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Abstract

Recent years have seen the introduction of non-local interactions in var-
ious fields. A typical example of a non-local interaction is where the con-
volution kernel incorporates short-range activation and long-range inhibi-
tion. This paper presents the relationship between non-local interactions
and reaction-diffusion systems in the following sense: (a) the relationship
between the instability induced by non-local interaction and diffusion-driven
instability; (b) the realization of non-local interactions by reaction-diffusion
systems. More precisely, it is shown that the non-local interaction of a
Mexican-hat kernel destabilizes the stable homogeneous state and that this
instability is related to diffusion-driven instability. Furthermore, a reaction-
diffusion system that approximates the non-local interaction system with any
even convolution kernel is shown to exist.

1 Introduction
Various pattern formations are observed to occur in nature such as those on ani-
mal skins, the arrangement of leaves or flowers in plants, and the propagation of
the potential in hearts of living creatures and so on. Many researchers have been
attracted to these formations over the years and have investigated the mechanisms
according to which they are created. In 1952, Turing [20] proposed diffusion-
driven instability as one of the mechanisms that is responsible for generating in-
homogeneity. He showed that there is a reaction-diffusion system for which the
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homogeneous steady state is unstable, whereas it is stable for the corresponding
ordinary differential equations without diffusion. In other words, diffusion can
destabilize the homogeneous steady state by being incorporated with kinematics
although diffusion is usually thought to function as averaging and homogenizing.
This phenomenon is also known as Turing instability. We also refer to [2] for the
extension to the three-component case. Since the diffusion term is derived from
Brownian motion and the reaction term is based on the collision of molecules, we
can regard the dynamics of a reaction-diffusion system as local dynamics and can
also say that it is based on a local interaction.

On the other hand, we often observe dynamics that cannot be described in
terms of local dynamics. We refer to dynamics of this type as non-local dynamics
and also consider the corresponding system to be based on a non-local interaction.
Non-local dynamics have been studied in several fields such as ecology, genetics,
neurology, and phase transitions. Typical examples of non-local interactions are
spatial dispersals of animal species [11], pigment cells in the skin of the zebrafish
[12, 18], and neural firing in the brain [1] etc. See also [6, 8, 16, 17]. These
types of interactions can be characterized by convolution with suitable kernels.
More precisely, to consider the dynamics of neuron fields in the brain, Amari [1]
introduced a neural model in one-dimensional space as follows:

τ
∂u
∂ t

=−u+
∫
R

w(x− y)H(u(y, t))dy+ s(x, t), (1)

where u(x, t) is the membrane potential of the neurons at position x, τ > 0 is a
time constant, w is a kernel, s is an external stimulus, and H is the Heaviside
function. The function w represents a non-local effect on the membrane potential
from neighboring cells. He realized a short-range activation effect and a long-
range inhibitory effect by using the kernel of which the profiles are shown in Fig.
1 (a). The shape of this profile has resulted in this kernel becoming known as the
Mexican-hat, with reference to [13, 14].

One of the mathematical models for the non-local spatial dispersal of species
is as follows:

ut =
∫

k(x− y)u(y, t)dy−bu+ f (u), (2)

where u = u(x, t) is the population density of a single species, k = k(x) is a non-
negative kernel, b is a positive constant, and f is a nonlinear function of u. Since
the kernel k is related to the transition possibility known as the position jump-
process, the non-negativity of k is often assumed. The derivation of this non-local
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evolution equation (2) in a bounded domain was reported in [11]. Although the be-
havior of the dispersal term is similar to that of diffusion, these authors mentioned
that the equation of this non-local model was more flexible than the reaction-
diffusion equation to describe the dispersal of single species. Additional details
are provided in [3, 4, 5, 11, 21]. In the neural firing phenomenon, this equation is
also used when the kernel k is replaced with the Mexican-hat kernel w instead of a
non-negative kernel [16, 17]. The stationary pattern was investigated numerically
[1, 17]. In addition, Kondo pointed out the importance of non-local interaction
among pigment cells such as in the skin of the zebra fish and the sensitive depen-
dence of pattern formations on these non-local interactions [12].

Berestycki et al. [6] considered the non-local Fisher-KPP equation with the
non-local saturation effect:

ut −∆u = µu(1− k ∗u) , (3)

where k(x) is a positive kernel and µ is a constant. These non-local competitive
effects were introduced by [9, 15]. The classical Fisher-KPP equation corresponds
to the case where k(x) = δ (x).

Non-local evolution equations can reproduce the various patterns and destabi-
lization of the solution is sensitive to the profile of the kernel, such as in the case
of the Mexican-hat (see [16, 17]). However, the role of non-local interaction in
pattern formations and the mechanism of the appearance of non-local interactions,
which can influence distant objects globally without collision in biological phe-
nomena, have not been clarified. This has given rise to questions as to “What is the
relationship between the kernel shape of the non-local evolution equation and the
destabilization of the solution?; what is the relationship between non-local inter-
action and local dynamics such as in a reaction-diffusion system?”. Motivated by
these questions, we analyze the mathematical model with non-local interaction.
The relationship between the kernel shape and the destabilization of the solution
induced by the Mexican-hat is investigated by approximating the non-local evo-
lution equation by the reaction-diffusion system through singular limit analysis.
The approximation of the Mexican-hat is shown by introducing the auxiliary ac-
tivator and inhibitor into the reaction-diffusion system. Moreover, by introducing
multiple unknown variables into the system, we show that non-local interaction
with any even kernel can be realized by a reaction-diffusion system with multiple
components. This result is expected to enable us to conclude that non-local inter-
action can be reproduced by local dynamics such as those in a chemical reaction
and diffusion, which is seemingly paradoxical. Actually, our result can suggest
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that the non-local interactions in (2) (3) and even (1) can be derived from the
reaction-diffusion system. Finally, numerical results are generated by the various
shapes of the kernels.

