The Formation of the Sommerfeld Quantum Theory of 1916
Sigeko Nisio*

I. Introduction

In 1916 Arnold Sommerfeld published a series of papers dealing with the
quantum theory of spectra in Annalen der Physik,' in which the 1913 Bohr theory
of the structure of the atom was greatly generalized and a general theory of
relativistic Keplerian motion was developed. As I pointed out in my earlier
paper,’ the Bohr theory of 1913 was unable to determine the arrangement of
electrons in the atom. At the earlier stage of development of the theory of
atomic constitution in the 1910’s, consideration of the chemical properties of
elements played the cardinal part in unravelling the configuration of electrons
in the atom. It was Sommerfeld’s theory that first provided an actual starting-
point for discussion of the structure of the atom on the basis of spectra. Som-
merfeld thus brought about an important extension and refinement of the quantum
theory of the atomic structure. On the basis of the Sommerfeld theory, the old
quantum theory of spectra was developed, and this development led Bohr to
formulate the correspondence principle, which in its turn opened the way to
matrix mechanics. The aim of the present paper is to enquire into factors which
contributed towards the formation of the Sommerfeld theory.

It was in 1911 that Sommerfeld first took up quantum theory. His first
paper dealing with quantum theory was presented on January 7, 1911 to the
Munich Academy of Science.® Its subject was the theory of - and X-brems-
strahlung. In the same year he published two further papers, one of which was
read at the 83rd meeting of German Scientists and Physicians on September 23,*
and the other at the first Solvay Congress held from October 30 to November 3.
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Both papers dealt with theory of bremsstrahlung, photo-electric effect, and ioniza-
tion potential. The most remarkable thing in these 1911 papers is the quantum
conditions employed in them. He assumed as the fundamental hypothesis rela-
tions of the forms,

time X energy = h
and
* h
(T—Vydt =2,
0 27
. where T and V are the kinetic and potential energies of the electron and z is the
duration of the process considered. These conditions, especially the latter one,

seem to suggest a close connection with the general quantum condition,

Spdq:nh,

which was to be postulated by Sommerfeld in 1916. The conditions of 1911
appear as a first step towards the general quantum condition of 1916. It is
therefore not surprising that historians of physics have regarded the 1911 papers
as the first groping towards “a new method”® or “a new mechanics”.” If we
consider the fact that Planck, in his paper presented to the first Solvay Congress,®
proposed a quantum condition of the form

S@@:h,

our impression is further strengthened. Was it not but a single step for Som-
merfeld, by adapting Planck’s idea to his theory, to reach the generalized quantum
theory that he actually presented in 1916.

But, in fact, the difference between Sommerfeld’s theories of 1911 and 1916
was not small. The nature of the problems dealt with by him in 1911 and 1916
was not the same. Whereas the theories in 1911 concerned an aperiodic system,
the 1916 theory dealt with a periodic system. This alteration of the subject was
brought about by the impact on Sommerfeld of Bohr’s theory of 1913. His
1916 theory, however, was not merely a mathematical extension or refinement
of the Bohr theory. Before he reached it, many new physical ideas had to be
introduced, which also contributed to the development of Sommerfeld’s interest
and thought concerning quantum theory between the years 1911 and 1916.
From where were those ideas supplied? To answer this question, it is necessary
to examine to what extent and in what way the work of other people, especially
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of Bohr and Planck, influenced the development of Sommerfeld’s idea during
the period 1911 to 1916.° :

In the following, I shall first survey, in section II, the general situation of
the theory of quanta around the year 1911. Sommerfeld’s concern with quanta
before 1911, too, will be examined. Then in section III, I shall describe the
main features of Sommerfeld’s theoretical pursuits in 1911, paying attention to
the supposed influence of Planck on him. In the period 1911 to 1915 he was
far less productive in quantum theory, publishing only three papers, which, as
will be seen in section IV, essentially presented little progress from the work in
1911. But in this very period Sommerfeld was following up Bohr’s effort in
developing his 1913 theory, and seems to have gained therefrom many physical
ideas which were to be worked out mathematically in the 1916 papers. Section
V is devoted to his debt to Bohr. Next, in section VI, Sommerfeld’s 1916 theory
is summarized in some detail as a preparation for the discussion in section VII
of the nature of the quantum conditions employed by him in 1911 and 1916.
This discussion will suggest the conclusion that Sommerfeld’s 1916 theory may
not be seen as the result of natural development of his 1911 theory. Intervention
of the Bohr theory was indispensable for his accomplishments of 1916. In section
VIII it is shown that part of the novel results in the 1916 paper stem from his
exchange of opinions with Planck. In section IX, after looking briefly at the
contemporary reactions of physicists to the Sommerfeld theory, I shall conclude
the present paper with a consideration of the characteristic features of Som-
merfeld’s achievement in theoretical physics as developed from the following
historical study of his quantum theory.

II. General Background Around 1911%

When in 1900 Planck derived his radiation formula,"” he seems not to have
attached cardinal significance to his assumption that the energy of an oscillator
was an integral multiple of a unit e = Av. For him it was rather a purely mathe-
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matical and formal assumption which was necessary in order to calculate the
number of ways of dividing up total energy among oscillators. As Martin J.
Klein and Hans Kangro have pointed out,” Planck, in fact, emphasized the
existence of the universal constant # which his radiation formula had revealed
rather than the idea of a discrete energy unit. We may add that Planck applied
the idea of a discrete energy unit only to the oscillator, not to free radiation.
The first to recognize the far-reaching implications of the Planck formula
was A. Einstein. In 1905, he reached the conclusion that the energy quanta
played a part not only in the interaction between radiation and matter, but also
in the propagation of radiation through space.® He indeed asserted that free
radiation itself consisted of discrete light quanta. A year later Einstein extended
the quantum structure of the oscillations of electromagnetic fields to the thermal
oscillations of material molecules and thus developed a quantum theory of the
specific heat of solid matter.* Another proponent of the light quantum hy-
pothesis was J. Stark. In 1907, he suggested the existence of an elementary
quantum of energy and pointed out phenomena which in his opinion supported
the quantum hypothesis; such as the photoelectric effect, the short wavelength
limit of X-rays which depended on the kinetic energy of electrons, and others.™
Furthermore in 1909 he made an accurate observation of X-ray production by
cathode rays, which appeared to him to confirm the light quantum hypothesis.
Majority opinion in those days, however, was that the light quantum hy-
pothesis was in absolute contradiction to the well-established electromagnetic
theory of light. Many physicists adopted, instead of this radical view, the more
conservative standpoint that the quantum discontinuities were rooted not in the
radiation itself, but rather in some peculiar structure of the atom which emitted
or absorbed the radiation. Among those who held such a view were A. Haas
and J.J. Thomson. The latter, though he had once proposed the idea of a light
particle,” in a paper of 1910 dealt with the theory of radiation on the basis of
the atomic model consisting of the electric doublet.”® There he asserts that “this
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theory enables us to explain the electrical effects produced by light, without
assuming that light is made up of unalterable units, each containing a definite
and, on Planck’s hypothesis, a comparatively large amount of energy, a view
which is exceedingly difficult to reconcile with well-known optical phenomena”.*
Thomson intensified his attack on the light quantum hypothesis in his paper of
1912 saying that it was the mechanism of exchange of thermal and radiant energy
and not the radiant energy itself which involved the element of discontinuity.”
A. Haas, who was the first to attempt a quantum-theoretical treatment of the
Thomson atom in 1910, considered the discreteness of energy to be derived from
the structure of the atom.*

Planck, too, rejected such a radical view as the light quantum, but he did
not attempt to explain 4 on the basis of the atomic structure.” He rather wanted
to regard 4 as connected with a fundamental principle of physics, the principle
of least action. This view appeared for the first time in his widely read textbook
Vorlesungen iiber die Theorie der Warmestrahlung.®® The relevant part of the book
is section 149, which follows the section where the formula for the entropy of
radiation is derived. Emphasizing the universal importance of the principle of
least action, he called his universal constant # “the elementary quantum of
action” or “the element of action” because of its having the dimension of energy x
time = action. Planck here also proposes the idea of quantizing the phase plane.
He shows that in the phase plane the representative point of an oscillator of
frequency v with a given energy U describes an elliptical orbit, the area enclosed
by this ellipse being just U/v. Then he points out that the elementary cells or
the elementary regions of equal probability corresponding to the energy interval
4U are elliptical rings of area (4U/v), and that his 1900 relation ¢ = Av can be
obtained by putting the energy element 4U equal to ¢ and the area (4U/v) equal
to the constant #, without the help of Wien’s displacement law. Thus he asserts
that the constant # has the meaning of the magnitude of an elementary region
in the phase plane. His confidence in this view must have been strengthened
by his study of the theory of relativity. In 1907 Planck developed the relativistic
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dynamics of a moving system, and remarked that, since H/+/c® — v, where H
was the kinetic potential of the system concerned, was a relativistically invariant

2
quantity, the action W = S H dt would have the same value in any inertial co-
1

ordinatesystem. Combining this fact with his view that the action had a definite
elementary quantum %, he suggested that “every change in nature corresponds
to a definite number of elements of action which is independent of the choice
of the coordinate system.”*

Thus, from a quite early time Planck was inclined to consider % as a mani-
festation of a physical law connected with action. His view in this regard was
probably rooted in his ideal of the pursuit of physics.® In his scientific autobio-
graphy, emphasizing that he has always looked upon the search for the absolute
as the noblest and most worthwhile task of science, he writes: “The velocity
of light is to the Theory of Relativity as the elementary quantum of action is to
the Quantum Theory: it is its absolute core. In this connection, it turns out
that a general principle of classical theory, the least-action principle, is also in-
variant with respect to the Theory of Relativity; accordingly, the quantum of
action retains its significance in the Theory of Relativity as well”.*® The inter-
pretation of % as the elementary quantum of action was repeatedly emphasized
by Planck. In the paper presented to the first Solvay Congress in 1911, he
pointed out that the hypothesis of a quantum of action would permit us to consider

the elementary region of equal probability to be of finite magnitude S dpdq = h,

emphasizing that in this sense the hypothesis of quantum of action was more
* fundamental than that of energy quanta.”

To sum up, until the year 1911 there had been proposed three different views
as regards the physical meaning of the Planck constant 2. The most radical one,
which was held by Einstein, Stark, and a few others, was the view that the elec-
tromagnetic radiation had a particulate structure consisting of light quanta Av.
The majority of physicists rejected this view. One of the remaining two views
was to consider the energy quantum to be derived from a particular structure
of the atom. The last was Planck’s idea of interpreting & as the quantum of
action representing the elementary region of equal probability in the phase space.

Sommerfeld, who had been a full professor of theoretical physics at Munich
University since 1906, had not dealt with quantum theory until 1911. In the

2 M. Planck, “Zur Dynamik bewegter Systeme”’, Sitzb. Preuss. Akad. Wiss. (1907), 542-
570; Ann. d. Phys., 26 (1908), 1-34; Physikalische Abhandlungen und Vortrige (Braunschweig, 1958),
2, 176-209. For information on this work of Planck’s, see T. Hirosige, ‘‘Relativistic Mechanics
in Its Early Days-3"* (in Japanese), Buturigakusi Kenkyu 6, No. 1 (1970), 27-61.

