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Abstract

A semilinear wave equation possesses propagation with a finite
speed, while a parabolic equation has propagation with infinite speed.
This paper proposes a reaction-diffusion system whose solutions ap-
proximate those of a semilinear wave equation under some assump-
tions of a reaction term. The proof is based on the energy method.

1 Introduction

Wave equations are often used in optics and vibration theory. A typical
example is

utt = c2uxx

in R, where the subscript x or t indicates that the derivatives are taken with
respect to the variable x or t. For example, utt = ∂2u/∂t2, uxx = ∂2u/∂x2.
This equation has the solution

u(x, t) = g1(x− ct) + g2(x+ ct)

where g1 and g2 are arbitrary C2 functions. Finite propagation is one of the
most important properties of the wave equation. On the other hand, the
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parabolic equation has propagation with infinite speed. Because the heat
kernel is positive everywhere, the solution to the heat equation instantly
becomes positive, even if the initial distribution has compact support. In
this paper, we consider the following problem:

Can a semilinear wave equation be approximated by a reaction-diffusion
system?

We found the answer to be in the affirmative. This means that finite
propagation can be approximated by infinite propagation. The converse, or
the approximation of infinite propagation by finite propagation, was studied
by Holmes [8]. This study was motivated by the mathematical modeling
of animal locomotion. Diffusion models are often used to describe animal
distributions, even though an individual animal moves with a finite speed. To
discuss this issue with animal movements, Holmes [8] compared the telegraph
equation having finite propagation with the diffusion equation having infinite
propagation (see also [5]). She showed that the invasion wave speeds of
both equations are very close numerically. We emphasize that, for some
parameters, the reaction-telegraph equation in [8] becomes a wave equation.

Returning to our problem, we need to construct an appropriate reaction-
diffusion system that approximates a semilinear wave equation. This ap-
proximation is often called the reaction-diffusion approximation. Combining
the reactions of components and the diffusivity enables us to approximate
the wave equation. This also helps us to understand the solution space of
reaction-diffusion systems. Singular limit problems have been studied for
several decades. Hilhorst et al. [6] discussed the following singular limit
problem: 

ut = uxx −
1

ε
uv,

vt = −1

ε
uv,

which approximates the one-phase Stefan problem as ε → 0. This implies
that the Stefan problem can be approximated by a reaction-diffusion system.
Since their work, many researcher have investigated this kind of singular limit
problem, which is called the fast reaction limit. For example, a nonlinear
diffusion equation such as a cross-diffusion system can also be approximated
by a reaction-diffusion system. See [1, 10, 9, 13] and the references in [7].
Recently, Ninomiya et al. [15] successfully constructed a reaction-diffusion
system that approximates a non-local evolutionary equation with an even
kernel. For singular limit problems of hyperbolic systems, see [11, 14] and
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the references therein.

In this paper, we consider a reaction-diffusion approximation of the fol-
lowing initial value problem of a semilinear wave equation in RN :

(1.1)

{
wtt = d∆w + f(w) in RN × (0, T ),

w(x, 0) = w0(x), wt(x, 0) = w1(x) on RN ,

where d and T are positive constants and ∆u =
∑N

k=1 ∂
2u/∂x2

k. Let w =
w(x, t) be a solution to (1.1). We assume that the function f(u) satisfies the
following:

f ∈ C1(R) (it may allow ∥f∥C1(R) = ∞),(H1)

f(u)u ≤ f1|u|2,(H2)

− f2
(
|u|2 + |u|p+1

)
≤ F (u) ≤ f3|u|2,(H3)

|f ′(u)| ≤ f4 + f5|u|q if 1 ≤ N ≤ 4,(H4) ∣∣∣∣F (u)

f(u)

∣∣∣∣ → ∞ as u → ∞,(H5)

where p > 1, fj ≥ 0 are constant for j = 1, . . . , 5,
q ≥ 0 if N = 1, 2,

0 ≤ q ≤ N

2(N − 2)
if N = 3, 4

and

F (u) =

∫ u

0

f(s) ds.

A typical example of f is f(u) = au− |u|p−1u where a ∈ R and p satisfies
1 ≤ p if N = 1, 2,

1 ≤ p ≤ 5

2
if N = 3,

1 ≤ p ≤ 2 if N = 4.

Remark 1.1. From (H2) it follows that f(0) = 0. It is known that, for
(w0, w1) ∈ H2(RN)×H1(RN), there exists a unique solution of (1.1) satisfying
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w ∈ C1(R;H1(RN))∩C(R;H2(RN)) under the hypotheses (H1), the second
inequality of (H3), (H5) and (H4) with

q ≥ 0 if N = 1, 2,

0 ≤ q <
4

N − 2
if N ≥ 3.

