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Abstract. This paper treats a free boundary problem in two-dimensional excitable media
arising from a singular limiting problem of a FitzHugh–Nagumo type reaction-diffusion sys-
tem. The existence and uniqueness up to translations of two-dimensional traveling curved
waves solutions is shown. To study the stability of the waves, the local and global existence
and uniqueness of solutions to the free boundary problem nearby the waves under certain
assumptions is established. The notion of the arrival time is introduced to estimate the prop-
agation speed of solutions to the free boundary problem, which allows us to establish the
asymptotic stability of traveling curved waves by using the comparison principle. It is also
pointed out that the gradient blowup can take place if the initial data is far from the traveling
curved waves, which means the interface may not be always represented by a graph.

1. Introduction

Wave propagation phenomenon occurs in various area such as physics, biology, chemical
kinetics and so on. In particular, excitable media which are often modeled by nonlinear par-
tial differential equations can sustain traveling waves, traveling pulses, periodic wave trains,
rotating spirals and so on. Examples include propagated waves of electrical or chemical ac-
tivity in cardiac tissue, in the retina or in the brain cortex, which provide self-organization
phenomena in living system [19, 25]. A wide variety of spatiotemporal patterns has been dis-
cussed in, for example, [38, 24, 20, 37, 22, 23] and the references therein. Mathematically,
self-organized patterns in two-dimensional excitable media such as the spatially distributed
models of FitzHugh–Nagumo type are still not understood completely and lead to substantial
new mathematical challenges. In order to investigate that, complicated dynamics arising in
excitable media should be simplified to be able to analyze them. This motivates Chen et al.
[7] to propose a singular limit problem of a FitzHugh–Nagumo type reaction-diffusion system,
which is described by the following free boundary problem:{

V = W (v)− κ, (x, y) ∈ ∂Ω(t), t > 0,

vt = g(χΩ(t), v), (x, y) ∈ R2, t > 0,
(1.1)

where V is referred as an outer normal velocity on ∂Ω(t) which points from Ω(t) to Ω(t)c; κ is
a curvature of Ω(t); χΩ(t) is a characteristic function of Ω(t) which is defined as

χΩ(t)(x, y) :=

{
1, if (x, y) ∈ Ω(t),

0, otherwise.

The function W (v) := a− bv for some positive constants a and b. The function g is defined by

g(u, v) := g1u−
g2v

g3v + g4
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for some positive constants gi (i = 1, · · · , 4). In fact, system (1.1) comes from a limiting
problem of a FitzHugh–Nagumo type reaction-diffusion system ut = ∆u+

1

ε2
(fε(u)− εβv),

vt = g(u, v),

where ε > 0 and

fε(u) := u(1− u)(u− 1/2 + εα), g(u, v) := g1u−
g2v

g3v + g4
,

where u is the activator (membrane potential) and v is the inhibitor (recovery variable). After
a formal analysis, uε → 1 or 0 as ε ↓ 0 and Ω(t) stands for the region where uε → 1. Since
this characteristic function and v correspond to the limiting functions of the activator and
the inhibitor, the region Ω(t) and its complementary region are called an excited region and a
resting region, respectively.

One of the simplest dynamics is the so-called traveling waves, which moves with a constant
speed c without changing its shape. It is said to be a planar traveling wave if it can be
represented by a function of the single variable n · x− ct with some unit vector n pointing in
the direction of wave propagation. It is essentially a one-dimensional wave. In two-dimensional
media, non-planar traveling waves are expected to occur. The existence and uniqueness of
traveling spots to the problem (1.1) for the wave speed c ∈ (0, a) has been discussed in [7],
where Ω(t) is considered as a bounded moving domain. More precisely, Theorem 1.1 of [7]
showed that, under the condition 2g2 ≤ g1g3, for any c ∈ (0, a), there exist a unique constant
b, a bounded domain Ω (assuming symmetry along the y-axis) and v(x, y) such that the moving
domain

Ω(t) = {(x, y + ct) | (x, y) ∈ Ω}
and v(x, y − ct) solve (1.1). Moreover,

v(x, y) = 0, |x| ≥ Lc; lim
R→∞

sup
x2+y2≥R2

v(x, y) = 0,

where Lc denotes the width of Ω given by

Lc := max
(x,y)∈Ω

|x| = − π

2c
+

2a

c
√
a2 − c2

arctan
a+ c√
a2 − c2

.

This traveling wave is called a traveling spot. Among other things, the shape of Ω approaches
to a disk with radius 1/a as c↘ 0 and is non-convex when c is close to a.

The relationship among complicated spatio-temporal patterns in (1.1) are still not completely
understood. First let us consider the relationship between the traveling spots and the planar
traveling waves. For this, we observe that Lc → ∞ as c ↗ a, which means the width of
the traveling spot tends to ∞. More precisely, Chen et al. [8] proved that the traveling spot
converges to a planar traveling wave as c↗ a. It is natural to ask: what happens if c is bigger
than a? For simplicity, we look for C2,1 functions ϕ− and ϕ+ defined on {(x, t) : x ∈ R, t > 0}
such that the excited region

Ω(t) := {(x, y) ∈ R2 | ϕ−(x, t) < y < ϕ+(x, t)}.

Also, we are interested in the case that the normal velocity on {y = ϕ+(x, t)} (resp. {y =
ϕ−(x, t)}) is positive (resp. negative) and call it the front (resp. the back).

Noting the direction of the outer normal vector, we have

ϕ±,t =
ϕ±,xx

1 + ϕ2
±,x

±W (v(x, ϕ±(x, t), t))
√
1 + ϕ2

±,x, x ∈ R, t > 0. (1.2)
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The equation for v can be rewritten as follows:{
vt = g(1, v), (x, y) ∈ Ω(t),

vt = g(0, v), (x, y) ∈ Ω+(t) ∪ Ω−(t),
(1.3)

where

Ω+(t) := {(x, y) ∈ R2 | y ≥ ϕ+(x, t)}, Ω−(t) := {(x, y) ∈ R2 | y ≤ ϕ−(x, t)}.

Our goal is to address two questions: (i) Does there exist non-planar traveling waves for (1.2)-
(1.3) with an unbounded moving domain when c is bigger than a ? (ii) If such wave exists, is
it globally asymptotically stable? To answer (i), we consider, without loss of generality, the
traveling waves moving in y-direction with a speed c and taking the following forms:

v(x, y, t) = v̂(x, y − ct), ϕ±(x, t) = ϕ̂±(x) + ct, Ω̂ = {(x, y) ∈ R2 | ϕ̂−(x) < y < ϕ̂+(x)},
Ω̂+ := {(x, y) | y > ϕ̂+(x)}, Ω̂− := {(x, y) | y < ϕ̂−(x)},

which satisfy

cv̂y(x, y) + g(χΩ̂(x, y), v̂(x, y)) = 0, (x, y) ∈ Ω̂+ ∪ Ω̂ ∪ Ω̂−, (1.4)

c =
ϕ̂+,xx

1 + ϕ̂2
+,x

+W (v̂(x, ϕ̂+(x)))

√
1 + ϕ̂2

+,x, x ∈ R, (1.5)

c =
ϕ̂−,xx

1 + ϕ̂2
−,x

−W (v̂(x, ϕ̂−(x)))

√
1 + ϕ̂2

−,x, x ∈ R, (1.6)

from (1.2) and (1.3).
Traveling curved waves (or V-shaped traveling waves) are one type of non-planar waves

which have been studied theoretically in [2] and observed in simulations [33]. See also [1, 31].
Moreover, Peres-Muzunuri et al [33] performed the experiments in a liquid BZ reaction. Using
a silver wire with appropriate shape immersed into the liquid, they succeeded to observe that
the silver wire constantly emitted V-shaped waves with a period. The mathematical studies
can be found in, for example, [9, 16, 17, 29, 30, 35, 36] and the references therein. We emphasize
that they have been studied the front waves only and that we consider the traveling curved
wave with the front and the back.

The other typical dynamics of two dimensional waves are wave segments, rotating spots and
rotating spirals, which have not been studied yet in the system (1.1). These patterns have been
studied in [39, 14, 15, 6] for the so-called wave front interaction model, which is proposed by
Pelcé and Sun [32] and Zykov and Showalter [39]. We remark that the wave front interaction
model is simpler than (1.1).

Without loss of generality, we can assume that the traveling wave is moving in y direction
after an appropriate rotation. Before constructing traveling curved wave solutions to the
problem (1.2)–(1.3), we give the definition of a traveling curved wave solution as follows:

Definition 1.1. If (c, ϕ̂±, v̂) satisfies (1.4)–(1.6) with

ϕ̂± ∈ C2(R), v̂ ≥ 0 in R2, v̂ ∈ C(R2) ∩ L∞(R2) ∩ C1
(
R2 \ {y = ϕ̂±(x)}

)
,

then (c, ϕ±(x, t), v(x, y, t)) = (c, ϕ̂±(x)+ ct, v̂(x, y− ct)) is said to be a traveling wave of (1.2)–
(1.3) (as well as (1.1)) and c is called the wave speed. If the traveling wave is not a planar
traveling wave, it is called a traveling curved wave.
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Suppose that the solution (c, ϕ̂±, v̂) of (1.4)–(1.6) exists with c > 0. We can see that v̂ ≡ 0

on the region Ω̂+. Indeed, from (1.4), v̂ satisfies

cv̂y = −g(0, v̂), (x, y) ∈ Ω̂+.

For each (x0, y0) ∈ Ω̂+, by integrating the above equation with respect to y, we have

−
∫ v̂(x0,y)

v̂(x0,y0)

ds

g(0, s)
=

1

c
(y − y0).

Thus v̂(x0, y) goes to infinity as y tends to∞ if v̂(x0, y0) > 0. Since v̂ is assumed to be bounded,

we must have v̂(x0, y0) = 0 for all (x0, y0) ∈ Ω̂+. Hence v̂ ≡ 0 in Ω̂+. The continuity of the

solution gives that v̂ = 0 on the front. Hence the front ϕ̂+ satisfies (1.5) withW (v̂(x, ϕ̂+(x))) =
a. Namely, the front equation (1.5) becomes

c =
ϕ̂+,xx

1 + ϕ̂2
+,x

+ a

√
1 + ϕ̂2

+,x, x ∈ R. (1.7)

This equation (1.7) is often called a curvature flow with constant force and has been studied
in, for example, [11, 26, 27, 28]. Especially the existence and the uniqueness of the V-shaped
solution of (1.7) was shown in [27, 28]. We recall some results as follows:

Proposition 1.2 (Proposition 1.1 of [27]). For each c > a > 0, there exists a unique solution

ϕ̂∗(x; c) of (1.7) with asymptotic lines y = m∗|x|+ η, where

m∗ :=

√
c2 − a2

a
> 0, η := −

√
c2 − a2

ca
arctan

√
c2 − a2

a
− 1

c
log

2(c+ a)

c
< 0.

The graph of y = ϕ̂∗(x; c) is characterized by θ = arctan ϕ̂∗
x(x; c) as

x(θ; c) =
θ

c
+

2

m∗c
arctanh

(√
c+ k

c− k
tan

θ

2

)
, (1.8)

y(θ; c) =
1

c
log

(
c− a

c cos θ − a

)
for θ ∈ (− arctanm∗, arctanm∗). Furthermore, ϕ̂∗

xx > 0 for all x ∈ R.

We remark that the difference between the traveling front in Proposition 1.2 and Proposi-
tion 1.1 of [27] is a translation in y. The asymptotic lines in [27] are y = m∗|x|.

Proposition 1.3 (Theorem 1.2 of [27]). For each c ≥ a > 0, the solution y = ϕ̂+(x) of (1.7)
must be the one of the following two types:

(i) a straight line,

(ii) a traveling front y = ϕ̂∗(x+ x0; c) + y0 for some x0 and y0.

Furthermore, if 0 ≤ c < a, then there is no smooth traveling front except for the case that the
interface forms a stationary circle with radius 1/a and c = 0.

We make the following assumption in the whole paper:

(H) g1g3 > 2g2.

The assumption (H) is needed in the singular limiting process [7]. In our paper, (H) can be
weaken as g1g3 > g2. However, we still impose (H) from the modeling viewpoint.

The main results are given as follows.
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Theorem 1.4 (Existence of traveling curved waves). For each c > a > 0, there exists a

solution (c, ϕ̂∗
±, v̂

∗) of of (1.4)–(1.6) such that

v̂∗ ∈ C(R2) ∩ C2(R2 \ {y = ϕ̂∗
±(x)}) and ϕ̂∗

± ∈ C2(R),

ϕ̂∗
+(x) = ϕ̂∗(x; c), ϕ̂∗

−(x) = ϕ̂∗(x; c)− cG−1
1 (2a/b),

v̂∗(x, y) :=



0 if y ≥ ϕ̂∗
+(x),

G1

(
ϕ̂∗
+(x)− y

c

)
if ϕ̂∗

−(x) ≤ y ≤ ϕ̂∗
+(x),

G0

(
ϕ̂∗
−(x)− y

c
+G−1

0

(
2a

b

))
if y ≤ ϕ̂∗

−(x),

(1.9)

where ϕ̂∗(x; c) is defined in Proposition 1.2 and

G−1
0 (v) :=

∫ v

1

ds

g(0, s)
, G−1

1 (v) :=

∫ v

0

ds

g(1, s)
.

We set G−1
0 (0) = ∞. See Section 2 for more details.

Theorem 1.5 (Uniqueness of traveling curved waves). For each c > a > 0, the traveling
curved wave is unique (up to a translation). Namely, if (c, ϕ±, v) is a traveling curved wave,
then

ϕ+(x, t) = ϕ̂∗(x+ x0; c) + ct− y0, ϕ−(x, t) = ϕ̂∗(x+ x0; c) + ct− cG−1
1 (2a/b)− y0,

v(x, y, t) = v̂∗(x+ x0, y + y0 − ct) for some x0, y0 ∈ R.