% M. Planck, Ibid., Phys. Abh., 2, 198. See H. Kangro, op. cit. (note 10), esp. 132.
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21 M. Planck, op. cit. (note 8), 113.
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light of this fact Armin Hermann suggests that Sommerfeld had been sceptical
over the quantum theory but in 1911 four factors induced him to draw his at-
tention to the quantum theory.” But there seems to be no positive evidence that
Sommerfeld had actually been sceptical over the quantum theory before 1911.
In fact he had at times referred positively to the quantum theory. In a paper
published in 1909 dealing with the theory of X-rays he writes that it is very
probable that Planck’s quantum of action plays a role in the case of emission
and absorption of the fluorescent part of X-rays, i.e. the characteristic X-rays,
by the atom.” In the same year, 1909, but prior to Sommerfeld, J. Stark pub-
lished two papers dealing with the angular distribution of the intensity of X-ray
bremsstrahlung.® He assumed that the bremsstrahlung, according to the classical
electromagnetic theory, had equal intensity in all directions, and concluded that
the experimental results could not be explained by the classical electromagnetic
theory. He thus reaffirmed his previous view that electromagnetic radiation
was of a particulate nature. Sommerfeld, in a letter to Stark dated December
4, 1909, criticized the latter’s papers harshly because of an erroneous assump-
tion of the angular distribution of the intensity of X-rays.> He was so deeply
convinced of his ability as a mathematical physicist that he was scornful of
Stark’s erroneous argument. _He, however, says that he is by no means opposed
to the quantum theory in general. In the same letter to Stark, he writes that
he does not doubt the significance of the quantum of action. Sommerfeld, for
his part, discussed in the 1909 paper cited above, the same problems as Stark
on the basis of Maxwellian electromagnetic theory and confirmed that the general
features of the experimental results could be deduced theoretically. Thus he
concluded: “[by] the discussion above, our confidence in the validity of the elec-
tromagnetic theory for elementary processes in the electric field, which seems
to have been undermined by the new speculation of a light quantum, is strength-
ened.”® Thus Sommerfeld, though admitting the general importance of the
quantum theory, rejected the concept of the light quantum. In this respect, he
was following the majority view of the day. To compare numerically the results
of his calculations with the experimental results, however, it was necessary to
know a parameter which was related to the atomic constant, such as the dura-

28 The four factors pointed out by Hermann are: 1) The derivation of the Planck radiation
formula by P. Debye, the then assistant of Sommerfeld, 2) W. Nernst’s effort to organize the
1911 Solvay Congress, 3) H. A. Lorentz’ lecture on the quantum theory in 1910 at Géttingen,
4) Sommerfeld’s meeting with Einstein, supposedly in middle of 1910. A. Hermann, op. cit.
(note 9), 122-125. ’ )

2% A Sommerfeld, “Uber die Verteilung der Intensitit bei der Emission von R&ntgen-
strahlen’’, Phys. ZS., 10 (1909), 969-976, esp. 970. T

30 J, Stark, op. cit. (note 16).

31 A. Hermann, “Die frilhe Diskussion zwischen Stark und Sommerfeld iiber die Quanten-
hypothese (1)”’, Centaurus, 12 (1967), 38-59, 45. :

32 A. Sommerfeld, op. cit. (note 29), 976.
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tion of bremsung of an electron or the distance through which acceleration of
the electron occurred. But the electromagnetic theory alone could not suggest
such a constant. For that purpose he had to introduce the Planck constant into
his considerations. But this was not done until 1911.

III. Sommerfeld’s Quantum Theory, 1911

Sommerfeld’s approach in 1911 was novel in two respects. First he at-
tempted to apply the quantum hypothesis, which had so far been applied ex-
clusively to periodic elementary systems, to an aperiodic elementary process.
Second, he proposed an expression of the quantum hypothesis different from
those of Planck and Einstein. In doing so he reached a view opposite to the
current one with regard to the relation of # and the atom. Contrary to the view
held by many physicists that # might be derived from a particular structure of
the atom, he supposed that the existence of the atom was a consequence of the
existence of 2. Sommerfeld’s theory of 1911 was also novel in its approach,
being different from all the methods so far proposed, which had been used ex-
clusively for statistical mechanical problems. It must be borne in mind, how-
ever, that the basic idea of his theory might not have been entirely original.
He, as we shall see, seems to have been profoundly influenced by Planck.

The theory of y-rays which he presented at the Munich Academy of Science
in January, 1911, as was the case in his earlier theory of X-rays, was based on
the assumption that the y-rays were emitted by bremsung of g-particles.® He
considers y-rays to be emitted when electrons are accelerated from rest to the
speed with which they are ejected as 8-rays from an atom. The electromagnetic
theory of bremsstrahlung shows that the ratio of the energy of g-rays to that of
y-rays is .

E, _6xc’ly1 — B

E,  e(e/m)p
where [ is the length of acceleration, that is, the range of the force, m, the rest
mass of an electron, § the ratio v/c, v the velocity of a g-particle, and ¢ the light
velocity. To compare this expression with experimental data, it was necessary
to determine the quantity /, the unknown parameter in the equation above. For
this purpose he adopted “the fundamental hypothesis of Planck’s radiation theory”
and assumed “that one quantum of action % corresponds to each emission”.*
Taking, as the quantity of action, the product of the duration of acceleration =
and the total energy of the 8-particle, he put

8 A. Sommerfeld, op. cit. (note 3). It had generally been supposed that X-rays and r-rays
were analogous types of radiation. As to the nature of the r-rays, as in the case of X-rays, there
existed two theories, the corpuscular and pulse (bremsstrahlung) theories. See, for example,
E. Rutherford, Radioactive Substances and Their Radiations (Cambridge, 1913), chap. VI, 286-292.

3 A. Sommerfeld, op. cit. (note 3), 24-25.
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e e _
JI—F
from which [ was obtained, the acceleration being assumed uniform. The energy
ratio thus obtained turned out to agree, in order of magnitude, with that obtained
from radioactivity studies. The value of / was shown to be 10-3~10-*times
smaller than the linear dimension of an atom, 10~% cm.

In the same paper Sommerfeld also applied the same quantum condition to
the discussion of continuous X-rays. Between the time interval z, during which
the cathode ray particle is decelerated to rest by the intra-atomic force, and the
kinetic energy E,,, of the cathode ray particle, he postulated the relation,

2
T Eyp=1 - %19_2(1 —VT=F)=h.
The reason for taking E,,, instead of the total energy was that he supposed the
atom to be capable of receiving only kinetic energy from the cathode ray particle.
The result, in this case too, agreed with experimental results in order of magni-
tude. Sommerfeld then proceeded to show that, between the kinetic energy
E,;, of the cathode ray particle and the frequency v of X-rays produced by it,
the same relation E,,, = Av as that assumed by W. Wien and Stark in 1907 in
their light quantum hypothesis,*® could be derived from his hypothesis. He
supposed that the hardness of X-rays or r-rays was expressed in terms of the
width 2 of the pulse bremsstrahlung, 2 being given by 2 = ¢t — I cos ¢, where
¢ is the angle measured from the direction of the incident electron. Since 2 is
equal to ¢z when ¢ = x/2, or, what amounts to the same thing, the average of
4 is cz, if the width of pulse is assumed to correspond to the wavelength, Som-
merfeld’s fundamental relation r.E,, = k corresponds to Wien and Stark’s
formula E,;, =hv. Thus he concluded that it was not necessary to discard the
classical electromagnetic theory.3

Thus Sommerfeld introduced the elementary quantum of action & in order
to determine the linear dimension of the accelerating region or the duration of
bremsung. However, no reference is made by Sommerfeld to Planck through-
out this paper. This is probably because, by that time, Planck’s hypothesis of
quantum of action had become widely accepted by physicists, who had been
acquainted with it through Planck’s widely read textbook Vorlesungen. Som-
merfeld, in his 1911 paper considered above, called % “‘quantum of action”, which
was a term used probably for the first time in Planck’s Vorlesungen.*

The next opportunities for Sommerfeld to mention the quantum of action

b

3% J. Stark, op. cit. (note 15). W. Wien, “Uber eine Berechung der Wellenlinge der Ront-
genstrahlen aus dem Planckschen Energieelement”, Gottinger Nachrich. (1907), 598-601.

3 A. Sommerfeld, op. cit. (note 3), 39-41. See also note 46, 710-711.

37 M. Planck, op. cit. (note 23), 153-154.
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were the annual meeting of German Scientists and Physicians in September, 1911
and the first Solvay Congress held about a month later. In the papers presented
to these congresses,® he modified his former quantum condition so as to give it
a more plausible appearance, and proposed the fundamental hypothesis that in
every atomic process, namely in every elementary interaction between an atom
and an electron, the atom emitted or absorbed a definite amount of action, the
amount being determined by the condition,

h

T

@-na=1,
0

where 7 is the duration of the interaction, and T and V are the kinetic and
potential energies of the system considered.

Using this hypothesis he tried to explain the production of y- and X-rays,
the photoelectric effect, and the ionization potential. Applying this hypothesis
to the theory of y- and X-rays, he obtained results which, as in the previous
paper, agreed with experimental results in order of magnitude. As for the pho-
toelectric effect, Sommerfeld supposed that an electron quasi-elastically bound
to the atom was liberated when, under the action of external radiation, the energy
of the electron reached a certain value. The time interval = which was required
for the energy to reach this value was assumed to be determined by the funda-
mental quantum condition. He then showed that, in the case of resonance,
when the frequency v of incident radiation was equal to the eigenfrequency v,
of the bound electron, the relation T = hy, = hv, the Einstein photoelectric equa-
tion, could be derived. In the case without resonance, if v > v,, the photo-
electron is ejected, whereas if v < v,, it cannot be ejected. To evaluate the
ionization potential the fundamental condition was applied to an incident electron
assuming that an atom was ionized by collision with an electron. The lowest
velocity of the incident electron required for ionizing the atom, or the ionization
potential, was obtained for a rare gas atom, for which 7 could be assumed ap-
proximately equal to zero. The value obtained agreed with the experimental
results in order of magnitude.

The form of the quantum condition used in the September and November
papers is different from the one used in the January paper. From the physical
point of view, the former is more important than the latter. It seems likely
that the influence of Planck lead Sommerfeld to modify his quantum condition.
A. Hermann has pointed out the correspondence in 1911 between Sommerfeld
and Planck which strongly suggests that Sommerfeld owed the modification to
Planck.® Moreover, we can add other internal evidence which suggests Planck’s
influence upon Sommerfeld.

38 A. Sommerfeld, op. cit. (notes 4 and 5).
39 A. Hermann, op. cit. (note 9), 132-133.
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In the papers of September and November, Sommerfeld gives following
argument in order to justify his quantum condition. Since % has the dimension
of action, he argues, it is natural to associate it with Hamilton’s action principle.
Now, the time integral of the relativistic Lagrangean H, the action, is invariant
with respect to the Lorentz transformation. The absolute quantity in physics,
therefore must be neither energy nor the time integral of energy, but action.
It will then be reasonable, in the non-relativistic case too, to associate the uni-
versal constant # with the action. This reasoning based on a relativistic con-
sideration resembles Planck’s argument in his paper of 1907 on relativistic
dynamics, which Sommerfeld cited in the places where he made the above argu-
ment.” As noted in the preceding section, Planck remarked that the action

3
W = S H dt, beingan invariant, would be associated with the quantum of action.
1 .

The resemblance of their arguments clearly indicates that Sommerfeld was con-
siderably influenced by Planck’s 1907 paper.*

I will now turn to the physical meaning which Sommerfeld then attached
to the quantum hypothesis. As was noted at the beginning of this section, he
considered the quantum of action 4 as the basis of the existence of the atom.
Both at the meeting of German Scientists and the Solvay Congress, rejecting
various attempts to explain 4 on the basis of atomic structure, he expressly
declared: “From the opposite point of view I would like to consider the existence
of molecules as a consequence of the existence of the elementary quantum of
action, but not to attempt to deduce 4 from the molecular dimension”.# This
view of k was really an innovation. But in other respects Sommerfeld remained
rather conservative. He did not think that the quantum hypothesis would violate
the Maxwellian electromagnetic theory. He considered his fundamental quantum
condition to be compatible with the Maxwellian theory. In the paper presented
to the Solvay Congress, he says that the electromagnetic theory of X-rays should
be completed by the inclusion of the theory of radiation, that is, by introducing
the element of action, and that both theories are complementary.* Being con-
vinced of the general validity of the classical electromagnetic theory, he could
regard the quantum hypothesis merely as a determining condition of the pa-
rameter concerning the nature of the atom, which could not be determined

10 A, Sommerfeld, op. cit. (note 4), 1063; (note 5), 318-319.

4 Since the year 1907, when Sommerfeld was converted to a ‘‘relativist”, he himself had
pursued the relativity theory: see A. Hermann (ed.) Albert Einstein/ Arnold Sommerfeld Briefwechsel
(Basel, 1968), 20-21. Sommerfeld always paid due attention to all that was going on in various
branches of physics: see H. Hermann, op. cit. (note 9), 123. Being so diligent a physicist, he
would never have overlooked such a remarkable paper as Planck’s, which played an important
role in the development of relativistic dynamics.

42 A. Sommerfeld, op. cit. (note 4), 1066; (note 5), 363.

43 A. Sommerfeld, op. cit. (note 5), 333.
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solely by the electromagnetic theory. Thus the innovation brought about by
him in the interpretation of 4, that is, the view that the very existence of 4 was
to determine the dimensions of the atom, was a result of his rather conservative
view that the quantum of action did not destroy the electromagnetic theory but
rather supplemented it.

