo 0p, (Y + XY 71X,
Op, Y1X)1i -+ 0p, (YTIX)y,
Doy Y X )i o 00, (YT X )
Do, (Y + XY 1X)y; --- 0, (Y + XY 1 X))y,
- Y +Xy 'Xx)! : : Xy!
Oy (Y + XY ' X )i - 00, (Y + XY X))y
Doy (XY D)1 oo 0, (XYY
+ : :
Op, (XY 1)ir v 05, (XY 1)y

Since € is symmetric, so is its real part ReQ = (Y + XY ' X)~1 XY 1. By taking the real part of (2)
we also have

Oc; (Y + XY X)TIXY ™)y = 05, (Y + XYTRX)TIXY )

By using these as well as (3.17) and (3.18), the (4, k)-component of the first two terms of the right hand
side of (3.28) can be computed as

Z((Y+XY*1X) XY ) 00 (Y + XY T Xy — 0 (Y TIX)

_Z YIX(Y + XY 1X)~ ) Oup (Y + XY 1 X))y — 0, (Y T1X)

=0,, ( YIX(Y+ XY 'X)™ l(Y+XY—1X)h>
Z( YIX(Y + XY LX) l) (Y + XY 71X — 0, (Y 71X 0
S (a% YOIX(Y + XY X)) l) (Y + XY~1X),

== (0, (Y +XY'X)'XY ), ) (Y + XY X))y

On the other hand, the (j, k)-component of the last two terms of the right hand side of (3.28) can be
computed as

- Z Y 4+ XY X) 3 (0, (Y + XY T X)3) (XY )k + 0, (XY )i

- Z (00 (¥ + XY LX) (F 4+ XY T X)0(XY ™t D, (XY i

= Z(y F XY X (00, (V + XY X)) (XY e + >V + XY T X) (Y + XY X)), 10, (X
m,l

m,l

=3 (0, (Y + XY 'X)'XY 1), ) (Y + XY X))y
l

1)mk
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This proves (3.28). We show (3.24). We put

n

axl(Y#*XYilX)h 6;5 (Y‘FXYilX)h
= z z
By (Y + XY X) i - 00, (Y + XY 1X);

n

By (3.23) and (3.25), we obtain
=0, (Y ' X) 13 + 00, (XY 1)in o =0, (Y1 X) 15 + 05, (XY 1)y

_8:61 (YilX)nz + 8:vn (XY?l)il e _amn (YﬁlX)nz + aazn (Xyil)zn
=Y+ XY 'X)"'WXYy ! - (Y + XY LX) T XY tw

and
Y+ XY ' X)'W =W (Y + XY 1X).
In order to show (3.24) it is sufficient to check

(3.29) 0=Y"'W+Y ' XY +XY'X)"'WXY ! -V X(YV + XY 'X)"' Xy~ 'w
+ (Y + XY I X)W XY XY T - (VXY XO) T XY T T w XY T -ty

By using above equalities, the right hand side of (3.29) can be computed as

YW -y IX (Y + XY X)) XY W (Y + XY LX) T W XY XY Tty !
=Y 'W (Y + XY LX) T XY XYW (Y - XY X)W XY XY
— (Y + XY ' X)"'W(y + Xy 'x)y!
=Y 'W (Y + XY I X)) T XY XYW (Y - XY X)W XY XY
— Y+ XY X)W - (Y + XY X) T XY XYy !
=YW Y+ XY X)) T XY X (Y XY I XO) T W
=0.

This proves (3.24).
We show (3.19). To see this, we show

8$1 (XY_l)li v awn(XY_l)li
(3.30) 0=Y +XY 'X)'xy! ; :
Or (XY V)i v Op (XY )

n

0oy Y )1 =00, Y 1 o0 0y (V)1 — 00, (Y Y )s

811 (Y_l)ni - 8wn (Y_l)li T axn (Y_l)ni - awn (Y_l)m‘
011 (XYil)M v 8xn(XY*1)1Z-
— (Y + Xy 'x)™! : : Xy—1

811(XY71)M arn(X'Yil)m'
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The (j, k)-component of the right hand side of (3.30) is

S (v + XY TX)TIXY ) 00, (XY Ty = 00, Y+ 00, Y0 - S+ XY X)) 00 (XY )i (XY i
l lm

=((Y +XY'X)"'XY 1o, (XY™h),, - O, Y+ 02,V — Z(Y + XY T X) 0, (XY ) (XY Mk
lm

=((V+ XY X) 70, (Y + XY TIX)Y ™) = 05 (XY THXY ) = 00, Y 400, Y
= (VXY TX) (XY )0, (XY s

l,m

=((V+XY ' X) (0, Y + XY ' X)) Y '+ 0,V ' = (Y + XY ' X) 10, (XY HXY ™)
— 02, Y+ 0, Y =Y (VXY TIX)TIXY Y 0 (XY

m

= (V+ XY ' X) 7 (0 (Y + XY TIX) V) -
SV HXYTIX)TIXY ), 00, (XY )

Ji

(Y +XY™X) 710, (XY THXY ™)+ 0., Y5

(Y + XY ' X) 7 (05, (Y + XY T'X)) Y‘l)ji — (Y + XY 'X)710,, (XY H XYy 1)
(0, Y ' = (Y + XY ' X)' XY 19, (XY ),

= (O (Y + XY X)) (Y XY XY ) =Y (VXY X)) T, (XY ), XY
l

+ (0, Y ' = (Y + XY ' X)T' XY 19, (XY ).

