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Abstract.
In this paper we study a system of ordinary differential equations, which is concerned

with the motion of polygonal curves in the plane moving under anisotropic crystalline
curvature flows. The ODEs have a specific feature, which solutions blow up to infinity
in a finite time, and its singularity of blow-up is roughly divided into two types by their
rates. However, the singularities have not been completely classified. We discuss here
known and unknown blow-up rates as follows: First, we mention some known theoretical
results; and secondly, we estimate unknown blow-up rates numerically.
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1 Introduction

In around 1990, crystalline curvature flows were introduced by J.E. Taylor [9] and S.
Angenent and M.E. Gurtin[2]. They established new notion of moving curves in the case
where an interfacial energy density, defined on the curves, is not smooth and its Wulff
shape is a convex polygon. Such energy is called crystalline. Since their pioneer works,
so-called crystalline motion has been studied extensively under various kinds of evolution
laws by several authors.

In this paper we study the motion of shrinking convex polygonal curves in the plane
R2, which is governed by anisotropic crystalline curvature flows. The flows are defined in
the following way: Let the Wulff shape be an N -sided convex polygon, and let the sets
Θ = {θ0 < θ1 < θ2 < · · · < θN−1 < θ0 + 2π} with ϑj = θj − θj−1, where θj is the normal
angle of the j-th edge of the Wulff shape. For a convex N -sided polygon P we say that P is
admissible if the normal angle of the j-th edge of P is θj for all j ∈ I = {0, 1, . . . , N −1}.
Note that the original notion of the admissibility is defined for piecewise linear curves.
On each edge of an admissible convex polygon P the crystalline curvature κj = κj(t) is
defined by

κj =
γj

dj

, γj = tan
ϑj

2
+ tan

ϑj+1

2
=

sinϑj + sinϑj+1 − sin(ϑj + ϑj+1)

sin ϑj sin ϑj+1

.

Here dj = dj(t) is the length of the j-th edge of P . The curvature κ for smooth curves
is given as κ = dθ/ds by using the normal angle θ and the arc-length parameter s. Then
the crystalline curvature κj = γj/dj is a discrete version of κ in the sense of γj ∼ dθ and
dj ∼ ds.

We consider time evolution of a convex polygon P(t) in the plane under the evolution
law:

vj = ajκ
α
j ,

where vj = vj(t) is the inward normal velocity of the j-th edge of P(t), α is a positive
parameter and aj’s are positive constants which describe an anisotropy of mobility. Note
that the normal angle of each edge does not change under this flow. Therefore, if the initial
polygon P(0) is admissible, then the admissibility of a solution polygon is preserved as
long as the solution polygon exists.

From geometric consideration, this flow can be restated as the following system of
ordinary differential equations:

(P)

⎧⎪⎪⎨
⎪⎪⎩

d

dt
vj(t) = αa

−1/α
j vj

(α+1)/α(∆θ v + v)j, j ∈ I, t > 0,

vN(t) = v0(t), v−1(t) = vN−1(t), t ≥ 0,

vj(0) = ajκj(0)α, j ∈ I.

Here κj(0) is the crystalline curvature of the j-th edge of the initial polygon P(0) and the
operator ∆θ is defined by

(∆θ u)j =
(D+ u)j − (D+ u)j−1

γj

, (D+ u)j =
uj+1 − uj

sin ϑj+1

.
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Figure 1: Two numerical examples for single point extinction case (left) and degenerate
pinching case (right).

A local existence and uniqueness of the solution {vj} of problem (P) follow from a
standard theory of system of ordinary differential equations. Moreover, it is known that
for any initial admissible polygon at least the maximum of solution {vj} blows up to
infinity in a finite time, say T . This means that for any initial admissible polygon, the
maximal time of preserving the admissibility is finite and this flow develops singularity
at t = T .