We next study the asymptotic stability of (c, ϕ̂±, v̂) for any given c > a. For this, the global
existence and uniqueness of solutions of (1.2) and (1.3) nearby any given traveling curved wave
are needed to be established first. We assume that the initial data (ϕ±,0, v0) satisfies

v0 ∈ C1(Ω−(0)) ∩ C1(Ω(0)) ∩ C1(Ω+(0)) ∩ C(R2), v0 ≥ 0 in R2,

∥v0(x, y)− v̂ϕ+,0,ϕ−,0(x, y)∥C1(R2\{y=ϕ±,0(x)}) ≤ ε,

∥ϕ±,0(x)− ϕ̂∗
±(x; c)∥C2(R) ≤ ε

(1.10)

for some small ε > 0, where Ω(0) is the closure of the set Ω(0), v(x, y, 0) = v0(x, y), ϕ±(x, 0) =
ϕ±,0(x) and

v̂ϕ1,ϕ2(x, y) :=



0 if y ≥ ϕ1(x),

G1

(
ϕ1(x)− y

c

)
if ϕ2(x) ≤ y < ϕ1(x),

G0

(
ϕ2(x)− y

c
+G−1

0 ◦G1

(
ϕ1(x)− ϕ2(x)

c

))
if y < ϕ2(x),

(1.11)

if ϕ1(x) > ϕ2(x) for any x ∈ R. We note that v̂∗(x, y) = v̂ϕ̂
∗,ϕ̂∗−cG−1

1 (2a/b)(x, y) for the traveling
curved wave. For simplicity, we also denote v̂ϕ1,−∞ by v̂ϕ1 , namely,

v̂ϕ1(x, y) := G1

((
ϕ1(x)− y

c

)
+

)
=


0 if y ≥ ϕ1(x),

G1

(
ϕ1(x)− y

c

)
if y < ϕ1(x),

(1.12)
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where we use the notation (x)+ := max{x, 0}. Moreover, we consider a compact perturbation
in the sense that there is a compact set K := [−k1, k1]× [−k2, k2] ⊂ R2 such that{

ϕ±,0(x)− ϕ̂∗
±(x) ≡ 0, x ̸∈ [−k1, k1],

v0(x, y)− v̂∗(x, y) ≡ 0, (x, y) ̸∈ K.
(1.13)

We also impose the following assumptions:

(A1) ∥ϕ′
±,0∥L∞(R) + ∥ϕ′′

±,0∥L∞(R) ≤M0 for some positive constant M0.

(A2)
ϕ′′
±,0(x)

1 + ϕ′
±,0(x)

2
±W (v0(x, ϕ±,0(x)))

√
1 + ϕ′

±,0(x)
2 ≥ ζ0 in R for some positive constant ζ0.

We remark that since v0 ≥ 0 in R2, it follows from (1.3) that v ≥ 0 as long as it exists.
Before we state the local and global existence and uniqueness result, the definition of classical
solutions to (1.2) and (1.3) is given as follows.

Definition 1.6. A classical solution of (1.2) and (1.3) for t ∈ [0, T ] is a pair (ϕ±, v) such that

(i) ϕ+(x, t) > ϕ−(x, t) for (x, t) ∈ R× [0, T ],
(ii) ϕ± ∈ C(R× [0, T ]) ∩ C2,1(R× (0, T ]),
(iii) v ∈ C(R2 × [0, T ]) ∩ C1(R2 × (0, T ] \ {y = ϕ±(x, t)})
(iv) (ϕ±, v) satisfies (1.2)-(1.3) for t ∈ (0, T ].

Theorem 1.7. Let (ϕ±,0, v0) satisfy (1.10)-(1.13) and (A1)-(A2). Then for any c > a, the
problem (1.2)-(1.3) has a unique classical solution (ϕ±, v) for all t ∈ [0,∞). Moreover, the
following estimates hold:

∥ϕ±,x∥L∞(Q∞) + ∥ϕ±,t∥L∞(Q∞) ≤M±,

ϕ+,t(·, t) ≥ ζ+ for all x ∈ R and t ∈ [0,∞) with some positive constant ζ+,

ϕ−,t(·, t) ≥ e−ζ−tζ0 for all x ∈ R and t ∈ [0,∞) with some positive constant ζ−,

where Q∞ := R× (0,∞) and M± (resp. ζ±) is a positive constant depending only on M0 (resp.
M0, ζ0 and ε).

The system (1.1) with diffusion{
V = W (v)− κ, (x, y) ∈ ∂Ω(t), t > 0,

vt = ∆v + g(u±(v), v), (x, y) ∈ R2, t > 0
(1.14)

has been discussed by many researchers, where u±(v) are roots of F (u±(v))− v = 0 for some
cubic function F with three zeros. The local existence and uniqueness of solutions of (1.14)
was shown by [3, 4]; the global existence of weak solutions has been established in [13]. The
existence of diffusion plays an important role in showing the local existence of solutions. Due
to the lack of diffusivity, we only show the existence of solutions to (1.1) near traveling curve
waves. Moreover, the above theorem guarantees the global existence of solutions. See [5, 18]
for one dimensional case of (1.14).
Our final result shows that the traveling curved wave of (1.1) is asymptotically stable if the

given initial perturbation satisfies (1.10)-(1.13) and (A1)-(A2).
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Theorem 1.8. Suppose that (ϕ±,0, v0) satisfying (1.10)-(1.13) and (A1)-(A2). Then the
solution (ϕ±, v) of (1.2)-(1.3) satisfies

lim
t→∞

sup
x∈R

∣∣ϕ+(x, t)− (ϕ̂∗(x; c) + ct)
∣∣ = 0,

lim
t→∞

sup
x∈R

∣∣∣ϕ−(x, t)−
(
ϕ̂∗(x; c) + ct− cG−1

1

(2a
b

)) ∣∣∣ = 0,

lim
t→∞

sup
(x,y)∈R2

∣∣v(x, y, t)− v̂∗(x, y − ct)
∣∣ = 0.

The rest of the paper is organized as follows. In Section 2, we show Theorem 1.4 by the
help of Proposition 1.2 and prove Theorem 1.5 by constructing suitable super-sub solutions
and applying the comparison principle. In Section 3, we divide it into two subsections. First,
the global existence and uniqueness of the free boundary problem is discussed. For this, a
priori estimates for ϕ± and ϕ±,x are investigated. Some difficulties occur due to the presence of
v(x, ϕ±, t) in the nonlinear term. Here the notion of the arrival time is introduced to overcome
the difficulties. In the successive subsection, we study the asymptotic stability of traveling
curved waves. The notion of the arrival time helps us estimate the propagation speed of
solutions to the free boundary problem, which allows us to establish the asymptotic stability
by using the comparison principle. In section 4, we give an example to illustrate that the
gradient blowup can take place if the initial data is far from the traveling curved waves by
using a geometric approach proposed in [12].

2. Existence and uniqueness of traveling curved waves

In this section, we shall prove Theorem 1.4 and Theorem 1.5. Before we start, we introduce
some notations which will be used in the whole paper. Define

G−1
1 (v) :=

∫ v

0

ds

g(1, s)
.

Due to (H), G−1
1 (v) is well-defined for v ≥ 0 and strictly increasing in [0,∞). Hence its inverse

function, denoted by G1, is well-defined and is also strictly increasing in [0,∞). Also, define

G−1
0 (v) :=


∫ v

1

ds

g(0, s)
if v > 0,

∞ if v = 0.

By direct calculations, we have

G−1
0 (v) = −g3

g2
(v − 1)− g4

g2
log v, v > 0. (2.1)

It is easy to see that G−1
0 (·) is strictly decreasing to −∞ and G−1

0 (1) = 0. By some simple
computations, its inverse function satisfies

G0(v) = exp

[
−g2
g4
v − g3

g4
G0(v) +

g3
g4

]
, v > 0. (2.2)

Basic results about G0 and G1 are given as follows.
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Lemma 2.1. The function G0 and G1 satisfy

0 ≤ G0(G
−1
0 (s) + t) ≤ s, s, t ≥ 0,

d

ds
G0(G

−1
0 (s) + t) =


g(0, G0(G

−1
0 (s) + t))

g(0, s)
, s > 0, t ≥ 0,

e−g2t/g4 , s = 0, t ≥ 0,

d

dt
G1(G

−1
1 (s) + t) = g(1, G1(G

−1
1 (s) + t)), s, t ≥ 0.

Proof. Since G0(·) is decreasing to zero,

0 ≤ G0(G
−1
0 (s) + t) ≤ G0(G

−1
0 (s)) = s, s, t ≥ 0. (2.3)

The chain rule immediately induces the derivative when s > 0 and t ≥ 0.
For s = 0, by using (2.2) and (2.1), we have

lim
s↘0

G0(G
−1
0 (s) + t)

s

= lim
s↘0

1

s
exp

{
−g2
g4
(G−1

0 (s) + t)− g3
g4
G0(G

−1
0 (s) + t) +

g3
g4

}
= lim

s↘0
exp

{
g3
g4
(s− 1)− g2

g4
t− g3

g4
G0(G

−1
0 (s) + t) +

g3
g4

}
= exp

{
−g2
g4
t

}
.

The last equality follows from (2.3) with taking s→ 0. Hence the proof is completed. �

Next, we recall some properties of the solution ϕ̂∗(x; c) of (1.7) which will be used later
frequently.

Lemma 2.2 (Lemma 2.1 in [28]). The following properties hold for the solution ϕ̂∗(x; c) of
(1.7).

(1) The following asymptotic estimates

ϕ̂∗
x(x; c) = ±

√
c2 − a2

a
+O(e−c

√
c2−a2|x|/a) as x→ ±∞,

ϕ̂∗(x; c) =

√
c2 − a2

a
|x|+ η +O(|x|e−c

√
c2−a2|x|/a) as x→ ±∞

hold.
(2) A function xϕ̂∗

x(x; c)− ϕ̂∗(x; c) is strictly monotone increasing in |x| with

0 ≤ xϕ̂∗
x(x; c)− ϕ̂∗(x; c) < |η|, x ∈ R,{

xϕ̂∗
x(x; c)− ϕ̂∗(x; c)

}∣∣∣
x=0

= 0,

lim
|x|→∞

(
xϕ̂∗

x(x; c)− ϕ̂∗(x; c)
)

= |η|.

(3) A function c− a

√
1 + ϕ̂∗

x(x; c)
2 is strictly monotone decreasing in |x| with{

c− a

√
1 + ϕ̂∗

x(x; c)
2
}
|x=0 = c− a,

lim
|x|→∞

(
c− a

√
1 + ϕ̂∗

x(x; c)
2
)

= 0,
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(4) For 0 < α < 1, ϕ̂∗(x; c)− α−1ϕ̂∗(αx; c) is strictly monotone increasing in |x| with

0 ≤ ϕ̂∗(x; c)− 1

α
ϕ̂∗(αx; c) < |η|

(
1

α
− 1

)
, 0 < α < 1, x ∈ R.

For α > 1, α−1ϕ̂∗(αx; c)− ϕ̂∗(x; c) is strictly monotone increasing in |x| with

0 ≤ 1

α
ϕ̂∗(αx; c)− ϕ̂∗(x; c) < |η|

(
1− 1

α

)
, α > 1, x ∈ R.

From Lemma 2.2, we have the following result.

Lemma 2.3. The following properties hold for the solution ϕ̂∗(x; c) of (1.7).

(1) ϕ̂∗
x(x; c) ↑ m∗ :=

√
c2 − a2/a as x→ ∞ and ϕ̂∗

x(x; c) ↓ −m∗ x→ −∞.

(2) ϕ̂∗
x(x; c) converges to ±m∗ exponentially as x tends to ±∞ respectively. More precisely,

lim
x→±∞

ϕ̂∗
x(x; c)∓m∗

e−cm∗|x|
= ∓λ0 for some positive constant λ0

Proof. The statement (1) follows from Lemma 2.2(1) and (3) immediately. It suffices to deal
with (2). By (1.8), we can see easily that

lim
x→∞

1−
√

c+k
c−k

tan( θ
2
)

e−cm∗x
= λ1 (2.4)

for some positive constant λ1. By differentiating (1.8) in x, we have

1 =
θx
c
+

sec2( θ
2
)

2cm∗

√
c+ k

c− k

 θx

1 +
√

c+k
c−k

tan( θ
2
)
+

θx

1−
√

c+k
c−k

tan( θ
2
)

 .
Taking x→ ∞ i.e., θx → 0, we have

lim
x→∞

θx

1−
√

c+k
c−k

tan( θ
2
)
= λ2 (2.5)

for some positive constant λ2. Note that ϕ̂∗
x = tan θ. By l’Hôpital’s rule, (2.4) and (2.5),

lim
x→∞

ϕ̂∗
x(x; c)−m∗

e−cm∗x
= lim

x→∞

θx sec
2 θ

(−cm∗)e−cm∗x
= −λ0 for some positive constant λ0.

By the symmetry, we can obtain the result as x → −∞. Hence the proof of Lemma 2.3 is
completed. �
Now we are ready to show Theorem 1.4.

Proof of Theorem 1.4. For any given c > a > 0, by Proposition 1.2 and the argument in front

of it, the front is given by ϕ̂+(x) = ϕ̂∗(x; c) and v̂(x, y) = 0 for all (x, y) ∈ Ω̂+. The value of v̂

on Ω̂ is determined by (1.4). In fact, (1.4) gives us that

− cv̂y
g(1, v̂)

= 1, x ∈ R and ϕ̂−(x) ≤ y ≤ ϕ̂+(x).

Integrating the above equation respect to y over (y, ϕ̂+(x)), we obtain

v̂(x, y) = G1

(
ϕ̂+(x)− y

c

)
, x ∈ R and ϕ̂−(x) ≤ y ≤ ϕ̂+(x). (2.6)

Note that v̂ ∈ C2(Ω̂).
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Next, we construct the back. Define

ϕ̂−(x) := ϕ̂+(x)− cG−1
1

(
2a

b

)
= ϕ̂∗(x; c)− cG−1

1

(
2a

b

)
.