If, as Sommerfeld believed, the acceptance of the quantum hypothesis does
not imply the destruction of the classical electromagnetic theory, it would be
natural to be sceptical as he was about the concept of the light quantum. In
his conservative view of the quantum hypothesis as a whole, and his sceptical
attitude to the light quantum in particular, Sommerfeld was apparently in line
with Planck. In 1910, Planck manifestly rejected the theory of the light quan-
tum by Einstein and Stark saying that such a theory would imply a retrogression
over centuries in the theory of light.# He declared that in introducing the
quantum of action one should be as conservative as possible. In the following
two years, 1911 and 1912, he developed a modified theory of radiation assuming
that the oscillator continuously absorbed electromagnetic energy whereas it
discontinuously emitted the radiation.*

Adherence to classical notions was common between Sommerfeld and
Planck. In this connection, it is also worth noting that Sommerfeld’s theory of
photoelectric effect, in one respect, resembles Planck’s modified radiation theory
of 1911-12. In Sommerfeld’s theory, an electron bound to an atom is assumed
to absorb radiation energy continuously until its energy reaches a definite value
which is determined by a quantum condition. The electron then is ejected
abruptly. In Planck’s theory, a resonator continuously absorbs radiation energy
until its energy reaches the value nhy, when this energy is instantaneously emitted
as radiation. The behaviour of the atom in the former theory and that of the
resonator in the latter are similar to each other. Planck’s theory was first
presented to the German Physical Society in February, 1911. It is quite possible
that Planck’s theory furnished a hint to Sommerfeld. In factin his paper dealing
with the photoelectric effect in detail,* published in Annalen der Physik in 1913,
Sommerfeld himself admits the similarity of his theory to Planck’s, though, at
the same time, he enumerates differences between their theories.

I said at the beginning of this section that one of the novelties in Som-

4 M. Planck, ‘“‘Zur Theorie der Wirmestrahlung”’, Ann. d. Phys., 31 (1910), 758-768; Phys.
Abh., 2, 237-247.

4 M. Planck, ‘‘Eine neue Strahlungshypothese’’, Verh. d. Deutsch. Phys. Ges., 13(1911), 138-
148; Phys. Abh., 2, 249-259. M. Planck, ““Zur Hypothese der Quantenemission”, Sitzb. Preuss.
Akad. Wiss. (1911), 723-731; Phys. Abh., 2, 260-268. M. Planck, ‘“Uber die Begriindung des
Gesetzes der Schwarzen Strahlung’’, Ann. d. Phys., 37 (1912), 642-656; Phys. Abh., 2, 287-301.
For Planck’s 1910~1911 work, see T. Hirosige and S. Nisio, “The Genesis of the Bohr Atom
and Planck’s Theory of Radiation”’, Jap. Stud. Hist. Sci., No. 9 (1970), 35-47, esp. 42-44.

4 A. Sommerfeld u. P. Debye, “Theorie des lichtelektrischen Effektes vom Standpunkt des
Wirkungsquantums’’, Ann. d. Phys., 41 (1913), 873-930, esp. 923.
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merfeld’s theory was that he applied the notion of the quantum of action to
aperiodic processes. Strictly speaking, however, this too was not entirely origi-
nal with Sommerfeld, because it may be said that Planck had already suggested
in his paper of 1907 the possibility of applying the quantum of action to aperiodic
processes. In that paper Planck clearly states that “every change in nature
corresponds to a definite number of elements of action.”” From this statement
one may easily draw the implication that an aperiodic process too would be
governed, in one way or another, by the quantum of action.

It may therefore be said that Sommerfeld’s contribution to the development
of quantum theory in the year 1911 consists in his embodying Planck’s recent
ideas by performing detailed calculations on individual processes.

Before closing this section, we will glance at the reaction of contemporary
physicists to Sommerfeld’s theory. In the discussion following Sommerfeld’s
report at the Solvay Congress, Einstein characteristically remarked, referring to
the calculation of the energy of X-rays, that a satisfactory agreement with ex-
periment might not always be viewed as direct confirmation of the hypothesis
on which the theory was based. But other participants, especially Planck and
Lorentz, were apparently in favour of Sommerfeld’s theory of photoelectric
effect.*

Sommerfeld’s theory in fact attracted the attention of several physicists for
the reasons that it was an extension of the quantum theory to an aperiodic process,
that it formulated a dynamical expression of the hypothesis of the quantum of
action, and that it seemed compatible with the Maxwellian electromagnetic
theory. In a survey article on the quantum theory, which was written in 1913
reviewing the proceedings of the first Solvay Congress, F. Reiche noted the
novelty of Sommerfeld’s theory, and posed the question of what relation existed
between Sommerfeld’s theory, which he said could be called the theory of the
“elementary quantum of action”, and Planck’s and Einstein’s theories.® Without
giving answer of his own, Reiche remarked that the existence of alternative
forms of the theory meant that the idea had not gelled and that it might take
much time to reach a full understanding of the theory, but in view of the results
derived from the quantum theory, he felt that the theory had achieved remark-
able success in a short time. J. Franck and G. Hertz in their paper of 1913
dealing with the ionization potential of several gases, referred to Sommerfeld’s
theory, though they did not conclude that it was the best theory as regards agree-
ment with their measurements.” R. Seeliger in 1913 gave a survey of theoretical

47 M. Planck, op. cit. (note 24), Phys. Abh., 2, 198.

4 A. Sommerfeld, op. cit. (note 5), 381.

49 A. Sommerfeld, op. cit. (note 5), 391-392,

5 F. Reiche, ‘“Die Quantentheorie’’, Naturwiss., 1 (1913), 549-553, 568-572.

5t J. Franck u. G. Hertz, ‘“Messung der Ionisierungsspannung in verschiedener Gasen’’,
Verh. d. Deutsch. Phys. Ges., 15 (1913), 34-44.
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and experimental research on the ionization of gases and praised the generality
of Sommerfeld’s theory.”” He remarked that Sommerfeld’s theory considered
the ionization process to be an energy transfer to an atom as a whole, whereas
in other current theories the ionization potential was calculated on the basis of
a particular atom model. Two years later in 1915, M. Wolfke in his paper
“Uber eine Verkniipfung des Sommerfeldschen Wirkungsprinzips mit der Plancks-
chen Quantentheorie”® dealt with cavity radiation on the basis of Planck’s gen-
eral principle of 1907 that every change in nature corresponds to a definite
number of elements of action. Assuming that this element of action was equal
to Sommerfeld’s, #/2z, he deduced that the energy of radiation with frequency
v was equal to an integral multiple of the energy quantum Av.

IV. Interlude, 1912-15

After the year 1911, and before 1915, Sommerfeld made no substantial
progress in his pursuit of quantum theory, though during this period he published
several papers on the quantum theory. Ishall now look into the problems which
were dealt with in these papers.

In 1913 Sommerfeld published two papers worth mentioning, one of which
bore the title “Unsere gegenwirtigen Anschauungen iiber Rontgenstrahlung”,®
and the other, written with Debye, was entitled “Theorie des photoelektrischen
Effekts vom Standpunkt des Wirkungsquantums”.® In the former paper Som-
merfeld reviewed the experimental and theoretical work published so far, and
gave an account of his own theory of X-rays originally published in 1911. In
the previous year, 1912, he made an important contribution to establishing the
electromagnetic wave theory of X-rays by estimating the wavelength of X-rays
at < 4 X 10~°cm from an analysis of the X-ray diffraction which H. Haga and
C.H. Wind in 1903, and B. Walter and R. Pohl in 1908 obtained by using slits.®
In the 1913 paper Sommerfeld’s emphasis was on the equivalence of his electro-
magnetic pulse theory and the wave theory. In the second paper of 1913, which
dealt with the photoelectric effect, Sommerfeld discussed in detail, on the basis
of his quantum hypothesis, the motion of an electron in an atom when the latter
‘was exposed to light of various wavelengths. The results of this detailed calcula-

52 R. Seeliger, ‘‘Einige allgemeine Bemerkungen zur Theorie der Stossionisation”, Jahrb. d.
Rad. u. Elektron., 10 (1913), 431-445.

88 M. Wolfke, “Uber eine Verkniipfung des Sommerfeldschen Wirkungsprinzips mit der
Planckschen Quantentheorie’, Phys. ZS., 16 (1915), 207-209.

8 A. Sommerfeld, “Unsere gegenwirtigen Anschauungen iiber Rontgenstrahlung”, Na-
turwiss., 1 (1913), 705-713. ,

% A. Sommerfeld u. P. Debye, op. cit. (note 46).

5% A. Sommerfeld, “Uber die Beugung der Rontgenstrahlen’’, Ann. d. Phys., 38 (1912),
473-506. Sommerfeld had long studied problems concerning diffraction. For example, ‘“Ma-
thematische Theorie der Diffraction” (Habilitationsschrift), Math. Ann., 47 (1896), 317-374;
““Theoretisches iiber die Beugung der Rontgenstrahlen”, ZS. Math. u. Phys., 46 (1901), 11-97.
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tion had already been presented at the two meetings of 1911, the meeting of the
German Scientists and the Solvay Congress. The second 1913 paper, therefore,
represents no essential progress in his theory. '

For our account of Sommerfeld’s work on the quantum theory in 1913 to
be complete, the Wolfskehl lectures should also be mentioned.” This is a course
of lectures on the kinetic theory of matter which were given by several authors
at Gottingen University during the last week of April, 1913. Sommerfeld was
among the lecturers. The others were Planck, Debye, Nernst, M. V. Smolu-
chowski, and Lorentz. Sommerfeld lectured on the kinetic theory of mono-
atomic gases based on the quantum theory. He attempted to explain the thermal
properties of gases by supposing that, quite analogously to Debye’s theory of
solid matter, a number of Planck energy quanta were distributed over individual
eigenfrequencies of “sound waves” in a cubical vessel with very hard walls con-
taining a given number of monoatomic gas molecules. The contents of this
lecture, however, as Sommerfeld himself remarked, were largely based on an
investigation by his student W. Lenz. .-

In 1915 Sommerfeld published a theory of dispersion.®® He derived the
dispersion formula using Bohr’s model of the molecule, which consisted of elec-
trons rotating in rings around several nuclei distributed on the axis of symmetry.
As the simplest examples he dealt with hydrogen, helium, nitrogen, and oxygen.
In the first two cases the frequency of rotation of an electron determined by
comparing his formula with experimental results agreed with that obtained by
Bohr’s angular momentum condition p = #/2z. In the latter cases, however, a
considerable discrepancy was found. He was inclined to ascribe this discrepancy
to the over-simplified model of the molecule used in his calculation. This theory
of dispersidn, however, was not entirely original to Sommerfeld, because, as he
himself remarked, Debye had already obtained a quantitatively exact dispersion
formula for hydrogen on the basis of Bohr’s model of the hydrogen molecule.®
His paper therefore was an extension of Debye’s work, and may be characterized
as a mathematical elaboration of it.

Having examined Sommerfeld’s work concerning the quantum theory during
the years 1912-1915, we may conclude that, judged from the published work,
he made little essential progress in his investigations of quantum theory during
this period. His papers published in this period were directed to refining the
mathematical treatment of individual problems. The quantum hypothesis ap-

5 A. Sommerfeld, ‘‘Probleme der freien Wegldnge’’, in M. Planck, etc., Vortrige. Uber Die
Kinetische Theorie Der Materie Und Der Elektrizitit (Leipzig u. Berlin, 1914), 123-166.

8 A.Sommerfeld, “Die allgemeine Dispersionsformel nach dem Bohrschen Modell’’, Eister-
Geitel-Festschrift (Braunschweig, 1915), 549-584; Gesammelte Schriften (Braunschweig, 1968), 3,
136-171.

8 P. Debye, ‘‘Die Konstitution des Wasserstoff-Molekiils”’, Sitzb. Bayer. Akad. Wiss. (1915),
1-26.
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plied to them remained the same as that proposed in 1911. The last subject,
the theory of dispersion, however, is remarkable in showing Sommerfeld’s interest
in the Bohr atom. In fact his interest in the Bohr theory had been evoked even
before 1915 when, enlarging the Bohr theory, he first launched the generalized
quantum theory of spectra. He had paid attention, since as early as 1913, to
the development of Bohr’s quantum theory. This is revealed by investigating
his correspondence and the records of colloquia at his institute.

V. Debt to Bohr’s Theoretical Pursuits

Sommerfeld was one of those who first reacted favorably to Bohr’s theory.
He alluded to Bohr’s paper as early as July 1913 in a note appended to his Solvay
Congress paper in the German version of the proceedings of the Congress.®
There, in connection with the ionization potential of hydrogen, he refers to the
relation between the binding energy and the radius of the hydrogen atom which
Bohr gave in his first paper. But it was in his postcard to Bohr dated September
4, 1913, which L. Rosenfeld has published in his introduction to the reprint
edition of Bohr’s papers, that he praised the Bohr theory.® There he writes
that, having been pondering over the problem of expressing the Rydberg constant
in terms of the Planck constant, he is extremely pleased with Bohr’s success in
solving this problem. At the same time, however, he says that he is, for the
moment, sceptical about the atom model in general. Also he asks whether Bohr
is going to look at the Zeeman effect on the basis of his model and adds that
he himself wishes to attack this problem.