For example, see [16, Theorems 1–3 in Chap. 3], [2, 4] and references therein.
The hypothesis (H5) is only used to guarantee the existence of solutions
of the semilinear wave equation (1.1). If the global existence of solutions
of semilinear wave equation is guaranteed by (H1)–(H4) together with the
alternative condition instead of (H5), (H5) can be replaced by that. We also
remark that the semilinear wave equation (1.1) has energy conservation law

(1.2)
d

dt

∫
RN

(
1

2
|wt|2 +

d

2
|∇w|2 − F (w)

)
dx = 0.

We propose the following initial value problem of a reaction-diffusion
system in order to approximate (1.1):

(1.3)


u1,t = d1ε∆u1 +

u2 − u1

ε
,

u2,t = d2ε∆u2 +
u2 − u1

ε
+ εf(u1)

in RN × (0, T ),

u1(x, 0) = w0, u2(x, 0) = w0 + εw1, in RN .

where ε > 0 is small and w0, w1 are the initial data of (1.1). Throughout
this paper, we also assume that 1 ≤ N ≤ 4 and d2 > d1 ≥ 0 and we set
d := d2 − d1 > 0.

In the case of f(u) ≡ 0, we explain why we chose the reaction term of
(1.3) as (u2 − u1)/ε below. Compared the wave equation with the diffusion
equation, we see that the wave equation contains the second-order derivative
of the solution with respect to t. Hence, we need to produce the derivative
of the solution with respect to t from the reaction term of the system. If
u2(x, t) ≈ u1(x, t+ ε), then

u1,t(x, t) ≈
u1(x, t+ ε)− u1(x, t)

ε
≈ u2(x, t)− u1(x, t)

ε
.

Borrowing the ideas of Hilhorst et al. [6] and Iida and Ninomiya [10], we
consider a reaction-diffusion system that consists of the same reaction term
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(u2 − u1)/ε and different diffusion coefficients. That is, we propose

(1.4) u1,t = dε1∆u1 +
u2 − u1

ε
, u2,t = dε2∆u2 +

u2 − u1

ε

with diffusion coefficients dεj that are specified later. By subtracting the
equation of u1 from that of u2, we obtain

ε (u2,t − u1,t) = (dε2 − dε1)∆u1 + dε2 (∆u2 −∆u1) .

By u2,t − u1,t ≈ u1,t(t + ε) − u1,t(t) ≈ εu1,tt and ∆u2 −∆u1 ≈ ∆u1(t + ε) −
∆u1(t) ≈ ε∆u1,t, we see that

u1,tt ≈
dε2 − dε1

ε
∆u1 + dε2∆u1,t.

By choosing the diffusion coefficients dεj = djε for j = 1, 2 where d2 > d1 > 0,
we obtain

u1,tt ≈ d∆u1 + d2ε∆u1,t ≈ d∆u1

where d = d2−d1. Thus, we see that u1 of (1.4) may converge to the solution
of a wave equation.

Remark 1.2. Let d1, d2 > 0 and 1 ≤ N ≤ 4. For arbitrary ε > 0,
w0 ∈ H4(RN) and w1 ∈ H3(RN), the local existence of a solution (uε

1, u
ε
2)

of (1.3) follows from the standard semigroup theory ([12]) and the Sobolev
embedding.

Theorem 1.3. Let 1 ≤ N ≤ 4. Assume that (H1)–(H5) are satisfied, d2 >
d1 ≥ 0 and w0 ∈ H4(RN), w1 ∈ H3(RN). Let w be the solution to (1.1).
Then, for any positive constant T , there exists a unique solution (uε

1, u
ε
2) of

(1.3) in RN × (0, T ). Moreover, the following holds:

sup
t∈[0,T ]

{
∥w − uε

1∥H1(RN ) +
∥∥wt − uε

1,t

∥∥
L2(RN )

}
= O

(
ε1/2

)
as ε → 0.

As shown in Figure 1, the numerical solution of (1.3) becomes close to
that of (1.1) as ε tends to zero, and the approximation becomes worse as t
increases because of the dissipativity.
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Figure 1: Snapshots of the first component of the solution to (1.3) in the cases
of f ≡ 0 and ε = 0.001, 0.01 in the interval (0, 10) under the homogeneous
Neumann boundary condition.

2 Boundedness of solutions of a reaction-diffusion

system

Now, we show that the principal component u1 of the solution for (1.3)
approximates the solution w of (1.1). We use

v1 := u1, v2 :=
u2 − u1

ε
.

Let the pair (v1, v2) satisfy the following initial value problem:

(2.1)


v1,t = d1ε∆v1 + v2,

v2,t = d2ε∆v2 + d∆v1 + f(v1),
in RN × (0, T ),

v1(·, 0) = w0, v2(·, 0) = w1 in RN .

Here, we note that d := d2 − d1 > 0. Based on (2.1), we see that, formally,
v1,t tends to v2 and v2,t tends to d∆v1+f(v1) as ε goes to zero. Therefore, we
can conjecture that u1 = v1 satisfies the wave equation v1,tt = d∆v1 + f(v1)
because v1,tt → v2,t → d∆v1 + f(v1) as ε → 0.