From (2.6), we see that v̂(x, ϕ̂−(x)) = 2a/b for x ∈ R, which implies W (v̂(x, ϕ̂−(x))) = −a for

x ∈ R. It follows that ϕ̂+(x; c)− cG−1
1 (2a/b) satisfies (1.6). Thus, the existence of a traveling

back has been established.
Finally, we need to define the value of v̂ for Ω̂−. Note that (1.4) gives us that

v̂y
g(0, v̂)

= −1

c
, x ∈ R and y ≤ ϕ̂−(x).

Integrating the above equation respect to y over (y, ϕ̂−(x)), we have

G−1
0 (v̂(x, y)) =

ϕ̂−(x)− y

c
+G−1

0

(
2a

b

)
.

Thus, we obtain

v̂(x, y) = G0

(
ϕ̂−(x)− y

c
+G−1

0

(
2a

b

))
in Ω̂−. Also, notice that v̂ ∈ C(R2) ∩ C2(R2 \ {y = ϕ̂±(x)}) and ϕ̂± ∈ C2(R). This completes
the proof. �

As in the proof, the front of the traveling curved wave is uniquely determined up to the
shift. The proof of the uniqueness is based on the comparison principle for the back. For this,
we recall the following Phragmèn-Lindelöf principle (see e.g., [34]).

Proposition 2.4. Let L be a second order differential operator:

L :=
∂

∂t
− α(x, t)

∂2

∂x2
− β(x, t)

∂

∂x
,

where α, β ∈ L∞(QT ) and QT := (−∞,∞) × (0, T ]. Suppose that (L + h)[u] ≤ 0 in QT for
some h = h(x, t) which is bounded from below in QT and

lim inf
R→∞

e−γR2

[
max

|x|=R,t∈[0,T ]
u(x, t)

]
≤ 0 for some γ > 0.

If u(x, 0) ≤ 0 in R, then u(x, t) ≤ 0 in QT .

We shall apply Proposition 2.4 to establish a certain comparison principle for the following
general equation:

N [ϕ] := ϕt −
ϕxx

1 + ϕ2
x

− F (x, t, ϕ, ϕx) = 0 in QT , (2.7)

where F ∈ C1
(
{(x, t, u, p)|x, u ∈ R, t ≥ 0, k1 ≤ p ≤ k2}

)
for some k1, k2 ∈ R and

Fp ∈ L∞, Fu is bounded from below. (2.8)

Then ϕ(x, t) is called a supersolution of (2.7) in QT if N [ϕ] ≥ 0 in QT ; ϕ(x, t) is called a
subsolution of (2.7) in QT if N [ϕ] ≤ 0 in QT .

Lemma 2.5. Suppose that ϕ(x, t) and ϕ(x, t) are a supersolution and a subsolution of (2.7)
in QT , respectively, which satisfy the following:

ϕx, ϕx
, ϕxx and ϕ

xx
∈ L∞(QT ) (2.9)

with k1 ≤ ϕx, ϕx
≤ k2. If ϕ(x, 0) ≥ ϕ(x, 0) in R, then ϕ(x, t) ≥ ϕ(x, t) in QT := R× (0, T ].
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Proof. Set Ψ(x, t) := ϕ(x, t)− ϕ(x, t). Using N [ϕ] ≥ 0 and N [ϕ] ≤ 0, we have

Ψt ≤ Ψxx

1 + ϕ2

x

+ β(x, t)Ψx − FuΨ in QT ,

where

β :=
ϕxx(ϕx + ϕ

x
)

(1 + ϕ
2

x)(1 + ϕ2

x
)
+ Fp(x, t, ϕ, θϕx

+ (1− θ)ϕx) for some 0 < θ < 1,

Fu := Fu(x, t, ρϕ+ (1− ρ)ϕ, ϕx) for some 0 < ρ < 1.

The boundedness of β follows from (2.8) and (2.9). Finally, by (2.9), we see that

lim inf
R→∞

e−γR2

[
max

|x|=R,t∈[0,T ]
Ψ(x, t)

]
= 0 for any γ > 0.

Hence Lemma 2.5 follows from Proposition 2.4. �

To establish Theorem 1.5, we prepare two lemmas as follows:

Lemma 2.6. Assume that c > a > 0. Suppose that (c, v̂, ϕ̂±) is a traveling curved wave with

the width w(x) := ϕ̂+(x)− ϕ̂−(x). Then

0 < lim inf
x→±∞

w(x) ≤ lim sup
x→±∞

w(x) <∞.

Proof. By Proposition 1.3, we may assume, without loss of generality, that ϕ̂+(x) = ϕ̂∗(x; c).
We first derive that ℓ± := lim infx→±∞w(x) > 0. From (1.5) and (1.6), we have

w′′(x) = c(ϕ̂′
+ + ϕ̂′

−)w
′(x)− a

[
(1 + (ϕ̂′

+)
2)3/2 + (1 + (ϕ̂′

−)
2)3/2

]
(2.10)

+bG1

(
w(x)

c

)[
1 + (ϕ̂′

−)
2
]3/2

.

Here we have used (1.9), i.e.,

v̂(x, ϕ̂−(x)) = G1

(
ϕ̂+(x)− ϕ̂−(x)

c

)
= G1

(
w(x)

c

)
.

We prove that ℓ+ > 0. For contradiction, we assume that ℓ+ = 0. Under this assumption,
first, we show that w′(x) < 0 for all large x. Otherwise, there exists xn → ∞ such that
limn→∞w(xn) = 0, w′(xn) = 0 and w′′(xn) ≥ 0 for all n. Since ℓ+ = 0,

G1

(
w(xn)

c

)
→ G1(0) = 0 as n→ ∞. (2.11)

Also, note that w′(xn) = 0 if and only if ϕ̂′
+(xn) = ϕ̂′

−(xn). Thus, from (2.10), we have

0 ≤
[
− 2a+ bG1

(
w(xn)

c

)]
[1 + (ϕ̂′

−)
2(xn)]

3/2 < 0 for all large n,

which leads us to a contradiction. Therefore, w′(x) < 0, i.e., ϕ̂′
+(x) < ϕ̂′

−(x) for all large x and

limx→+∞w(x) = 0. As seen in Lemma 2.3, we have that ϕ̂′
+(∞) = (ϕ̂∗)′(∞) = m∗ increasingly.

Thus, ϕ̂′
±(x) ≥ m∗/2 > 0 for all large x. From (2.10) we see that

w′′(x) < −2a

[
1 +

(m∗

2

)2]3/2
+ bG1

(
w(x)

c

)
[1 +m2

∗]
3/2
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for all large x. Together with (2.11), there exists κ > 0 such that w′′(x) ≤ −κ for all large x.
However, together with that w′(x) < 0 for all large x, it follows that w(ξ) = 0 for some large
ξ, which contradicts with w(x) > 0 for all x. Thus, we must have ℓ+ > 0. We can show ℓ− > 0
by the same argument.
To prove that L± := lim supx→±∞w(x) > 0. We only prove that L+ < ∞ since the same

argument can apply to prove that L− < ∞. For contradiction we assume that L+ = ∞.
Then using the same argument as the above, we can show that w′(x) > 0 for all large x and
limx→±∞w(x) = ∞. Next, we rewrite (1.6) as

(tan−1 ϕ̂′
−(x))

′ = c+

(
a− bG1

(w(x)
c

))√
1 + (ϕ̂′

−)
2.

Taking ξn → ∞ and integrating the above equation over [ξn, ξn + 1], we have

tan−1 ϕ̂′
−(ξn + 1)− tan−1 ϕ̂′

−(ξn) (2.12)

=

∫ ξn+1

ξn

[
c+

(
a− bG1

(
w(x)

c

))√
1 + (ϕ̂′

−(x))
2

]
dx.

Letting n→ ∞ and noting that G1(w(x)/c) → ∞ as x→ ∞, we see that the left-hand side of
(2.12) is uniformly bounded but the right-hand side of (2.12) tends to −∞. We then reach a
contradiction and so L+ <∞. This completes the proof. �

The next lemma is to construct a super/sub solution. To do so, we consider the following
ordinary differential equation:

ρ′(t) = 2a− bG1

(
ρ(t)

c

)
, t > 0, ρ(0) = ρ0. (2.13)

Due to the monotonicity of G1, we easily see that{
ρ(t) ↑ cG−1

1 (2a/b) as t→ ∞ if ρ0 ∈ (0, cG−1
1 (2a/b)),

ρ(t) ↓ cG−1
1 (2a/b) as t→ ∞ if ρ0 ∈ (cG−1

1 (2a/b),∞).
(2.14)

Lemma 2.7. Define

ϕ(x, t) := ϕ̂∗(x; c) + ct− ρ(t), ϕ(x, t) := ϕ̂∗(x; c) + ct− ρ(t),

where ρ(t) and ρ(t) satisfy (2.13); ρ(0) = ρ0 ∈ (0, cG−1
1 (2a/b)) and ρ(0) = ρ

0
∈ (cG−1

1 (2a/b),∞),

respectively. Then ϕ(x, t) and ϕ(x, t) are a supersolution and a subsolution of (2.7) with

F (x, t, ϕ, ϕx) := −

[
a− bG1

(
ϕ̂∗(x; c) + ct− ϕ(x, t)

c

)]√
1 + ϕ2

x,

respectively. Furthermore,

lim
t→∞

[ϕ(x, t)− ct] = lim
t→∞

[ϕ(x, t)− ct] = ϕ̂∗(x; c)− cG−1
1 (2a/b). (2.15)

Proof. Recall that N is defined in (2.7). We only show that N [ϕ(x, t)] ≥ 0 for all x ∈ R and
t > 0 since the proof of N [ϕ(x, t)] ≤ 0 is similar.

Note that

N [ϕ(x, t)] = −ρ′(t) + c− ϕ̂∗
xx

1 + (ϕ̂∗
x)

2
+

[(
a− bG1

(
ρ(t)

c

))√
1 + (ϕ̂∗

x)
2

]
.
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Note that ϕ̂∗ satisfies (1.7), we have

N [ϕ(x, t)] = −ρ′(t) +
[
2a− bG1

(
ρ(t)

c

)]√
1 + (ϕ̂∗

x)
2

≥ −ρ′(t) +
[
2a− bG1

(
ρ(t)

c

)]
= 0, x ∈ R and t ≥ 0

where we used (2.14).
Finally, it is easy to check that (2.8) holds; also (2.15) follows from (2.14). Hence we have

completed the proof. �

We are ready to verify Theorem 1.5.

Proof of Theorem 1.5. Let (c, v̂, ϕ̂±) be any solution of (1.4)-(1.6). By Proposition 1.3, we have

ϕ̂+(x) = ϕ̂∗(x+ x0)− y0 for some x0, y0 ∈ R.

Since traveling curved waves are translation invariant, without loss of generality, we may

assume x0 = 0 = y0, i.e., ϕ̂+(x) = ϕ̂∗(x; c). To complete the proof, it suffices to prove that

ϕ̂−(x) = ϕ̂∗(x; c) − cG−1
1 (2a/b). Thanks to Lemma 2.6, we can choose ρ0 ∈ (0, cG−1

1 (2a/b))
and ρ

0
> cG−1

1 (2a/b) such that

ρ0 < ϕ̂+(x)− ϕ̂−(x) < ρ
0
, x ∈ R. (2.16)

Next, we consider a supersolution ϕ(x, t) and a subsolution ϕ(x, t) defined in Lemma 2.7
with ρ(0) = ρ0 and ρ(0) = ρ

0
. By (2.16), we have

ϕ(x, 0) < ϕ̂−(x) < ϕ(x, 0), x ∈ R.

By (1.6) and (2.6), we see that ϕ̂−(x) + ct is a solution of (2.7) with initial data ϕ̂−(x). Also,

it is easy to check that (2.9) holds since ϕ̂∗
x, ϕ̂

∗
xx ∈ L∞(R). Hence Lemma 2.5 is available to

conclude

ϕ(x, t) ≤ ϕ̂−(x) + ct ≤ ϕ(x, t), x ∈ R and t ≥ 0.

Taking t→ ∞ and using (2.15), we obtain ϕ̂−(x) = ϕ̂∗(x; c)− cG−1
1 (2a/b). Hence the proof of

Theorem 1.5 is completed. �

3. Asymptotic stability of traveling curved waves

We divide this section into two subsections. In the former subsection, we discuss the existence
and uniqueness of solutions of (1.2)-(1.3), i.e., Theorem 1.7. In the latter subsection, we will
show the asymptotic stability, i.e., Theorem 1.8.

The key ingredient is the introduction of the arrival time, denoted as a function of (x, y). It
allows us to analyze the behaviour of v(x, y, t) and provide some important estimates. More
precisely, for each (x, y) ∈ R2 with y ≥ ϕ±(x, 0), the arrival times of the front ϕ+ and the
back ϕ− at the position (x, y) are defined as T+ := T+(x, y) and T− := T−(x, y), respectively,
satisfying

y = ϕ±(x, T±(x, y)), x ∈ R and y ≥ ϕ±(x, 0).

For convenience, we also define T±(x, y) = 0 if y < ϕ±(x, 0); while T±(x, y) = ∞ if y ≥
supt≥0 ϕ±(x, t) respectively. Then T±(x, y) is well-defined for all (x, y) ∈ R2 if ϕ±(·, t) is
strictly increasing in t. In particular, if ϕ±(·, t) is strictly increasing to infinity as t → ∞, it
can be seen that T±(x, y) is finite for all (x, y) ∈ R2.
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3.1. The existence and uniqueness of the free boundary problem. In this subsection,
we always assume that the initial data (v0, ϕ±,0) satisfying (1.10)-(1.13) and (A1)-(A2).

The proof of Theorem 1.7 can be carried out in three steps:

Step 1. Solve (ϕ+, v) uniquely satisfying the following system: ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+W (v(x, ϕ+(x, t), t))
√

1 + ϕ2
+,x,

vt = g(χ{y<ϕ+(x,t)}, v), t > 0, (x, y) ∈ Ω+(t).
(3.1)

Step 2. Solve (ϕ−, v) uniquely satisfying the following system: ϕ−,t =
ϕ−,xx

1 + ϕ2
−,x

−W (v(x, ϕ−(x, t), t))
√

1 + ϕ2
−,x,

vt = g(χ{y<ϕ+(x,t)}, v), t > 0, (x, y) ∈ Ω(t).
(3.2)

Step 3. Solve v over Ω−(t) using the value of v on the back. Moreover, we confirm that
ϕ+(x, t) > ϕ−(x, t) for x ∈ R and t > 0.