This paper is organized as follows: In Section 2, we state the mathematical set-
ting of the non-local equation considered in this paper and the main result. Section
3 presents the local and global existence of solutions of the non-local equation. In
Section 4, we show the instability caused by the non-local effects. Section 5,
we construct the reaction-diffusion system that approximates the non-local evo-
lution equation under the assumption of the kernel and study the relationship be-
tween two systems from the viewpoint of instability. In Section 6, we show that
the reaction-diffusion system constructed in Section 5 approximates the non-local
equations with any even kernels by controlling the coefficients. In Section 7, we
numerically investigate the profile of the stable stationary solution by varying the
shape of the simplified Mexican-hat.

2 Mathematical setting and main result
In this section, we introduce the mathematical setting including non-local interac-
tion. First, we consider a reaction-diffusion equation to represent local dynamics.
Denoting the theoretical concentration at the position x at time t by u(x, t), we
firstly impose the diffusion and reaction terms as follows:

ut = duuxx + f (u), (4)

with periodic boundary conditions in T := [−L,L], where f is a C1 function from
R to R and the diffusion coefficient du is a non-negative constant. To clarify the
questions in Section 1, we extend (4) by adding the non-local interactions includ-
ing the examples in Section 1. One of the simplest extensions of this reaction-
diffusion equation (4) to a non-local evolution equation is{

ut = duuxx +g(u,J ∗u), in T×{t > 0},
u(x,0) = u0(x), on T,(P)

with the periodic boundary condition in T, where J ∈ L1(T) is a kernel, g is a
C1 function from R2 to R and J ∗ h(x) :=

∫ L
−L J(x − y)h(y)dy for any function

h ∈ L1(T). A typical example of J is a Gaussian kernel or a Mexican-hat kernel.
It is observed in the experiments of [18] that the growth rate of the pigment cells in
the skin of the zebra fish is influenced by the neighbours globally in space. Beside
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the examples in Section 1, the non-local interaction can be included in the growth
rate. Thus, for the conditions for f and g, we assume that there are a positive
constant g0 and nonnegative constants g1, · · · ,g7 and p ≥ 2 such that, for u,v ∈R,

f (u) = g(u,0), g(0,0) = g(1,0) = 0, gu(1,0)< 0, gv(1,0)> 0,(A1)

g(u,v)u ≤−g0|u|p+1 +g1|u2v|+g2|uv|+g3|u|,(A2) ∣∣∣gu(u,v)+g0 p|u|p−1
∣∣∣≤ g4|v|+g5,(A3)

|gv(u,v)| ≤ g6|u|+g7,(A4)
p ≥ 3 or g1 = g6 = 0 if 2 ≤ p < 3.(A5)

From (A1) and (A2), we determine the condition of f such that

f (u)≤−g0|u|p +g3

for u ≥ 0, which plays the role of the saturation effect of the concentration. This
model can be interpreted by considering that the theoretical living object diffuses
and interactions among them are influenced locally as well as globally in space.
The condition (A5) can be relaxed to g1,g7 are small when 2 ≤ p < 3.

Two typical examples of the local and non-local interaction terms f (u), g(u,v)
are

f (u) = au(1−u2), g(u,v) = uv+au(1−u2), (5)
f (u) = au(1−u), g(u,v) = v+au(1−|u|), (6)

where a > 0 is a positive parameter. In the case of (5), the non-local interaction
is imposed as the growth rate. The corresponding non-local evolution equation
becomes {

ut = duuxx +(J ∗u)u+ f (u), in T×{t > 0},
u(x,0) = u0(x), on T, (7)

where f (u) = au(1− u2). If J is a Mexican-hat, the growth rate at a point is in-
creased proportionally to the amount of the concentration in close proximity, and
conversely, it is decreased proportionally to that of the concentration at greater
distances from the point. As the non-local interaction is the convolution, the inte-
gration of the global interaction determines whether the concentration at the point
is increased or not. We utilize this mathematical model in all the numerical simu-
lations in this paper. The typical example of J is given by

J(x) :=
µ

2
√

d1 sinh L√
d1

cosh
L−|x|√

d1
− µ

2
√

d2 sinh L√
d2

cosh
L−|x|√

d2
, (8)
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Figure 1: (a) Typical example of the kernel (8), at which d1 = 1, d2 = 2, µ = 1 and
L = 20. The vertical and horizontal axes correspond to the value of J(x) and the
position x ∈ [−L,L], respectively. The profile of this kernel is similar to the shape
of the Mexican-hat because of the short-range activation near the origin and long-
range inhibition at greater distances. (b) Numerics of (7) with du = 0.1, a = 0.02,
and the same kernel J(x) as in (a). The vertical and horizontal axes correspond to
the value of u and the position x ∈ T, respectively
.

where d1,d2 and µ are positive constants. Fig. 1 (a) is the profile of J when
µ = 1,d1 = 1,d2 = 2. As seen in Fig. 1 (b), (7) creates the heterogeneity solutions
with 4 peaks.