We also differentiate (2.1) with respect to t:

v1,t = d1ε∆v1 + v2,(2.2)

v2,t = d2ε∆v2 + d∆v1 + f(v1),(2.3)

v1,tt = d1ε∆v1,t + v2,t(2.4)

v2,tt = d2ε∆v2,t + d∆v1,t + f ′(v1)v1,t.(2.5)
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By a priori estimation, we show the boundedness and the convergence of a
solution for the initial value problem (2.1).

In order to prove the boundedness of a solution for (2.1), we prove several
lemmas:

Lemma 2.1. For a solution (v1, v2) of (2.1), we have the following :

d

dt

{
1

2

∫
RN

v21,t dx+
d1d2
2

ε2
∫
RN

(∆v1)
2 dx+

d

2

∫
RN

|∇v1|2 dx−
∫
RN

F (v1) dx

}
= −(d1 + d2)ε

∫
RN

|∇v1,t|2 dx,

(2.6)

d

dt

{
1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx+
d

2

∫
RN

(∆v1)
2 dx

}
≤

∫
RN

f ′(v1)∇v1 · ∇v1,t dx,

(2.7)

d

dt

{
ε

∫
RN

(∆v1,t)
2 dx+ d1d2ε

3

∫
RN

(∆2v1)
2 dx+ dε

∫
RN

|∇(∆v1)|2 dx
}

≤ 1

2(d1 + d2)

∫
RN

|f ′(v1)|2 |∇v1|2 dx.

(2.8)

Proof. First, we show (2.6). By substituting (2.3) for (2.4), we obtain

v1,tt = d1ε∆v1,t + d2ε∆v2 + d∆v1 + f(v1).

From (2.2), it holds that

v2 = v1,t − d1ε∆v1,

∆v2 = ∆v1,t − d1ε∆(∆v1).

Gathering these equalities implies that

v1,tt = d1ε∆v1,t + d2ε {∆v1,t − d1ε∆(∆v1)}+ d∆v1 + f(v1).

Hence, we obtain

(2.9) v1,tt = −d1d2ε
2∆2v1 + (d1 + d2)ε∆v1,t + d∆v1 + f(v1).
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Note that (2.9) is represented only by v1. By multiplying (2.9) with v1,t and
integrating it over RN , we have

d

dt

{
1

2

∫
RN

v21,t dx+
d1d2
2

ε2
∫
RN

(∆v1)
2 dx+

d

2

∫
RN

|∇v1|2 dx−
∫
RN

F (v1) dx

}
= −(d1 + d2)ε

∫
RN

|∇v1,t|2 dx.

Next, let us show the inequality (2.7). Multiplying (2.9) by ∆v1,t and
integrating it over RN yields that

d

dt

{
1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1,t)|2 dx+
d

2

∫
RN

(∆v1)
2 dx

}
= −(d1 + d2)ε

∫
RN

(∆v1,t)
2 dx+

∫
RN

f ′(v1)∇v1 · ∇v1,t dx.

Since
∫
RN (∆v1,t)

2 dx is non-negative, we obtain (2.7).
Finally, we prove (2.8). By applying the Laplacian ∆ to (2.9), we have

∆v1,tt = −d1d2ε
2∆3v1 + (d1 + d2)ε∆

2v1,t + d∆2v1 +∇ · (f ′(v1)∇v1) .

Multiplying this equation by ∆v1,t and integrating it over RN yield

d

dt

{
1

2

∫
RN

(∆v1,t)
2 dx+

d1d2
2

ε2
∫
RN

(∆2v1)
2 dx+

d

2

∫
RN

|∇(∆v1)|2 dx
}

= −(d1 + d2)ε

∫
RN

|∇(∆v1,t)|2 dx−
∫
RN

f ′(v1)∇v1 · ∇(∆v1,t) dx

≤ 1

4(d1 + d2)ε

∫
RN

|f ′(v1)|2 |∇v1|2 dx.

We multiply this by 2ε to obtain (2.8).

We prepare the following lemma to derive a priori bounds.

Lemma 2.2. Assume that A, B, and g are non-negative constants. Suppose
that X is a non-negative C2 function, and Y is a non-negative C1 function
that satisfies

(2.10) X ′′ + AY ′ ≤ g2X +B
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for t > 0 where the prime ′ denotes the differentiation with respect to the
time t. If g > 0, then

(2.11) X(t) ≤ X(0) cosh gt+
1

g
{X ′(0) + AY (0)} sinh gt+ B

g2
(cosh gt− 1) ;

If g = 0, then

(2.12) X(t) ≤ X(0) + (X ′(0) + AY (0))t+
B

2
t2.

Proof. First we consider the case of g = 0. By (2.10), we have

X ′(t) + AY (t) ≤ X ′(0) + AY (0) +Bt.

Because X ′(t) ≤ X ′(0) + AY (0) + Bt from Y (t) ≥ 0, by integrating it once
more, we obtain (2.12).

Next, we consider the case where g > 0. By multiplying (2.10) with e−gt,
it follows that(

X ′e−gt + gXe−gt
)′
+ A(Y e−gt)′ + AgY e−gt ≤ Be−gt.