- Z Du, (Y + XY‘lX)j_ll (Y+XY'X)v ), — Z (Y + XY 'X) 10, (XY 1), XVt
l l

Ji

+ (0, Y ' = (Y + XY ' X)TIXY 1o, (XY ),
- Z 0, (Y + XY LX) ((V + XY TIXOY ), = (Y + XY TIX) 710, (XY THXY )
l

+ (893]‘Y_1 -(Y+ XY_IX)_lXY_lan (XY_I))M
= (= (0, (Y + XYTIX)Y) (v +XY*1X)Y71)M - (Y + XYy~ 'X) "o, (XYfl)XYfl)ki
(0,77 - (Y £ XY X)XV, (XY ),
— (Y + XY ' X) 7 (0, (Y + XY I X)) YY) — (Y + XY 'X) 0, (XY )XY
+ (0n,Y T = (Y 4+ XY I X)TIXY 10, (XY ),
= (Y + XY ' X) (0, (Y + XY ' X)) Y 4 (V + XY 1 X)0,, Y = 0, (XY )XY = XY 19, (XY H}),,
= (Y + XY X) " {0, (Y + XY ' X)Y 1) =, (XY ' XY H)})
=0.

This proves (3.19).
Finally, we show (3.20). We put

Doy (XY D)1y oo 0, (XY 1)y
V= : :
Oor (XY V)i o 0y (XY )y
By (3.19) and (3.21), we obtain
Doy (V)1 =0, (Y D1 oo 00, (V)1 = 0y (Y )i
I e N | e

=Y+ XY ' X)Xy 'V - (Y + XY X)) "lv Xy !



ADIABATIC LIMITS, THETA FUNCTIONS, AND GEOMETRIC QUANTIZATION 27

and
Y+ XY ' X)'V =V(Y + XY 'X).
In order to show (3.20) it is sufficient to check

(3.31) 0=Y"'WV Y XY+ XY ' X)' Xy " 'v4+ vy ' XY+ Xy 'X)'vxy !
+ Y+ XY I X)) TWWXY XY T - (Y XY X)Xy vy T -ty
Then, (3.31) can be checked in the same way as (3.29). O

Remark 3.13. When one of (hence, all) the conditions in Proposition 3.12 holds, (M, wo, J, g) is a

Kahler manifold and J induces a natural holomorphic structure on L such that VE is the canonical
connection.

3.4. The TI'-equivariant case. Suppose that mg: (M ,Nwp,J) — R™ with prequantum line bundle

~ =\ ®N —
(L, VL) — (M, Nwy, J) is equipped with an action of a group I' which preserves all the data, and

the I'-actions are described by (2.3) and (2.5) as before. We assume that the I'-action p on R™ is prop-
erly discontinuous and free. Since the I'-action preserves all the data, the Spin® Dirac operator D is

T'-equivariant. In particular, I acts on " <Z®N ) Nker D.

Lemma 3.14. Lets =) ;. anm (2)eX™V=ImY be g section of L2V . s is D-equivariant, i.e., ﬁyos = sop,
for all v € T if and only if a,, satisfies the following condition

(3.32) Anp (35 (P (@) = gy (@)™ TN 70 () 20 ()}

forally €', m € Z"™, and x € R™. In particular, any I'-equivariant section of L®N can be written as
follows
s(z,y) = > Gyt (py-1(x)) €27V TINAT (0= @) =00 (R) 00 (0,2 (@) 2m/ZTND ()

(v, %)erx(Fnfzn)
Proof. By computing the both sides separately, we have

?7 o s(w,y) _ gweQW\/le{gw(@"rC«,fA;ly} Z am(.%')e%'\/jlm'y

mezn
(3.34) =g, > () 2TV TING (2) 27V =TNpo (§)- ATy
meZ’IL
5. m/—11-(tAZ?Y u~(x
50py (@) = Y @ (py(w)) VT4 (@)
ZGZ"
T — ) un (x) 27 m).tg-1
(3.35) = Z aNpW (%) ( ))62 V=INp, (5 )-us( )e2 V=INp, (%) A;] Y.
mezn

Here, in the last equahty, we replace [ with Np, ( ) Note that the map Z" > m — Np, (%) ez i
bijective. Then, p, os = so p, for all v € I" implies

(m)ezwﬁN%(m) —a (x»e%\ﬁzva(%) Uy ()

Gy am

NPW(%) (p’Y

for all m € Z". In particular, by (3.1) and (3.32), s can be rewritten as follows

say) = 3 a(e)emV T

lezm
(3.1 27my/=INp, (2)-
DT ey e T
(v, 2)erx(Fn4zn)
B2 N (prs (@) TV ) (8) (o2 ()] 2 TN (9)

(v, 2)erx(Fnizn)
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In the I'-equivariant case, the condition (3.13) has a symmetry in the following sense.

Lemma 3.15. The condition (3.13) holds for some mg € Z™ with 5> € F if and only if for any v € T,

(3.13) holds for m = Np, (%32). Moreover, let an, be a non trivial solution of (3.12) for mg. For each

v €T, we define Uy () in such a way that it satisfies (3.32). Then, Ay, (o) is a non trivial solution
¥ N Y N

of (3.12) for m = Np, (%2).

Proof. Suppose that there exists mo € Z" with ¢ € F' such that (3.13) holds. By Lemma 3.10, (3.12) for
mg has a non trivial solution a,,,. Then, for each v € I, define ANp, (70 by (3.32). By Lemma 3.10 again,

in order to show this lemma, it is sufficient to prove ay, (o)) is a solution of (3.12) for m = Np, (%2).
Let us compute the Jacobi matrix of the both sides of (3.32). The left hand side is

(3:36) D (ax,(32) °p7>x N (DaNf’v(%))pm) (D)

The right hand side is
(3.37) D (gy000(@)e TN 500 () 01}

_ g,yezw‘/le{%(x)_p”(%)'UW(w)}(Dam)w + gyt (2)D (6277\/—711\’{%(:8)—%(%)'uw(w)})
C2 _gny/ =gtV TIMT @0 () 0 @ g (1) (9, (m — Na))