In the case of (6), the non-local interaction is imposed as dispersal and thus, J
should be non-negative from the viewpoint of mathematical modelling. However,
the following results can include the case of the sign-changing kernel J.

It is easily verified that two examples (5) and (6) satisfy (A1)–(A5). The ex-
ample (2) is directly included in (P) and satisfies (A1)–(A5). For (1) and (3), see
Remark 6.2 in Section 6.

Under the above settings, the main result in this paper is as follows:

Theorem 2.1 (Main theorem) For any even 2L-periodic continuous function J,
any small positive constant ε and any positive time T , there exists a reaction-
diffusion system (RDε ) with M+2 components such that

sup
t∈[0,T ]

sup
−L≤x≤L

|u(x, t)− ũ(x, t)| ≤ ε,
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where (RDε ) is given in Section 6, u is a solution of (P), and ũ is the first compo-
nent of the solution of (RDε ).

The proof of this theorem, which is given in Section 6, needs to find out the
values of constants M, α j and d j ( j = 0, · · · ,M) in (RDε ). See Section 6 for the
details.

3 Existence of the solution in (P)

In this section we study the global existence of the solution of (P). Before intro-
ducing our results, we give some definitions as follows:

Cper(T) = {u ∈C(R) | u(x) = u(x+2L)},
∥v∥Cper(T) = sup

x∈T
|v(x)| for any v ∈Cper(T),

A :=− ∂ 2

∂x2 with D(A) :=C2
per(T),

B(u,r) := {v ∈Cper(T) | ∥u− v∥Cper(T) ≤ r}.

Theorem 3.1 For each u0 ∈Cper(T), there exists a positive constant T such that
the problem (P) has a unique mild solution u(·;u0) ∈ C ([0,T ];Cper(T)) with an
initial datum u0 which satisfies

u(t) = e−dutAu0 +
∫ t

0
e−du(t−s)Ag(u(s),J ∗u(s))ds.

Moreover, there exists a positive constant K1 such that for u0,u1 ∈ B(ū,r) mild
solutions u(·;u0) and u(·;u1) of (P) with initial data u0 and u1, respectively satisfy
the following

∥u(t;u0)−u(t;u1)∥Cper(T) ≤ K1∥u0 −u1∥Cper(T).

This theorem follows from the standard semigroup theory [10, Theorem 1.3.4].
Denote a solution of (P) by u(x, t)= u(x, t;u0). We note that u(x, t;u0)= u(t;u0)(x)
because of u(·;u0) ∈ Cper(T). Furthermore, by the energy method we obtain the
following theorem:

Theorem 3.2 Assume that u(·,0) = u0(·) ∈ H1(T) and du > 0. Then, there exists
a positive constant K2 depending on ∥u0∥2

H1(T) such that, for all t > 0, the mild
solution u of (P) with the initial datum u0 satisfies

∥u(·, t)∥2
H1(T) ≤ K2.
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The proof is given in Appendix A.2.

Remark 3.1 From this theorem and the Sobolev embedding theorem, we see that
∥u(·, t)∥Cper(T) is bounded for t > 0. Hence, we have the global existence of the
classical solution of (P). However, our proof in Appendix A.2 can not be extended
to the case of du = 0 because K2 depends on 1/du .

4 Instability induced by non-local terms
Assume that ∫

T
J(x)dx = 0.(A6)

When a solution of (P) is spatially homogeneous, it satisfies

Ut = g(U,0). (9)

In other words, any solution of (9) becomes a spatially homogeneous solution
of (P). Under the assumption (A1), U∗ ≡ 1 is a stable equilibrium of (9) and is
a constant steady-state solution of (P). To study the stability, we consider the
linearized problem of (P) at U∗ ≡ 1. Noting J ∗1 = 0 by (A6), we have

λφ = duφxx +gu(1,0)φ +gv(1,0)J ∗φ. (10)

Here we used (A6). Plugging the kth term of the Fourier series expansion

φk := ck exp
(

kπi
L

x
)
, ck :=

1
2L

∫ L

−L
φ(x)exp

(
−kπi

L
x
)

dx

to (10), we obtain

λφk =−du

(
kπ
L

)2

φk +gu(1,0)φk +gv(1,0)J ∗φk.

Since J is a periodic function in T, it follows

J ∗φk = 2L(Ĵ)kφk,

where

(Ĵ)k :=
1

2L

∫ L

−L
J(y)exp

(
−kπi

L
y
)

dy.
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Thus all eigenvalues are given by

λ =−du

(
kπ
L

)2

+gu(1,0)+2L(Ĵ)kgv(1,0). (11)

Thus we obtain the following proposition:

Proposition 4.1 Assume that g(u,v) enjoys (A1) and J(x) = µ j(x) does the fol-
lowing condition:

(Ĵ)k = µ( ĵ)k > 0 (k > 0), ( ĵ)0 = 0, lim
k→∞

( ĵ)k = 0.(A7)

Then there is a positive constant µ∗ such that U∗ ≡ 1 is stable in (P) if 0≤ µ < µ∗,
but is unstable in (P) if µ > µ∗.

We remark that the condition ( ĵ)0 = 0 corresponds to (A6). This proposition
is essentially mentioned in Murray [17, Chap 12].

Proof. By (11) and (A7), if λ = 0, then it follows

µ = µ(k) :=
du
(kπ

L

)2 −gu(1,0)

2L( ĵ)kgv(1,0)
.