M.-H. Giga and Y. Giga [3] showed the detailed information on limiting shape at the
final time T : if α ≥ 1 or there are no parallel pairs of edges, the solution polygon P(t)
shrinks to a single point, i.e., dj(t) → 0 as t → T for all j ∈ I; and if α < 1 and there
exists at least one parallel pair of edges, the solution polygon P(t) shrinks to a single point
or collapses to a line segment with a positive length. The latter phenomenon is called
degenerate pinching. B. Andrews [1] gave a sufficient condition of degenerate pinching.
In any case, the enclosed area of a solution polygon becomes zero at the final time T .
In Figure 1, two numerical examples are shown: The initial polygon P(0) is the outmost
polygon with N = 6 in each figure, and, from outside to inside, time evolution of P(t) are
plotted. The left figure indicates single point extinction case with α = 2 and the right
figure indicates degenerate pinching case with α = 1/2.

In section 2, theoretical results will be shown. We shall consider sublinear case α < 1
mainly and discuss a blow-up rate in degenerate pinching case. In section 3, numerical
studies will be focused. Recently, C. Hirota and K. Ozawa [5] developed a numerical
method of estimating blow-up time and (T − t)−p type blow-up rate. We will estimate
some blow-up rates numerically by using their method.

2 Behaviour of blow-up solutions

Here and hereafter, we use the notation
∑

j uj, umax, umin and u̇(t) for
∑

j∈I uj, maxj∈I uj,
minj∈I uj and du(t)/dt, respectively, and A ∼ B means c1A ≤ B ≤ c2A for generic
constants c1 > 0 and c2 > 0.

In this section we will characterize blow-up rate of solutions. As mentioned above,
in single point extinction case vj(t) blows up for all j since dj(t) vanishes at t = T
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simultaneously for all j (case Figure 1, left), and in degenerate pinching case vmin(t) is
bounded since lim inft→T dmax(t) > 0 holds (case Figure 1, right); while limt→T vmax(t) =
+∞ always holds (this is proved from lim inft→T dmin(t) = 0). In either case, vmin(t) and
vmax(t) are estimated from above and below by a specific blow-up rate, respectively, as
follows:

Lemma 2.1 Let α > 0. Then it holds that

vmin(t) ≤ a1/(α+1)
max ((α + 1)(T − t))−α/(α+1),

and that

vmax(t) ≥ a
1/(α+1)
min ((α + 1)(T − t))−α/(α+1).

In the case α = 1 these estimates were proved in [8]. It is easy to generalize to the case
α > 0. This result implies that the generic lower bound of blow-up rate is (T − t)−α/(α+1).
Moreover, if α > 1, then there exists a positive constant C such that vmax(t) ≤ C(T −
t)−α/(α+1), that is, the blow-up rate in the case α > 1 is exactly (T − t)−α/(α+1) (see
[1]). The order (T − t)−α/(α+1) specifies blow-up rate in the following sense: If aj ≡ 1
for all j ∈ I, then vj(t) ≡ ((α + 1)(T − t))−α/(α+1) is a special solution of (P) and a
corresponding solution polygon shrinks to a single point homothetically. This is so-called
self-similar solution. Using this order, blow-up solutions can be classified as follows:

Definition 2.2 (type I and type II blow-up) Let α > 0. We say that the solution
undergoes a “type I blow-up” if the blow-up rate of the maximum of solution {vj} is at
most the self-similar rate, that is,

sup
0<t<T

max
j∈I

vj(t)(T − t)α/(α+1) < ∞, (2.1)

and that the solution undergoes a “type II blow-up” if (2.1) does not hold.

A type II blow-up is sometimes called fast blow-up, because a solution {vj} undergoes
a type II blow-up if and only if

lim sup
t→T

max
j∈I

vj(t)(T − t)α/(α+1) = ∞.

If α > 1, the problem (P) has no fast blow-up solutions, that is, a type I blow-up
occurs only, and if α = 1, a type I and a type II blow-up are intermixed [1]; while if
α ≥ 1, a solution polygon shrinks to a single point [3], even if a type II blow-up occurs.
In general, the next lemma holds:

Lemma 2.3 Let α > 0. If a solution {vj} of (P) undergoes a type I blow-up, then the
solution polygon shrinks to a single point.