We remark that a classical solution of (3.1) and (3.2) is defined parallel to that of Defini-
tion 1.6. However, we do not need Definition 1.6 (i) for classical solutions of (3.1) since ϕ− is
not involved in problem (3.1).
In order to get the well-definedness of T+, we need the monotonicity of ϕ+.

Lemma 3.1. If (ϕ+, v) is a solution of (3.1) for t ∈ [0, T ], then ϕ+,t > 0 for t ∈ [0, T ].

Proof. Note that if ϕ+,t ≥ 0 for x ∈ R and t ∈ [0, τ ], we have Ω+(t) ⊂ Ω+(0) for all t ∈ [0, τ ].
It follows from the second equation of (3.1) that

cvt(x, y, t)

g(0, v(x, y, t))
= 1 t ∈ [0, τ ] and (x, y) ∈ Ω+(τ).

Integrating the above equation with respect to t over [0, τ ] gives

v(x, y, τ) = G0(G
−1
0 (v0(x, y)) + τ), (x, y) ∈ Ω+(τ).

Hence

ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+W (G0(G
−1
0 (v0(x, ϕ+) + t))

√
1 + ϕ2

+,x

as long as ϕ+,t ≥ 0.
By differentiating the above equation in t and setting ω := ϕ+,t, we haveωt =

ωxx

1 + ϕ2
+,x

+ α(x, t, ϕ+,x, ϕ+,xx)ωx − b
[
vyω + g(0, v(x, ϕ+, t))

]√
1 + ϕ2

+,x,

ω(x, 0) = ϕ+,t(x, 0), x ∈ R,

where

α(x, t, ϕ+,x, ϕ+,xx) := −2
ϕ+,xϕ+,xx

(1 + ϕ2
+,x)

2
+W (v(x, ϕ+(x, t), t))

ϕ+,x√
1 + ϕ2

+,x

. (3.3)

Since g(0, v(x, ϕ+, t)) < 0 and ω(x, 0) > 0 by (A2), the maximum principle gives ω = ϕ+,t > 0
as long as ϕ+ exists. This completes the proof. �

By the help of Lemma 3.1 and the notion of T+, the form of v(x, y, t) can be derived explicitly
via functions G0 and G1 defined in Section 2.
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Lemma 3.2. Let (ϕ±, v) be a solution of (3.1)-(3.2). Then v(x, y, t) = vϕ+,0,T+(x, y, t) where

vϕ+,0,T+(x, y, t) :=

{
G0(G

−1
0 (v0(x, y)) + t), t ≤ T+(x, y),

G1(G
−1
1 (vϕ+,0,T+(x, y, T+)) + t− T+), t > T+(x, y).

(3.4)

In particular,

v(x, ϕ+(x, t), t) = G0(G
−1
0 (v0(x, ϕ+(x, t))) + t), t > 0. (3.5)

By definition, we also denote v(x, y, t) = G0(G
−1
0 (v0(x, y)) + t) by v−∞,∞(x, y, t). We note

that the definitions of v̂ϕ1,ϕ2(x, y) in (1.11) and vϕ+,0,T+(x, y, t) in (3.4) are different.

Proof. By Lemma 3.1, T+ ∈ [0,∞] in R2. When t ≤ T+(x, y), it follows from the second
equation of (3.1) that

cvt(x, y, τ)

g(0, v(x, y, τ))
= 1, τ ∈ [0, t].

Integrating the above equation with respect to τ over [0, t], we have

v(x, y, t) = G0(G
−1
0 (v0(x, y)) + t). (3.6)

When T+(x, y) <∞, we have

cvt(x, y, τ)

g(1, v(x, y, τ))
= 1, τ > T+(x, y).

Integrating the above equation with respect to τ over (T+, t), we have

v(x, y, t) = G1(G
−1
1 (v(x, y, T+)) + t− T+), y > ϕ+(x, 0) and t > T+(x, y).

Finally, (3.5) follows from (3.6). Hence we complete the proof of Lemma 3.2. �
Lemma 3.2 tells us that v can be solved explicitly by (3.5). To finish Step 1, the standard

theory of quasilinear parabolic PDEs [21, Chapter 5] can be applied if we can establish a priori
estimates. More precisely, since v can be solved by (3.5), it suffices to focus on the equation
for ϕ+. Let

w(x, t) = ϕ+(x, t)− ϕ̂∗(x; c)− ct,

where ϕ̂∗(x; c) is defined in Proposition 1.2. By (3.5), w satisfies

wt =
(
arctan(wx + ϕ̂∗

x)
)
x
− c (3.7)

+W (G0(G
−1
0 (v0(x,w + ϕ̂∗ + ct)) + t))

√
1 + (wx + ϕ̂∗

x)
2.

Note that w(·, 0) = ϕ+,0(x)−ϕ̂∗(x; c) ∈ L∞(R). A priori estimates for w and wx are required to
apply [21, Theorem 8.1 of Chapter 5] to the problem (3.7) and to establish the global existence
and uniqueness of the solution w to (3.7) and then so does ϕ+.

In order to derive a priori estimates for w and wx for x ∈ R and t ∈ [0, T ], we shall show
that there exist two positive constants C1 and C2 such that{

|ϕ+(x, t)− ϕ̂∗(x; c)− ct| ≤ C1, x ∈ R and t ∈ [0, T ],

|ϕ+,x(x, t)| ≤ C2, x ∈ R and t ∈ [0, T ].
(3.8)

The first estimate of (3.8) will be established in Proposition 3.5. The second estimate is a little
complicated due to the presence of v(x, ϕ+(x, t), t) arising from the nonlinear term. In general,
C1 and C2 can depend on T . However, we need the uniform in time estimates to ensure that
the back cannot catch up with the front (see Remark 3.11). This is essential to establish the
well-posedness to the problem (1.2) and (1.3). We shall separate our estimates for the front
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into two time intervals. The outline of the argument is as follows. First, if we have known
ϕ+,t > 0 for all time, then from (3.5) and (1.13), we see that

v(x, ϕ+(x, t), t) = 0 if ϕ+(x, t) ≥ k2,

where k2 is given in (1.13). Hence if there exists T ∗ ≫ 1 such that ϕ+(x, T
∗) ≥ k2 for all

x ∈ R, then after that time, ϕ+ always satisfies

ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+ a
√

1 + ϕ2
+,x, x ∈ R, t ≥ T ∗.

Putting t = T ∗ as a new initial time, this equation has been studied in [27], where the global
existence and uniqueness of ϕ+ and its uniform in time gradient estimate have been established
for all t ≥ T ∗. In other words, if we can show ϕ+ exists for all t ∈ [0, T ∗], then ϕ+ can be
extended to any positive time. However, such idea is not applicable to deal with Step 2 and
some more complicated process will be needed since v(x, ϕ−(x, t), t) does not vanish. Hence
the argument of the uniform in time gradient estimate for the back is different from that of
the front.

Our first goal is to establish upper and lower estimates for the front ϕ+ (Proposition 3.5) by
using Lemma 2.2 and the comparison principle. Set

L[ϕ] := ϕt −
ϕxx

1 + ϕ2
x

− a
√

1 + ϕ2
x. (3.9)

As in proving Lemma 2.5, we have

Lemma 3.3. Suppose that ϕ, ϕ ∈ C2,1(QT ) such that

ϕx(x, t), ϕx
(x, t), ϕxx(x, t) and ϕxx

(x, t) are all bounded in QT . (3.10)

and

L[ϕ]− L[ϕ] ≥ 0 in QT := R× (0, T ]

If ϕ(x, 0) ≥ ϕ(x, 0) in R, then ϕ(x, t) ≥ ϕ(x, t) in QT .

Because we can prove this lemma similarly to Lemma 2.5, we omit the proof.

Lemma 3.4. Let ε > 0 be defined in (1.10) and L be given in (3.9). Assume that (ϕ+, v) is a
solution of (3.1). Then(

−bεe−γ0t
√
1 + ϕ2

+

)
χ[−k1,k1](x) ≤ L[ϕ+] ≤ 0, x ∈ R, t ≥ 0,

where χ is a characteristic function and γ0 := g2/(g3ε+ g4).

Proof. Plugging ϕ+ into L, we have

L[ϕ+] = ϕ+,t −
ϕ+,xx

1 + ϕ2
+,x

− a
√

1 + ϕ2
+,x = −bv(x, ϕ+(x, t), t)

√
1 + ϕ2

+,x. (3.11)

It follows from (1.10) and (1.13) that vt = − g2v

g3v + g4
≤ −γ0v, (x, y) ∈ Ω+(t),

0 ≤ v0(x, y) ≤ εχ[−k1,k1](x), (x, y) ∈ Ω+(0).

(3.12)

By Lemma 3.1, we have Ω+(t) ⊂ Ω+(0) for t > 0 so that

0 ≤ bv(x, ϕ+(x, t), t) ≤ bεe−γ0tχ[−k1,k1](x), x ∈ R and t ≥ 0.

Combining the above inequalities and (3.11), we complete the proof. �
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Proposition 3.5. Let ε > 0 be given in (1.10) small enough and T > 0. Assume that (ϕ+, v)
be a solution of (3.1) for t ∈ [0, T ] with

sup
x∈R,t∈[0,T ]

|ϕ+,x(x, t)| ≤ K0 for some K0 > 0 independent of ε. (3.13)

Then there exist constants δi = δi(ε) ∈ (0, 1) with i = 1, 2 such that limε→0 δi(ε) = 0 and

ϕ̂∗((1 + δ1)x; c)

1 + δ1
− |η|δ1

1 + δ1
≤ ϕ+(x, t)− ct ≤ ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

(3.14)

for all x ∈ R and t ∈ [0, T ], where η < 0 and ϕ̂∗(x; c) are defined in Proposition 1.2. Moreover,

∣∣∣ϕ+(x, t)− ϕ̂∗(x; c)− ct
∣∣∣ ≤ |η|δ2

1− δ2
, x ∈ R, t ∈ [0, T ]. (3.15)

Proof. Let us define

w̄(x, t) :=
ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

+ ct

and plug it into the operator L given by (3.9), we have

L[w̄] = c− (1− δ2)ϕ̂
∗
xx

1 + (ϕ̂∗
x)

2
− a

√
1 + (ϕ̂∗

x)
2 =

δ2ϕ̂
∗
xx((1− δ2)x; c)

1 + (ϕ̂∗
x((1− δ2)x; c))2

> 0.

It follows that L[w̄]− L[ϕ+] ≥ 0 for all x ∈ R and t ≥ 0 since L[ϕ+] ≤ 0 (Lemma 3.4). Hence,
to compare w̄ and ϕ+ for t ∈ [0, T ], it suffices to show w̄(x, 0) ≥ ϕ+(x, 0) for all x ∈ R. For
this, we divide our discussion into two parts: |x| ≤ k1 and |x| > k1, where k1 > 0 is given in
(1.13).

In the former part, since ϕ̂∗(x; c) + ε ≥ ϕ+(x, 0) by (1.10), it suffices to show that

w̄(x, 0) ≥ ϕ̂∗(x; c) + ε, |x| ≤ k1. (3.16)

We now use an idea in [28, Lemma 3.1] to show (3.16). To do so, we set

M := |η| − (k1ϕ̂
∗
x(k1; c)− ϕ̂∗(k1; c)) > 0 (by Lemma 2.2(2)),

δ2(ε) :=
ε

ε+M
.

Then for |x| ≤ k1, we have

w̄(x, 0)− [ϕ̂∗(x; c) + ε]

=
ϕ̂∗((1− δ2)x; c)

1− δ2
− ϕ̂∗(x; c) +

|η|δ2
1− δ2

− ε

≥ ϕ̂∗((1− δ2)k1; c)

1− δ2
− ϕ̂∗(k1; c) +

|η|δ2
1− δ2

− ε
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by Lemma 2.2 (4). Furthermore, using Lemma 2.2 (2), we have

w̄(x, 0)− [ϕ̂∗(x; c) + ε]

= −
∫ 1

1−δ2

∂

∂ξ

[
1

ξ
ϕ̂∗(ξx; c)

]
dξ +

|η|δ2
1− δ2

− ε

= −
∫ 1

1−δ2

[
1

ξ2
(ξxϕ̂∗

x(ξx; c)− ϕ̂∗(ξx; c))

]
dξ +

|η|δ2
1− δ2

− ε

≥ −
[
(k1ϕ̂

∗
x(k1; c)− ϕ̂∗(k1; c))

] ∫ 1

1−δ2

dξ

ξ2
+

|η|δ2
1− δ2

− ε

= M
δ2

1− δ2
− ε = 0.

Hence (3.16) holds.

For |x| > k1, we have ϕ+(x, 0) = ϕ̂∗(x; c). By Lemma 2.2(4),

w̄(x, 0) =
ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

> ϕ̂∗(x; c) = ϕ+(x, 0), |x| > k1. (3.17)

Combining (3.16) and (3.17), we have w̄(x, 0) ≥ ϕ+(x, 0) for all x ∈ R. Also, it is easy to check
(3.10) holds with ϕ = w̄ and ϕ = ϕ+ in Lemma 3.3. By Lemma 3.3, w̄(x, t) ≥ ϕ+(x, t) for all
x ∈ R and t ≥ 0, which implies the right-hand inequality of (3.14).

To derive the left-hand inequality of (3.14), we set

w(x, t) :=
ϕ̂∗((1 + δ1)x; c)

1 + δ1
− |η|δ1

1 + δ1
+ ct,

δ1 := max

 bε
√

1 +K2
0

c− a

√
1 + [ϕ̂∗

x(2k1; c)]
2

,
ε

|η| − 2k1ϕ̂∗
x(2k1; c) + ϕ̂∗(2k1; c)− ε

 .