Since µ(k) diverges to infinity as k tends to infinity by (A1) and (A7), there is a
positive integer k∗ such that

µ(k∗) = min
k

µ(k).

Then the eigenvalue λ is still negative for all k if 0 ≤ µ < µ(k∗), while λ becomes
positive for the minimizer k∗ of µ if µ(k∗)< µ . Hence, we have the proposition.

As for the typical example given in (8), we can calculate

(Ĵ)k =
µ

d1
(kπ

L

)2
+1

− µ

d2
(kπ

L

)2
+1

.
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It is easily seen that this function J satisfies (A7) and that the stationary solution
U∗ becomes unstable if µ is large. More precisely, the most unstable mode can be
determined by the following calculation. The eigenvalue λ is therefore given by

λ (σk) =−duσk +

(
µ

d1σk +1
− µ

d2σk +1

)
gv(1,0)+gu(1,0), (12)

where σk := (kπ/L)2, k ∈N∪{0}. We determine that this λ has at least a positive
value dependently of the value of σk. Setting the sufficiently large L, we regard
σk as the continuous value. Rewriting σk = s, we have

λ (s) =
(
−dud1d2s3 −du(d1 +d2)s2 +(−du +(d2 −d1)µgv(1,0))s

(d1s+1)(d2s+1)

)∣∣∣
s=σk

+gu(1,0)

for s ≥ 0. When d2 > d1, if

µ >
du

gv(1,0)(d2 −d1)
,

then λ (s) attains a positive maximum at s = sc > 0. Moreover, if du = 0, it follows
from the easy calculation that the maximum eigenvalue is attained by the wave
number k∗ := L(d1d2)

−1/4/π . When g(u,v) is given by (5), λ (σk) is numerically
calculated as seen in Fig. 2 (a). From this figure, the maximum eigenvalue is
attained by k = 4 and this wave number corresponds to the number of peaks shown
in Fig. 1 (b).

5 Convergence of the reaction-diffusion system to a
non-local evolution equation

5.1 The reaction-diffusion system and its convergence
In this section let us consider the case where J is the linear combination of the
functions, i.e.,

J = µ
M

∑
j=0

α jkd j , (13)

where d j > 0, α j are constants and

kd(x) :=
1

2
√

d sinh L√
d

cosh
L−|x|√

d
. (14)
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Figure 2: Numerical results of the system (15) with the same function g(u,v) =
uv+ au(1− u2) and parameters as in Fig. 1 (b) and ε = 0.001. (a) Relationship
between k and λ (σk). The vertical and horizontal axes correspond to the value
of λ (σk) and the wave number k, respectively. From this graph, λ (σk) attains
its maximum when k = 4. (b) Profiles of u,v1 and v2 of the system (15). The
vertical and horizontal axes correspond to the values of u,v1,v2 and the position
x ∈ T, respectively. The black solid, gray solid and dashed curves correspond to
the profiles of u, v1 and v2, respectively.

We introduce a reaction-diffusion system with auxiliary activators and inhibitors
v j(x, t),( j = 0, · · · ,M) that approximates a non-local evolution equation (P) with
(13): 

ut = duuxx +g(u,
M

∑
j=0

α jv j),

v j,t =
1
ε
(
d jv j,xx +µu− v j

)(RDε )

for x ∈ T and t > 0 with the periodic boundary condition, where all diffusion
coefficients d j and µ are positive, and 0 < ε ≪ 1. Taking limit ε → 0 formally
in (RDε ), we may expect that v j converge to a stationary solution respectively.
Namely,

d jv j,xx +µu− v j = 0.
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As in Appendix A.1, v j is given by

v j = µkd j ∗u.

Because µ is a fixed value, we set µ = 1 for the simplicity in the following singular
limit analysis. This convergence will be rigorously confirmed as follows.

Theorem 5.1 Assume that J is given by (13). Let u0 be a solution of (P) equipped
with u(·,0) = u0(·) ∈ H1(T) and (uε ,vε

0, · · · ,vε
M) be a solution of (RDε ) equipped

with
(uε ,vε

0, · · · ,vε
M)(x,0) = (u0,kd0 ∗u0, · · · ,kdM ∗u0).

Then, for any positive T ,

sup
t∈[0,T ]

∥uε(·, t)−u0(·, t)∥Cper(T) → 0,

sup
t∈[0,T ]

∥vε
j(·, t)− kd j ∗u0(·, t)∥Cper(T) → 0 ( j = 0, · · · ,M)

as ε → 0.

The proof will be given in Appendix B. It is based on the standard arguments,
such as the energy method, the uniform Gronwall lemma, the positively invariant
set. The proof of boundedness of solutions in H1(T) is similar to that of Theorem
3.2. See Lemma B.1 in Appendix B. Using this lemma and the energy estimate
for the difference between two solutions, we can show the convergence. See Ap-
pendix B for the details.

5.2 Diffusion-driven instability
Consider the Mexican hat kernel (8). Since this satisfies (A6), we use v1 and v2
instead of v0 and v1. The corresponding reaction-diffusion system (RDε ) with
0 < d1 < d2 and α1 = 1, α2 =−1 becomes

ut = duuxx +g(u,v1 − v2),

v1,t =
1
ε
(d1v1,xx +µu− v1) ,

v2,t =
1
ε
(d2v2,xx +µu− v2) .