This postcard suggests that Sommerfeld paid attention to Bohr’s work not
because he was interested in the structure or the model of the atom, but rather
because of his deep interest in spectra. He welcomed Bohr’s theory primarily
as a successful theory of the hydrogen spectrum. At the beginning of his 1915
paper on dispersion, which was discussed in the previous section, he writes
“Die bedeutsamen Erfolge, welche das Bohrsche Atommodell fiir die Theorie
der Spektrallinien gebracht hat”.®

Sommerfeld had been greatly interested in spectroscopy, especially in the

€ A. Sommerfeld, ‘‘Die Bedeutung des Wirkungsquantums fiir unperiodische Molekular-
prozesse in der Physik’’, Abh. d. deutsch. Bunsenges. f. angewandte phys. Chemie (Halle, 1914),
7, 252-3117, 299; Gesammelte Schriften, 3, 70-135, 117.

61 L. Rosenfeld, “Introduction” to N. Bohr, On the Constitution of Atoms and Molecules
(Copenhagen, 1963), L11.

82 A, Sommerfeld, op. cit. (note 58), Gesammelte Schriften, 3, 136. In a memoir written in
1942 Sommerfeld says that he had been interested in the problem of whether there was a relation
between Rydberg’s constant and Planck’s constant and that Bohr’s 1913 paper made deep im-
pression on him. He also writes that he had been interested in the anomalous Zeeman effect,
about which he had been told by his friend, mathematician C. Runge who, with H. Kayser, had
been measuring it. A. Sommerfeld, ‘“Zwanzig Jahre Spektroskopischer Theorie in Miinchen”’,
Scientia, 1942, 123-130; Gesammelte Schriften, 4, 632-639, esp. 633-634.
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Zeeman effect for some time. For example, in 1913 he published a paper dealing
with the Zeeman effect of an anisotropically bound electron and the Paschen-Back
effect.® Then, in 1914, he published a paper dealing with Voigt’s theory of
Zeeman effect.* His deep interest in spectroscopy is reflected also in the topics
discussed at his weekly colloquium, known as the Munich Wednesday colloqui-
um.® There from December 1912 to January 1913, N. Weber reported on
Stark’s discussion of the regularity of spectra in his Atomdynamik, Vol. 2, and
Sommerfeld talked about his own theoretical consideration of the Paschen-Back
effect. The discovery of the Stark effect, which was first reported by Stark on
November 20, 1913 at the meeting of the Berlin Academy of Science, aroused
Sommerfeld’s keen interest. As early as December 10, 1913, at the Munich
colloquium, E. Wagner commented on Stark’s paper and demonstrated a Stark
effect experiment. From January of 1914 on, Bohr’s work was constantly taken
up at the Munich colloquium.

The sequence of these dates seems to suggest that in fact Sommerfeld’s chief
reason for considering the Bohr atom was the discovery of the Stark effect.
And at the same time, interest in the structure of the atom also seems to have
been evoked in Sommerfeld. Before the Bohr theory of 1913 was published,
no problem concerning atomic structure had been taken up as a topic at the
Munich colloquium. As his postcard to Bohr clearly shows, in those days Som-
merfeld was not interested in the real structure of the individual atom. The
fact that, though in January 1911, when discussing the theory of y-rays, he ob-
tained for the order of magnitude of the length of bremsung the value [ ~ 10~
cm,® he did not pay even the slightest attention to Rutherford’s nucleus, whose
dimensions had been shown to be of the same order as Sommerfeld’s /, seems to
show his indifference to the structure of the atom. In his theory of the photo-
electric effect of 1913 Sommerfeld postulated an atom in which an electron was
quasi-elastically bound. However, regarding it “as a substitute for the atom
model, or so to speak an analytical model of the main character of the atom,
which, because of its generality and modesty, was probably more trustworthy
than any special constitution of the atom by mass, charge, and motion”,” he
abandoned the attempt to deduce the eigenfrequencies of electron vibration in
the atom.

6 A. Sommerfeld, “Der Zeemaneffekt eines anisotrop gebundenen Elektrons und die
Beobachtungen von Paschen-Back”, Ann. d. Phys., 40 (1913), 748-774.

& A. Sommerfeld, ‘“Zur Voigtschen Theorie des Zeeman-Effektes”, Gottinger Nachrich.
(1914), 207-229; Gesammelte Schriften, 3, 47-69.

8 Register volume for Miinchener physikalisches Mittwochs-Colloquim, Dec., 1908 to May,
1939, in the Archive for the History of Quantum Physics deposited at the Library of the American
Philosophical Society in Philadelphia, and other places.

66 A. Sommerfeld, op. cit. (note 3), 29.

67 A. Sommerfeld u. P. Debye, op. cit. (note 46), 923.
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Generally speaking, it seems that in Germany problems concerning the real
structure of the atom received little interest at that time. For instance, Planck’s
resonator was considered by himself as merely a mathematical model from which
the radiation formula could be derived. In his letter to W.H. Bragg dated
December 20, 1911, Rutherford described his impression of the first Solvay
Congress saying: “I was rather struck in Brussels by the fact that continental
people do not seem to be in the least interested to form a physical idea of the
basis of Planck’s theory. They are quite content to explain everything on a
certain assumption, and do not worry their heads about the real cause of the
thing. I must, I think, say that the English point of view is much more physical
and much to be preferred”.® Bohr’s theory of atomic constitution was, as I,
with T. Hirosige, have emphasized in an earlier paper, initiated by his deep
concern for an explanation of the chemical properties of atoms in terms of their
structure.® Bohr may possibly have acquired the English taste for the structure
of the atom through his contact with J.J. Thomson and Rutherford. By in-
heriting through Bohr the English concern over the structure of the atom, which
was alien to the German tradition, Sommerfeld now was able to develop a theory
of spectra, and to use it as an important clue to atomic structure.” From the
above considerations it may be concluded that an important aspect of the impact
of Bohr’s theory on Sommerfeld was that it aroused in him interest in problems
concerning the structure of the atom, and thus initiated his theoretical inquiry
into the structure of the atom.

His efforts in this direction culminate in his generalized quantum theory of
1916. Among the achievements of this theory are the relativistic explanation
of the fine structure of spectral lines and the general treatment of Keplerian
motion. The initial drive for these achievement too, however, as 1 will show
below was owed by Sommerfeld to Bohr. Early in 1914 Bohr, while he was
involved in a dispute concerning the assignment of spectral lines of hydrogen
and helium,™ attempted to explain the Zeeman and Stark effects on the basis of
his theory.” Bohr supposed that each series of the spectrum of an element cor-
responded to a series of stationary states of the atom in which one of the electrons
moved outside the rest. The configuration of the inner electrons was assumed
to be nearly the same in each series, while that of the outer electron changed
from one state to another roughly in the same way as the electron in the stationary

% A.S. Eve, Rutherford (Cambridge, 1939), 208.

8 T. Hirosige and S. Nisio, ‘“‘Formation of Bohr’s Theory of Atomic Constitution”, Jap.
Stud. Hist. Sci., No. 3 (1964), 6-28.

" The role of the English tradition was suggested to the author by Prof. Tetu Hirosige.

7 N. Bohr, “The Spectra of Helium and Hydrogen”’, Nature, 92 (1913), 231-233; *“The Spectra
of Hydrogen and Helium”, Nature, 95 (1915), 6-7.

2 N. Bohr, “On the Effect of Electric and Magnetic Fields on Spectral Lines”, Phil. Mag.,
27 (1914), 506-524.
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states of the hydrogen atom. Bohr further assumed that the doublets in the
spectra of many elements were due to small perturbing forces originating in the
configuration of the inner electrons, which exerted different effects on the motion
of the outer electron according to the location of the latter’s orbit. In the case
of the hydrogen spectrum, however, Bohr was forced to devise a different mech-
anism because the lines observed were diffuse and the separation of the com-
ponents varied widely according to the observers. He supposed that the effect
was due to the electric field causing the gaseous discharge.

Meanwhile, W. E. Curtis, performing very accurate measurements of the
wavelength of the hydrogen lines, found a small deviation from the Balmer
formula.” On the basis of this result he concluded that Bohr’s argument on the
doublet lines H, and H, observed in the Balmer series could not be maintained.
He admitted that Bohr’s interpretation might account for the fact that the separa-
tion of the doublet lines varied according to the experimenter, because the electric
fields used by different observers were usually different, but this would not be
able to explain, he pointed out, why the ratio of the separations of H, and H,
doublet components had varied according to a single observer.

Searching for a way to overcome this problem, Bohr early in 1915 hit upon
the variation of the electron mass with its velocity.” He thought that the devia-
tion of the hydrogen spectrum from the Balmer formula, observed by Curtis,
might be accounted for by this relativistic effect. Assuming a circular orbit
for the electron, he obtained the formula for frequency with the correction:

o= iy G~ L S b )
B(m + M) (n n: En? (n? n:
where m was the mass of the electron and M the mass of the nucleus. Here the
motion of the nucleus too is taken into account. However, this correction could
account for only one-third of the deviation observed by Curtis. Bohr however
thought that since the separation of the components of each hydrogen doublet
was much greater than the deviation from the Balmer formula, it was of primary
importance to explain the doublets theoretically. Bohr felt that the cause of
the doublet might be that electron orbits were not circular. If the orbit was
not circular, he reasoned, it would rotate around an axis through the nucleus
when the velocity of the electron was high. The frequency of the rotation of
the orbit would depend on its eccentricity. For very small eccentricity the ratio
between the frequencies of rotation of the orbit and of revolution of the electron
was given by 2z%¢/n’c*h*, which, when n = 2, was of the same order as the ob-

73 W. E. Curtis, “Wave-lengths of Hydrogen Lines and Determination of the Series Con-
stant”, Proc. Roy. Soc., 90A (1914), 605-620.

74 N. Bohr, ““On-the Series Spectrum of Hydrogen and the Structure of the Atom’’, Phil.
Mag., 29 (1915), 332-335.
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served separation of the doublet lines of hydrogen. Having obtained this result,
however, Bohr remarked that in view of the many assumptions made for the
calculation, it would be of little use to pursue this problem in further detail
before more accurate measurements of the separation of doublets were possible.

Sommerfeld is generally understood to have been the first to attempt to
account for the hydrogen doublet by considering the effect of the relativistic
variation of electron mass. But our examination above clearly shows that the
attempt was first made by Bohr, early in 1915.

The initial step to extend the Bohr theory of 1913 to Keplerian motion was
also taken in Bohr’s early-1914 paper examined above.” Searching for an ex-
planation of the Stark effect, he suggested the existence of elliptical orbits in the
hydrogen atom, arguing as follows: as a result of the influence of an external
electric field, the electron orbit, which was originally circular, will be deformed.
If the force is not perpendicular to the plane of the orbit, the deformation will
become considerable in the course of time. The orbit may at every moment be
considered an ellipse with the nucleus as one of the foci. Due to the effect of
the field, the direction of the major axis as well as the eccentricity of the ellipse
will gradually vary. Though detailed investigation of the motion of the electron
may become enormously complicated in such a case, it is easily shown that there
are two stationary orbits of the electron, whose eccentricities are both equal to
1 and whose major axes lie parallel to the axis of the external field; the orbits
simply consist of straight lines through the nucleus, one parallel to the axis of
the field, another antiparallel to it. By means of a correspondence consideration,
Bohr concluded the energy 4, of the n-th state for these orbits to be

27%'m (1 +E 3n'nt ) ’
n*h? 167%e®m®

where E is the intensity of the external field. The principal term of the right-
hand side represents the energy when the external field is absent, and has been
proved to be exact for any value of n. The whole expression above for A4,,
therefore, may be assumed to hold good for any n. Then it follows that the
hydrogen atom in an external field does have two series of stationary states.
Assuming that the system can transit only between different states in each series,
the frequency of the radiation emitted by a transition between two states cor-
responding to n, and n, is obtained as
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This formula gives for the separation of any hydrogen doublet the value
3 &
dy = y E(nj — n}),

"76 N. Bohr, op. cit. (note 72), 513-517.
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which is proportional to the electric field. In the way sketched out above, Bohr
gave an explanation of the general features of the Stark effect in the hydrogen
spectrum. Discussing the extension of the theory to other general elements,
Bohr remarked on the special features of the case of hydrogen. In this case,
the external field acting upon the stationary state has been considered to cause
variation in the orientation and eccentricity of the orbit of the electron in the
presence of the field. The possibility of such a variation is clear from the fact
that in the absence of an external field every elliptical orbit is stationary. But
in the case of other elements, Bohr argued, there will be perturbing forces exerted
by the inner electrons and the condition just mentioned is not satisfied. The
effect of an external electric field on the stationary states, therefore, is expected
to be much smaller than for the corresponding states of the hydrogen atom.