+ 20V TIN g (2)e2™Y TIN{T @ =02 () w @)} p (97( )~ py (%) 'uw(ﬂf))

(3.32) _ m
= —QW\/—lava(%) (py(x))" (QWLLY1 (Np7 (N) - N,oﬁ,(x)))
- m
+ 27r\/—1Napr(mTo) (py(x)) D (g,y(x) — Py (N) uw(x)> .
For each ¢ = 1,...,n, the direct computation shows

Or, (@) =y (5) -1 (@))

m

= (Op, Uy )z - (P»y(x) — Py (N)) + (tA,yu,y(z))i — ("Ayuy(0,...,0, 2, . .. ,xn))l

72/ ADuV 0,025,y )da;

1<t

= (Do) (m(os) —pn (%))
+Z/ A LU (0 O,xj,...,xn))idmj _Z/wj (tA’YDu“Y)ji 0,...,0,z;,...,z,)dz;
0

1<t j<i

= (O, Uy )z - (p,y(l’) — Py (%))
+Z/ LA Duv (0, Oxj,...,xn)dxj—Zij (tAVDu,y)ji(0,...70,xj,...,xn)dacj

7<t i<z

= ~(0u)e (1 (57) — o)

In the last equality, we used * (*A,Du,) = *A,Du.,. Hence, we have

_ m m
(3.38) D (5@) = py (50) @) = =" (s (5) = p2(@) (D), -
By (3.36), (3.37), and (3.38), we obtain

tA (Dava(mTo))pv(w) = —27r\/—71apr(m ) (py(2)) (QwA;1 + (Duy)s) (va (%) - va(x)) .
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On the other hand, by (3.4) and (3.5), we have
(3.39) PANQ, () = QAT+ (Duy),

This proves the lemma. O

Remark 3.16. By Remark 3.3 and Lemma 3.15, the condition (3.13) holds for all 2 € F N £Z" if and
only if the condition (1), hence all conditions in Proposition 3.12 holds.

4. THE INTEGRABLE CASE

4.1. Definition and properties of J=. We use the settting and the notations introduced in the previ-

ous section. Let % € F N +Z" be the pomt for which the condition (3.13) holds, and a,, the non trivial

solution of (3.12) of the form (3.14) with a,, (%) = 1. For each v € T', define Unp, () in such a way that
YN

it satisfies (3.32). As we showed in Lemma 3.15, a ), (=) is a non trivial solution of (3.12) for Np, (%&).

(W
Then, we can define the formal Fourier series J= by
o2 Np, (=
(4.1) Zapr % TV=INpy (%),
el

Proposition 4.1. (1) = has the following expression

Ym(z,y) =

N

dezwf[ s G (5o P (01 @) o0 @), ) AN (041 @) =0 (%) 0 (0,21 @) 4n (%) 0} ]

yel’

(2) Yz can be described as U =3 1 fpﬁ/ O Sy O Py—1, where sy, is the section defined by (3.16).
(3) If Y + XY 1 X is constant, then, U= converges absolutely and uniformly on any compact set.

Proof. (1) and (2) are obtained by (3.32), (3.14), (2.5), and (3.16). Let us prove (3). By (2.4) and (3.5),
we obtain

1

AL (Y4+XYTIX) T A = (VXY X))

By using this formula together with the assumption, the expression in (1) can be rewritten as

/=T | LFE (- x)) “1x)7! z—py (R real par
D () = 3 gy TG (o GO (07710 (o (1)) et ]
yel

Since (Y + XY ~1X) ~!is positive definite, there exists a positive constant ¢ > 0 such that (Y + XY 1X) s

cl. Then,

277\/—71[\/?11\7 (x—pv(%))~(Y+XY’1X)71(gc—pﬂ,(%))—&-real part]

g~€
e (451 ) (e ()

< e—eNmlla—py (R)I?

— p—eN7lla—4? (put I := Np, (%>)
= ﬁe_CNﬂ(wi_%)Q'
=1

li . . .
Hence, the series is dominated by H?Zl Zliez e~ eNT(F =) Any compact set is contained in a product
of closed intervals I1 x - -- X I, so it is sufficient to show that ), _, e—eNm(F—2)” converges uniformly on
any closed interval I. Suppose that I is of the form I := [z, za]. Set Iy == max{l € Z | £ € I} and
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lyy =min{l € Z |+ €1}. On I, > k<i<k e=eN7(x=2)" can be estimated as

DN A e M B S o o e

—k<I<k —k<I<lp;m Ln<I<ly Lu<I<k
< N TNy 1+ 1) + e R (=Ne)?
—k<I<lp, I <<k
bm —cm 2 k —cm 2
s/ e X TNE dr 4 (Ing — 1 + 1) +/ e (T=Nea)" g
—k 33

and it is well-known that both ffg e~ ("=New) 47 and fl]jw e~ (T=New)® gr converges as k — +oo. U

Theorem 4.2. If s € T (f/@N) is a non trivial I'-equivariant solution of 0 = Ds, then, there exists

m € Z" with 5 € F such that the condition (3.13) holds. Conversely, suppose that the condition (3.13)
holds for some %z € F'N %Z" and Jm converges absolutely and uniformly. Then, Jm is a non trivial I'-
equivariant solution of 0 = Ds. In particular, if J is integrable and 9= converges absolutely and uniformly

1
forany 7 € FN{Z", then, {ﬁ%}m

cFnLzn s a basis of the space of I -equivariant holomorphic sections
N N

of (E,Vz)@V — (]T/f, Nwg, J).

Proof. Since 5 = ), n ai(z)e*™V=1Y is non trivial solution of 0 = Ds, by Proposition 3.11, there
exists [ € Z" such that a; # 0. On the other hand, as is noticed in Remark 3.3, there exists (7, %) €

1 o m . . . . _ . .
T ><7£F N NZ”) such that [ = Np, (ﬁ) Since s is I'-equivariant, by (3.32), 0 # a; = UNp. () implies
am 7 0.