(15)

Theorem 5.1 claims that J ∗ u is approximated by v1 − v2, where J is given in
(8) and that the solution of (15) is sufficiently close to that of (P). In the other
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words, this indicates that the non-local interaction with the kernel (13) can be
approximated by the reaction-diffusion system.

By (A1), this reaction-diffusion system consists of two activators and one in-
hibitor. It is well known that diffusion-driven instability is often observed in this
type of reaction-diffusion systems [20]. As shown in the Section 4, the stable ho-
mogeneous stationary solution may become unstable by the non-local interaction
under suitable assumptions. We discuss the relationship between two instabilities
in this subsection.

Anma and Sakamoto [2] studied diffusion-driven instability for the three-
component reaction-diffusion system and classified the instability into two cat-
egories, one is the instability without oscillation, called steady instability, and the
other is the instability with oscillations, called wave instability. By Theorem 1.1
(v) of [2], the system (15) satisfies the condition of the occurrence of the steady
instability in the steady state. We show the instability of the homogeneous station-
ary solution (u,v1,v2) = (1,µ,µ) to (15) when ε is close to 0. Linearizing (15)
near (u,v1,v2) = (1,µ,µ), we obtain the following eigenvalue problem:

λ

 u
v1
v2

=

−duσk +gu(1,0) gv(1,0) −gv(1,0)
µ
ε

−1−d1σk
ε 0

µ
ε 0 −1−d2σk

ε

 u
v1
v2

 ,

where σk := (kπ/L)2, k ∈ N∪{0} and λ is the eigenvalue of linearized matrix.
We denote the characteristic polynomial by Φk(ε,λ ). We get

Φk(ε,λ ) =
1
ε2 (µgv(1,0)(d2 −d1)σk − (duσk −gu(1,0)+λ )(1+d1σk)(1+d2σk))

−λ
ε
(duσk −gu(1,0)+λ )(2+d1σk +d2σk)

−λ 2(duσk −gu(1,0)+λ ). (16)

Set
Φ̃k(ε,λ ) := ε2Φk(ε,λ ).

Solving Φ̃k(0,λ ) = 0, we have

λ =
µgv(1,0)(d2 −d1)σk − (duσk −gu(1,0))(1+d1σk)(1+d2σk)

(1+d1σk)(1+d2σk)

=−duσk +

(
µgv(1,0)
1+d1σk

− µgv(1,0)
1+d2σk

)
+gu(1,0).
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We remark that this eigenvalue corresponds to (11). We denote it by λ 0(k). More-
over, we see that

∂
∂λ

Φ̃k(0,λ ) =−(1+d1σk)(1+d2σk)< 0,

for arbitrary k ∈ N ∪ {0} and λ ∈ R. The implicit function theorem guaran-
tees that, for small ε , there exists the unique root λ ε(k) of Φ̃k(ε,λ ) = 0 and
limε→0 λ ε(k) = λ 0(k).

Next, (16) can be rewritten in the descending order of λ as

Φk(ε,λ ) =−λ 3 − λ 2

ε
{(2+d1σk +d2σk)+ ε(duσk −gu(1,0))}

− λ
ε2 {(1+d1σk)(1+d2σk)+ ε ((duσk −gu(1,0))(2+d1σk +d2σk))}

− 1
ε2 {µgv(1,0)(d1 −d2)σk +(duσk −gu(1,0))(1+d1σk)(1+d2σk)}

=−λ 3 − C1 + εC2

ε
λ 2 − C3 + εC4

ε2 λ − C5

ε2 ,

where C1, · · · ,C5 are the corresponding real coefficients independently of ε . We
note that C1 = 2+d1σk+d2σk > 0 and C3 = (1+d1σk)(1+d2σk)> 0. We denote
three eigenvalues λ by αε(k),β ε(k) and γε(k). Since we have already known that
one of roots of Φk(ε,λ ) = 0 is λ ε(k), we take γε(k) = λ ε(k). From the Vieta’s
formulas, we obtain that

αε +β ε + γε =−C1 + εC2

ε
, αεβ ε +β εγε + γεαε =

C3 + εC4

ε2 .

Because γε converges to γ0, |γε | is bounded for small ε . Thus, solving the above
simultaneous equations of αε and β ε , we see that

αε =
−C1 +

√
C2

1 −4C3

2ε
+O(1), β ε =

−C1 −
√

C2
1 −4C3

2ε
+O(1).

By the fact that C1 and C3 are positive, Re αε ,Re β ε →−∞ as ε → 0. This im-
plies that there exists no eigenvalues with positive real part except for γε(k) with
ε →+0. Recall that the eigenvalue γ0(k) is equal to λ (σk) given in (11). It turns
out that when the equilibrium solution u = 1 of (P) becomes unstable, the cor-
responding eigenvalue γε becomes positive. Therefore the non-local interaction
induced instability of (P) can be regarded as diffusion-driven instability of (RDε ).

14



Fig. 2 (a) shows the eigenvalue γ0(k). From this diagram, it is obvious that the
stationary solution u = 1 of (P) is unstable and that the stationary solution (1,1,1)
of (RDε ) is also unstable. Furthermore, Fig. 2 (b) shows an inhomogeneous
stationary solution of (RDε ) with four peaks which bifurcates from (1,1,1).