Thus it is clear that Bohr had already suggested the existence of elliptical
orbits of the electron in the hydrogen atom. But his explanation of the Stark
effect itself, though it was more advanced than the first attempt by E. Warburg
in December 1913 to explain the Stark effect on the basis of the Bohr atom,™
was by no means complete. It could explain only the main feature of the two
strongest components (z-components) of the split hydrogen lines. This must
have been a challenge to Sommerfeld, who considered it the most important
area of research of physics that the results of detailed theoretical calculation
should agree with experiment.” On May 27, 1914, in fact, he took up Bohr’s
theory of the Stark effect as the subject of the Munich colloquium. As will
shortly be discussed, the difficulty in explaining the Stark effect seems to be the
reason why his general theory was not published until the end of 1915.

Not only the theory of the Stark effect, but the whole theoretical pursuit
of Bohr was followed up at the Munich colloquium.” On November 19, 1913,
P.P. Ewald made a report on the annual meeting of the British Association held
in September, where Bohr’s 1913 theory was for the first time discussed publicly.
However, emphasis in Ewald’s report was laid upon Bragg’s work on X-ray
diffraction presented at the meeting. On January 26, 1914, P. S. Epstein reported
on the work of Bohr published during 1913-14 in Philosophical Magazine. On
May 27, 1914, as mentioned above, Sommerfeld and Lenz reported on Bohr’s

"6 E. Warburg, “Bemerkungen zu der Aufspaltung der Spektrallinien im elektrischen Feld”,
Verh. Deutsch. Phys. Ges., 15 (1913), 1259-1266. Warburg presented this paper at the meeting
of the German Physical Society on December 5, 1913, shortly after the discovery by Stark, which
was reported at the meeting of the Berlin Academy of Science on November 20, 1913:  J. Stark,
“‘Beobachtungen iiber den Effekt des elektrischen Feldes auf Spektrallinien”, Sitzb. Preuss. Akad.
Wiss. (1913), 932-946.

" For example, he wrote in Part I of the Annalen paper (op. cit. note 1) that his generalized
quantum equations expressed for each degree of freedom were inspired by experimental results
of the Balmer series. See also section VI and VIII.

"8 Register volume for Miinchener physikalisches Mittwochs-Colloquium, op. cit. (note 65).
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theory of the Stark effect in Philosophical Mazazine (1914) and as well as on W.
Voigt’s theory of the Stark effect in Géttingen Nachrichten. Subsequently, on
July 15 Bohr himself gave a guest lecture on his atom model, especially on the
spectra of helium and hydrogen, and on November 27, 1915, Sommerfeld talked
on the recent work of Bohr.™

Thus in 1914, while investigating the dispersion theory by means of Bohr’s
model of the atom and the molecule, which was to be published in 1915, Som-
merfeld began to develop an elaborate theory of the Balmer series. At the be-
ginning of the paper presented on December 6, 1915, he declared that about a
year earlier he delivered a lecture on the subject to be discussed in that paper.®
He wrote also in his autobiographical sketch that he had talked about his extension
of Bohr’s theory to his colleagues in the winter of 1914/15.% The reason for
delaying publication was, according to Sommerfeld, that his theory could not
satisfactorily explain the Stark effect.® It was early in 1916 that Epstein, a
pupil of Sommerfeld and K. Schwarzschild, director of the Astrophisical Observ-
atory at Potsdam, succeeded independently in explaining the Stark effect on the
Balmer series.® As to the Zeeman effect, Sommerfeld himself gave its explana-
tion in 1916.%

From the above considerations, it follows that it was probably because
Sommerfeld was spending time to follow up the development of Bohr’s ideas
after 1913 that the extension of the Bohr theory had not been effected until the
end of 1915. After all, the necessary ideas such as the existence of elliptical
orbits of the electron in the hydrogen atom and relativistic effects as the cause
of the doublet of the hydrogen spectrum had been advanced by Bohr during
1914-15, Sommerfeld worked them out mathematically into a complete theory.
Even more fundamentally, as was noted earlier, his interest in problems concern-
ing the structure of the atom first arose due to Bohr’s influence. :

VI. Sommerfeld’s Quantum Theory, 1915-1916
The discussion in the previous section shows that Sommerfeld’s quantum

7 This work is probably N. Bohr, ‘‘On the Quantum Theory of Radiation and the Structure
of the Atom’’, Phil. Mag., 30 (1915), 394-415.

80 A, Sommerfeld, “Zur Theorie der Balmerschen Serie’’, Sitzb. Bayer. Akad. Wiss. (1915),
425-458, 426.

8 A. Sommerfeld, ‘‘Autobiographische Skizze™, Herausgegeben von F. Bopp. in Geist und
Gestalt. Biographische Beitrage zur Geschichte der Bayerischen Akademie etc., 2 (Miinchen, 1959),
100-109, 105; Gesammelte Schriften, 4, 673-682, 678.

82 A, Sommerfeld, op. cit. (note 80), 426.

88 P. S. Epstein, ‘‘Zur Theorie des Starkeffektes”, dnn. d. Phys., 50 (1916), 489-520, received
on May 9, 1916. The preliminary report was presented on March 26, 1916 to Phys. ZS.: P.S.
Epstein, “Zur Theorie des Starkeffekts”, Phys. ZS., 17 (1916), 148-150. K. Schwarzschild, ‘““Zur
Quantenhypothese’’, Sitzb. Preuss. Akad. Wiss. (1916), 548-568.

8¢ A. Sommerfeld, ‘““Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem An-
hang iiber den Stark-Effekt’’, Phys. ZS., 17 (1916), 491-507.
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theory of 1916 may be called a generalization of the Bohr theory of atomic
constitution. At the same time, however, we should not overlook the debt that
he owed to Planck. There is more than one aspect of the mutual connection
between Sommerfeld and Planck in their pursuit of quantum theory. But before
considering this, we will examine the essential results obtained by Sommerfeld
in his papers of 1915-16.

The first report of Sommerfeld’s 1916 theory was in fact presented on De-
cember 6, 1915 to the Munich Academy of Science, and was soon published.®
This work was, as its title “Theorie der Balmerschen Serie’’ suggested, an exten-
sion of Bohr’s theory of hydrogen spectra. Here, in contrast to his earlier theory
of 1911 which dealt with aperiodic elementary processes, he turns his attention
to the periodic process and, correspondingly, he replaces his former fundamental

hypothesis by the quantization of phase space: SS dp dg = h or its more con-

venient form S pdq = nh. From this condition can be derived the quantum

conditions which have so far been supposed for the motions of a periodic system
with one degree of freedom, such as the rotation of a gas molecule and the orbital
motion of the Bohr atom. He then considers the application of the fundamental
hypothesis to a more general model of the hydrogen atom in which the electron
is permitted to describe not only circular orbits, but also elliptical orbits. In

this case, the quantum condition S py d¢ = nh for the angle ¢ and corresponding

angular momentum p,, together with the Bohr frequency condition, gave an ex-
pression for the frequencies of hydrogen spectral lines which varies continuously
with the continuous change of eccentricity. This result obviously conflicts with
the Balmer formula. Sommerfeld therefore supposes that it is necessary to add
another condition to quantize the eccentricity of the elliptical orbits. The sim-
plest assumption is that the radial variables should be subjected to, by analogy
with the angular variables, the condition,

Sp,dr: n'h,

which guarantees a reasonable expression for the frequency:

(= )

v=N — ,

(n Yy (mtmy

where N is Rydberg’s constant. With these quantum conditions Sommerfeld
could also deduce the relation b/a = n/(n + n’) which determines the ratio of

the minor semiaxis b to the major semiaxis a of the ellipse. This result shows,
Sommerfeld thought, that a line of the Balmer series should be a superposition

8 A, Sommerfeld, op. cit. (note 80).
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of several lines corresponding to various electron transition processes between
orbits with varied eccentricity. He therefore supposes that there must be a rule,
a selection rule as we might call it, that determines which of the possible transi-
tions would really occur, and discusses possible forms of the rule at some length.

As regards the spectral lines of elements other than hydrogen, Sommerfeld,
like Bohr, supposes that an analogy with the case of hydrogen might be applicable,
except that the term 1/(n + n’)® appearing in the expression for the frequencies
of hydrogen lines should be replaced by a function of » and n’, ¢(n, n’). The
number of spectral series and the multiple lines observed in the spectra of ele-
ments other than hydrogen may be explained by supposing the existence of a
series of such stationary states of the atom in which one of the electrons moves
outside the rest. He argues that the last inference was supported by the simplest
case of hydrogen. He also suggests that in the general case, besides radial and
angular variables r and ¢, the z component should also be taken into considera-
tion, the frequencies being expressed in terms of a function ¢(n, n’, n").

In the next paper presented on January 8, 1916 to the Munich Academy®
Sommerfeld attempted to verify the theory outlined above, in particular the
existence of the elliptical orbits, by considering the fine structure of hydrogen
lines on the basis of that theory combined with the relativistic variation of electron
mass. In this paper, detailed calculations are carried out concerning the number
of components of the fine structure, the interval between the components, and
their intensities in a number of individual cases. Comparison of the result of
the calculation with experimental observations is made as far as possible for the
spectra of hydrogen, ionized and neutral helium, lithium, and especially for the
K- and L-series of the characteristic X-ray spectra which Sommerfeld supposes
to show a marked relativistic effect. He notices disagreements between his
calculations and experimental observations on the splitting of the doublet of
hydrogen, and on the dependence of the splitting of the L-doublet upon the
atomic number. However, on February 10, 1916 he added an appendix to the
January 1916 paper, in which he showed that these disagreements were removed
if the region of the phase integral for the azimuthal variable ¢ was corrected:*
he had formerly taken as the limits of the integral the azimuth (¢ = 0) of the
first perihelion and that of the next perihelion (¢ was not equal to 2z due to the
relativistic correction). But he now replaced them by the region from ¢ = 0
to ¢ = 2, as in the case of non-relativistic motion.

It was in the three-part article published in Annalen der Physik about seven

8 A. Sommerfeld, ““Die Feinstruktur der Wasserstoff- und der Wasserstoff-dhnlichen
Linien’’, op. cit. (note 80), 459-500. For a detailed account of the relativistic theory of fine
structure, see, for example, M. Born, The Mechanics of the Atom (New York, 1960), §33, 201~
207.

87 A. Sommerfeld, Ibid., 498-500.
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months later that Sommerfeld’s quantum theory of a system with many degrees
of freedom was fully developed.® The major part of this article may be con-
sidered essentially a reproduction of the previous two papers of December, 1915
and January, 1916. Part I and Part II of this article correspond, respectively,
to the first and the second of these papers. The theory of the fine structure of
the characteristic X-ray spectra, previously contained in the second paper, is
now enlarged to be a separate Part IIl. There are, however, many essential
revisions and additions throughout the article.

Part I of the article deals with the theory of the Balmer series.® Sommerfeld
intends to generalize Bohr’s theory of the hydrogen spectra. For this purpose
he first postulates a generalized quantum hypothesis for a system with many
degrees of freedom:

Sdpi dg=h, i=1,2,.--f (f: the degree of freedom),
or in the more convenient form

Spnidqi —nh, n=1,2,.

i=12,.---f.
Sommerfeld applies his quantum condition to simple examples such as the linear
oscillation of a mass point, the rotation of a mass point with a constant angular
velocity, and the behaviour of the angular coordinate ¢ in Keplerian motion.
In the case of Keplerian motion, as discussed in the December 1915 paper, the
quantum conditions for the radial coordinate r, as well as for the angular variable
¢, together with the Bohr frequency condition, give for the Balmer series the
formula

v=N ( 1 - I ) .
(n + n')? (m 4+ m')?
Then Sommerfeld discusses the number and the form of quantized orbits with a
given energy and attempts, as in the previous paper, to set up a selection rule,
that is, the relation, the quantum unequality as he calls it, between the quantum
numbers n, n’, m, m’, which determines which of the possible transitions between
various quantized orbits may really occur. On this basis he estimates the relative
intensity of the components of hydrogen doublets.