Let us prove the latter. It is trivial that {19% } is linear independent. Let s be a I'-equivariant

ReFN&Z"
holomorphic section of LY. By Lemma 3.14, s can be written as in (3.33). Then,

S(.’E,y) (Sﬁ?)) Z g,yam (pry_l(x)) e27r\/—71N{§7(p7_1(ac))—pw(%)u«,(pv_l(a:))+p7(%)~y}
(v, 2 )erx(Fnizn)
n i m mi—1
(3;4) Z . (%) eQﬂ'\/j[- A GWL(TI,...,T,(p,y,l(x))i,...,(pw,l(m))n)

(v, ®)erx(Fntzn)
N LT (0,1 @) =05 (]) 12 (0,1 ) o (8) )]
. m 2mv/=T | = 0, Gh (o (001 (2)) s (py -1 (@)
- an (5) Lo’ S )

meFN&Zn vel

{0y @)= (R (0,1 @) (3) 9)]

BeFN{Z™
This proves the theorem. O
By Corollary 2.25, any Lagrangian fibration 7: (M,w) — B on a connected complete base B with
prequantum line bundle (L, VY) — (M, w) are obtained as the quotient of the action of I' := 71 (B). Let

J be a compatible almost complex structure on (M,w) which is invariant along the fiber in the sense
of Lemma 3.6 and D™ the associated Spin® Dirac operator on (M, Nw) with coefficients in L&V . Since

~ r
the T-action preserves all the data, I'(L®Y) Nker DM is identified with (F (L®N) N ker D) . Moreover,

Fn %Z” is identified with Bpg as is noticed in Remark 3.3. Thus, we obtain the following corollary.

Corollary 4.3. Let m: (M,w) — B be a Lagrangian fibration on a connected complete base B and
(L,VE) = (M,w) a prequantum line bundle. Let J be a compatible almost complex structure on (M, w)
which is invariant along the fiber in the sense of Lemma 3.6. Assume that J is integrable and ¥ =
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converges absolutely and uniformly for each T3 € F'N %Z”. Then, {ﬂ%}m gives a basis of the

mepnLzn
space of holomorphic sections of (L, VE)®N — (M, Nw, J) indexed by the Bohr-Sommerfeld points.
Remark 4.4. When M is compact as well as the assumption of Corollary 4.3, we choose the orientation
on M so that (—1) ot % is a positive volume form, and define the Hermitian inner product of the
space of sections of L&V by

nn-1) (Nw)"
(8,8) e == / (8,8 Y pen(—1)" 2 (WVw)
M

. . . ®N . .
where (-, -)re~ is the Hermitian metric of L®®. Then it is clear that {ﬁ%}%an%Zn

n!

are orthogonal
basis.

Example 4.5. For Example 2.30, Z = X ++/—1Y can be chosen so that Y + XY ~!' X is a constant map
and XY ~! and Y ! satisfy

upr -C 'z o wp, - Clz
(XY 1, =Y +XY 'X) : : :
Upy - C7lz oo up, - Clz
u -Clz oo wuy,-CTlz u -Clz o0 wy,-CTlz
(Y ™), = : : (Y + XY ~'X) : :
Upy - C 7z - up, - C 'z Upy - C7 'z - up, - C '
+Y + XY X
In this case, Y + XY ~1X is necessarily I and §) can be written as
- Clz o wg, - Clz
Q= : : +V-1(Y + XY X)),
Upy - Clz o wuy, C iz

and the condition (2) in Proposition 3.12 is equivalent to the following condition
(tC_lujk)i = (tC_luik)j foralli,5,k=1,...,n.

Assume this condition as well as the condition %vi -Ujv; € Z for all 4,j = 1,...,n. Then, for each
1 . .
N € FNFZ", J= is described by
- mi
N
mi‘—l

93 00) = 5 02/ IN (5 (200~ ) () = ) (07 Na) | 3 () 1 R),

yel’ i=1 j>i 7 (p,y—l(.r) i+l

my
1o m\ 2 P 1 m]i.\;1 .
+§ Z (p’rl(x) a N)z (‘C7lua) - | 5 (?57‘1((55)))4' N)z
i=1 -1 - .
(pv*l.(x))n
1 m Uiy -7y Uln * Y 1 i
+ 2 (p'yfl(-ﬁ) - N) + \/jl(Y + Xy—lx)* (pfl(m) B N)
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Uil -y o Ulp Y
1m . . m

im b ()
2N 1 SN TN
Up1 7Y - Unn - Y

By Proposition 4.1 (3), J= converges absolutely and uniformly on any compact set.

4.2. The case when Z is constant. Let 7: (M,w) — B be a Lagrangian fibration on a complete
n-dimensional B with prequantum line bundle (L, V*) — (M, w). Then, it is obtained as the quotient of
the T := 7 (B)-action on 7p: (]\A/[/, wo) = R™ with prequantum line bundle (E, VL> — (M, wp). Suppose
that the T'-actions are described by (2.3) and (2.5) as before. Let J be a compatible almost complex
structure on (M,w) and Z € C*(M,S,) be the map corresponding to the pull-back of J to M. A
situation in which (2) in Proposition 3.12 holds occurs when Z is a constant map. In this subsection, we
discuss this case in detail. Note that in this case, Du., is a constant map for each v € I'. It is obtained by
(3.4). Moreover, as a special case of the setting in the previous subsection, we can obtain the following
theorem.