Note that δ1 > 0 because of Lemma 2.2; δ1 < 1 as long as ε > 0 small enough. By Lemma 3.4
and direct computations, we have

L[ϕ+]− L[w]

≥ δ1

(
c− a

√
1 + [ϕ̂∗

x((1 + δ1)x; c)]2
)
−
(
bεe−γ0t

√
1 + ϕ2

+,x(x, t)
)
χ[−k1,k1](x)

for x ∈ R and t ∈ [0, T ].
We separate two parts: |x| ≤ k1 and |x| > k1, respectively. For |x| ≥ k1, we have

χ[−k1,k1](x) = 0. Then

L[ϕ+]− L[w] = δ1

(
c− a

√
1 + [ϕ̂∗

x((1 + δ1)x; c)]2
)

≥ 0,

which follows from Lemma 2.2 (3).
For |x| ≤ k1, by (3.13) and the definition of δ1,

L[ϕ+]− L[w] ≥ δ1

(
c− a

√
1 + [ϕ̂∗

x(2k1; c)]
2

)
− bε

√
1 +K2

0 ≥ 0.

Hence L[ϕ+]− L[w] ≥ 0 for all x ∈ R and t ∈ [0, T ].
It suffices to show that ϕ+(x, 0) ≥ w(x, 0) for all x ∈ R. Again, we divide into two parts:

|x| > k1 and |x| ≤ k1. As in deriving (3.17), we have ϕ+(x, 0) ≥ w(x, 0) for all |x| > k1.
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For |x| ≤ k1, the same argument as in the proof of (3.16) gives us

w(x, 0)− (ϕ̂∗(x; c)− ε)

=

∫ 1+δ1

1

[
1

ξ2
(ξxϕ̂∗

x(ξx; c)− ϕ̂∗(ξx; c))

]
dξ − |η|δ1

1 + δ1
+ ε

≤ −
[
|η| − (1 + δ1)k1ϕ̂

∗
x((1 + δ1)k1; c) + ϕ̂∗((1 + δ1)k1; c)

] δ1
1 + δ1

+ ε

≤ −
[
|η| − 2k1ϕ̂

∗
x(2k1; c) + ϕ̂∗(2k1; c)

] δ1
1 + δ1

+ ε

≤ 0

where we used the definition of δ1 and δ1 < 1. Consequently, we have ϕ+(x, 0) ≥ w(x, 0) for
all x ∈ R. By the comparison (Lemma 3.3), the left-hand inequality of (3.14) follows.

Finally, (3.15) follows from (3.14) and Lemma 2.2 (4). Hence the proof of Proposition 3.5 is
completed. �

By the help of Proposition 3.5, we can establish the global existence and uniqueness of the
front with uniform and gradient estimates which are uniform in time.

Proposition 3.6. The problem (3.1) with initial data (v0, ϕ±,0) has a unique classical solution
(ϕ+, v) in Q∞ := R× [0,∞). Moreover, the following hold:

(i) ∥ϕ+,x∥L∞(Q∞) + ∥ϕ+,t∥L∞(Q∞) ≤M+ for some M+ depending only on M0,
(ii) ϕ+,t(·, t) ≥ ζ+ in Q∞,where ζ+ is a positive constant depending only on ζ0, ε and M0.

Proof. We first establish a priori estimates for ∥ϕ+,x∥QT
and ∥ϕ+,t∥QT

if the solution exists for
t ∈ [0, T ]. Assume that the solution exists, then by Lemma 3.2, v satisfies (3.6).
We now estimate ϕ+,x. Since v in (3.1) is given by (3.6), we have

ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+W (v−∞,∞(x, ϕ+(x, t), t))
√

1 + ϕ2
+,x. (3.18)

By setting ψ := ϕ+,x, thenψt =
ψxx

1 + ϕ2
+,x

+ α(x, t, ϕ+,x, ϕ+,xx)ψx − b
[
vx + vyψ

]√
1 + ϕ2

+,x in QT ,

ψ(x, 0) = ϕ′
+,0(x), x ∈ R,

(3.19)

where vx = v−∞,∞
x (x, ϕ+(x, t), t), vy = v−∞,∞

y (x, ϕ+(x, t), t) and α is given in (3.3).
We now construct a supersolution ψ+ of (3.19) satisfying

ψ+
′(t) = 4bεψ+

2(t), ψ+(0) := max{1, ∥ϕ′
+,0∥L∞(R)}.

The solution ψ+ can be expressed as

ψ+(t) =

[
1

ψ+(0)
− 4bεt

]−1

, t ∈
[
0,

1

4bεψ+(0)

)
which is strictly increasing in time and blows up at t = 1/(4bεψ+(0)). Lemma 2.1, (3.6) and
(1.10) imply

−b
(
vx + vyψ

)√
1 + ϕ2

+,x (3.20)

= −b
√

1 + ϕ2
+,x

g(0, G0(G
−1
0 (v0(x, ϕ+)) + t))

g(0, v0(x, ϕ+))

(
v0,x(x, ϕ+) + v0,y(x, ϕ+)ψ

)
≤ bε

√
1 + ψ2

(
1 + ψ

)
.
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Thus we see easily that ψ+ is a supersolution of (3.19) for t ∈ [0, 1/(4bεψ+(0))), which implies

∥ψ∥L∞(QT∗ ) ≤ ψ+(T
∗) = 2ψ+(0), (3.21)

where

T ∗ = T ∗(ε) :=
1

8bεψ+(0)
. (3.22)

Similarly, differentiating (3.18) in t and setting ω := ϕ+,t, we haveωt =
ωxx

1 + ϕ2
+,x

+ α(x, t, ϕ+,x, ϕ+,xx)ωx − b
[
vyω + g(0, v(x, ϕ+, t))

]√
1 + ϕ2

+,x in QT ,

ω(x, 0) = ϕ+,t(x, 0), x ∈ R.
(3.23)

Using (3.21), we see that the coefficient of ω in (3.23), bvy

√
1 + ϕ2

+,x, is bounded in QT ∗ ,

where the bound can be made independent of ε. This allows us apply the maximum principle
to obtain

∥ω∥L∞(QT∗ ) ≤ M̂. (3.24)

for some M̂ = M̂ > 0 depending only on M . The estimates (3.21) and (3.24) allows us to
apply standard theory of quasilinear parabolic PDEs [21, Chapter 5] to obtain the existence
and uniqueness of solutions of (3.1) for t ∈ [0, T ∗].

Next we shall show the lower estimate of ω. By (A2), we have ϕ+,t(x, 0) ≥ ζ0. As similar
in (3.20), there exists a constant C = C(ε) > 0 such that∣∣∣− bvyω

√
1 + ϕ2

+,x

∣∣∣ ≤ C(ε), t ∈ [0, T ∗].

It is easily seen from g(0, v(x, ϕ+, t)) < 0 that

ω−(t) := e−C(ε)tζ0

becomes a subsolution of (3.23). Hence we obtain

ϕ+,t(x, t) ≥ e−C(ε)T ∗
ζ0 := ζ+, t ∈ [0, T ∗]. (3.25)

Finally, we shall show that the solution ϕ+ can be extended for all t ≥ T ∗. For this, by
(3.22), we can take ε > 0 small enough such that

T ∗(ε) >
|η|+ k2

c
.

It follows from Proposition 3.5 that

ϕ+(x, T
∗) > k2, x ∈ R.

By (3.6), we have v(x, ϕ+(x, t), t) = 0 for all x ∈ R and t ≥ T ∗. Hence we see that after time
T ∗, ϕ+ satisfies

ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+ a
√
1 + ϕ2

+,x, x ∈ R, t > T ∗. (3.26)

It is well known (cf. [27]) that for any T > T ∗, the problem (3.26) with initial data ϕ+(x, T
∗)

has a unique classical solution for all t ∈ [T ∗, T ] with

∥ϕ+,x∥L∞(R×[T ∗,T ]) ≤ sup
x∈R

|ϕ+,x(x, T
∗)|.

Differentiating (3.26) in t, we easily obtain that

∥ϕ+,t∥L∞(R×[T ∗,T ]) ≤ sup
x∈R

|ϕ+,t(x, T
∗)|.
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Together with uniform estimates (3.21) and (3.24), we have

∥ϕ+,x∥L∞(QT ) + ∥ϕ+,t∥L∞(QT ) ≤M+.

Note thatM+ is independent of T and ε. Combining this estimate and (3.15), we can apply the
standard theory of quasilinear parabolic PDEs [21, Chapter 5] to show that ϕ+ exists globally
in time and part (i) follows.

For part (ii), we have already known (3.25) for t ∈ [0, T ∗]. For t > T ∗, since we have the
uniform bound ∥ϕ+,x∥L∞(QT ), differentiating (3.26) in t and using the maximum principle gives
ϕ+,t(x, t) ≥ ζ+ for all t ≥ 0 where ζ+ is given in (3.25), which implies (ii). This completes the
proof. �

We now move to Step 2. Namely, the global existence and uniqueness of the back. We need
to investigate arrival time T+ along the moving coordinate.

Lemma 3.7. The arrival time T+(x, y) of the front belongs to C1(Ω+(0)) ∩ C1(R2 \ Ω+(0))
and is globally Lipschitz in R2.

Proof. By Proposition 3.6 (ii), we see that T+(x, ·) is strictly increasing in [ϕ+,0(x),∞). By
the implicit function theorem implies that T+ is of C1(Ω+(0)). Moreover,∣∣∣∣∂T+∂x

∣∣∣∣ = |ϕ+,x|
ϕ+,t

≤ M+

ζ+
, 0 <

∂T+
∂y

=
1

ϕ+,t

≤ 1

ζ+
.

These facts imply that T+ is globally Lipschitz continuous in Ω+(0).
Recall that T+(x, y) = 0 for (x, y) ∈ R2 \ Ω+(0). Hence Lemma 3.7 follows. �

Lemma 3.8. Let δi ∈ (0, 1) (i = 1, 2) be defined in Proposition 3.5. Then the following
estimates hold:∣∣∣∣∣T+(x, y)−

(
y − ϕ̂∗(x; c)

c

)
+

∣∣∣∣∣
≤ min

{1
c
max

{
|η|δ2(ε)
1− δ2(ε)

,
|η|δ1(ε)
1 + δ1(ε)

}
, M̂ |x|e−

c
a

√
c2−a2(1−δ2(ε))|x|

}
:= Eε

0(x) (3.27)

for (x, y) ∈ R2, where M̂ is a positive constant independent of ε.

Proof. Substituting t = T+(x, y) into (3.14) and noting that ϕ+(x, T+(x, y)) = y, we have

1

c

[
y − ϕ̂∗((1− δ2)x; c)

1− δ2
− |η|δ2

1− δ2

]
≤ T+(x, y) ≤

1

c

[
y − ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

]
(3.28)

for all (x, y) ∈ R2. It follows that∣∣∣∣∣T+(x, y)−
(
y − ϕ̂∗(x; c)

c

)
+

∣∣∣∣∣
≤ 1

c
max

{
−ϕ̂∗(x; c) +

ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

, ϕ̂∗(x; c)− ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

}
.

Together with Lemma 2.2(4) we have∣∣∣∣∣T+(x, y)−
(
y − ϕ̂∗(x; c)

c

)
+

∣∣∣∣∣ ≤ 1

c
max

{
|η|δ2
1− δ2

,
|η|δ1
1 + δ1

}
, (x, y) ∈ R2.
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Moreover, using Lemma 2.2(1), we have

−ϕ̂∗(x; c) +
ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

= O(|x|e−
c
a

√
c2−a2(1−δ2)|x|) as x→ ±∞;

ϕ̂∗(x; c)− ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

= O(|x|e−
c
a

√
c2−a2|x|) as x→ ±∞,

from which (3.27) follows. This completes the proof. �
Due to Lemma 3.8, we can investigate v along the moving coordinate.

Lemma 3.9. Let δi ∈ (0, 1) be defined in Proposition 3.5 and (ϕ±, v) be a solution of (3.1)-
(3.2). Then the following estimates hold:∣∣∣v(x, y, t)− v̂ϕ̂

∗
(x, y − ct)

∣∣∣ ≤ Eε
1(x) (3.29)

for all t > T+(x, y), where v̂
ϕ̂∗
(x, y) are given in (1.12) and

Eε
1(x) := g1G

−1
1 (ε)χ[−k1,k1](x) + g1E

ε
0(x) (3.30)

with supx∈R |Eε
1(x)| → 0 as ε→ 0.

Proof. By Lemma 3.2,

|v(x, y, t)− v̂ϕ̂
∗
(x, y − ct)| (3.31)

=

∣∣∣∣∣G1

(
G−1

1 (v(x, y, T+(x, y))) + t− T+(x, y)
)
−G1

((
ϕ̂∗(x; c)− y + ct

c

)
+

)∣∣∣∣∣
≤ g1

∣∣∣∣∣G−1
1 (v(x, y, T+)) + t− T+ −

(
ϕ̂∗(x; c)− y + ct

c

)
+

∣∣∣∣∣ ,
where we have used maxv≥0 |G′

1(v)| = g1.
To continue the above estimate we divide our discussion into two parts:

(i) ϕ̂∗(x; c)− y + ct ≥ 0; (ii) ϕ̂∗(x; c)− y + ct < 0.

For (i),

|v(x, y, t)− v̂ϕ̂
∗
(x, y − ct)| ≤ g1G

−1
1 (ε)χ[−k1,k1](x) + g1

∣∣∣∣∣T+ −

(
y − ϕ̂∗(x; c)

c

)
+

∣∣∣∣∣ .
For (ii), using Proposition 3.5 we have

ct < y − ϕ̂∗(x; c) = ϕ+(x, T+(x, y))− ϕ̂∗(x; c) ≤ ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

+ cT+(x, y)− ϕ̂∗(x; c).

