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TOWARDS MODELLING THE MOTION OF RISING AIR BUBBLES

IN A HELE-SHAW CELL

TAKEO K. USHIJIMA1
AND SHIGETOSHI YAZAKI2

Abstract. The motion of the flattened rising air bubbles is considered when air is injected
into water contained in the Hele-Shaw cell which is set perpendicular to the ground. We reduce
Navier-Stokes equations to the two dimensional problem by using Hele-Shaw approximation etc.,
and propose simple model equations.
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1. Introduction. We consider the motion of the flattened rising air bubbles
when air is injected into water contained in the narrow gap between two flat, parallel
plates, which is so-called the Hele-Shaw cell. In our experiments, the cell is set per-
pendicular to the ground as in Fig.1.1. The Hele-Shaw cell is an apparatus developed
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Fig. 1.1. Hele-Shaw cell is set perpendicular to the ground and is filled with water.

by H. S. Hele-Shaw in order to visualize the stream line under the two dimensional
stationary irrotational flow [2, 3]. Since the Hele-Shaw’s beautiful work, there have
been several extensive analytical and experimental studies. We will introduce the one
of the experiments at Masami Kawaguchi’s laboratory [4] as follows. They made the
Hele-Shaw cell by using two acrylic resin plates: glued the left, right and bottom sides,
and opened the top side. At the center of the bottom, they made a small hole, and
the air is injected from a tube which is through the hole. The distance between two
plates is h = 0.1cm, and the width and the height of the plate is 5.0cm and 25.0cm,
respectively, and the cell is set in a thermostat.
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A single rising air bubble with a constant volume undergoes various kinds of
behavior depending on the size. Fig.1.2 indicates the situation of a single rising air
bubble which are taken by CCD camera and drawn by a software [1]. We can observe
both zigzag motion and rectilinear motion depending on the size under the almost
unchangeable shape.

Fig. 1.2. Reprinted from Gou [1].

The aim of this research is to investigate principle of behavior of rising air bubble
as in Fig.1.2. It is known that in (the three dimensional) water bubbles with a few
millimeters do not rise along rectilinear paths. Actually, the fact is far from that:
bubbles spiral or zigzag as they rise. Leonardo da Vinci pointed out this phenomenon
and drew helically rising bubbles. It is said that his sketch is the first scientific
reference to this fact [7, Appendix B]. Behavior of bubbles are familiar in our daily
life and their research itself is not particularly novel. We can find so many references of
numerical simulations or experiments or analysis, even if we restricted Hele-Shaw cell
type problems. See [5] and references therein. However, to the authors’ knowledge,
principle of behavior of rising air bubble is not clear: What is the exact nature of the
zigzag instability? Why does oscillation bifurcate by size? How is the stable shape
determined? Can we control the behavior of bubbles? ... the full answer of dynamics
of rising bubble is yet unknown. If we control the behavior of bubbles, wide-ranging
application will be waiting in physics, chemistry, medicine, and technology [6].

The difficulties arise from the bubbles interaction with its own wake, appearance
of Karman vortex street, and deformable surface of bubbles. And mathematical dif-
ficulties arise from complex analysis of the fundamental equations of fluids such as
Navier-Stokes equations, and movable or deformable surface of bubbles. From this
reason, in the first step of our research, we reduce Navier-Stokes equations to the two
dimensional problem by using Hele-Shaw approximation etc., and propose a simple
–as much as possible– model which can explain the behavior of bubble as in Fig.1.2.
At this stage, the study is ongoing, and so we will only report an introduction of
simple model equations in the following section.

2. Modelling. We take xyz-coordinate as in Fig.2.1. In the region of water, we
assume that motion of particles of water depends on Navier-Stokes equation:

(NS)
∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p +




0
−g
0


 + ν∇2

v.