Theorem 4.6. (1) For each 2 € F N +Z", Um can be described as follows

)= 37 gy Y IV (011 01 R) @4 A1) (0,10 R) = - A D) B} (R) 10 O+ (%) ]

yel

Vm(z,y

(2) For each 7 € F'N %Z”, Ym converges absolutely and uniformly on any compact set.
(3) J is integrable and {19% }m

cFnLzn gives a basis of the space of holomorphic sections of (L, VE)®N —
N N
(M,Nw,J).

Proof. (1) is obtained from Proposition 4.1 (1). (2) is obtained by the assumption and Proposition 4.1 (3).
The first half of (3) is true since J is covariant constant with respect to the associated Levi-Civita
connection. The other half is obtained by Corollary 4.3. d

When Z is constant, the associated Riemannian metric of M is flat. So, by Bieberbach’s theorem,
if M is compact, then, M is finitely covered by the 2n-dimensional torus 72", hence, U=’s should be
obtained from classical theta functions. So, let us see how ?=’s relate with classical theta functions for
Example 2.28 with C' = I, in which M itself is T?". First, let us briefly recall classical theta functions.
For each T € §,, and a,b € Q", the theta function with characteristics is a holomorphic section on the
trivial holomorphic line bundle C"* x C — C™ which is defined by

9 m (T) =Y o™V (r+a) T(y+a)+2m/ =T (v+a)-(2+4b)
YEZL™

It is well-known that ¢ {Z} (2,T) has the following quasi-periodicity

3] Gmmy = mvToma o] ),

9 m (z+Tm, T) = =2/ Tome=m/"TmTm—2m/~Tm-z {Z] (21)

for m € Z"™. For more detail, see [28, Chapter II, §1] and [29, 82]. Here we need the case when T'= NQ,
a= %, and b = 0. In this case, define the 72" = 7™ x Z™-action on C"* x C — C™ by

(v, 7)) (z,w) := (z + N(=Qy+4+"), eiﬂﬁNV'Q"’H“‘/jl'y'zw)

for (v,7") € Z®" and (z,w) € C" x C. Also define the Z*"-action on the trivial complex line bundle
R?" x C — R®" by

(4.2) (7,7 - (z,y,w) == (m +y Y+, eQWmN’Y'yw)
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for (v,7') € Z*" and (z,y,w) € R?®" x C. Note that by taking the quotient of the latter Z"-action of
(4.2), we can recover Example 2.28 with C = I and g, = 1. Let F: R*™ — C" and F: R xC — C" x C
be the R-linear isomorphism and the bundle isomorphism covering F' which are defined by

F(I,y) = N(*QZL‘%*y),

F(z,y,w) := (N (=Qx +vy), e_”\/ler'Qmw) .

Then, the direct computation shows the following theorem.

Theorem 4.7. (1) J —;0F = Fo(Jz), i.e., F is a C-linear isomorphism from (R**,Jz) to the standard
complex vector space (C", J /—11).

(2) Fis equivariant with respect to the Z*"-actions defined above.
m

(3) Vm satisfies Fo Im(z,y) =1 [](\)7] (F(z,y), NQ), i.e.,

05 (ov) =Yy ) (V-0 4 ), 80,

4.3. Adiabatic-type limit. In this subsection let us consider a one parameter family {(g*, J*)};~¢ of
the Riemannian metrics and the almost complex structures on a Lagrangian fibration so that the fiber
shrinks as ¢ goes to oo, and investigate the behavior of ¥= defined by (4.1) when t goes to co. We use
the same notations introduced in the previous sections.

Let 7 = X +/—-1Y € C* (M,Sn> be the map independent of y1,...,y,. Let J = Jz be the

corresponding compatible almost complex structure on (]\7 , wo). For each t > 0, we define the almost

t, . [ O %1 Uy
Ju = (=J0y, 0y) (t 0 uy

for u = (—J0y, Oy) <ZH> € T(gc’y)ﬁ. It is easy to see the following lemma.
v

complex structure J* by

Lemma 4.8. (1) For any t > 0, J! is compatible with wg. The map Z* € C° (M, Sn) corresponding to
Jt is described as
-1
1 1
Z' = (tX + \/—1Y> Y (Y + XY 'X) (tY + txy—lx> Y.

Jt can be also written as

t W\ 1 Xy-! Y - XY 71X\ (u,
J <(8z78y) (uy>) = (axaay) t (Yl (tQY _~_XY71X) (Y _’_Xy—lX)*l _Yle Uy .

(2) For any t > 0, let g* be the Riemannian metric corresponding to wo and Jt. Then, for u =
(—J0y, 0y) (Zi), v=(=J0y, dy) (ZI;) € T(%y)]f\\j, gt can be written by

g (u,v) = wp (u, J'v)

y-! ~YlX 0) ,1 y-! ~y-lX 0
_ t Lont
= 40, un) <—XY—1 Y+Xy—1X) <UH> + 70 ) (—Xy—l Y+XY—1X> <uv>'

Suppose that a group I' acts on mg: (M, wp) — R™ and the T-actions p on R™ and p on (M, wp) are
written as in (2.3).

Lemma 4.9. The [-action p preserves J* (hence, g*) for all t > 0 if and only if p preserves J.

For J* and ¢' defined as above, the same arguments in Section 3.3 goes well, just by replacing J, g by
Jt, gt. For each t > 0, let 19% be the one defined by (4.1) for J* and g*. Let us investigate the behavior

of V% as ¢ goes to infinity. For t > 0, Q' defined by (3.7) for Z* can be described as

(4.3) O = (VY + XY 'X) T (X +tv/=1Y) YL
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Let D! be the corresponding Spin® Dirac operator. Then, for a section s of E®N, Dts can be described
as

\/jl n n
(4.4) D's = N Z; Oy, ®c { Op, 5 + Z:l (Qt)ij (0,5 — 2wV —=1Nz;s)
1= j=

It is clear that

Lemma 4.10. For any t > 0, the condition (2) in Proposition 3.12 holds for Qt if and only if it holds
for Q = Q. In particular, J* is integrable if and only if J is integrable.