Because AgY e−gt ≥ 0 holds, we obtain(
X ′e−gt + gXe−gt

)′
+ A(Y e−gt)′ ≤ Be−gt.

Integrating this over [0, t] yields(
X ′e−gt + gXe−gt

)
− (X ′(0) + gX(0))+A

(
Y e−gt − Y (0)

)
≤ −B

g

(
e−gt − 1

)
.

Noting that Y e−gt ≥ 0, we have

X ′e−gt + gXe−gt ≤ X ′(0) + gX(0) + AY (0)− B

g

(
e−gt − 1

)
.

By multiplying this with e2gt, integrating it over [0, t] and then multiplying
it with e−gt, we can calculate the following:

X(t)−X(0)e−gt ≤ 1

2g
{X ′(0) + gX(0) + AY (0)} (egt − e−gt)

−B

g

(
1

g
− 1

g
e−gt − 1

2g
egt +

1

2g
e−gt

)
= X(0)

{
1

2
egt − 1

2
e−gt

}
+

1

g
{X ′(0) + AY (0)} sinh(gt)

+
B

g2
(cosh(gt)− 1) .

Therefore, we obtain (2.11).
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Lemma 2.3. Assume that w0 ∈ H3(RN) and w1 ∈ H1(RN). Let d2 > d1 ≥
0, ε0 > 0 and T > 0. Let (v1, v2) be a solution of (2.1) for ε ∈ (0, ε0]. Then,
the following integrations are bounded for any t ∈ [0, T ] and ε ∈ (0, ε0] :∫

RN

v21 dx,

∫
RN

v21,t dx,

∫
RN

|∇v1|2 dx,
∫
RN

|∇v1,t|2 dx,
∫
RN

(∆v1)
2 dx.

Proof. By (2.6) of Lemma 2.1, it follows that

d

dt

{
1

2

∫
RN

v21,t dx+
d1d2
2

ε2
∫
RN

(∆v1)
2 dx

+
d

2

∫
RN

|∇v1|2 dx−
∫
RN

F (v1) dx

}
≤ 0.

Hence, by integrating this with respect to t over [0, t], we have

1

2

∫
RN

v21,t dx+
d1d2
2

ε2
∫
RN

(∆v1)
2 dx+

d

2

∫
RN

|∇v1|2 dx−
∫
RN

F (v1) dx

≤ 1

2

∫
RN

w2
1 dx+

d1d2
2

ε2
∫
RN

(∆w0)
2 dx+

d

2

∫
RN

|∇w0|2 dx−
∫
RN

F (w0) dx.

Because −f3|v1|2 ≤ −F (v1) holds from (H3),

1

2

∫
RN

v21,t dx+
d1d2
2

ε2
∫
RN

(∆v1)
2 dx+

d

2

∫
RN

|∇v1|2 dx

≤ 1

2

∫
RN

w2
1 dx+

d1d2
2

ε2
∫
RN

(∆w0)
2 dx+

d

2

∫
RN

|∇w0|2 dx

−
∫
RN

F (w0) dx+ f3

∫
RN

v21 dx.

By doubling this and using the boundedness of w0 and w1, we obtain
(2.13)∫

RN

v21,t dx+ d1d2ε
2

∫
RN

(∆v1)
2 dx+ d

∫
RN

|∇v1|2 dx ≤ 2f3

∫
RN

v21 dx+ C1,

where

(2.14)

C1 :=

∫
RN

w2
1 dx+ d1d2ε

2

∫
RN

(∆w0)
2 dx

+ d

∫
RN

|∇w0|2 dx− 2

∫
RN

F (w0) dx.
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By w0 ∈ H2(RN), we use the Sobolev embedding H2(RN) ↪→ Lr(RN) for all
2 ≤ r < ∞ when 1 ≤ N ≤ 4. Together with −F (w0) ≤ f2(|w0|2 + |w0|p+1)
in (H3), we see that

−
∫
RN

F (w0) dx ≤ f2

∫
RN

(
|w0|2 + |w0|p+1

)
dx

≤ C
(
∥w0∥2H2(RN ) + ∥w0∥p+1

H2(RN )

)
.

Thus, the upper bound of C1 is finite for any t ∈ [0, T ] and ε ∈ (0, ε0].

Next, by multiplying (2.9) with v1 and integrating it over RN , we can
calculate the following:∫

RN

{
∂

∂t
(v1v1,t)− v21,t

}
dx

= −d1d2ε
2

∫
RN

(∆v1)
2 dx− d

dt

{
(d1 + d2)ε

2

∫
RN

|∇v1|2 dx
}

−d

∫
RN

|∇v1|2 dx+

∫
RN

f(v1)v1 dx.

Hence, we obtain the following identity:

d2

dt2

(
1

2

∫
RN

v21 dx

)
+

d

dt

{
(d1 + d2)ε

2

∫
RN

|∇v1|2 dx
}

=

∫
RN

v21,t dx− d1d2ε
2

∫
RN

(∆v1)
2 dx− d

∫
RN

|∇v1|2 dx+

∫
RN

f(v1)v1 dx.