From this lemma, it holds that if degenerate pinching occurs, then a type II blow-up
occurs. If α < 1, and if the initial admissible polygon P(0) has at least one pair of
parallel edges and a distance between them is sufficiently small compared with length of
the edges, then degenerate pinching occurs [1]. Hence, by this lemma, a type II blow-up
solution exists if α < 1. The next theorem is the lower bound of a type II blow-up rate
when degenerate pinching occurs.
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Theorem A Let α < 1. If P(0) has a pair of parallel edges j0, j1 such that θj0 = 0, θj1 = π
and if the j0-th and the j1-th edges do not disappear as t tends to the final time T , then
for all j 	= j0, j1 the solutions vj blow up to infinity at least the following rate:

vj(t) ≥ C(T − t)−α, j 	= j0, j1, t ∈ [0, T ),

for a generic constant C > 0.

Under an additional condition on monotonicity of a solution, we obtain the exact type
II blow-up rate in degenerate pinching case.

Theorem B Assume

(A) (∆θ v(0) + v(0))j ≥ 0, j ∈ I.

If a solution has a degenerate pinching singularity, that is, a parallel pair of edges, the
j0-th and the j1-th edges, do not disappear at the final time T , then it holds that

vj(t) ∼ (T − t)−α, j 	= j0, j1, t ∈ [0, T ).

Lemma 2.3 and Theorem A and B are proved in [6] (with the Wulff shape being regular)
and in [7] (in general case).

In our knowledge, the above results and several results in [1] are only known about
type II blow-up, and then its rate has not been completely classified, in addition, the
existence of a type II blow-up in single point extinction case is still open problem. In the
next section, we will study unknown type II blow-up rates numerically.

3 Numerical studies

In this section, we estimate blow-up rate numerically for some initial data which does not
satisfy the condition in theoretical results in section 2.

In [5], Hirota and Ozawa developed a new numerical estimating method of blow-up
time and blow-up rate of solutions to a system of ordinary differential equations. Roughly
speaking, their method is based on the following three parts:

1. Arc length transformation technique:
Let us consider the initial value problem for the following system of ordinary differ-
ential equations

d

dt
yj(t) = fj(t, y0, . . . , yN−1), j ∈ I.

The next transformation is called arc length transformation:

d

ds

⎛
⎜⎜⎜⎝

t(s)
y0(s)

...
yN−1(s)

⎞
⎟⎟⎟⎠ =

1√
1 +

∑N−1
k=0 f2

k

⎛
⎜⎜⎜⎝

1
f0
...

fN−1

⎞
⎟⎟⎟⎠ , t(0) = 0.

From this transformation, a solution of a new problem never blows up in a finite
time even if the solution of the original problem blows up in a finite time.
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2. Generate a linearly convergent sequence to T :
Assume that there is only (T − t)−p type singularity. Here p > 0 and T is a blow-up
time of the original problem. We note that blow-up time is given by

T =

∫ ∞

0

ds√
1 +

∑N−1
k=0 f2

k

.

Let {sn} be the geometric sequence given by

sn = s0r
n (s0 > 0, r > 1, n = 0, 1, 2, . . . ),

and let define the sequence {tn} by

tn =

∫ sn

0

ds√
1 +

∑N−1
k=0 f2

k

.

Then {tn} converges to T linearly.

3. Acceleration by the Aitken ∆2 method:
The Aitken ∆2 method can be applied to linearly convergent sequence in order to
accelerate the convergence. Thus, we obtain an approximation of the blow-up time,
say T̃ . Let en = T − t(sn). Then limn→∞ |en+1/en| = r−1/p. Using T̃ instead of T ,
we can calculate an approximate value of p.