— ~  \®N —

Suppose that mp: (M, Nwg,J) — R™ with prequantum line bundle (L,VL) — (M, Nwyg, J) is
equipped with an action of a group I' which preserves all the data, and the I'-actions are described
by (2.3) and (2.5) as before. We assume that the I'-action p on R™ is properly discontinuous, free,
and cocompact. Let 7: (M, Nw) — B and (L, VX)®N — (M, Nw) be the Lagrangian fibration and the
prequantum line bundle on it obtained by the quotient of the I'-action. On M, we consider the orientation

so that (—1) ot (Nni,)n is a positive volume form, and define the LP-norm of a section s of L®V by
z n(n-1) (Nw)" v
(4.5) sl = ( JRCE Y . ) :
M n:

where (-, ) e~ is the Hermitian metric of L®Y which is induced from the Hermitian metric (-, -)7on of
LN As noticed in Remark 2.26, there exists a positive constant C such that (-, -)74~ can be written
as (-, )zen = C(-, -)c, where (-, -)c is the standard Hermitian inner product on C.

For each ¢ > 0 and each point 5 € F'N Z” for which the condition (3.13) holds, the corresponding
19% is defined by (4.1) for Q. We 1dent1fy F N +Z" with Bpg the set of Bohr-Sommerfeld points of
m: (M, Nw) — B with prequantum line bundle (L, VL)®N — (M, Nw) and identify 19m with the section
of (L,VE)®N — (M, Nw) which is induced from 191‘/%,. Then, concerning the LP- norm, we have the
following lemma.

Lemma 4.11. Suppose that Y + XY 1 X is constant. Then, the LP-norm of ﬂt% can be calculated as
follows

2

N
[0% |17, = C/det (Y + XY -1X) (m)

Proof. Let o(B) be the orientation bundle of B which is defined as the quotient bundle of the trivial real
line bundle R™ x R — R™ on the universal cover of B by the I'-action p/ (z,7) := (p,(z), (det A,)r) for
v € I' and (x,7) € R® x R. Then, we have a push-forward map m,: Q¥(M) — Q*~"(B,o(B)), where
0*(B,0(B)) is the de Rham complex twisted by o(B). B has a natural density which we denote by |dx|.
For densities, see [8, Chapter I, §7]. Then,

95l = [ (0t 0t o (2 )

:/Bw* (wt ) Fon (—1) T (N;f) )

(46) _ CNnZ/ —pNTrt -1 x)——) (Y+XY 1)() I(P«,—l(w)_%)|dl‘|.

yel’

By changing the coordinates as 2’ = p,-1(x),

(46) — CON" Z/ e*pNﬂ't(aj/f%).(YJrXYilX)*l($/7%)‘dx/|
yel py=1(F)

(4.7) :CN"/ e PNmt(a' =% ) (YHXYTIX) T (o'~ 8) | g
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Since Y + XY ~1X is positive definite, symmetric, there exists P € O(n) such that

A
Y+XY 'X="'P P.
An

Then, we define a positive definite symmetric matrix vY + XY 1 X by

VA
(4.8) VY + XY 1X :='p P,
Van

and put 7 := /(Y + XY 1X)~1 (2/ — ). Then,

(4.7) = C\/det (Y + XY IX)N" [ e PN7tl7l| gz
Rn,

=Cy/det (Y + XY -1X)N" H / e PN7ITE g,

= Cy/det (Y + XY 1X)N" (_\/Ey .

We define the section 6z of (L, VL)®N |7r,1(m) by

N

1
(4.9) om (y) = 5e%ﬁw.

By Lemma 3.2, 0= is a covariant constant section of (L,VL)®N \ﬂ,l(m>. Let T M be the cotangent
N

bundle along the fiber of 7. On (A"T*M) ® 7*o(B)*, there exists a natural section, i.e., a density along
the fiber of 7, say |dy|, which satisfies frl(z)|dy| = 1 on each fiber of . Then, we obtain the following
theorem.

ﬁt
9% ||L1
function section supported on the fiber " (%) as t goes to oo in the followmg sense: for any section s

of LN,
9y, n(n—1) (Nw)n
3 N — = m
i M <s, [9% [| 1 >L®N (=1 n! ~/7'r—1( ) (5:0% ) pon 1dyl

m
N

Theorem 4.12. Suppose that Y + XY "' X is constant. Then, the section ——— converges to a delta-

Proof. We denote by s the pull-back of s to L®N — M. Since 3 is I'-equivariant, the Fourier expansion
of § can be written as in (3.33). Then, by using Proposition 4.1 (1),

Ve _qyEesn (Nw)™
/M< ﬁtm|L1>L®N( D
B V' PR ICE! (Nw)"
*/B”* << ||z9tm||p> =0 )

n i (L izl T _1(x
(4.10) ||19t HLI Z/ am _ _2Tr\/j12i:1Gm(N1""7 N ,(p’y,l( ))17 7(p—y 1( ))”)‘dl“
~el
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By putting 2’ = p.,-1(x), we have
CN” n i (m mi— ’ ’
(410) _ ’ / Ao (I/) 672"\/77121‘,:1 Gm(Tl ..... N L STy xn) |d17/|
Wl 22,

n . my_
CN / am (x/>e—2m/—1 S G (B e T T da|
n

MIARYS
(4.11)

_ ||;N|n / - (il'/) e?fr\/jlzz”zl ReGin(%,...,m%l,12,‘..,z;)efert(m’—%)-(Y+XY_1X)71(mlf%)|d$/|'
% Lt R

mq mi—1 ’

We put £(2/) = ap, (o) 27T Sim R Gl (8 580 and 7 o=V § XV TX) T (of — ). By
using Lemma 4.11 for p = 1, (4.11) can be written as follows