6 Realization of non-local interactions
In Section 5.2, we studied the case where J = µ ∑α jkd j . In this section we con-
sider the realization of a non-local evolution equation with a general function J
by a reaction-diffusion system (RDε ) with M+2 components. For simplicity, we
take µ = 1 in this section. Then we consider the system

ut = duuxx +g(u,
M

∑
j=0

α jv j),

v j,t =
1
ε
(
d jv j,xx +u− v j

)
,

(RDε )

with the periodic boundary condition. As seen in Section 5.2, this system for
(u,v1,v2) reproduces the Mexican-hat interaction (8). In this section we consider
the question: what kinds of the kernel J can be approximated by reaction-diffusion
systems ? By Theorem 5.1, the non-local evolution with a kernel J = ∑M

j=0 α jkd j

can be approximated by the reaction-diffusion system (RDε ). Therefore our ques-
tion is rewritten as “what kinds of J can be approximated by the finite linear sum
of cosh[(L−|x|)/

√
d j] ?”. Set d j = 1/ j2 for j = 1, · · · ,M and d0 will be deter-

mined later. Because {cosh j (L−|x|)}M
j=0 are even functions, so is the linear sum.

Therefore we only consider a function J(x) in [0,L]. Thus we show the following
theorem.

Theorem 6.1 Every ϕ ∈ C([0,L]) is uniformly approximated by a finite linear
combination of a family {cosh j(L− x)}∞

j=0 of hyperbolic cosines.

Proof. We take an arbitrary ϕ ∈C([0,L]). Set y := cosh(L− x). It is easily seen
that y belongs to the interval I := [1,coshL]. Then, using the one-to-one corre-
spondence x = L− log(y+

√
y2 −1), we define a continuous function ψ(y) :=

ϕ(L− log(y+
√

y2 −1)) on I. By the Stone-Weierstrass theorem, we can approx-
imate ψ(y) by a polynomial function. Actually, for ε > 0 there exists a polynomial
function p(y) = ∑m

j=0β jy j such that

|ψ(y)− p(y)|< ε

15



for all y ∈ I. Since we put y = cosh(L− x) and ψ(y) = ϕ(x), it follows that

|ϕ(x)− p(cosh(L− x))|< ε (17)

for all x ∈ [0,L]. Next, we show that p(cosh(L−x)) is expressed by a finite linear
combination of the functions coshk(L− x) for k ∈ N∪{0}. Firstly, we represent
y j for j ∈ N∪{0} by a finite linear combination of {coshk(L− x)} j

k=0. From

2coshα · coshβ = cosh(α +β )+ cosh(α −β ),

we see that

y0 = cosh0, y1 = cosh(L− x), y2 = cosh2(L− x) =
1
2

cosh2(L− x)+
1
2
.

To use the inductive method, we assume that y j is expressed by a finite linear
combination of coshk(L− x) for 0 ≤ k ≤ j, that is,

y j =
j

∑
k=0

a( j)
k coshk(L− x),

where ak ∈ R. Calculating y j+1 by using this assumption, we have

y j+1 = cosh(L− x)
j

∑
k=0

a( j)
k coshk(L− x)

=
j

∑
k=0

a( j)
k
2

{cosh(k+1)(L− x)+ cosh(k−1)(L− x)}

=
j+1

∑
k=0

a( j+1)
k coshk(L− x),

where

a( j+1)
k =



a( j)
1
2

(k = 0),

a( j)
0 +

a( j)
2
2

(k = 1),

a( j)
k−1 +a( j)

k+1

2
(2 ≤ k ≤ j),

a( j)
j

2
(k = j+1).

16



Hence, we can express y j+1 by a finite linear combination of coshk(L− x) for
0 ≤ k ≤ j+1.

Recalling that p(y) = ∑m
j=0 β jy j, we have

p(cosh(L− x)) = p(y) =
m

∑
j=0

β jy j =
m

∑
j=0

j

∑
k=0

β ja
( j)
k coshk(L− x) =

m

∑
k=0

α̃k coshk(L− x),

where α̃k = ∑m
j=k β ja

( j)
k . Since p(cosh(L− x)) is a finite linear combination of

{coshk(L− x) | k ∈ N∪{0}} and (17) holds for all x ∈ [0,L], eventually we see
that p(cosh(L−x)) is just an uniformly approximation of the continuous function
ϕ(x).

Thus by determining d0, we have the following corollary.

Corollary 6.1 For any even continuous function J ∈Cper(T) and any small posi-
tive constant ε , there exist a natural number M and constants d0, · · · ,dM,α0, · · · ,αM
such that ∥∥∥ M

∑
j=0

α jkd j − J
∥∥∥

Cper(T)
≤ 2ε. (18)

We note that v j := kd j ∗u ( j = 0, · · · ,M) satisfies

d jv j,xx +u− v j = 0

and enjoys periodic boundary conditions. Then,∥∥∥ M

∑
j=0

α jv j − J ∗u
∥∥∥

Cper(T)
≤ 2ε∥u∥L1(T)

for any function u(·, t) ∈ L1(T).

Proof. By Theorem 6.1, for any ε > 0, there are a natural number M and a series
of constants {α̃ j}M

j=0 such that∣∣∣J(x)− M

∑
j=0

α̃ j cosh j(L−|x|)
∣∣∣≤ ε

for any x ∈ T. Set

d j =
1
j2 , α j :=

2α̃ j

j
sinh jL, ( j = 1, · · · ,M).