Sommerfeld then poses the question whether or not the orbits are spatially
quantized. To answer this question, it is necessary to fix one direction in space
as the axis of reference. He supposes that an external electric or magnetic field
or the electron configuration of inner core of the atom would provide the axis
of reference. The intensity of these external or internal agents then has to be

88 A, Sommerfeld, op. cit. (note 1).
8 A. Sommerfeld, op. cit. (note 1), I, 1-44.
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reduced to zero so that only the privileged direction of orientation of the atom
would remain. This direction is taken as the axis of the equatorial plane of the
polar coordinate system r, 6, ¢. Here r denotes the radius vector, 6 the latitude,

and ¢ the azimuth. The fundamental assumption gives as the quantum condi-
tions for three variables:

2
S Py dd = njh, Spodl?:nzh, Sp,dr:n’h.
0

Relations between these quantum numbers and the inclination & of the orbital
plane with respect to the equatorial plane are obtained as

—_Mn —
cosa = P 2zp = (n, + ny)h .
This first equation shows that the inclination is quantized. The space quantiza-
tion shows that to each line of the Balmer series there corresponds more than
one kind of transition. These complex lines would, Sommerfeld supposes, be
separated into their individual components corresponding to different »,’s and
ny’s by the Zeeman and the Stark effects.

In the last section of Part I, Sommerfeld discusses the choice of a coordinate
system in dealing with the dynamics of the atom. A similar problem had already
been discussed in the corresponding last section of the previous December 1915
paper entitled “Uber die Unabhingigkeit des Quantenansatzes von der Wahl der
Koordinaten. Beziehungen zur allgemeinen Mechanik”.® Referring to the
fundamental hypothesis in terms of the quantum of action proposed in his former
1911 theory, Sommerfeld argued there as follows: According to general dy-
namics, the kinetic energy T is written as T = £ ¥ p4. In the case of periodic
or quasi-periodic motion, the time average of the kinetic energy T is given by

T= i Sto+
T Jt

ert=iZSqu=_1_(n+n'+ ...)h,

0 27 27

where 7 is the period. From this equation it is readily seen that the sum of
quantum numbers, (n + n’ + - ..), has a definite physical meaning independent
of the choice of coordinate systems, but it is undecided whether each quantum
number always corresponds to individual coordinates separately. This is the
case for Keplerian motion, the coordinates ¢ and z being cyclic. Both ¢ and z
then have a dynamical meaning and their phase integrals are constant, being
equal to 2zp and 0, respectively. When the mean kinetic energy T of the system
is equal to the mean potential energy ¥, the total energy W becomes equal to an
integral multiple of #v. In the case that the electron is subjected to an arbitrary
central force F = Kr*-'r, the mean kinetic energy T is given by

9% A. Sommerfeld, op. cit. (note 80), 454-458.
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r=ttly,
e+3
By comparing this equation with the equation above 2Tz = (n + n’ + - - -)h, the
relation between W and &, which resembles the condition, energy X time = &,
proposed in the first 1911 paper on 7- and X-rays, is obtained.

Now in the corresponding section of Part I of the Annalen paper, the argu-
ment outlined above was replaced by a consideration of theories of the Stark
effect which had just been presented by Epstein and Schwarzschild, independently
of each other. Epstein sent his preliminary report to Phys. ZS. on March 26,
1916 and subsequently gave a detailed account in a paper in Annalen.” Schwarz-
schild read his paper at the meeting of the German Physical Society on March
30, 1916.” In their papers, on the basis of analytical dynamical considerations,
they clarified the problem of the choice of the proper coordinates for expressing
the quantum conditions. Sommerfeld here outlined their discussions on the
relation between the quantum condition and the Hamilton-Jacobi general dy-
namics and stressed that his generalized quantum condition could be formulated
whenever a coordinate system was found in which the Hamilton-Jacobi dif-
ferential equation was of a separable variables type.

In Part II, as in the January 1916 paper, Sommerfeld, in order to verify his
theory developed in Part I, considers the fine structure of hydrogen and hydrogen-
type spectra on the basis of a relativistic quantum theory.® He discusses rela-
tivistic Keplerian motion in greater detail. Explicitly introducing a constant
a = 2rné*[he, the so-called fine structure constant, which determines the degree
of deformation of elliptical orbits, he obtains an approximate relativistic expres-
sion of the energy of orbital motion as

V= gy Co) [ ()t )

where N is the Rydberg constant, E the charge of the nucleus, and » and n’ are
azimuthal and radial quantum numbers. On the basis of this equation he dis-
cusses the general character of the fine structure of the spectral lines and carries
out calculations concerning the number of the components of the fine structure,
the distance between the components, and their intensity for a number of in-
dividual cases. From the results of his calculations he attempts to explain the
observational results for hydrogen, ionized and neutral helium, and lithium.
In Part III Sommerfeld deals with the fine structure of the characteristic

X-ray spectra.* From the experimental results obtained by Moseley and others,

9 P. S. Epstein, op. cit. (note 83).

92 K. Schwarzschild, op. cit. (note 83).

98 A. Sommerfeld, op. cit. (note 1), II, 44-94.

9 A. Sommerfeld, op. cit. (note 1), III, 125-167. See S. Nisio, ‘““X-rays and Atomic Structure
at the Early Stage of the Old Quantum Theory”, Jap. Stud. Hist. Sci., No. 8 (1969), 55-75.
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Sommerfeld concludes that the frequency of the K,-line is expressed by the
equation
vg,=K— L,

where K = N((Z — k)*/a*), L = N((Z — 1)*/b*), aand b being 1 and 2 respectively,
and where (Z — k) and (Z — [) are the effective charges on the nucleus. This
equation indicates, he thought, that the K and L terms would behave similarly
to those for hydrogen if the nuclear charge were replaced by the effective charge,
and the electrons, at least in the innermost two rings, would describe hydrogen-
like orbits. He could therefore apply the relativistic expression for the energy
of orbital motion obtained in Part II to the motions corresponding to the K- and
L-terms. The separations of the L-doublets thus obtained agrees satisfactorily
with measurements for elements from Z = 24 (Cr) to Z = 92 (U), if / expressing
the screening effect is made equal to 3.5 and k equal to 1.6.  This result strength
ened his conviction that the K and L orbits should be hydrogenlike.

Concluding his consideration, Sommerfeld pictures the atom model as fol-
lows: The difference between the optical spectra and the characteristic X-ray
spectra is that, while the former is produced by the displacement of electrons
outside the electron cloud, the latter is produced by the displacement of electrons
belonging to the innermost part inside the electron cloud. The similarity of the
spectral terms for the K-line and the hydrogen-type terms suggests that the elec-
trons describing K and L orbits are hardly disturbed by the electron cloud. This
explains the fact that the larger the quantum number in the case of optical spectra,
and the smaller in the case of X-ray spectra, that is to say, the more distant the
electrons taking part in the emission of radiation are from the electron cloud,
the more the spectrum formula approaches a hydrogen-type formula.

Compared with the previous two papers, the revisions and additions in the
Annalen paper may be summarized as follows: 1) The generalized quantum
condition for a system of f degrees of freedom,

“dpidqizh (=1,2,3, -, f)

is for the first time postulated explicitly as a fundamental hypothesis. In the
previous paper he did use a similar condition, but it was not formulated with
full generality. The region of the phase integrals is modified so as to give better
agreement with experiment. 2) The quantization of the latitude variable is added.
3) The choice of the system of coordinates to be used is considered in connection
with the theories of the Stark effect by Schwarzschild and by Epstein. 4) The
relativistic Keplerian motion of electrons is discussed in greater detail and the
importance of the fine structure constant as a spectroscopic constant is stressed.
The available experimental data to be compared with the results of calculation,
especially for X-ray spectra, had increased since Sommerfeld wrote the former
papers.
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It is very remarkable that Sommerfeld, throughout his 1916 article, is very
much concerned to compare his calculations with experimental observations.
His deep interest in such comparisons with observational results may be explained,
I believe, by the fact that his quantum condition then had no sound theoretical
foundation. As he stresses in Part I of his article, his quantum condition is
merely a formal generalization of the quantum condition obtained for the hy-
drogen Balmer series.” Therefore good agreement of his calculations with ob-
servations must have been the only evidence that he could adduce in support of
his generalized quantum theory.

VII. Methods of Quantization in 1911 and 1915-16
Comparing Sommerfeld’s theories of 1911 and of 1916, one of the differences
is the fundamental hypothesis for quantizing the system considered. Sommerfeld
in 1916 postulates the relation,

S dpdg =k, @)

whereas in 1911 he used the condition,
energy X time ~ 4, (b)
or S (T — Vydt = hj2z.. (b))

The idea of quantizing a physical system by means of a condition of the form
(a) is also found in Planck’s paper of 1911 presented to the first Solvay Congress.®
In that paper, as was noted in section 11, Planck proposed to divide the phase
plane of an oscillator into cells, for each of which

Sdpdq:h,

and to regard them as elementary domain of equal probability. In his December
1915 paper and 1916 Annalen paper, Sommerfeld, referring to “Planck’s famous
ellipses of a linear oscillator”, repeats the same idea of dividing the phase space
into elementary domains of equal probability.” In the latter paper, citing Planck’s
Solvay Congress paper, he explicitly writes that he considers “as the elemen-
tary domain of probability, according to Planck, a phase integral with finite

extension”, S dpdg = h.

As was mentioned in section II, Planck had already in his Warmetheorie of
1906 and Acht Vorlesungen at Columbia University in 1909 derived the quantized

9% A. Sommerfeld, op. cit. (note 1), I, 6.

9% M. Planck, op. cit. (note 8), 99.

97 A. Sommerfeld, op. cit. (note 1), I, 5 (note 80), 427.
9% A. Sommerfeld, op. cit. (note 1), 1, 5.
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energy of resonator U = nhy by dividing its phase plane into elementary domains
of area h. This method of quantization was adopted in 1911 by F. Hasenohrl
in his attempt to derive the Balmer formula.* At the 83th meeting of German
Scientists and Physicians, he proposed to derive the Balmer formula by assuming
a special kind of oscillator, for which he put Planck’s quantum condition above
in the form,

SElrdE= SE’rdE = SE”‘“rdE= k,
0 Ey Ep

where E was the energy of the oscillator and = was its period. Sommerfeld also
noticed, in his paper presented to the same meeting, that Planck’s radiation
formula could be derived by considering elementary domains of equal probability
without introducing the energy quantum.” There he cites Planck’s Columbia
lectures.”™ These facts show that, by 1911, Planck’s idea of quantizing the
phase space had become well-known and had occasionally been used by others.

However, in dealing with aperiodic processes, which were the main target
of Sommerfeld’s effort in 1911, he did not use the method of dividing the phase
space. This, it seems, was not without reason. For before 1911 the quantum
concept had been used exclusively in problems involving statistical mechanical
considerations such as black-body radiation and the specific heat of solids. The
resonator and the atom that lie at the basis of these phenomena could be assumed
to be periodic systems. On the other hand, the problems with which Sommerfeld
was faced in 1911 were concerned with elementary and aperiodic processes. It
would be quite natural that he should feel it necessary to coin a new type of
quantum hypothesis. This appears to be the reason why Sommerfeld in 1911
used, instead of quantization of the phase space, a quantum hypothesis of type
(b). In fact, he emphasizes the novelty of his subject by titling his paper pres-
ented to the Solvay Congress as “Application de la théorie de 1’élément d’action
aux phénoménes moleculaires non periodiques”.

In contrast to this, in 1915-16 Sommerfeld based his theory on the quantiza-
tion of the phase space. This is not an astonishing change, since sometime be-
tween 1913 and 1915 he turned his attention from aperiodic processes to periodic
ones. After 1913 when he tried to elaborate the theory of photoelectric effect,
he never dealt with the theory of aperiodic elementary process such as photo-
electric effect, ionization, and bremsstrahlung. The system he considers in 1915~
16 is the Bohr atom, which is naturally a periodic system. This change of
subject should inevitably have entailed an alteration of the quantum condition
used. In fact Sommerfeld himself, in the December 1915 paper, explains the

9 F. Hasenohrl, ‘“Uber die Grundlagen der mechanischen Theorie der Warme”, Phys. ZS.,
12 (1911), 931-935.

100 A, Sommerfeld, op. cit. (note 4), 1059 and 1067.

101 M. Planck, op. cit. (note 22).
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reason for the alteration of the quantum condition. In the last section of that
paper, having shown that for a periodic system the quantum condition S pdq =

nh leads to a relation between the total energy of the system and the quantum
of action # which resembles the quantum condition, energy X time = &, used
in the January 1911 paper on y- and X-rays, he remarks that in spite of this
resemblance there is a great difference in the interpretation of the quantum
conditions. He emphasizes that the condition proposed here is exclusively for
periodic systems whereas that of the 1911 paper was used for discussing aperiodic
processes. In the same December 1915 paper, he stresses, in connection with
the Stark effect, that he finds difficulty in applying his quantum condition to an
aperiodic electron orbit.*®® It is now evident that Sommerfeld sharply distin-
guished periodic systems from aperiodic ones and assigned different types of
quantum conditions to each of them.