Hence we have

|v(x, y, t)− v̂ϕ̂
∗
(x, y − ct)|

≤ g1
∣∣G−1

1 (v(x, y, T+)) + t− T+
∣∣

≤ g1G
−1
1 (ε)χ[−k1,k1](x) +

g1
c

(
−ϕ̂∗(x; c) +

ϕ̂∗((1− δ2)x; c)

1− δ2
+

|η|δ2
1− δ2

)
≤ g1G

−1
1 (ε)χ[−k1,k1](x) + g1E

ε
0(x),

where Eε
0(x) is defined in (3.27). By taking Eε

1(x) defined in (3.30), then (3.29) follows from
Lemma 3.8 and combining two cases (i) and (ii). Moreover, we see that supx∈R |Eε

1(x)| → 0 as
ε→ 0 since G−1

1 (ε) → 0 and δi(ε) → 0 (i = 1, 2) as ε→ 0. This completes the proof. �
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By the help of Lemma 3.8 and Lemma 3.9, we can establish the following result which is
parallel to Proposition 3.5.

Proposition 3.10. Let (ϕ±, v) be a solution of (3.1)-(3.2) and δi ∈ (0, 1), i = 1, 2, be defined
in Proposition 3.5 and T > 0. Moreover, assume that ϕ+(x, t) > ϕ−(x, t) for x ∈ R and
0 ≤ t ≤ T and that there exists a positive constant K1 such that

sup
x∈R,t∈[0,T ]

|ϕ−,x(x, t)| ≤ K1 for some K1 > 0 independent of ε.

Then there exist δi = δi(ε) ∈ (0, 1) (i = 4, 5) such that limε→0 δi(ε) = 0 and

ϕ̂∗((1 + δ4)x; c)

1 + δ4
− |η|δ4

1 + δ4
≤ ϕ−(x, t)− ct+ cG−1

1 (
2a

b
) ≤ ϕ̂∗((1− δ5)x; c)

1− δ5
+

|η|δ5
1− δ5

(3.32)

for all x ∈ R and t ∈ [0, T ], where η < 0 and ϕ̂∗(x; c) are defined in Proposition 1.2.

Proof. First recall that v in the first equation of (3.2) is given by vϕ+,0,T+ as in (3.4). Plugging
ϕ− into L, we have

L[ϕ−] =
(
bvϕ+,0,T+(x, ϕ−(x, t), t)− 2a

)√
1 + ϕ2

−,x

= b
(
vϕ+,0,T+(x, ϕ−(x, t), t)− v̂ϕ̂

∗
(x, ϕ−(x, t)− ct)

)√
1 + ϕ2

−,x

+b

{
G1

(( ϕ̂∗(x; c) + ct− ϕ−(x, t)

c

)
+

)
−G1

(
G−1

1

(2a
b

))}√
1 + ϕ2

−,x.

Set

w(x, t) :=
ϕ̂∗((1− δ5)x; c)

1− δ5
+

|η|δ5
1− δ5

+ ct− ϕ−(x, t)− cG−1
1

(2a
b

)
,

v2(x, t) := G1


w(x, t) + cG−1

1

(2a
b

)
c


+


where δ5(ε) ∈ (0, 1) is to be determined.

By direct computations, we get

L [w + ϕ−] = δ5

{
c− a

√
1 + ϕ̂∗

x((1− δ5)x)2
}
,

which yields that

L [w + ϕ−]− L[ϕ−] = I1 + I2 + I3 + I4,

where

I1 := b
(
v̂ϕ̂

∗
(x, ϕ−(x, t)− ct)− vϕ+,0,T+(x, ϕ−(x, t), t)

)√
1 + ϕ2

−,x,

I2 := b
(
v2(x, t)− v̂ϕ̂

∗
(x, ϕ−(x, t)− ct)

)√
1 + ϕ2

−,x,

I3 := b

{
G1

(
G−1

1

(2a
b

))
− v2(x, t)

}√
1 + ϕ2

−,x,

I4 := δ5

{
c− a

√
1 + ϕ̂∗

x((1− δ5)x; c)2
}
.
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It can be seen that I2 ≥ 0 for all x ∈ R and t ≥ 0. Indeed, by Lemma 2.2 (4), we see that

ϕ̂∗((1− δ5)x; c)

1− δ5
+

|η|δ5
1− δ5

+ ct > ϕ̂∗(x; c) + ct for all δ5 ∈ (0, 1),

which implies that

v̂ϕ̂
∗
(x, ϕ−(x, t)− ct) = G1

((
ϕ̂∗(x; c) + ct− ϕ−(x, t)

c

)
+

)

≤ G1


w(x, t) + cG−1

1

(2a
b

)
c


+

 = v2(x, t)

for all δ5 ∈ (0, 1).
On the other hand, set

A :=
b

c

√
1 +K2

1

(
sup
s≥0

∣∣G′
1(s)

∣∣) .
It follows that Aw + I3 ≥ 0 for all x ∈ R and t ∈ [0, T ]. Hence we have

L [w + ϕ−]− L[ϕ−] + Aw ≥ I1 + I4, x ∈ R and t ∈ (0, T ].

By the assumption, we see that t = T−(x, ϕ−(x, t)) > T+(x, ϕ−(x, t)) for t ∈ (0, T ]. Hence
Lemma 3.9 is available to ensure

I1 ≥ −bEε
1(x)

√
1 +K2

1 , x ∈ R, t ∈ (0, T ]. (3.33)

By Lemma 2.3, (3.33) and the assumption that K1 is independent of ε, for any sufficiently
small ε, we can take a positive constant δ5 = δ5(ε) ∈ (δ2(ε), 1) such that

I1 + I4 ≥ δ5(ε)

{
c− a

√
1 + ϕ̂∗

x((1− δ5)x; c)2
}
− bEε

1(x)
√
1 +K2

1 ≥ 0, t ∈ (0, T ]

w(x, 0) =
ϕ̂∗((1− δ5)x; c)

1− δ5
+

|η|δ5
1− δ5

> ϕ−(x, 0),

lim
ε→0

δ5(ε) = 0.

By Lemma 3.3, w(x, t) ≥ 0 for x ∈ R and t ∈ [0, T ]. Namely, we have obtained the right-hand
inequality of (3.14).
Using the similar argument as above, we can show the left-hand inequality of (3.14) with

some δ4(ε) satisfying limε→0 δ4(ε) = 0. Hence the proof of Proposition 3.10 is completed. �
Remark 3.11. The uniform in time gradient estimates is important to ensure the back cannot
catch up with the front. Suppose (ϕ±, v) is a solution of (3.1)-(3.2). If the gradient estimates
for ϕ± are uniform in time, i.e., K0 and K1 given in Proposition 3.5 and Proposition 3.10,
respectively, are independent of time, then we have

ϕ+(x, t)− ϕ−(x, t) = cG−1
1 (2a/b) +O(ε) for all x ∈ R and t > 0

as long as the solution (ϕ±, v) exists.

Lemma 3.12. Let ε > 0 be defined in (1.10) and (ϕ±, v) be as in Proposition 3.10. Then there
exists a positive constant δ6(ε) such that limε→0 δ6(ε) = 0 and

bvϕ+,0,T+(x, ϕ−(x, t), t)− 2a ≥ −δ6(ε)
if t > T+(x, ϕ−(x, t)) for all x ∈ R.
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Proof. Lemma 3.2 and the monotonicity of G1 imply

bvϕ+,0,T+(x, ϕ−(x, t), t)− 2a = bG1

(
G−1

1 (vϕ+,0,T+(x, ϕ−, T+(x, ϕ−))) + t− T+(x, ϕ−)
)
− 2a

≥ bG1

(
t− T+(x, ϕ−)

)
− 2a.

From (3.28), we have

t− T+(x, ϕ−(x, t)) ≥ t− 1

c

[
ϕ−(x, t)−

ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

]

= −1

c

[
ϕ−(x, t)− ct− ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

]
.

Moreover, using (3.32) and Lemma 2.2 (4), we have

t− T+(x, ϕ−(x, t)) ≥ G−1
1 (

2a

b
)− 1

c

[
ϕ̂∗((1− δ5)x; c)

1− δ5
+

|η|δ5
1− δ5

− ϕ̂∗((1 + δ1)x; c)

1 + δ1
+

|η|δ1
1 + δ1

]

≥ G−1
1 (

2a

b
)− 1

c

[
|η|δ5
1− δ5

+
|η|δ1
1 + δ1

]
.

Lemma 3.12 follows from the above inequalities. �

We are ready to establish the existence and uniqueness of the back.

Proposition 3.13. The problem (3.2) with initial data (v0, ϕ−,0) has a unique classical solution
(ϕ−, v) in Q∞ := R× [0,∞). Furthermore, the following hold:

(i) ∥ϕ−,x∥L∞(Q∞) + ∥ϕ−,t∥L∞(Q∞) ≤M− for some M− depending only on M0.
(ii) ϕ−,t(·, t) ≥ e−ζ−tζ0 in Q∞, where ζ− = ζ−(ζ0, ε,M0) is a positive constant and ζ0 is

given in (A2).

Proof. For any given T > 0, we assume that (ϕ−, v) is a solution of (3.2) for t ∈ [0, T ] with

ϕ+(x, t)− ϕ−(x, t) >
1

3
cG−1(2a/b). (3.34)

Due to (3.34), v in the first equation of (3.2) can be represented by vϕ+,0,T+(x, ϕ−, t) given in
(3.4). Note that T+(x, y) = 0 for all x ∈ R and y ≤ ϕ+,0(x). Hence from (3.4) we have

vϕ+,0,T+(x, y, t) = G1(G
−1
1 (v0(x, y)) + t), x ∈ R, y ≤ ϕ+,0(x).

The direct computation implies

vϕ+,0,T+
y (x, y, t) =

g(1, G1(G
−1
1 (v0(x, y)) + t))

g(1, v0(x, y))
v0,y(x, y), x ∈ R, y < ϕ+,0(x). (3.35)

Note that v
ϕ+,0,T+
y is not defined for y = ϕ+,0(x), which leads to some complexity in establishing

a priori uniform in time estimates ∥ϕ−,x∥L∞(QT ).
Different from the proof of Proposition 3.6, here we first estimate ∥ϕ−,t∥QT

, where QT := R×
(0, T ). For small h0 > 0 such that ϕ−(x, t) < ϕ+,0(x) for x ∈ R and t ∈ [0, h0), differentiating
the first equation of (3.2) with respect to t and setting ω̄ := ϕ−,t, we haveω̄t =

ω̄xx

1 + ϕ2
−,x

+ α(x, t, ϕ−,x, ϕ−,xx)ω̄x + b
[
vyω̄ + g(1, vϕ+,0,T+(x, ϕ−, t))

]√
1 + ϕ2

−,x in Qh0 ,

ω̄(x, 0) = ϕ−,t(x, 0), x ∈ R,
(3.36)
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where vy = v
ϕ+,0,T+
y (x, ϕ−(x, t), t). Note that g(1, vϕ+,0,T+(x, ϕ−, t)) > 0 and ω̄(x, 0) > 0 by

(A2). It follows that from the maximum principle that

ω̄ := ϕ−,t > 0, x ∈ R, t ∈ (0, h0). (3.37)

Hence we have ϕ−,0(x) < ϕ−(x, h) < ϕ+,0(x) for x ∈ R and 0 < h < h0.
Since vy appearing (3.36) is not defined when y = ϕ+,0(x), instead of considering (3.36) we

shall estimate ω := (ϕ−(x, t+ h)− ϕ−(x, t))/h for all small h > 0 to get an upper estimate for
∥ϕ−,t∥QT

. By some simple computations, we have

−
{
W (v(x, ϕ−(x, t+ h), t+ h))−W (v(x, ϕ−(x, t), t))

}
= b

[
v(x, ϕ−(x, t+ h), t)− v(x, ϕ−(x, t), t)

ϕ−(x, t+ h)− ϕ−(x, t)

]
hω

+b
{
v(x, ϕ−(x, t+ h), t+ h)− v(x, ϕ−(x, t+ h), t)

}
.

Hence ω satisfies
ωt =

ωxx

1 + ϕ2
−,x

+ αωx + b(−β1ω + β2)
√

1 + ϕ2
−,x in QT ,

ω(x, 0) =
ϕ−(x, h)− ϕ−(x, 0)

h
, x ∈ R,

(3.38)

where

ϕ−,x = ϕ−,x(x, t),

α =
ϕ−,xx(x, t+ h){ϕ−,x(x, t) + ϕ−,x(x, t+ h)}

{1 + ϕ−,x(x, t)2}{1 + ϕ−,x(x, t+ h)2}
,

β1 = −v(x, ϕ−(x, t+ h), t)− v(x, ϕ−(x, t), t)

ϕ−(x, t+ h)− ϕ−(x, t)
,

β2 =
1

h

∫ t+h

t

g(1, v(x, ϕ−(x, t+ h), s))ds.

It follows that from the maximum principle that

ω > 0, x ∈ R, t ∈ [0, T ] (3.39)

for any h ∈ (0, h0).
In order to get the upper bound of ω, we shall construct a supersolution. For this, we show

that there is a positive constant ν independent of T and all small ε such that

β1 > ν > 0 for all x ∈ R, t ∈ (0, T ) and for all small h > 0. (3.40)

We divide our discussion into three cases:

(i) ϕ−(x, t+ h) ≤ ϕ+,0(x); (ii) ϕ−(x, t) > ϕ+,0(x); (iii) ϕ−(x, t) ≤ ϕ+,0(x) < ϕ−(x, t+ h).

For the case (i), it suffices to estimate vy for y < ϕ+,0(x). By the definition of g(1, ·) and the
assumption (H), we have

g(1, G1(G
−1
1 (v0(x, y)) + t))

g(1, v0(x, y))
≥
g1 − g2

g3

g1
> 0.

By y < ϕ+,0(x) and (1.10), there exists a positive constant ν1 independent of all small ε such
that v0,y(x, y) ≤ −ν1. By (3.35), we have

vϕ+,0,T+
y (x, y, t) < −

(g1 − g2
g3

2g1

)
ν1 (3.41)
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for any y < ϕ+,0(x). By (3.41) and the mean value theorem, there exists ξ < ϕ−(x, t + h) ≤
ϕ+,0(x) such that

β1 = −vϕ+,0,T+
y (x, ξ, t) >

(g1 − g2
g3

2g1

)
ν1.