Here ρ is density, ν is kinetic viscosity, and g is acceleration of gravity. Unknown
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Fig. 2.1. xyz-coordinate.

functions are pressure p and velocity v =




u
v
0


. We assume the third entry of velocity

is zero. Namely, the flow is described in the plane parallel to xy-plane for fixed z. In
what follows, we will simplify this equations.

Firstly, we require the following.

Request I: the velocity of water is very slow, and the flow is stationary.

By this request, we operate so-called Stokes approximation for stationary flow,
and so the LHS of (NS) is neglected:

(SS) 0 = −
1

ρ
∇p +




0
−g
0


 + ν∇2

v.

By using viscosity µ = ρν, each entry of (SS) is wrote down as follows:

(SS′)





px − µ∇2u = 0,
py + ρg − µ∇2v = 0,
pz = 0.

Then it is clear that the pressure p is a function of x, y, t only: p = p(x, y, t). Here
px = ∂p/∂x and so on.

Secondly, we require the following.

Request II: graph of u, v with respect to a variable z draw a parabola satisfying
“u = v = 0 at z = 0, h.”

From this request, we have u = az(z − h) and v = bz(z − h) with a = a(x, y, t),
b = b(x, y, t). Substitution this for (SS′), axx + ayy = bxx + byy = 0 holds since
p = p(x, y, t). Consequently, uxx +uyy = vxx + vyy = 0 is required, and we obtain the
following:

(SS′′)

{
px − µuzz = 0,
py + ρg − µvzz = 0.

⇐⇒





u =
px

2µ
z(z − h),

v =
py + ρg

2µ
z(z − h).
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Here uzz = ∂uz/∂z and so on.
Finally, we require the following.

Request III: take average of u and v in the z-direction.

Then, the two dimensional average velocity vector is expressed by a gradient of
pressure and the gravity term:

u =
1

h

∫ h

0

u dz = −
h2

12µ
px, v =

1

h

∫ h

0

v dz = −
h2

12µ
py −

ρgh2

12µ
.

We call the above Hele-Shaw approximation. Note that the usual Hele-Shaw approx-
imation corresponds to the case g = 0, and is called Darcy’s law.

From the above, we have the two dimensional velocity vector of water:

v =

(
u
v

)
= −

h2

12µ
∇p +

ρgh2

12µ

(
0
−1

)
.

By the assumption of incompressibility ∇ · v = ux + vy = 0, we obtain

∇
2p = pxx + pyy = 0.

Namely, the pressure is harmonic in water region.
Let Ω1 be water region, Ω2 bubble region, and Γ the interface between water and

bubble (Fig.2.2).

∂top

∂left ∂right

∂bottom

⇒ N
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Fig. 2.2. Water and bubble region, and boundary of the cell. N is outward normal vector.

In the bubble region, we operate Hele-Shaw approximation as in the water region.
Then we have the following two dimensional velocity vector:

(Vi) vi = −
h2

12µi

∇pi +
ρigh2

12µi

(
0
−1

)
in Ωi.

Here subscript i indicates unknown function and constants in each region: i = 1 water
and i = 2 bubble. It seems that the area of bubble is almost constant in Fig.1.2, so
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we assume that two dimensional flattened bubble is incompressible ∇ · v2 = 0. Then
we obtain, for i = 1, 2

(Hi) ∇
2pi = 0 in Ωi.

Namely, the pressure is harmonic in each region∗1.
We set boundary condition of the cell as follows. Firstly, at the top of the cell

∂top, pressure is equal to the atmospheric pressure pa:

(Bt) p1 = pa (atmospheric pressure) on ∂top.

Secondly, at the left, right and bottom of the cell ∂left, ∂right, ∂bottom, we assume that
the entry of velocity of water in the outward normal direction N is zero∗2:

v1 · N = 0 on ∂left, ∂right, ∂bottom.

Since boundary of the cell is parallel to axis, this boundary condition is equivalent to
the following:

(Blrb)
∂p1

∂x
= 0 on ∂left, ∂right;

∂p1

∂y
= −ρ1g on ∂bottom.