Thus it may be concluded that Sommerfeld’s 1916 theory was by no means
the result of endogenous development of his 1911 theory. There was a dis-
continuity between them, which was brought about by his committing himself
to the Bohr theory. The intervention of the Bohr theory was, it may therefore
be said, indispensable for Sommerfeld to achieve his results. It should not be
overlooked, however, that there was also a contribution to Sommerfeld’s 1916
theory on the part of Planck.® The next section is devoted to a consideration
of this.

VIII. Sommerfeld and Planck, 1915-16

Almost simultaneously with Sommerfeld, Planck published a generalized
quantum theory for a system with many degrees of freedom. Planck’s theory
was developed in three successive papers which were presented on November 5
and December 3, 1915 to the German Physical Society® and on December 16

102 A, Sommerfeld, op. cit. (note 80), 454-458.

103 A, Sommerfeld, op. cit. (note 80), 426 and 451.

104 Tn this connection it may be noted that in the spring of 1915, a few months before
Sommerfeld’s presentation of the generalized quantum theory, W. Wilson and J. Ishiwara had
proposed quantum conditions similar to those of Sommerfeld, independently of each other: W.
Wilson, “The Quantum-Theory of Radiation and Line Spectra”, Phil. Mag., 29 (May, 1915),
795-802, dated March 1915. J. Ishiwara, ‘‘Die universelle Bedeutung des Wirkungsquantums’’,
Tokyo Sugaku Buturigakkai Kizi, 8 (1915), 106-116, dated 4 April 1915. However, there seem to
be no contributions to the formation of Sommerfeld’s theory from these sources. In the first
two papers of 6 Dec. 1915 and 8 Jan. 1916 Sommerfeld did not cite their papers. In the Annalen
paper he first cited Wilson’s paper but wrote, hearing von befreundeter Seite that A. Wilson had
proposed the same quantum conditions as his own, he had read Wilson’s paper but had not seen
Ishiwara’s: A. Sommerfeld, op. cit. (note 1), 9-10.

105 M. Planck, ‘“‘Die Quantenhypothese fiir Molekeln mit mehreren Freiheitsgraden, I, IT”’,
Verh. d. Deutsch. Phys. Ges., 17 (1915), 407-418, 438-451; Phys. Abh., 2, 349-360, 362-375.
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to the Berlin Academy of Science.’® The results obtained in these papers were
eventually collected together, with revision, in a comprehensive paper which
was received on April 13, 1916 and published in Annalen der Physik. The
quantum condition used by Planck is derived from the idea that the phase space
could be divided into elementary cells for which

S :1;[1 (dp;dq;)) = .

The last condition will automatically be satisfied if Sommerfeld’s condition is
valid, though the reverse is not necessarily true. The parallels in the dates of
the papers and in the quantum conditions of Planck’s and Sommerfeld’s theories
lead us to suspect their mutual influence. But before rushing into a conclusion
it is neccessary to examine briefly the intention and the method of Planck’s
theory.

The motive behind Planck’s theory was the question posed by Poincaré at
the first Solvay Congress, that is, the question in what way is the phase space of
a system with many degrees of freedom f divided by 4. In order to answer
this question Planck considered the structure of the phase space. In the first
paper, presented on November 5, 1915, he discusses the case in which the equi-
energy surfaces divide the phase space into elementary cells whose extension

f
S 11 (dp; dg,) is proportional to #”. The second paper, presented on December

=1
3, 1915, deals with the general case in which more than one family of surfaces

determines the elementary cells. Among the individual cases discussed in this
paper are the motion of a mass point under a central force, and the three-
dimensional harmonic oscillator.

The third paper, presented on December 16, 1915, deals with the Keplerian
motion of an electron with mass y and electric charge —¢ which moves around
a fixed nucleus of charge +E. For the quantized elliptical orbit of this electron,
Planck obtains the major axis a and ordinate of focus p as follows:

qIZhZ _ q2h2
4n*yEe’ "~ 4n*uEe’ _
where g and ¢’ are positive integers and g < ¢’. Now, in order to explain the
spectral lines, he assumes that the frequency v of the line is equal to the frequency
of rotation of the electron which emits it. This frequency is given by

1 4nEp
T

106 M. Planck, ‘‘Bemerkung iiber dic Emission von Spektrallinien’’, Sitzb. Preuss. Akad.
Wiss. (1915), 909-913; Phys. Abh., 2, 376-380. .

17 M. Planck, ‘“‘Die physikalische Struktur des Phasenraumes’’, Ann. d. Phys., 50 (1916),
385-418; Phys. Abh., 2, 386-419.

108 M. Planck, op. cit. (note 8), 116-117.
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which, in the case of the hydrogen atom, he argues, agrees with the frequencies
of two lines in the violet region if ¢ = 1 and 2, and with those of lines in the
red regionif ¢’ = 3,4, - ... For the radial component of the motion of the elec-
tron, Planck assumes the relation

hy = (i mr'2>
2 max

between the maximum Kinetic energy and the frequency of the spectral line
originating from the elliptical motion, and from this he derives a formula ex-
pressing v in terms of quantum numbers ¢ and ¢’:

_ 2muE% (1 1
Vv = —__h3 - ) ’

e
which is identical with Bohr’s formula for the Balmer series. He seems to have
been satisfied himself that the Balmer formula could be obtained without recourse
to the Bohr theory. :

The cursory examination above is sufficient to show that both the intention
and the method of Planck’s theory is considerably different from those of Som-
merfeld’s. Whereas Sommerfeld developed his approach by generalizing the
Bohr theory of hydrogen spectrum and, to substantiate it, discussed number of
individual problems, Planck started from a general problem concerning the struc-
ture of the phase space. It may therefore be said that their theories emerged
independently of each other from different ideas.”™ But once they had become
acquainted with each other’s work, they immediately recognized the intimate
relation between their theories and started correspondence. Since Sommerfeld
reported on Planck’s theory on January 25, 1916 at the Munich colloquium,™
he must have examined Planck’s first three papers before this date, and imme-
diately after this colloquium the correspondence was begun. There remain five
letters of Planck to Sommerfeld written in 1916, dated January 30, February 11,
April 4, May 17, and November 17."* Though there seem to be no letters extant
of Sommerfeld to Planck, Planck’s letter of January 30 suggests that the cor-
respondence was started by a letter from Sommerfeld written on January 27,
1916. Sommerfeld seems to have subsequently written to Planck on February
7, May 13, and in November, 1916. Their correspondence contributed much
to the improvement of Sommerfeld’s theory.

109 Sommerfeld mentioned Planck’s 1915 papers for the first time in his appendix, dated
February 10, 1916, to the January 1916 paper (op. cit. note 84), and Planck mentioned Som-
merfeld’s papers in his Annalen paper (op. cit. note 107).

110 Register volume for Miinchener physikalisches Mittwochs-Colloquium, op. cit. (note 65).

111 These letters are kept deposited at the Institute of the History of Science, University of
Stuttgart. The author thanks Prof. Hirosige for drawing her attention to these letters. Sheis
also very grateful to Prof. A. Hermann who was kind enough to have the letters copied and
sent to her.
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Judging from Planck’s letter of January 30, Sommerfeld’s first letter was con-
cerned with the problems of a three-dimensional harmonic oscillator, Keplerian
motion, and spectra. In the letter of January 30, Planck praises Sommerfeld’s
work, and discusses problems concerning the variable in the phase space used in
Planck’s December 15 paper and the difference between the results of their cal-
culations for the hermomic oscillator. In his second letter to Sommerfeld, dated
February 11, Planck answers Sommerfeld’s question about the limits of integra-
tion in the treatment of relativistic Keplerian motion. ~As mentioned in section
VI, on February 10, 1916, Sommerfeld added to his January 1916 paper an ap-
pendix in which he alters the limits of integration for the azimuthal angle ¢.
Whereas in the text of the January 1916 paper he performed the integration of
¢ from O to the next perihelion, he now performs the integration from ¢ = 0
to 2z. Saying that whereas the former calculation leads to disagreement with
the observational results, the new limits of integration give a satisfactory agree-
ment, he tries to justify this alteration by introducing a new coordinate system
which rotates with the same velocity as the perihelion. Not being fully satisfied
with this justification, Sommerfeld, on February 7, three days before he wrote
the appendix in question, wrote to Planck asking the reason for the new limits
of integration. Planck replies, in his letter of February 11, that the variable ¢
in his theory is a coordinate in the phase space which is independent of the shape
of the electron orbit in three-dimensional physical space, and that if the integral
for ¢ is taken from O to the value corresponding to the next perihelion, the region

- between 2z and that angle would be included twice.

Accepting Planck’s explanation, Sommerfeld, in his Annalen paper, argues
for the limits of integration ¢ = 0 and 2z on the grounds of statistical mechanical
considerations.’? Take an ensemble of many similar systems describing Keplerian
elliptical orbits of the same shape. The systems in this ensemble differ from
each other in the direction of their perihelion. To take the integral for ¢ in
the phase space from 0 to 2x, therefore, is equivalent to taking an average over
the ensemble. This procedure need not be changed even when one considers
relativistic Keplerian motion.

As for the harmonic oscillator, there was a discrepancy between Planck and
Sommerfeld. In the paper presented on December 3, 1915, Planck derives, for
the quantized elliptical orbits of the mass point m, a relation between the semi-
major axis @ and the semi-minor axis b given by

2nh
Tmw

(a —_ b)2 =

b

where o is the frequency of the oscillator.”® On the other hand Sommerfeld

12 A, Sommerfeld, op. cit. (note 1), I, 7-8.
us M. Planck, op. cit. (note 105), II, 448; Phys. Abh., 2, 372.
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writes in his letter of January 27, that his theory gives the relation,

nh
Tmw

(a— b} =

Having discussed the discrepancy with Planck in their letters of January 27 and
30, Sommerfeld modified his original limits of integration in the same way as in
the case of relativistic Keplerian motion and obtained the same result as Planck.
He discusses this modification in detail in the section entitled “Vergleich mit der
Planckschen Theorie” of Part I of his Annalen paper, where he acknowledges that
this alteration is due to “Planck’s kind remarks in his letter”."

In Part II of the Annalen paper, Sommerfeld discusses the relativistic
Keplerian motion in fuller detail than in the previous, January 1916 paper.'
This seems to have been prompted by Planck’s suggestions. Forwarding his
paper to the Annalen, Planck wrote, on April 4, to Sommerfeld, noting that since
it had been shown that in the case of quasi-periodic relativistic Keplerian motion
there existed a finite lower limit of the angular momentum, p, = eEJc, it seemed
natural to put the quantum condition for the angular momentum,

instead of Sommerfeld’s p = nk/2z, where p, was assumed to be equal to 0, and
he asked Sommerfeld to examine what modifications would be produced in his
calculation of spectra using Planck’s quantum condition. Replying on May 13
to Planck, Sommerfeld seems, judging from Planck’s letter of May 17, to have
stated that his calculations had proved that Planck’s quantum condition did not
lead to the Balmer formula and he would like to insist on his own quantum condi-
tion p = nh/2z. The result of this discussion with Planck is incorporated into
his Annalen paper as an independent section “Priifung eines von Planck befiirwor-
teten Quantenansatzes an der Erfahrung. Priifung der Relativitétskorrektion fiir
Kreisbahnen”.”® There Sommerfeld states that whereas it seems natural to begin
the division of phase plane from p,, not from 0, Planck’s condition leads to results
at variance with experimental observations.”