Hence (3.40) follows in the case (i).
To consider the case (ii), it suffices to estimate vy for y > ϕ+,0(x) and t > T+(x, y). From

(3.4) we have

vϕ+,0,T+(x, y, t) = G1

(
G−1

1 (v−∞,∞(x, y, T+(x, y))) + t− T+(x, y)
)
.

Set ṽ := v−∞,∞(x, y, T+(x, y)). Then direct computation gives

vϕ+,0,T+
y (x, y, t) = I + J, (3.42)

where

I :=
g(1, G1(G

−1
1 (ṽ) + t− T+))

g(1, ṽ)

g(0, G0(G
−1
0 (v0(x, y)) + T+))

g(0, v0(x, y))
v0,y(x, y),

J :=
g(1, G1(G

−1
1 (ṽ) + t− T+))

g(1, ṽ)
g(0, ṽ)T+,y − g(1, vϕ+,0,T+)T+,y.

We now estimate I. By y > ϕ+,0(x) and (1.10), there exists δ13(ε) > 0 such that |v0,y(x, y)| ≤
δ13(ε) and limε→0 δ13(ε) = 0. Also, by the definition of g(1, ·) and g(0, ·), it follows that

|I| ≤ g1
g1 − g2

g3

δ13(ε). (3.43)

To estimate J , we see from Lemma 3.7 that

T+,y(x, y(x, t)) =
1

ϕ+,t(x, T+(x, y(x, t)))
.

By Proposition 3.6 (i),

T+,y(x, y(x, t)) ≥
1

M+
, (3.44)

where M+ is independent of ε. By (3.44) and the fact that g(0, ṽ) < 0, we have

J ≤ −
g1 − g2

g3

g1M+
. (3.45)

By (3.42), (3.43) and (3.45) and note that limε→0 δ13(ε) = 0 and that M+ is independent of ε,
it follows that there exists ν2 > 0 independent of T and all small ε such that

vϕ+,0,T+
y (x, y, t) < −ν2, x ∈ R, y > ϕ+,0(x), t ∈ (0, T ). (3.46)

Again, as in the case (i), the mean value theorem implies that β1 > ν2 in the case (ii).
Next we consider the case (iii). If ϕ−(x, t) < ϕ+,0(x), then the mean value theorem implies

β1 = −v(x, ϕ−(x, t+ h), t)− v(x, ϕ+,0(x), t) + v(x, ϕ+,0(x), t)− v(x, ϕ−(x, t), t)

ϕ−(x, t+ h)− ϕ−(x, t)

= −vy(x, y1, t)(ϕ−(x, t+ h)− ϕ+,0(x)) + vy(x, y2, t)(ϕ+,0(x)− ϕ−(x, t))

ϕ−(x, t+ h)− ϕ−(x, t)

≥ ν2+
(g1 − g2

g3

2g1

)
ν1
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by (3.41) and (3.46), where ϕ+,0(x) < y1 < ϕ−(x, t + h) and ϕ−(x, t) < y2 < ϕ+,0(x). If
ϕ−(x, t) = ϕ+,0(x), then the mean value theorem implies

β1 = −v(x, ϕ−(x, t+ h), t)− v(x, ϕ+,0(x), t)

ϕ−(x, t+ h)− ϕ+,0(x)
≥ ν2.

Combining the above discussion, we have shown (3.40) for all cases.
By (3.40) and the fact that β2 < g1, it is easy to check that

ω+ := max
{g1
ν
, ∥ϕ−,t(·, 0)∥L∞(R)

}
is a supersolution of (3.38). Together with (3.37), we have

0 < ϕ−,t(x, t) ≤ ω+, x ∈ R, t ∈ [0, T ]. (3.47)

We now use (3.47) to derive an estimate of ϕ−,x for t ∈ [0, T ]. To do so, we consider an
auxiliary function (cf. [10])

Q(x, t) := [ϕ−,x(x, t)]
2.

If there exists x0 ∈ R and t0 ∈ [0, T ] such that Q(x0, t0) attains a local maximum which must
be positive, we have

0 = Qx(x0, t0) = 2ϕ−,x(x0, t0)ϕ−,xx(x0, t0).

Since ϕ−,x(x0, t0) ̸= 0, it follows that ϕ−,xx(x0, t0) = 0. By Lemma 3.12,

ω+ ≥ ϕ−,t(x0, t0)

=
[
bvϕ+,0,T+(x0, ϕ−(x0, t0), t0)− a

]√
1 +Qx(x0, t0)

≥
[
a− δ6(ε)

]√
1 +Qx(x0, t0).

Since δ6(ε) → 0 as ε → 0, and ω+ depends only on M0, there exists M̃ = M̃(M0) > 0 such

that Q(x0, t0) ≤ M̃2. In other words, for any local maximum point (x0, t0) ∈ R× [0, T ] of |ux|,
we have |ϕ−,x(x0, t0)| ≤ M̃ . If such (x0, t0) does not exist for all large x, it means that |ϕ−,x|
is increasing for all large |x|. In this case, we can see that |ϕ−,x| ≤ 2m∗ for all large |x|, where
m∗ > 0 is given in Lemma 1.2. Otherwise, it will contradict to Proposition 3.10. From above
discussions, we know that

|ϕ−,x(x, t)| ≤ max{M̃, 2m∗}, x ∈ R, t ∈ (0, T ). (3.48)

From Proposition 3.6 (i) and (3.48), we know that the estimate for ϕ±,x is uniform in time.
From Remark 3.11 we see that for any small ε > 0,

ϕ+(x, t)− ϕ−(x, t) >
2

3
cG−1(2a/b), x ∈ R, t ∈ (0, T ), (3.49)

which is a better estimate than (3.34). Combining (3.34) and (3.49), we see that for all small
ε > 0, any solution of (3.2) must satisfy ϕ−(x, t) < ϕ+(x, t). This means that if (ϕ−, v) is a
solution of (3.2), v in the first equation of (3.2) is always represented by vϕ+,0,T+(x, ϕ−, t).
Now we can apply standard theory of quasilinear parabolic PDEs [21] for the first equation

of (3.2). As similar to Step 1, we set

w(x, t) = ϕ−(x, t)− ϕ̂∗(x; c)− ct,

where ϕ̂∗(x; c) is defined in Proposition 1.2. Then w satisfies

wt =
(
arctan(wx + ϕ̂∗

x)
)
x
− c

−W (vϕ+,0,T+(x, ϕ−, t))

√
1 + (wx + ϕ̂∗

x)
2.
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Due to Proposition 3.10 and the estimate (3.48), by [21, Theorem 8.1, Chapter 5], we obtain
the existence and uniqueness for w for t ∈ (0, T ) for all T > 0, and then so does ϕ−. Hence
(3.1) has a unique solution for all t > 0. Note that the estimates (3.47) and (3.48) do not
depend on T . Hence we obtain the first statement (i).
The second statement (ii) follows from a similar argument as in deriving (3.25). Hence we

complete the proof of Proposition 3.13. �

We are ready to show Theorem 1.7.

Proof of Theorem 1.7. By Proposition 3.6 and Proposition 3.13, we have already shown the
existence and uniqueness of solutions of (1.2) and (1.3) except for v in Ω−(t). To finish the
proof, it suffices to show Step 3. In fact, for any (x, y) ∈ Ω−(t), we can solve (1.3) by

v(x, y, t) = G0(G
−1
0 (v(x, y, T−)) + t− T−), t > T−(x, y), (3.50)

using the value v(x, y, T−(x, y)) on the back given in (3.4). Hence the proof of Theorem 1.7 is
completed. �

3.2. Asymptotic stability of traveling curved waves. In this subsection, we deal with
the asymptotic stability of the traveling curved wave. We always assume that the initial data
(v0, ϕ±,0) satisfying (1.10)-(1.13) and (A1)-(A2).

To show the convergence of the front, we construct a supersolution and a subsolution as the
following form which used in [28]:

w(x, t) :=
1

α(t)
ϕ̂∗(α(t)x; c) + ct+ β(t)

with some suitable functions α(t) and β(t). We call w+(x, t) (resp. w−(x, t)) a supersolution
(resp. a subsolution) if L[w+(x, t)] ≥ 0 (resp. L[w+(x, t)] ≤ 0) for x ∈ R and t > 0.
Let us recall some results of [28].

Lemma 3.14 (Lemmas 2.1 and 2.2 in [28]). Set

α±(t) := 1∓ δe−γt,

β±(t) := σ

(
1

α±(t)
− 1

)
± (|η| − σ)δ

1∓ δ
,

w±(x, t) :=
1

α±(t)
ϕ̂∗(α±(t)x; c) + β±(t) + ct.

If σ, γ, δ satisfy

γ > 0, 0 < δ < 1, 0 < σ < Σ(γ, δ),

where

Σ(γ, δ) := inf
−∞<z<∞

{
zϕ̂∗

z(z; c)− ϕ̂∗(z; c) +
(1− δ)2

γ

(
c− a

√
1 + ϕ̂∗

z(z; c)
2
)}
,

then w+ (resp. w−) is a supersolution (resp. subsolution) to L[w] = 0. Moreover,

w−(x, 0) < ϕ̂∗(x; c) < w+(x, 0), x ∈ R

and

lim
|x|→∞

|w±(x, 0)− ϕ̂∗(x; c)| = 0.

For the readers’ convenience, we recall the outline of the proof in [28]. We set

z = α(t)x.
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By direct calculations,

L[w] = wt −
wxx

1 + w2
x

− a
√
1 + w2

x

=
αt

α2
(zϕ̂∗

z(z; c)− ϕ̂∗(z; c)) + c+ βt −
αϕ̂∗

zz(z; c)

1 + ϕ̂∗
z(z; c)

2 − a

√
1 + ϕ̂∗

z(z; c)
2

=
αt

α2

{
zϕ̂∗

z(z; c)− ϕ̂∗(z; c) +
(1− α)α2

αt

(c− a

√
1 + ϕ̂∗

z(z; c)
2) +

βtα
2

αt

}
.

Hence we have

L[w±] = ±γδe
−γt

α±(t)2

{
zϕ̂∗

z(z; c)− ϕ̂∗(z; c) +
α±(t)

2

γ
(c− a

√
1 + ϕ̂∗

z(z; c)
2)− σ

}
. (3.51)

By Lemma 2.2 (2) and (3), we have Σ(γ, δ) > 0. If 0 < σ < Σ(γ, δ),

zϕ̂∗
z(z; c)− ϕ̂∗(z; c) +

α±(t)
2

γ

(
c− a

√
1 + ϕ̂∗

z(z; c)
2

)
− σ ≥ Σ(γ, δ)− σ > 0. (3.52)

Thus w± are a supersolution and a subsolution, respectively. We also note that

Σ(γ, δ) ↑ |η| as γ → 0 uniformly for δ ∈ (0, β] for any 0 < β < 1. (3.53)

Thanks to Proposition 3.5 and Lemma 3.14, we can apply the comparison principle to show
the convergence of the front.

Proposition 3.15. For any small ε′ > 0, there is a positive constant T such that

0 ≤ sup
(x,y)∈Ω+(t)

v(x, y, t) ≤ ε′, t ≥ T (3.54)

sup
x∈R

|ϕ+(x, t)− ϕ̂∗(x; c)− ct| ≤ ε′, t ≥ T. (3.55)

Proof. From (3.12) we see that there exists such T > 0 such that (3.54) follows. We now prove
(3.55). By (3.53), we can choose γ ∈ (0, γ0) sufficiently small such that

|η| − ε′ < Σ(γ, δi) ≤ |η| for i = 1, 2,

where Σ is defined in Lemma 3.14 and δi ∈ (0, 1) is defined in Proposition 3.5 (i = 1, 2). Thus
we can choose σ ∈ (|η| − 3ε′, |η| − 2ε′) and very close to |η| − 2ε′ such that

ε′ < Σ(γ, δi)− σ < 3ε′, i = 1, 2. (3.56)

Moreover, since γ0 > γ we can choose T0 ≫ 1 such that

bε(1 + δ1)
2
√

1 + (M+)2

γδ1
e−(γ0−γ)T0 < ε′, (3.57)

where M+ is given in Proposition 3.6.
Define w+(x, t) given in Lemma 3.14 with δ := δ2. By Lemma 3.4, L[w+]− L[ϕ+] ≥ L[w+].

Using (3.51), (3.52) and (3.56), we have

L[w+]− L[ϕ+] ≥
γδe−γt

α+(t)2

{
Σ(γ, δ2)− σ

}
> 0, x ∈ R and t ≥ 0.

Also, it follows from Proposition 3.5 that w+(x, 0) ≥ ϕ+(x, 0) for all x ∈ R. By comparison
(Lemma 3.3), we conclude that

w+(x, t) ≥ ϕ+(x, t), x ∈ R and t ≥ 0. (3.58)

Next, we set w−(x, t) given in Lemma 3.14 with δ := δ1. Then Proposition 3.5 gives

w−(x, 0) + cT0 ≤ ϕ+(x, T0), x ∈ R.
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Using Lemma 3.4, (3.51), (3.57) and (3.56), we have

L[w−(x, t) + cT0]− L[ϕ+(x, t+ T0)]

≤ −γδ1e
−γt

α−(t)2

{
Σ(γ, δ1)− σ − bε(1 + δ1)

2

γδ1
e−(γ0−γ)T0

√
1 +M+

2
}

≤ −γδ1e
−γt

α−(t)2

{
Σ(γ, δ1)− σ − ε′

}
< 0, x ∈ R and t ≥ T0.