By (2.13), it follows that∫
RN

v21,t dx ≤ 2f3

∫
RN

v21 dx− d

∫
RN

|∇v1|2 dx+ C1.

Therefore, we see that

d2

dt2

(
1

2

∫
RN

v21 dx

)
+

d

dt

{
(d1 + d2)ε

2

∫
RN

|∇v1|2 dx
}

≤ 2f3

∫
RN

v21 dx− 2d

∫
RN

|∇v1|2 dx+

∫
RN

f(v1)v1 dx+ C1.
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By (H2), we also see that

d2

dt2

(∫
RN

v21 dx

)
+

d

dt

{
(d1 + d2)ε

∫
RN

|∇v1|2 dx
}

≤ (4f3 + 2f1)

∫
RN

v21 dx− 4d

∫
RN

|∇v1|2 dx+ 2C1.

Here, we set g1 =
√
4f3 + 2f1. Then, the following holds:

(2.15)
d2

dt2

(∫
RN

v21 dx

)
+

d

dt

{
(d1 + d2)ε

∫
RN

|∇v1|2 dx
}

≤ g21

∫
RN

v21 dx+ 2C1

To simplify the description, let

X(t) :=

∫
RN

v21 dx and Y (t) :=

∫
RN

|∇v1|2 dx.

For each t ≥ 0, X(t) and Y (t) are non-negative and (2.15) becomes

(2.16) X ′′(t) + (d1 + d2)εY
′(t) ≤ g21X(t) + 2C1.

Hence, Lemma 2.2 is applicable to (2.16). If g1 = 0, then using (2.11) or
(2.12) with A = (d1 + d2)ε, B = 2C1, and g = 0, we have∫

RN

v21 dx ≤
∫
RN

w2
0 dx+ 2T

∫
RN

|w0||w1| dx

+(d1 + d2)εT

∫
RN

|∇w0|2 dx+ C1T
2 for t ∈ [0, T ],

which implies the boundedness of
∫
RN v21 dx.

Next, we consider the case where g1 > 0. Lemma 2.2 implies that

X(t) ≤ X(0) cosh(g1t) +
1

g1
{X ′(0) + (d1 + d2)εY (0)} sinh(g1t)

+
2C1

g21
(cosh(g1t)− 1) .

By (2.14), we have the boundedness of the initial data of X, Y and X ′ as
follows:

X(0) =

∫
RN

w2
0 dx,

Y (0) =

∫
RN

|∇w0|2 dx,

X ′(0) = 2

∫
RN

w0w1 dx ≤
∫
RN

w2
0 dx+

∫
RN

w2
1 dx.
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Hence, it follows that∫
RN

v21 dx ≤ X(0) cosh(g1t) +
1

g1
{X ′(0) + (d1 + d2)εY (0)} sinh(g1t)

+
2C1

g21
(cosh(g1t)− 1) .

Because cosh(g1t) and sinh(g1t) are increasing for all t ∈ [0, T ], we see that

(2.17)

∫
RN

v21 dx ≤ C2 cosh(g1T ) + C3 sinh(g1T ) =: K1,T for t ∈ [0, T ]

where

C2 =

∫
RN

w2
0 dx+

2C1

g21
,

C3 =
1

g1

{∫
RN

w2
0 dx+

∫
RN

w2
1 dx+ (d1 + d2)ε0

∫
RN

|∇w0|2 dx
}
.

By (2.13), it holds for all t ∈ [0, T ] that

(2.18)

∫
RN

v21,t dx+ d1d2ε
2

∫
RN

(∆v1)
2 dx+ d

∫
RN

|∇v1|2 dx ≤ 2f3K1,T + C1.

Therefore, ∫
RN

v21 dx,

∫
RN

v21,t dx and

∫
RN

|∇v1|2 dx

are bounded for any t ∈ [0, T ].
Next, we show the boundedness of

∫
RN |∇v1,t|2 dx and

∫
RN (∆v1)

2 dx for
all t ∈ [0, T ]. We note that v1 ∈ H1(RN) for all t ∈ [0, T ] by the previous
proof. We estimate the the right-hand side of (2.7) as follows:

(2.19)

∫
RN

f ′(v1)∇v1 · ∇v1,t dx ≤
∫
RN

|∇v1,t|2 dx+

∫
RN

|f ′(v1)|2|∇v1|2 dx.

In the case of N = 1, by v1 ∈ H1(R) ↪→ BC(R) and (H1), |f ′(v1)|2 is
bounded for all t ∈ [0, T ]. Hence, there exists a constant Cf > 0 depending
on f such that∫

RN

f ′(v1)∇v1 · ∇v1,t dx ≤
∫
RN

|∇v1,t|2 dx+ Cf

∫
RN

|∇v1|2 dx.