Now let us consider conditions on the boundary Γ. Firstly, we consider law of
conservation of mass on Γ. Let normal vector n, on Γ, be toward from water to
bubble (Fig.2.3). Normal velocity of water (i = 1) and bubble (i = 2) is Vi = vi · n
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Fig. 2.3. Normal vector n on Γ.

(i = 1, 2). Let V̂i be a relative velocity of Γ (i = 1, 2). Then law of conservation of

∗1Of course, air is compressible in general, so this approximation seems to be inappropriate one.
From this point of view, we can require another approximation, i.e., the pressure is a constant in the
bubble region:

(H2
′) p2 ≡ p∗ (const.) in Ω2.

We will mention this approximation at the end of this section.
∗2Since we assume water being viscous fluid, condition of adhesiveness v1 = 0 can be considerable.

This condition follows that at each boundary ∂left, ∂right, ∂bottom ,
∂p1

∂x
= 0 and

∂p1

∂y
= −ρ1g are

required. However these conditions are over-determined. So we propose the next simple condition
instead of (Blrb):

(Blrb
′) p1 = pa + ρ1g(ytop − y) on ∂left, ∂right, ∂bottom .

Here ytop is y-coordinate of ∂top.
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mass is ρ1V̂1 = ρ2V̂2. Since air will not mix with water, ρ1V̂1 = ρ2V̂2 = 0 holds, and
then we have the following condition:

V̂1 = V̂2 = 0 on Γ.

Then we obtain velocity V of Γ:

(Γa) V = V1 = V2 on Γ.

Secondly, we consider momentum conservation law on Γ. Let Ti be a stress tensor.
Momentum vector is given by ρiviV̂i − Tin. Then we have the following condition:

[(
ρiviV̂i − Tin

)
· n

]i=2

i=1

= σκ on Γ.

Here σ > 0 is a coefficient of surface tension and κ is a curvature of n-direction∗3.
Now, stress tensor T is given by

T = −pE + µ

(
2ux uy + vx

uy + vx 2vy

)
,

then we substitute (Vi) for this and obtain the following∗4:

Ti = −piE −
h2

6
Hess(pi) (i = 1, 2).

From the above, we have the following condition:

(Γb)

[
pi +

h2

6
Hess(pi)n · n

]i=2

i=1

= σκ on Γ.

In the case where viscous stress is neglected, this condition will be so-called Laplace’s
relation:

(Γb
′) p2 − p1 = σκ on Γ.

Summarizing the above, we obtain the following model. Unknown functions are
pressures pi(x, y, t) (i = 1, 2), and moving boundary Γ:

Model 1: (H1), (H2), (Bt),





(Blrb)
or

(Blrb
′)



 , (Γa),





(Γb)
or

(Γb
′)



 .

In the case where we choose (H2
′), we put P = p∗ − p1 and Pa = p∗ − pa, and we

obtain the following model.

Model 2:





(H̃1) ∇
2P = 0 in Ω1,

(B̃t) P = Pa on ∂top,

(B̃lrb)
∂P

∂x
= 0 on ∂left, ∂right;

∂P

∂y
= ρ1g on ∂bottom,

(Γ̃a) V =
h2

12µi

∂P

∂n
−

ρigh2

12µi

ny on Γ,

(Γ̃b) P +
h2

6
Hess(P )n · n = σκ on Γ.

∗3We take positive sign if bubble is a circle.

∗4Hess(p) =

„

pxx pxy

pyx pyy

«

is Hessian.



152 T. K. Ushijima and S. Yazaki

Instead of (B̃lrb) or (Γ̃b), the following conditions are also available:

(B̃lrb
′) P = Pa − ρ1g(ytop − y) on ∂left, ∂right, ∂bottom.

(Γ̃b
′) P = σκ on Γ.
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