17



In the case of j = 0, choose a positive constant d0 so large as to∥∥∥∥∥ α̃0

2
√

d0 sinh L√
d0

cosh
L−|·|√

d0
− α̃0

∥∥∥∥∥
Cper(T)

≤ ε

and we set α0 = α̃0. Then∥∥∥∥∥∥
M

∑
j=0

α j

2
√

d j sinh L√
d j

cosh
L−|·|√

d j
− J(·)

∥∥∥∥∥∥
Cper(T)

≤ 2ε.

This immediately implies (18). The proof of this corollary has been completed.

Lemma 6.1 Suppose that J1,J2 ∈Cper(T) and let u j ( j = 1,2) denote the solution
of {

u j,t = duu j,xx +g(u j,J j ∗u j), in T×{t > 0},
u j(x,0) = u0(x), on T

respectively. Then for any positive T , there exists a positive constant CT such that

sup
t∈[0,T ]

∥u1 −u2∥Cper(T) ≤CT∥J1 − J2∥L1(T).

We will give a proof of this lemma in Appendix B.2.

Proof of Theorem 2.1. Theorem 2.1 immediately follows from Corollary 6.1 and
Lemma 6.1.

Remark 6.1 This corollary tells us that any even convolution kernel can be re-
alized by increasing the number of components of reaction-diffusion system. In
other words, if many chemical substances are involved, various non-local inter-
actions with even kernels can be realized. Moreover, coefficients of linear combi-
nations are important to specify non-local interactions.

Remark 6.2 Since the function u is arbitrary at the equation of v j in this theorem,
by replacing u with the Heaviside function H(u), the model (1) for the neural firing
phenomenon by Amari [1] is also approximated by a reaction-diffusion system: ut = duuxx +

M

∑
j=0

α jv j −u+ s(x, t),

d jv j,xx +H(u)− v j = 0, ( j = 0, · · · ,M).

18



For the case of (3), Theorem 2.1 is not directly applicable because the assump-
tions of g are not satisfied. Since the maximum principle implies the non-negativity
of solutions of u of (3) and uε of (RDε ), we can obtain the boundedness of solu-
tions of (3) and (RDε ) for a finite time.

One may expect that this corollary can be extended to the non-local evolution
equation{

ut = duuxx +g(u,J1 ∗u,J2 ∗u, · · · ,JK ∗u), in T×{t > 0},
u(x,0) = u0(x), on T,

where even kernels Jk ∈Cper(T) ( j = 1, · · · ,K) and g ∈C1(RK+1,R).

Remark 6.3 To realize more general kernels, we introduce the advection terms.
Any continuous kernel J can be split into even one Je and odd one Jo, i.e.,

Je(x) :=
J(x)+ J(−x)

2
, Jo(x) :=

J(x)− J(−x)
2

, J(x) = Je(x)+ Jo(x).

By Corollary 6.1, for any ε > 0, there are constants d j, α j ( j = 0, · · · ,M) such
that the even part Je is approximated by ∑M

j=0 α jkd j .
Next consider the approximation of the odd part. Set

G(x) :=
∫ x

0
Jo(s)ds.

Since
∫
T Jo(x)dx = 0, G is periodic in [−L,L]. By the integration by parts, we

have Jo ∗u = G∗ux. As G is an even kernel, for any ε > 0, there are constants d j
and α j ( j = M+1, · · · ,K) such that∥∥∥ K

∑
j=M+1

α jkd j −G
∥∥∥

Cper(T)
≤ 2ε.

Thus, we can obtain∥∥∥J ∗u−
M

∑
j=0

α jkd j ∗u−
K

∑
j=M+1

α jkd j ∗ux

∥∥∥
Cper(T)

≤ 4ε∥u∥W 1,1(T)

for any u ∈ H1(T). By the above arguments, for any continuous kernel J, there
are constants d j and α j ( j = 0, · · · ,K) such that

ut = duuxx +g(u,∑K
j=0 α jv j),

0 = d jv j,xx +u− v j, ( j = 0, · · · ,M)

0 = d jv j,xx +ux − v j, ( j = M+1, · · · ,K)
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approximate (P). To approximate any continuous kernel, advection-reaction-diffusion
systems are demanded.

7 Numerical simulations
In the previous section, we have shown that any even functions can be realized by
the reaction-diffusion system. In this section, we will investigate the profiles of
stationary solutions of (7) in T numerically as the shape of the kernel varies. For
the numerics, we utilize the simplified Mexican-hat kernel J(x) = J(x;x1) defined
by

J(x;x1) := e−c|x|−m(x1)e−c||x|−x1|,

where c, x1 are positive constants and m(x1) is a constant given by

m(x1) :=
1− e−cL

2− e−c(L−x1)− e−cx1
,

which implies the assumption (A6) of J(x;x1). Here x1 corresponds to the po-
sition of the peak of the inhibitory region. The numerics are performed with
g(u,v) = uv+a(u−u2) and the parameters as Fig. 1 (a) until t = 100. When nu-
merical solutions satisfy supt∈[90,100] ∥u(·, t +∆t)− u(·, t)∥Cper(T) < 10−9, where
∆t = 10−2, we regard them as the “stable stationary” solutions for the initial data.
We vary the value of x1 and draw the profile of the stationary solution at t = 100.