13



To estimate
∫
RN |f ′(v1)|2|∇v1|2 dx, we consider the assumption (H4). By

considering the cases |u| ≥ 1 and |u| < 1, (H4) holds with q = 1 when
0 ≤ q < 1. Thus we can assume that q ≥ 1. Hence, using (H4), we estimate
the following:∫

RN

|f ′(v1)|2|∇v1|2 dx ≤
∫
RN

(f4 + f5|v1|q)2 |∇v1|2 dx

≤ 2

∫
RN

(
f4

2 + f 2
5 |v1|2q

)
|∇v1|2 dx

≤ 2f4
2∥∇v1∥2L2(RN ) + 2f 2

5∥v1∥2L4q(RN )∥∇v1∥2L4(RN ).

Consider the case when N = 1, 2. Since H1(RN) ↪→ Lr(RN) for 2 ≤ r < ∞,
∥v1∥L4q(RN ) ≤ CS∥v1∥H1(RN ) holds. If N = 3, 4, then H1(RN) ↪→ Lr(RN)
for 2 ≤ r ≤ 2N/(N − 2). Noting that 4q ≤ 2N/(N − 2), we also ob-
tain ∥v1∥L4q(RN ) ≤ CS∥v1∥H1(RN ). Therefore, ∥v1∥L4q(RN ) is bounded for all
t ∈ [0, T ]. Similarly, using the Sobolev embedding of H1(RN), we estimate
∥∇v1∥2L4(RN ) as follows:

∥∇v1∥2L4(RN ) ≤ C2
S∥∇v1∥2H1(RN ) = C2

S

(
∥∇v1∥2L2(RN ) + ∥D2v1∥2L2(RN )

)
,

where ∥D2v1∥2L2(RN ) =
∫
RN |D2v1|2 dx and |D2v1|2 =

∑N
i,j=1 |

∂2v1
∂xi∂xj

|2. By the

divergence theorem,

∥D2v1∥2L2(RN ) =

∫
RN

|D2v1|2 dx =
N∑

i,j=1

∫
RN

(
∂2v1

∂xi∂xj

)(
∂2v1

∂xi∂xj

)
dx

=
N∑

i,j=1

∫
RN

(
∂2v1
∂x2

i

)(
∂2v1
∂x2

j

)
dx = ∥∆v1∥2L2(RN )

for any v1 ∈ H2(RN). Hence, we see that

∥∇v1∥2L4(RN ) ≤ C2
S

(
∥∇v1∥2L2(RN ) + ∥∆v1∥2L2(RN )

)
.

In both cases N = 1 and 2 ≤ N ≤ 4, it follows from (2.17) and (2.18) that∫
RN

|f ′(v1)|2|∇v1|2 dx ≤ C4

∫
RN

(∆v1)
2 dx+ C5(2.20)

14



where C4 and C5 are positive constants independent of t ∈ [0, T ] and ε ∈
(0, ε0]. Hence, by (2.19) and (2.20), we obtain

∫
RN

f ′(v1)∇v1 · ∇v1,t dx ≤
∫
RN

|∇v1,t|2 dx+ C4

∫
RN

(∆v1)
2 dx+ C5.

By this estimate and (2.7), we see that

d

dt

{
1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx+
d

2

∫
RN

(∆v1)
2 dx

}
≤

∫
RN

f ′(v1)∇v1 · ∇v1,t dx

≤
∫
RN

|∇v1,t|2 dx+ C4

∫
RN

(∆v1)
2 dx+ C5

≤ C6

{
1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx+
d

2

∫
RN

(∆v1)
2 dx

}
+ C5,

where C6 = 2max{1, C4/d}. Hence, setting

Z(t) :=
1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx+
d

2

∫
RN

(∆v1)
2 dx,

we see that the previous inequality becomes Z ′(t) ≤ C6Z(t) + C5, that is,
Z ′(t)−C6Z(t) ≤ C5. For any t ∈ [0, T ] and ε ∈ (0, ε0], multiplying this with
e−C6t and integrating it over [0, t], we have that

Z(t) ≤ Z(0)eC6t +
C5

C6

(
eC6t − 1

)
≤ C7Z(0) + C7,(2.21)

where C7 is a positive constant depending on C5, C6 and T . Since (uε
1, u

ε
2) is

a classical solution for any ε > 0, v1 = uε
1 and v2 = (uε

2 − uε
1)/ε, we see that

for each t ∈ [0, T ], v1,t is continuously differentiable with respect to x and v2
is continuously twice differentiable with respect to x. Hence, the equation
v1,t = d1ε∆v1 + ∇v2 is continuously differentiable with respect to x. Since
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∇v1,t = d1ε∇(∆v1) +∇v2, w0 ∈ H4(RN) and w1 ∈ H3(RN), we see that

Z(0) =
1

2

∫
RN

|∇v1,t|2 dx
∣∣∣∣
t=0

+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx
∣∣∣∣
t=0

+
d

2

∫
RN

(∆v1)
2 dx

∣∣∣∣
t=0

=
1

2

∫
RN

|d1ε∇(∆w0) +∇w1|2 dx

+
d1d2
2

ε2
∫
RN

|∇(∆w0)|2 dx+
d

2

∫
RN

(∆w0)
2 dx.