Now we apply this algorithm to the problem (P). For a numerical integrator of ODEs
from s = sn−1 to s = sn, we use the DOPRI5 code (see [4]) with parameters ITOL=0 and
RTOL=ATOL=1.d-15. Computations are performed by using the double precision IEEE
arithmetic. Set N = 8, ϑj ≡ 2π/N (the Wulff shape is regular), sn = 16 · 2n (s0 = 16 and
r = 2) and apply the Aitken ∆2 method 3 times. The following tables show numerical
estimates of blow-up rate p̃, |p̃−α/(α+1)|, |p̃−α| and ratio dmin/dmax. If a solution polygon
has degenerate pinching singularity at T , the ratio dmin/dmax tends to zero. Therefore, if
a ratio remains positive, then the solution polygon shrinks to a single point.

Here we show three typical numerical examples: Table 1 shows the case of a symmetric
anisotropic flow with α = 2 and Figure 2 shows time evolution (from outside to inside) of
a solution polygon. From them we see that the solution undergoes a type I blow-up and
the solution polygon shrinks to a single point. These numerical observations consist with
theoretical results.

Table 2 shows the case of a symmetric anisotropic flow with α = 1/2 and Figure 3
shows time evolution (from outside to inside) of a solution polygon. From them we see that
the solution undergoes a type I blow-up and the solution polygon shrinks to a single point.
In sublinear case α < 1, it is not clear that a solution undergoes a type I blow-up or a type
II blow-up in single point extinction case. Our numerical computations, including this
example, suggest that in every single point extinction case a solution blows up with type I
blow-up rate. However, we restricted the form of blow-up rate to (T−t)−p type, and so, we
cannot detect another type blow-up rate, for example (T − t)−α/(α+1)(log log 1/(T − t))−β,
numerically. At this stage, we conjecture that if there exists such kind of type II blow-up
rate, then the blow-up rate of this type II blow-up solution is very closed to (T−t)−α/(α+1).
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n p̃ error(Type I) error(Type II) ratio dmin/dmax

1 8.956e+01 8.889e+01 8.756e+01 1.143e-01
2 1.056e+00 3.893e-01 -9.440e-01 1.373e-01
3 2.471e-01 -4.195e-01 -1.753e+00 1.265e-01
4 4.768e-01 -1.899e-01 -1.523e+00 2.056e-01
5 5.736e-01 -9.305e-02 -1.426e+00 2.151e-01
6 6.205e-01 -4.614e-02 -1.379e+00 2.179e-01
7 6.437e-01 -2.297e-02 -1.356e+00 2.189e-01
8 6.552e-01 -1.145e-02 -1.345e+00 2.193e-01
9 6.609e-01 -5.724e-03 -1.339e+00 2.195e-01
10 6.638e-01 -2.885e-03 -1.336e+00 2.196e-01

Table 1: Convergent behavior of blow-up rate in the case α = 2.

Conjecture I Suppose that 0 < α < 1 and a solution polygon shrinks to a single point.
If there is a type II blow-up, then the upper bound of blow-up rate is (T − t)−α/(α+1)−ε for
any ε > 0.

Table 3 shows the case of a symmetric anisotropic flow with α = 1/2 and Figure
4 shows time evolution (from outside to inside) of a solution polygon. From them we
see that the blow-up rate is (T − t)−α and degenerate pinching occurs. In this case the
initial data does not satisfy the assumption (A). Our numerical computations, including
this example, suggest that in every degenerate pinching case a blow-up rate of solution
is exactly (T − t)−α or very close to (T − t)−α. If eventually monotonicity occurs, the
assertion of Theorem B is valid, that is, the blow-up rate is exactly (T − t)−α. Here
eventually monotonicity means that there exists t′ > 0 such that v̇j ≥ 0 for any j ∈ I
and t ≥ t′. This is an open problem.

Conjecture II Suppose that 0 < α < 1 and a solution polygon has degenerate pinching
singularity. The upper bound of blow-up rate is (T − t)−α−ε for any ε > 0.
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