By comparison (Lemma 3.3), we have

w−(x, t) + cT0 ≤ ϕ+(x, t+ T0), x ∈ R and t ≥ 0. (3.59)

By (3.58) and (3.59), it follows that

w−(x, t)− ct ≤ ϕ+(x, t+ T0)− c(t+ T0) ≤ w+(x, t+ T0)− c(t+ T0),

for all x ∈ R and t ≥ 0. Then there exists T ′ > 0 such that

ϕ̂∗(x; c)− (|η| − σ)δ1
1 + δ1

≤ ϕ+(x, t+ T0)− c(t+ T0) ≤ ϕ̂∗(x; c) +
(|η| − σ)δ2
1− δ2

,

for all x ∈ R and t ≥ T ′. Since |η| − σ < 3ε′, we have

|ϕ+(x, t)− (ϕ̂∗ + ct)| ≤ 3ε′max
{ δ1
1 + δ1

,
δ2

1− δ2

}
for all x ∈ R and t ≥ T0 + T ′. This completes the proof. �
Remark 3.16. We remark that in Proposition 3.15, the choice of δi(ε) (i = 1, 2) does not
depend on ε′.

Due to the convergence of the front, we can derive the convergence of the back by constructing
suitable super- and subsolutions. The convergence of v over Ω(t)∪Ω−(t) can be done by using
a similar argument as in Lemma 3.9.

Proposition 3.17. Let (ϕ±, v) be a solution of (3.1)-(3.2) Then for any small ε′ > 0, there
is a positive constant T ′ such that

sup
(x,y)∈Ω(t)∪Ω−(t)

|v(x, y, t)− v̂∗(x, y − ct)| ≤ ε′ for all t ≥ T ′ (3.60)

sup
x∈R

∣∣∣ϕ−(x, t)−
(
ϕ̂∗(x; c) + ct− cG−1

1

(2a
b

)) ∣∣∣ ≤ ε′ for all t ≥ T ′. (3.61)

Proof. Remember that a positive constant ε in (1.10) is fixed and so δi(ε) (i = 4, 5) defined in
Proposition 3.10 is also fixed.

We first prove (3.61). For any given 0 < ε′ < 2|η|δ5(ε)/[1−δ5(ε)], we construct a subsolution
ψ− and a supersolution ψ+ of the equation for the back ϕ−

ϕ−,t =
ϕ−,xx

1 + ϕ2
−,x

−W (vϕ+,0,T+(x, ϕ−(x, t), t))
√

1 + ϕ2
−,x

as

ψ±(x, t) := ϕ̂∗(x; c) + ct− cG−1
1

(2a
b

)
± β±(t),

where β±(t) satisfies the following ordinary differential equation:

β′
±(t) = −M±

(
β±(t)− ε′

)
, t > T1, β±(T1) =

2|η|δ5(ε)
1− δ5(ε)

> ε′,

where M± > 0 and T1 will be determined later.
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Let T1 ≫ 1 such that ϕ−(x, T1) > k1 for x ∈ R, where k1 is given in (1.13). If follows from
Lemma 3.2 and (1.13) that

v(x, y, T+(x, y)) = 0, x ∈ R, y ≥ ϕ−(x, T1).

Using Lemma 3.2 again, we have

v(x, y, t) = G1(G
−1
1 (v(x, y, T+(x, y))) + t− T+(x, y))

= G1(t− T+(x, y)), x ∈ R, y ≥ ϕ−(x, t) and t ≥ T1.

Let us define

T ∗(x, y) :=

(
y − ϕ̂∗(x; c)

c

)
+

. (3.62)

Since we have shown the convergence of the front (Proposition 3.15), there exists k∗ > k1 such
that ∣∣∣T+(x, y)− T ∗(x, y)

∣∣∣ < ε′

c
, x ∈ R and y ≥ ϕ̂∗(x; c) + k∗. (3.63)

If necessary we take T1 larger such that ψ+(x, t) ≥ ϕ̂∗(x; c) + k∗ for all x ∈ R and t ≥ T1.
Hence by (3.63) and (3.62),

t− T+(x, ψ+)

= t− T ∗(x, ψ+) + T ∗(x, ψ+)− T+(x, ψ+)

≤ t−
(
ct− cG−1

1 (2a/b) + β+
c

)
+

+
ε′

c

≤ G−1
1 (

2a

b
)− β+

c
+
ε′

c

for all x ∈ R and t ≥ T1.
Recall that

β+(T1) =
2|η|δ5(ε)
1− δ5(ε)

, (3.64)

where η > 0 is given in Proposition 1.2. By the monotonicity of G1 and the mean value
theorem, there exists M1 > 0 such that

G1(t− T+(x, ψ+))−
2a

b
≤ G1

(
G−1

1 (
2a

b
)− β+

c
+
ε′

c

)
−G1(G

−1
1 (

2a

b
))

≤ M1(−β+(t) + ε′)

Taking M+ := bM1, direct computations give

ψ+,t −
ψ+,xx

1 + ψ2
+,x

− b
(
G1(t− T+(x, ψ+))−

a

b

)√
1 + ψ2

+,x

≥ β′
+(t)− b

(
G1(t− T+(x, ψ+))−

2a

b

)
≥ β′

+(t) +M+(β+(t)− ε′)

= 0
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for all x ∈ R, and t ≥ T1. Hence ψ+ is a supersolution for all t ≥ T1. By Proposition 3.10,
Lemma 2.2(4) and (3.64),

ϕ−(x, T1) ≤ ϕ̂∗(x; c) + cT1 − cG−1
1

(2a
b

)
+

2|η|δ5(ε)
1− δ5(ε)

= ϕ̂∗(x; c) + cT1 − cG−1
1

(2a
b

)
+ β+(T1)

= ψ+(x, T1), x ∈ R.
In order to apply Lemma 2.5, we define

F (x, t, u, p) := b
(
G1(t− T+(x, u))−

a

b

)√
1 + p2

Then we have

Fu(x, t, u, p) = −b
√
1 + p2G′

1(t− T+(x, p))
∂T+(x, p)

∂p
,

Fp(x, t, u, p) = b
(
G1(t− T+(x, u))−

a

b

) p√
1 + p2

.

It is easy to check that ψ+,x, ψ+,xx ∈ L∞. By Lemma 3.7, we can apply Lemma 2.5 to guarantee

ϕ−(x, t) ≤ ψ+(x, t) = ϕ̂∗(x; c) + ct− cG−1
1

(2a
b

)
+ β+(t), x ∈ R, t ≥ T1.

Similarly, we can take T2 ≫ 1 and M− ≫ 1 such that

ϕ−(x, t) ≥ ψ−(x, t) = ϕ̂∗(x; c) + ct− cG−1
1

(2a
b

)
− β−(t)

for all x ∈ R and t ≥ T2.
Since β±(t) decays to ε

′ as t→ ∞, we obtain (3.61).
We now derive (3.60) for (x, y) ∈ Ω(t) by a similar proof as in Lemma 3.9. To do so, we

shall estimate (3.31) via ε′ instead of ε. It can be done along the proof of Lemma 3.9 with
minor modifications. As in Lemma 3.9 we divide our discussion into two parts:

(i) ϕ̂∗(x; c)− y + ct ≥ 0; (ii) ϕ̂∗(x; c)− y + ct < 0.

For (i), using (3.54) and (3.63), the term (3.31) can be estimated as

|v(x, y, t)− v̂ϕ̂
∗
(x, y − ct)| ≤ g1

[
G−1

1 (ε′)χ[−k1,k1](x) +
ε′

c

]
, (x, y) ∈ Ω(t)

for all large t. For (ii), using (3.55) we have

ϕ̂∗(x; c) + ct < y = ϕ+(x, T+(x, y)) ≤ ϕ̂∗(x; c) + cT+(x, y) + ε′

for all large t. Hence (3.31) can be estimated as

|v(x, y, t)− v̂ϕ̂
∗
(x, y − ct)|

≤ g1
∣∣G−1

1 (v(x, y, T+)) + t− T+
∣∣

≤ g1

[
G−1

1 (ε′)χ[−k1,k1](x) +
ε′

c

]
, (x, y) ∈ Ω(t)

for all large t. Combining the estimates in (i) and (ii), we obtain (3.60) for (x, y) ∈ Ω(t).
Finally, we can use a similar process as the above to derive (3.60) for (x, y) ∈ Ω−(t) by using

(3.50). This completes the proof. �
Proof of Theorem 1.8. Combining Proposition 3.15 and Proposition 3.17, we see that Theo-
rem 1.8 follows. �
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4. Gradient blow-up

In this section, we give an example to illustrate that the gradient blowup can take place for
the solution ϕ+ to the system (3.1) if the initial data is far from the traveling curved waves.
To do so, let gi > 0 (i = 1, .., 4) such that (H) holds and 2/3 < a/b. Next, we choose (v0, ϕ+,0)
satisfying

ϕ+,0 − ϕ̂∗ ∈ L∞(R) ∩ C2(R),

v0 ∈ C1(R2), v0(x, y) =


0 (0 ≤ y),

1

3
(ξ1 ≤ y ≤ ξ0),

2

3
(y ≤ ξ2)

where ξi (i = 0, 1, 2) are constants (ξ2 < ξ1 < ξ0 < 0) specified later and ϕ̂∗ is defined in
Proposition 1.2. Then we look for a gradient blowup solution ϕ+ satisfying

ϕ+,t =
ϕ+,xx

1 + ϕ2
+,x

+
(
a− bv(x, ϕ+, t)

)√
1 + ϕ2

+,x, x ∈ R, t > 0 (4.1)

where v(x, y, t) := G0(G
−1
0 (v0(x, y)) + t).

The gradient blowup of the equation (4.1) essentially follows from [12] using a geometric
approach, though the time t is not included explicitly in his equation. We give an outline of
proof briefly. The equation (4.1) can be rewritten as the curvature equation with driving force
depending on x, y and t:

V = −κ+ a− bv(x, y, t). (4.2)

By the choice of the initial data v0, v(x, y, t) = v1(t) (resp. v2(t)) in the region R × [ξ1, ξ0]
(resp. R× (−∞, ξ2]), where

vi(t) = G0(G
−1
0 (i/3) + t), i = 1, 2.

Then there is a positive time T satisfying

0 ≤ v1(t) ≤
1

3
< v2(T ) ≤ v2(t) ≤

2

3
<
a

b
, 0 ≤ t ≤ T. (4.3)

To show the gradient blowup, we consider two circles Ci(t) (i = 1, 2) with radii Ri(t) centered
at (xi, yi), respectively, where

x1 < x2, y2 < ξ2 < ξ1 < y1 < ξ0 < 0.

The normal of C1 is taken as outward, while that of C2 is as inward. We will choose xi, yi
(i = 1, 2) and ξi (i = 0, 1, 2) such that

C1(t) ⊂ R× [ξ1, ξ0], C2(t) ⊂ R× (−∞, ξ2]

for 0 ≤ t ≤ T . Let Ri be defined by

R1,t = − 1

R1

+ a− b

3
, R1(0) =

12

b(3v2(T )− 1)
,

R2,t = − 1

R2

− a+ bv2(T ), R2(0) =
12

b(3v2(T )− 1)
.
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Note that by (4.3), R1(t) increases to ∞ as t→ ∞ and R2(t) shrinks to a point at some time.
By (4.3) and some simple calculations, it can be confirmed that

R1,t −
(
− 1

R1

+ a− bv(x, y, t)

)
≤ 0, 0 ≤ t < T,

−R2,t −
(

1

R2

+ a− bv(x, y, t)

)
≥ 0, 0 ≤ t < T.

This implies that C1(t) is a subsolution of (4.2), while C2(t) is a supersolution for 0 ≤ t < T .
On the other hand, by (4.3),

d

dt
(R1 +R2) = − 1

R1

− 1

R2

+ b

(
v2(T )−

1

3

)
,

which implies that R1(t) +R2(t) is increasing in time near t = 0. Therefore we can choose x1,
x2 and t0 ∈ (0, T ] such that R2(t0) > 0 and

R1(0) +R2(0) < x2 − x1 < R1(t0) +R2(t0).

The above inequality shows the projections of C1(t) and C2(t) to the x-axis overlap each other
before t = t0. Let us fix y1, y2, ξ0, ξ1 and ξ2 such that

y2 +R2(T ) < ξ2 < ξ1 < y1 −R1(T ) < y1 +R1(T ) < ξ0 < 0.

Hence we can choose ϕ+,0 ∈ C2(R) with ϕ+,0 − ϕ̂∗ ∈ L∞(R) such that the graph y = ϕ+,0(x)
is above the graph of the upper semicircle of C1(0) for x ∈ I1(0) and is below the graph of the
lower semicircle of C2(0) for x ∈ I2(0), where

Ii(t) := [xi −Ri(t), xi +Ri(t)], i = 1, 2.

By the theory of [21], the problem (4.1) with such initial data ϕ+,0(x) has a unique solution
ϕ+(x, t) for some time interval. By comparison, it is easy to see that

−c∗t− ∥ϕ+,0 − ϕ̂∗∥L∞(R) ≤ ϕ+(x, t)− ϕ̂∗(x; c) ≤ c∗t+ ∥ϕ+,0 − ϕ̂∗∥L∞(R)

for some c∗ ≫ 1 as long as ϕ+(x, t) exists. Thus we have a priori estimate

∥ϕ+ − ϕ̂∗∥L∞(R×[0,T ]) ≤ C

for some positive constant C = C(T, ∥ϕ+,0∥L∞(R)). By the theory of [21], we see that the
existence time of ϕ+(x, t) can be extended until the gradient blow-up occurs. In fact, by
comparison, we see that y = ϕ+(x, t) is still above (resp. below) the graph of the upper (resp.
lower) semicircle of C1(t) (resp. C2(t)) for x ∈ I1(t) (resp. x ∈ I2(t)) as long as ϕ+ exists.
Since the projections of C1(t) and C2(t) to the x-axis overlap each other before t = t0, the
gradient blowup for ϕ+ occurs at some time t1 ∈ (0, t0). Therefore the gradient blowup of
the front equation may take place for the initial data (ϕ+,0, v0) which is far from the traveling
curved wave. We also emphasize that this phenomenon is not observed for the curvature flow
with a constant driving force.

From the above discussion, it means that the interface cannot be represented by a graph at
some time t = t1. However, it can be still extended after t = t1 if we use (1.1) instead of (1.2)
and (1.3). Because our discussion is not applicable to this situation, the asymptotic behavior
of the solution to the free boundary problem (1.1) after t = t1 still remains open.
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