Thus, we obtain that Z(0) is estimated by ∥w0∥H3(RN ) and ∥w1∥H1(RN ). By
(2.21) and the definition of Z(t), for all t ∈ [0, T ] and ε ∈ (0, ε0], we have
that

1

2

∫
RN

|∇v1,t|2 dx+
d1d2
2

ε2
∫
RN

|∇(∆v1)|2 dx+
d

2

∫
RN

(∆v1)
2 dx ≤ K2,T ,

where K2,T is a positive constant depending on d1, d2, ε0, C7, ∥w0∥H3(RN ),
∥w1∥H1(RN ) and T . Thus, we complete the proof.

For the higher derivatives of v1, we present Lemma2.4.

Lemma 2.4. Assume that w0 ∈ H4(RN) and w1 ∈ H2(RN). Let d2 > d1 ≥
0, ε0 > 0, and T > 0. Then, the following integrations are bounded for any
t ∈ [0, T ] and ε ∈ (0, ε0] :

ε

∫
RN

(∆v1,t)
2 dx, ε3

∫
RN

(∆2v1)
2 dx, ε

∫
RN

|∇(∆v1)|2 dx

where d = d2 − d1.

Proof. By integrating (2.8) with respect to t and using (2.20) and Lemma
2.3, we have for any t ∈ [0, T ],

ε

∫
RN

(∆v1,t)
2 dx+ d1d2ε

3

∫
RN

(∆2v1)
2 dx+ dε

∫
RN

|∇(∆v1)|2 dx ≤ C8,

where C8 is a positive constant depending on ε0∥w0∥2H4(RN ) + ε0∥w1∥2H2(RN ).
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3 Convergence

In this section, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. We can rewrite (1.1) to

(3.1)


V1,t = V2,

V2,t = d∆V1 + f(V1),
in RN × (0, T ),

V1(x, 0) = w0, V2(x, 0) = w1 in RN .

Since we assume that w0 ∈ H4(RN) and w1 ∈ H2(RN), at least V1 belongs
to H2(RN) for all t ∈ [0, T ]. Recall that

v1,t = d1ε∆v1 + v2,

v2,t = d2ε∆v2 + d∆v1 + f(v1),
in RN × (0, T ],

v1(·, 0) = w0,

v2(·, 0) = w1,
in RN .

By comparing two systems, we have{
(v1 − V1)t = d1ε∆v1 + (v2 − V2),

(v2 − V2)t = d2ε∆v2 + d∆(v1 − V1) + f(v1)− f(V1),

Then, we get

(3.2) (v1 − V1)tt − d1ε∆v1,t = d2ε∆v2 + d∆(v1 − V1) + f(v1)− f(V1).

Multiplying (3.2) by (v1 − V1)t and integrating it over RN yield

d

dt

(
1

2

∫
RN

(v1,t − V1,t)
2 dx+

d

2

∫
RN

|∇(v1 − V1)|2 dx
)

=

∫
RN

(d1ε∆v1,t + d2ε∆v2) (v1 − V1)t dx

+

∫
RN

{f(v1)− f(V1)} (v1 − V1)t dx.

By Lemma 2.4 and ∆v2 = ∆v1,t − d1ε∆
2v1, we have∫

RN

(ε∆v1,t)
2 dx ≤ C9ε,∫

RN

(ε∆v2)
2 dx =

∫
RN

(ε∆v1,t − d1ε
2∆2v1)

2 dx

≤ 2

∫
RN

(ε∆v1,t)
2 dx+ 2

∫
RN

(d1ε
2∆2v1)

2 dx ≤ C9ε.
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By the previous estimates, we see that

d

dt

(
1

2

∫
RN

(v1,t − V1,t)
2 dx+

d

2

∫
RN

|∇(v1 − V1)|2 dx
)

= 2C9ε

∫
RN

(v1,t − V1,t)
2 dx+

∫
RN

{f(v1)− f(V1)} (v1 − V1)t dx.

(3.3)

By multiplying (3.2) by v1 − V1 and integrating it over RN , we have

1

2

d2

dt2

∫
RN

(v1 − V1)
2 dx

=

∫
RN

(v1,t − V1,t)
2 dx+

∫
RN

(v1,tt − V1,tt)(v1 − V1) dx

=

∫
RN

(v1,t − V1,t)
2 dx+

∫
RN

(d1ε∆v1,t + d2ε∆v2) (v1 − V1) dx

−
∫
RN

d|∇(v1 − V1)|2 dx+

∫
RN

{f(v1)− f(V1)} (v1 − V1) dx

≤
∫
RN

(v1,t − V1,t)
2 dx+

∫
RN

(v1 − V1)
2 dx+ C10ε

−
∫
RN

d|∇(v1 − V1)|2 dx+

∫
RN

{f(v1)− f(V1)} (v1 − V1) dx.