Sommerfeld was naturally aware of the difference between his theory and
Planck’s. In the appendix to the January 1916 paper and in a few places in the
Annalen paper, he emphasizes the difference between their theories. In the ap-
pendix to the January paper, Sommerfeld points out that, although in the case
of Keplerian motion under the influence of the Coulomb force his quantum condi-
tion coincides with Planck’s, his explanation of the Balmer series, being based

14 A, Sommerfeld, op. cit. (note 1), I, 33-36.
us A, Sommerfeld, op. cit. (note 1), II, 47-52.
16 A, Sommerfeld, op. cit. (note 1), I, 57-62.
u7 A. Sommerfeld, op. cit. (note 1), II, 61.
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on the concept of quantum transition, fundamentally differs from Planck’s.!®
In the opening paragraph of Part I, section 1 of the Annalen paper, he compares

his general quantum condition, S dg,dp, =h,i=1,2, ..., f, to that proposed

by Planck. He says that for a system with f degrees of freedom, whereas
Planck, on the basis of general considerations, divided one quantum condition,

f
S 1I (dq, dp;) = #/, in this case, into f quantum conditions taking into account
i=1

the nature of the system and the coherence of its degrees of freedom, he, on the
basis of semi-empirical consideration of the Balmer series, expresses the quantum
condition for each of the f degrees of freedom of the system as

quidpizh, P=1,2, ... f.m

In the section “Vergleich mit der Planckschen Theorie - - -, comparing the results
obtained by his theory for a three-dimensional oscillator with the results obtained
by Planck’s, Sommerfeld emphasizes that though both results agree in the main,
with each other, their explanations of the frequency of spectral lines are based
on entirely different principles.’

These repeated references to Planck’s theory of 1915-16, however, suggest
how deep was the impression made on him by Planck’s theory. In fact, our
preceding examination reveals that various additions and alterations in Som-
merfeld’s Annalen paper resulted from his consideration of Planck’s theory of
1915-16.

Finally it may also be noted that Sommerfeld in turn also influenced Planck.
Concerning the physical interpretation of the quantized state, Planck’s position
had remained the same since 1911, when he developed a new version of the
theory of radiation on the assumption that the resonator could assume continuous
values of energy but would emit radiation only when it reached definite discrete
values of energy. In accordance with this conception he had supposed that the
representative point in the phase space of a physical system could occupy any
point in the elementary cells of finite extension 4. The points on the boundary
of these cells are, in his opinion, distinguished from the interior points of the
cells only by the peculiarity that only in the states represented by these points
could the system emit radiation.’* This view is quite opposed to that of Som-
merfeld, who believed that the electron in an atom could move only in quantized
orbits, and explicitly rejected Planck’s view.®” On the other hand, Planck was

us A, Sommerfeld, op. cit. (note 86), 498-499.

19 A. Sommerfeld, op. cit. (note 1), I, 5-7.

120 A, Sommerfeld, op. cit. (note 1), I, 33-34.

121 M. Planck, op. cit. (note 106), esp. 912.

122 A. Sommerfeld, op. cit. (note 1), I. esp. 12-13.
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greatly impressed by Sommerfeld’s relativistic theory of the fine structure of the
spectral line.”® He talked about it in detail on April 4, 1916 at a colloquium
of his institute.” It is most likely because of this impact that in his Annalen
paper Planck feels it necessary to allude the “fundamental problem” of whether
or not the representative point could fill the elementary cells of the phase space.
In this paper Planck restricts his consideration to the structure of the phase space
and, at the end of the paper, remarks that it is impossible to apply his general
result to thermodynamic problems of ideal gases without setting up a special
assumption concerning this fundamental problem.® In a paper dealing with
the entropy of atomic systems, published in 1916, he bases his calculations on
his original view that the representative point could fill the interior of the ele-
" mentary cells on the grounds that this view seems preferable to the contrary
one. Subsequently, in 1917, Planck developed a theory of rotational spectra
based on his view with the express purpose of deciding by comparison with ex-
periment which view of the quantization of the phase space was to be adopted.™”

That Planck turned his attention to spectra shows a remarkable change of
attitude on his part, though he seemed still to insist on his own view, because
he had so far payed little attention to spectra. In January 30, 1916 he himself
wrote to Sommerfeld that his consideration of spectral emission in his 16 Decem-
ber 1915 paper was only a digression in a region which he had seldom entered.

IX. Conclusion

Sommerfeld’s achievement in 1916 was immediately recognized and ap-
preciated by contemporary physicists, who admired his mathematical skill. H. A.
Lorentz, the mentor of physicists of the time, wrote to Sommerfeld on February
14, 1917 “You have reached one of the most beautiful results in theoretical
physics.””®  Bohr, too, welcomed the Sommerfeld theory with enthusiasm, and
on receiving Sommerfeld’s two papers of December 1915 and January 1914 wrote
to the latter: “I do not think that I have ever enjoyed the reading of anything
more than I enjoyed the study of them, and I need not say that not only I but

- 123 Planck’s letter to Sommerfeld, dated February 11, 1916. Sommerfeld’s theory of the fine
structure of the spectral line seemed to confirm the validity of the relativistic formula for the
electron mass. See T. Hirosige, op. cit. (note 24), 36 and W. Pauli, Relativititstheorie, (Leipzig/
Berlin, 1921) 636-637. This would probably also have contributed to enhancing Planck’s opinion
of Sommerfeld’s theory.

124 Planck’s letter to Sommerfeld, dated May 17, 1916.

125 M. Planck, op. cit. (note 107), 418.

126 M. Planck, ‘Uber die absolute Entropie einatomiger Kérper”, Sitzb. Preuss. Akad. Wiss.
(1916), 653-667; Phys. Abh., 2, 420-434. :

127 M. Planck, ‘‘Zur Theorie des Rotationsspektrums. Vorl. Mitt.””, Verh. d. Deutsch. Phys.
Ges., 17 (1917), 43-47; Phys. Abh., 2, 453-457. M. Planck, “Zur Theorie des Rotationsspektrums.
L I, Ann. d. Phys. 52 (1917), 491-505, 53 (1917), 241-256; Phys. Abh., 2, 458-472, 473-488.

128 Lorentz’ letter to Sommerfeld, Haarlem, February 14, 1917.
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everybody here has taken the greatest interest in your important and beautiful
results. -..”* Sommerfeld’s theory was also important in connection with the
theory of relativity, because its success in explaining the fine structure of spectral
lines was thought to provide a confirmation of the relativistic formula for the
mass of the electron. As was mentioned in the previous section, Planck was
greatly impressed by this result.

Sommerfeld continued publishing papers on the quantum theory of line
spectra and the structure of the atom.”™ In 1918 he attempted to determine the
arrangement of electrons in the inner part of the atom on the basis of X-ray
spectra.®™. All these achievements are incorporated into his celebrated book
Atombau und Spektrallinien,™ which was written on the basis of his lectures during
the 1917/18 winter semester and published in 1919. In the next year, without
having enough time to make essential revisions,”® he published the 2nd edition.
This book became the standard text-book of theoretical spectroscopy and went
through six editions, each edition reflecting the development of this branch of
physics from 1916 through 1946.

The foregoing analysis of Sommerfeld’s achievement in quantum theory
seems to reveal the characteristic style of his work in theoretical physics. His
contribution to quantum theory essentially consists not in introducing new funda-
mental ideas, but in mathematically elaborating theoretical attempts, whether

_they are well founded or problematic. It has been said that in general his skill
was fully demonstrated in the mathematical manipulation of problems in various
fields of physics and technology.® It may be said that, in the final analysis, he
was interested in quantitative agreement between experiments and his detailed
calculations. His approach to the problems of physics makes a sharp contrast
with that of Einstein, who was interested primarily in the fundamental principles
in physics and in the formal consistency of theory. To take an example, in

129 Léon Rosenfeld and Erik Riidinger, ‘““The Decisive Years, 1911-1918"" in S. Rozental
(ed.), Niels Bohr (Amsterdam/New York, 1967), 67.

130 For example, A. Sommerfeld, ‘“Zur Quantentheorie der Spektrallinien. Ergdnzungen
und Erweiterungen’’, Sitzb. Bayer. Akad. Wiss. (1916), 131-182; A. Sommerfeld, op. cit. (note 84);
A. Sommerfeld, ‘“Zur Quantentheorie der Spektrallinien. Intensitdtsfragen’’, Sitzb. Bayer. Akad.
Wiss. (1917), 83-109.

131 A. Sommerfeld, ‘‘Atombau und Rontgenspektren, Teil 1”°, Phys. ZS., 19 (1918), 297-307.
For Sommerfeld’s work on X-rays and atomic structure, see S. Nisio, op. cit. (note 94).

132 A, Sommerfeld, Atombau und Spektrallinien, (Braunschweig, 1919).

133 A, Sommerfeld, Ibid., 2nd ed., p. viii.

13 See M. Born, ‘‘Sommerfeld als Begriinder einer Schule’’, Naturwiss., 16 (1928), 1035-1036;
W. Pauli, “Sommerfelds Beitrige zur Quantentheorie’’, Naturwiss., 35 (1948), 129-132; P.P.
Ewald, “‘Prof. A.Sommerfeld’’, Nature,168(1951), 364-366; W. Heisenberg, ‘ Arnold Sommerfeld”’,
Naturwiss., 38 (1951), 337-338; Max von Laue, “‘Sommerfelds Lebenswerk’’ Naturwiss., 38 (1951),
513-518; In F. Bopp and H. Kleinpoppen (eds.), Physics of the One- and Two-Electron Atoms
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discussing relativistic Keplerian motion, Sommerfeld chose a quantum condition
which led to a result agreeing with experimental observations. On the other
hand, Einstein’s comment, at the first Solvay Congress, on Sommerfeld’s calcu-
lation of the X-ray energy that numerical agreement with observational data
would by no means confirm by itself the validity of the theory shows a marked
difference between their approaches to the problem. It may also be remembered
that in his 1915-16 papers, Sommerfeld devoted many pages to comparison with
experiments. In the introduction to Atommechanik (1924) M. Born, comparing
his book with Sommerfeld’s Atombau, suggested that Sommerfeld described ex-
perimental results in too much detail .’

Sommerfeld was aware of this tendency and accepted his way of doing
theoretical physics as a necessary one. In his correspondence with Stark and
Planck (See Section II and VIII) Sommerfeld’s confidence in his own mathemati-
cal ability is clearly seen. In a letter to Einstein on January 11, 1922, Som-
merfeld writes “I can only develop quantum techhiques, whereas you must make
your philosophy.”*¢ He demanded that his students follow his way and made
them practise solving individual little problems.*’

It is interesting to consider his worldview or view of physics on the basis
of which he could have such confidence in his way of doing theoretical physics.
What view of physics could justify his method of research? What goals did he
have in physical research? It is to be regretted that Sommerfeld, as can easily
be imagined, published very little on philosophical problems. One of the few
is a lecture on “Wege zur Physikalischen Erkenntnis” delivered on May 1, 1933
at the Royal Society of Edinburgh.®® In this lecture Sommerfeld reviewed
Planck’s book™ of the same title, which is a collection of lectures and had just -
been published, and, endorsing Planck’s opinion as regards Mach’s positivism,
stated that laws of nature really existed independently of human sense. As
regards abstract mathematization of modern physics, as in the case of quantum
mechanics, he declared his belief that mathematics plays an important role in
physical cognition and said: “Nature is indifferent to our mathematical ability.
Nature is a much better mathematician than we are. Laws of nature are for-
mulated not by the help of elementary mathematical methods, but by the highest
and most effective ones.”

Sommerfeld advanced similar view in his ceremonial address at the Munich

135 M. Born, op. cit. (note 86), p. viii.

136 A. Hermann (ed.), op. cit. (note 41), 97.

137 Heisenberg says that Sommerfeld insisted that students of theoretical physics had to
practise the calculation of little problems before discussing fundamental philosophical problems:
W. Heisenberg, Der Teil und das Ganze (Miinchen, 1967), pp. 31-32.

138- A. Sommerfeld, ‘“Wege zur Physkalischen Erkenntnis”, Scientia (1936), 181-187; Gesam-
melte Schriften, 4, 609-615.

139 M. Planck, Wege zur Physikalischen Erkenntnis (Berlin, 1933).
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Academy of Science in July 1925, and spoke of a revival of the Pythagorean
belief in integral numbers. Earlier than this, in the preface to his Atombau of
1919, he referred to “number mystics” saying: “What we are nowadays hearing
of the language of spectra is a true music of the spheres within the atom, chords
of integral relationships, an order and harmony with a manifold variety.”*

His amicable attitude towards “number mystics” is most likely linked with
his position which attaches prime importance to the numerical ‘agreement of
theoretical calculation with observational data. Having such a view of nature
and of theoretical physics, he must have regarded it as primarily important to
attack problems which may be expected to allow us to draw numerical results
which can be compared with experimental observations. It is therefore under-
standable that he was not much concerned with fundamental, philosophic prob-
lems in physics and showed his great mathematical skill in working out theoretical
ideas presented by fellow physicists.

It may be said that Sommerfeld was typically a physicist in the age of pro-
fessionalism in the sense that he utilized his expert competence to solve problems
posed to him, regardless of their philosophical background or the field to which
they belong. It is however to be emphasized that Sommerfeld, with such an
inclination, was just the theoretical physicist who really met the demands of the
1910’s for the development of quantum theory.
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