(412) (411) = wg’]v f(xl)eiﬂ'Nt(z,*%)‘(Y+XY71X)_1(z’,%) dx,|
% L R
CN™
= [, [ Vet O+ XYTLX) / (VY + XY TIXr 4 B el
N

— (N1)? / f (\/Y FXY X7+ %) e~V g7,

It is well-known that
m

Jim (412) = £ () =am ()
On the other hand, by using the expression
~ 2my/—INp, ().
5= > Ay, (2)(@)e (),
(v, )erx(Fnkzn)

the right hand side can be computed as

/l(m) (3.6 o sl = [ (5.0 ) I
m 2mv/—1(Np- % _m).
N 2 N, () (ﬁ)/ne (e (50) =) 91y

(7,%’)er>< (FH%Z")

an 6277\/?1(Np”<%)_m>‘y|dy| vanishes unless p (%/) = % Since both mW/ and % lie in the fundamental

domain F, this implies v = e and m/ = m, and in this case, [, eQW‘/jl(N”V<%)_T’L)‘y|dy| = 1. Thus,
m

/”1(3\7”) <S’6%>L®N |dy| = am (N> .

This proves the theorem. O

5. THE NON-INTEGRABLE CASE

We still use the same notations introduced in the previous sections. By Lemma 3.10, the equation

(3.12) has no smooth solution for 2 € F'N £Z" such that (3.13) does not holds. For such %, instead of

(3.12), let us consider the following equation which is obtained from (3.12) by replacing Q by its value
Qm at %
N
Oz, G
(5.1) 0= + 27V —=1a;nQm (m — Nx).
Oz, Um
The equation (5.1) has a solution of the form

T () = Tom (%) VTIN (e 5) Qg (2= %)
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We put the initial condition a,, (%) =1 on the above a,,, and for each v € T", define ENPW(%) in such a
way that it satisfies (3.32).
Lemma 5.1. a m\ satisfies the following equality
Now (%)
Ousli,, (3)(0) N
(5.2) 0= ) : +2rv—-lay, (%)(IC)QI (Np7 (N) —Nm)
6InaNp,Y(m)(I)
—l—27T\/—1(],1\/%{(%)(1')%47 (Q% —Q (z))A (Npﬁf (N) —N.T) .
Proof. By the same calculation as in the proof of Lemma 3.15, we have
81151\7%(%) (p'y(x))
. _ m
A, : = -2V — aNp () (P (py(2)) (Q%Aﬁf1 +1 (D“7>x> (pr (N) - va(ac)) )
Oz, () (Py(@))
(5.2) can be obtained from this equation and (3.39). O

By using a my’s, we define ¥m in the same manner as ¥m, i.e.,
Np«,(ﬁ) N N

19%(:&:1/) — Zava(%>< ) QWFNP“{(%)

5% converges absolutely and uniformly on any compact set and can be written as
% Z Py © S © Py
yel
where s/ is the section defined by

! (2 y) = YTV R) O (o) 42V "Iy,

In particular, When M is compact, it defines a section of L®N — M. Moreover, these two sections with
different % and m are orthogonal to each other. These can be proved by the same way as Proposition 4.1.
In the rest of thls section, we assume that M is compact.

Next let us consider the one parameter family of J! and g* defined in Section 4.3. Then, corresponding
to J* and g¢', we can obtain 5’%, which can be explicitly describe as

1F9Vtm (z,y) Z gye 2‘“’\/71\7[ (py—1(z)—%) %(P 1 (@)= B )45y (py—1(2))—p (%)‘“v(ﬁarl(m))]eZw\/lep.y(%)-y

yel

b

where th is the value of O given in (4.3) at . Then, {Sﬁ% has the following property. The proof is
same as T heorem 4.12.
o,
Theorem 5.2. For each ™ € F N LZ", the section —2>— converges to a delta-function section
" " V|1
N

supported on the fiber w1 (%) as t goes to oo in the following sense: for any section s of LN,

525@ nin-1) (Nw)"
i [ <~> ot Bl T ) e b
> Jur ||19ﬂ||L1 Lon n. 7.‘.—1( )

%
19t is not a solution of 0 = D's, but we can show that 19tm approximates the solution of this equation

in the following sense:

Theorem 5.3.
: tgt _
Jin [ D% [ L2 (7,5t 0c2) = O-
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Before proving the theorem, we have to make sure the meaning of L?-norm in the left hand side. Dtgt%
is a section of (T'M,J") ®@c L, and (T'M, J") ®c L admits a Hermitian metric (-, -)(ras,st)g.r induced

by the one parameter version of (3.10) of (T'M, J') and the Hermitian metric of L. In terms of this
Hermitian metric, the L?-norm is defined as

~ ~ nn-1) (Nw)"
DT Wsransocs = [ (DT DTo)crasmes (1) .

n!

Proof. For n = 1, it is clear that the condition 3.13 automatically holds for all m € Z. Thus, it is sufficient
to prove the theorem for n > 2. By the definition of 19m and (5.2), Dtﬁt% can be written as

D',
N
Vo1& ~ n ~ ~
= >0, 8§ 0Tl + Y (), (8,0 — 27V —INa Ty )
i=1 j=1

Zayl @ Y {Ontin,, (2)@) + 20V Ty, (a)(@) (24 (N, (%) _N“T»i} 2TV TING, (%)

~ver

= —27728% ®c ;aNp % (tA§1 (Qt% - Q;fl(w)) (% _ prl(x)))ie%ﬁjv’”(%)'y

Then,
<Dt1§tm Dtﬁtﬂ>(TM JH)@cL

Z Z Nle N QFFNP’”(W) y’apr(m)(LIZ)SZW\/lep’Y?(LI(;)'y>L®NNgt (ayn ’ ay72)