(3.4)

Since H2(RN) ↪→ BC(RN) in the case of 1 ≤ N ≤ 3, we have∫
RN

{f(v1)− f(V1)} (v1 − V1) dx ≤ C11

∫
RN

(v1 − V1)
2 dx,∫

RN

{f(v1)− f(V1)} (v1 − V1)t dx

≤ C11

∫
RN

(v1,t − V1,t)
2 dx+ C11

∫
RN

(v1 − V1)
2 dx.

In the case of N = 4, let us estimate
∫
R4 {f(v1)− f(V1)} (v1 − V1) dx and∫

R4 {f(v1)− f(V1)} (v1,t − V1,t) dx. Noting that q = 1 in (H4) when N = 4,
we have |f ′(u)| ≤ f4 + f5|u|. By the mean value theorem, we see that

|f(v1)− f(V1)| ≤
∫ 1

0

|f ′(θv1 + (1− θ)V1)|dθ · |v1 − V1|

≤
(
f4 + f5|v1|+ f5|V1|

)
|v1 − V1|.
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Hence, we see that∫
R4

{f(v1)− f(V1)} (v1 − V1) dx ≤
∫
R4

(f4 + f5|v1|+ f5|V1|) (v1 − V1)
2 dx,

and ∫
R4

{f(v1)− f(V1)} (v1 − V1)t dx

≤
∫
R4

(|v1|+ |V1|) |v1 − V1||v1,t − V1,t| dx

≤ 1

2

∫
R4

(v1,t − V1,t)
2 dx+

1

2

∫
R4

(f4 + f5|v1|+ f5|V1|)2 (v1 − V1)
2 dx.

By the Schwarz inequality and the Sobolev inequality, we have that for each
m = 1, 2,∫

R4

(f4 + f5|v1|+ f5|V1|)m (v1 − V1)
2 dx

≤ C12∥v1 − V1∥2L2(R4) + C12(∥v1∥mL2m(R4) + ∥V1∥mL2m(R4))∥v1 − V1∥2L4(R4)

≤ C12∥v1 − V1∥2L2(R4) + C12(∥v1∥mL2m(R4) + ∥V1∥mL2m(R4))C
2
S∥v1 − V1∥2H1(R4)

where C12 is a positive constant. Since v1, V1 ∈ H2(R4), ∥v1∥mL2m(R4) and

∥V1∥mL2m(R4) are bounded for each m = 1, 2 and t ∈ [0, T ]. Therefore, we
obtain that∫

R4

{f(v1)− f(V1)} (v1 − V1) dx ≤ C13∥v1 − V1∥2H1(RN )∫
RN

{f(v1)− f(V1)} (v1 − V1)t dx ≤ ∥v1,t − V1,t∥2L2(RN ) + C13∥v1 − V1∥2H1(RN ).

Thus, from (3.3) and (3.4) with the above inequalities, we have

X ′′ ≤ C14ε+ C14X + C15Y,

Y ′ ≤ C14ε+ C14X + C15Y,

where

X =

∫
RN

|v1 − V1|2dx, Y =

∫
RN

|v1,t − V1,t|2dx+

∫
RN

d|∇(v1 − V1)|2dx.
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By adding the previous inequalities, we have

X ′′ + Y ′ ≤ 2C14ε+ 2C14X + 2C15Y.

By choosing a sufficiently large C14 with
√
2C14 > 2C15 and taking g =√

2C14, we obtain{
(X ′ + gX) e−gt

}′
+
(
Y e−gt

)′ ≤ 2C14ε e
−gt for t > 0.

The argument similar to Lemma 2.2 yields∫
RN

(v1 − V1)
2dx ≤ C14ε,

∫
RN

|∇(v1 − V1)|2dx ≤ C14ε

and

∫
RN

(v1,t − V1,t)
2dx ≤ C14ε,

where we use (v1 − V1)|t=0 = 0 and (v1,t − V1,t)|t=0 = 0.

4 Concluding remarks

We proposed a 2-component reaction-diffusion system (1.3) approximating a
semilinear wave equation. The semilinear wave equation has energy conser-
vation law (1.2) where w is a unique solution of (1.1). However, as seems
in (2.6) that the first component u of the solution to (1.3) does not have
the conservation law such as the above. Although it is difficult to investi-
gate the details of solutions to the wave equation by (1.3), we have proved
the convergenece in C0([0, T ];H1(RN))∩C1((0, T ];L2(RN)) for any positive
time T > 0. Moreover, we emphasize that the reaction-diffusion approxima-
tion is useful because of the facility of the numarical scheme. In particular,
when d1 = 0, the system (2.1) of (v1, v2) approximating the solution of (1.1)
becomes {

v1,t = v2,

v2,t = d2ε∆v2 + d2∆v1 + f(v1)
in RN .

This system is approximately the same as (3.1), and we conjecture that the
case d1 = 0 is slightly better than the case d1 > 0 if the initial data w0 and
w1 are sufficiently smooth. However, to stabilize the original system (1.3), it
might be better to use the system in the case d1 > 0.
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