モデル系統における三相地絡故障発生時の故障計算プログラム

ゼミナール 2 代表 4 年 2 組 2 3 番 鮫嶋 成経

1. はじめに

本プログラムは図1に示す系統の③点において三相地絡故障が発生した際、ノード①、②、③、④、⑤点に流れる電流、かかる電圧を求めるものです。

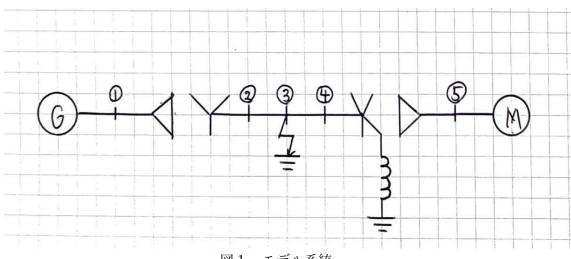


図1 モデル系統

2. プログラムの操作方法

プログラムを実行し、同期発電機、モーター及び各ノード間のリアクタンスを入力します。画面上の表示とノード間の対応は表1の通りです。

2	
プログラム上の表示	対応するノード
x[0]	①より左 (発電機)
x[1]	①-②間
x[2]	②一③間
x[3]	③-4間
x[4]	4-5間
x[5]	⑤より右 (モーター)

表1 リアクタンスの対応

その後、同期発電機の電圧 Vg、モーターの電圧 Vm、有効電力 P、同期発電機の Tg、モーターの Tm を入力します。

入力を行い Enter キーを押すと、各点に流れる電流、かかる電圧の実部と虚部が分かれて出力されます。画面上の表示とノードの対応は表2の通りです。

表 2 電流・電圧の対応

プログラム上の表示	意味
rel[0]	①に流れる電流(実部)
inl[0]	①に流れる電流(虚部)
rel[1]	②に流れる電流(実部)
inl[1]	②に流れる電流(虚部)
rel[2]	③に流れる電流(実部)
inl[2]	③に流れる電流(虚部)
rel[3]	④に流れる電流(実部)
inl[3]	④に流れる電流 (虚部)
rel[4]	⑤に流れる電流(実部)
inl[4]	⑤に流れる電流(虚部)
reV[0]	①にかかる電圧(実部)
inV[0]	①にかかる電圧(虚部)
reV[1]	②にかかる電圧(実部)
inV[1]	②にかかる電圧(虚部)
reV[2]	③にかかる電圧(実部)
inV[2]	③にかかる電圧(虚部)
reV[3]	④にかかる電圧 (実部)
inV[3]	④にかかる電圧(虚部)
reV[4]	⑤にかかる電圧(実部)
inV[4]	⑤にかかる電圧(虚部)

3. 実行例

最期に、入力値を表3のように設定した場合の実行結果を以下に示します。

表3 プログラム上の表示と設定した値の対応

プログラム上の表示	設定した値
x[0]	0.25
x[1]	0.06
x[2]	0.05
x[3]	0.04
x[4]	0.06
x[5]	0.35
Vg	10.0
Vm	10.0
Р	1.0
Tg	1.470629
Tm	1.470629

3.1. 実行結果

- x[0]=0.25
- x[1]=0.06
- x[2]=0.05
- x[3]=0.04 x[4]=0.06
- x[5]=0.35
- Vg=10.0 Vm=10. 0
- P=1.0
- Tg=1. 470629 Tm=1. 470629
- reI[0]=165.831240
- inI[0]=-16. 666667

- reI[1]=0.000000 inI[1]=0.000000 reI[2]=109.185394 inI[2]=-10.973545

- reI[3]=0.000000 inI[3]=0.000000 reI[4]=28.428212 inI[4]=28.428212 reV[0]=-5.698229 inV[0]=-56.699652
- reV[1]=0.000000

- inV[1]=-0.000000 reV[2]=-5.297963 inV[2]=-52.714066 reV[3]=-0.000000
- inV[3]=-0.000000
- reV[4]=11. 266770
- inV[4]=-11. 266770