Y1,72€D 11,22

1 m 1 m
x (tAM (Qt - 1<x>) (% - pyll(@))‘ (tAW (m& - Qtpw_lm) (% - p%l(a:)))
1

N _ = ) ~ o/ o).
= (27)2? ) <aNpm(%)(I)€2 VN (%) yvaNpm(%)(x)€2 VIIND (%) 9) o
RETRCISIE

x (tA;} (QtN - Qtpﬁl(z)> (% - pvl_l(x))> (Y + XY X)), (tAwl (Qt - 1@) (% - pvz_l(x)))
For each # € F and u € C", define the norm of u with respect to (Y + XY ~1X), by
||UH(2Y+XY*1X)$ =u- (Y + XY X),u
By (3.5), for each v € T, Hu||%Y+Xy,1X)m satisfies

B

i2

2
||tA7u||(Y+XY*1X)m = HU‘”%Y-&-XY*X)M(E)'
In terms of this norm, we obtain
|1 D% 1Z2((rm, ) @eL)
2CN”+1 Z/ —2aNt(p, -1 ()~ 2)-(Y+XY~ 1x) (-1 (2)- %)

yel

x ('fA*1 (2%~ ) ( —pm@)) (VXY 7X), (1457 (% ~ 2 ) (5§~ @) a2

, CN" 1 —27Nt(p,—1(2)= % )-(Y+XY X —1(@) =%
= (2m)’=—— / ( : R

~yel
m
X ||fA -1 (Qt Qt ,1(a:)) (N _pv*l(l‘))H?Y%»XY’lX)ildxl
(21)? CN”“ > / 2N, @)= 8 ) (VXY T X) (0,1 () )

~yel
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m
A0 =8, 0) (30,

, ON"H / e—QﬁNt(m’—%)-(YJrXY*lX);j(m’—%)
py—1(F)

— (2m)

yel’

m
(2 — ) (=Y s, '] (2 i s (@)
—1

CNntl m —2nNt(a —2)-(Y4+XY ' X) ) (o' -
=P [ (0% - o) ( — ) ey e T Je M) gy,

Since Q! can be described as (4.3),

m
| <Qt% - QZ«/) (ﬁ - T//) ||%y+xy—1x)m,

m
= lI(Re (@ — %)) (5 = @) By sxy-rx),, + 2I(m (2 = ) (5 =)y sxv-ix),.0
We put
m
R(z") := [|(Re (Qm — Q) (ﬁ - x’) ||%Y+XY—1X)Z/’

m !
—x

I(z') == ||(Im (Q% - Q) (N )H%Y+XY*1X)QE/’

By changing coordinates as 7 := \/(Y + XY*lX)%1 (' — %), | Dt ||%2((T]\/[’Jt)®CL) can be written by

m
N

1D s |72zt tymer) = 227%7T2CN%+1\/det(Y + XY X)n

% {tlg /n R (\/(Y+XY*1X)%T+ %) (2Nt)% 6727rNt||T\|2|dT|

23

n m 3
4¢3 / I <\/(Y+XY—1X)%T+ N (2N1)> B_QﬂNﬂle'dT'}'

It is well-known that

: 1Y) ﬁ) % _—2aNt|7||? _ (E) _
Jim RHR(\/(Y—f—XY X)gr+ 5 ) @NOFe jdr| = R (%) =0,
~ 1%, ﬂ) 3 —2nNt|7l|?) 0 — (@) _
Jim RTLI<\/(Y+XY X)gr+ ) @NFe jdr| =1 (%) =0.
Since n > 2, this proves Theorem 5.2. O

Example 5.4. For Example 2.29, let us consider the compatible almost complex structure associated

with )
(s ) )

T 0 1

2, = <\/071 x1 —|—0\ﬁ) '

This Z does not satisfies (2) in Proposition 3.12, nor the condition 3.13 for any m € Z2. In fact, for
any m € Z2, ((8,,9Q) (m — Nz)), = ma — Ny while ((9,,9Q) (m — Nz)), = 0. In this case, 19% can be
written as

{9"5 (:my) = Z g,ye?W\/le[%{t\/jl(wl—Vl—%)Zﬂ-(%ﬁ-t\/jl)(ﬂﬂz—’m—%ﬁ}

The corresponding 2 is

YEZ?
Haz—r2){ 37 (z2+72) — (R +72) 72 }] 27V =1(m+-N7)-y

Example 5.5. In the case where n = 2 of Example 2.31, we can take the compatible almost complex
structure associated with

J =

1 A3 A2 V=1 [+ X)22+1 Axs
2 2) 2 .

2 +1\ Az xo x3+1 Ao 1
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The corresponding 2 is

2 = (—\/\/—%\[EQ T + }ﬁ\/\z’% + 1)) '

In this case, 0,012 = —v/—1X and 0,,Q22 = 0. So, Z satisfies (2) in Proposition 3.12 if and only if

A

= 0, which is the special case of Example 4.5. Equivalently, Z does not satisfy the condition 3.13 for

any m € Z* unless A = 0. In fact, for any m € Z2, ((0,,Q) (m — Nx)), = 0 while ((0,,Q) (m — Nx)), =
—+/—1A(mz — Nx3). In this case, 19% can be written as

10.
11.

12.
13.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.

24.
25.

1’975ﬂ (z,y) = Z QVGQW\/TIN[@{M_% —Y2X(z2—72)— R }2—t\/—71>\ 2 {1 - = A (@ —v2) — 5t H(ma—v2— 52)
N
ver

2
+%{m72+t\/jl<>\2%+1> }(mf’m*mTz)QJr%’Yz(12*72)(932+72)*(%+’72)’Y2($2*’Y2)}

w 2™V —H(mit+y2Amo+Ny)yi+(ma+Ny2)ya}
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