As in Fig. 3, the inhomogeneous solutions with peaks are generated. The in-
tervals and widths of the peaks of each stationary solution are equal. The number
of the peaks in the stationary solution depends on the value of x1. More precisely,
the numbers of peaks in the results with x1 = 3,5,10,15 are 6,4,2 and 1, re-
spectively. Interestingly, when x1 = 13, we obtain two stable stationary solutions
depending on the initial data: one has one peak and the other has two peaks of
which the widths are different as in Fig. 4 (a) and (b). Because all parameters of
Fig. 4 (a) and (b) are same, these numerics suggest the existence of the secondary
bifurcation. The Fourier coefficients of J(x;x1) can be calculated as follows:

(Ĵ(·;x1))k

=
2c

c2 +(kπ/L)2

{
1− (−1)ke−cL +m(x1)

(
e−cx1 −2cos

kπx1

L
+(−1)ke−cL−cx1

)}
.

Accordingly, the eigenvalue (11) of the linearized problem of (7) with x1 = 13 is
shown in Fig. 5. We observe that the wave numbers from the primary eigenvalue
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to the forth one are k = 2,1,5,4, respectively. From the widths of peaks of solu-
tions in Fig. 4 (a) and (b), the solution in Fig. 4 (a) seems to correspond to k = 2,
while that of (b) does to k = 2 and k = 5.

8 Concluding remarks
Firstly, we introduced a non-local evolution equation (P), in which a non-local
interaction is imposed as the growth rate of the concentration as well as the dis-
persal term for the positive kernels by associating certain assumptions with g. We
showed the global existence of solutions of (P) and the bifurcation from the homo-
geneous stable steady state. Accordingly, we determined that the homogeneous
stable steady state may become unstable by adding non-local interaction, which
we refer to as non-local interaction induced instability.

Subsequently, we proposed a reaction-diffusion system (RDε ), with multiple
components, which approximates the non-local evolution equation (P). Indeed,
we showed that the solution of (RDε ) converges to that of (P) as ε tends to 0
by the energy estimates. Through this approximation, we can regard the non-local
interaction induced instability as diffusion-driven instability for the corresponding
reaction-diffusion system (RDε ). It has already been pointed out [7, 16, 17] that
the Fourier transform of Mexican-hat type functions are peaked away from the
origin and are capable of supporting the Turing instability by using a model such
as (1). Our analysis supports their results from the difference perspective of the
reaction-diffusion approximation.

The study of the eigenvalue problem (12) near the equilibrium point (1,µ,µ)
also implies that the stability depends on the parameters d1 and d2 determining
the kernel shape. Additionally, the higher Fourier modes are stabilized by the
diffusion term. Therefore, the balance between the diffusion effect and the non-
local interaction plays a significant role to determine the patterns.

Moreover, we proved that any even convolution kernel can be approximated
by the reaction-diffusion system. By controlling the coefficients of linear combi-
nations among multiple components, specific symmetric global interactions can
be created. Our analysis suggests that non-local interactions can be introduced as
a result of the diffusion and reactions of multiple components.

In Section 7, we presented our investigation of the relationship of the profile of
a kernel and the stationary solution. However, our understanding of this relation-
ship is far from comprehensive and we plan to intensify our investigation thereof
in future.
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A Appendix

A.1 Kernel
In this subsection, we consider the Green kernel of

−d1v′′+ v = u (19)

with periodic boundary condition. By using the variation of parameters from x =
−L, we have the solution,

v−L(x) =
1

2
√

d1 sinh L√
d1

∫ L

−L
cosh

(
y− x−L√

d1

)
u(y)dy+

1√
d1

∫ L

−L
χy≤x sinh

(
y− x√

d1

)
u(y)dy,

where χy≤x(y) is the characteristic function defined by

χy≤x(y) :=

{
1 (y ≤ x),
0 (y ≥ x).

Similarly, we obtain the solution by using variation of parameters from x = L,

vL(x) =
1

2
√

d1 sinh L√
d1

∫ L

−L
cosh

(
y− x+L√

d1

)
u(y)dy+

1√
d1

∫ L

−L
χy≥x sinh

(
y− x√

d1

)
u(y)dy.

Due to the linearity of (19), (v−L(x) + vL(x))/2 is also a solution of (19). We
denote it by v0(x). Before computing this, we recall two equalities:

coshA+ coshB = 2cosh((A+B)/2)cosh((A−B)/2) , cosh(A+B) = coshAcoshB+ sinhAsinhB.

Usng χy≤x + χy≥x = (x− y)/ |x− y| together with above equalities, we can com-
pute that

v(x) =
1

4
√

d1 sinh L√
d1

∫ L

−L

(
cosh

(
y− x−L√

d1

)
+ cosh

(
y− x+L√

d1

))
u(y)dy

+
1

2
√

d1

∫ L

−L
(χy≤x +χy≥x)sinh

(
y− x√

d1

)
u(y)dy

=
1

2
√

d1 sinh L√
d1

∫ L

−L
cosh

(
L−|x− y|√

d1

)
u(y)dy.

The boundary condition is easily verified. By the definition (14) of kd , v = kd1 ∗u.
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A.2 Proof of Theorem 3.2
We recall the uniform Gronwall lemma:

Lemma A.1 (The uniform Gronwall Lemma [19, Lemma 1.1]) Let g,h,y be three
positive locally integrable functions on (t0,+∞) such that y′ is locally integrable
on (t0,+∞), and which satisfy

dy
dt

≤ gy+h f or t ≥ t0.

and ∫ t+r

t
g(s)ds ≤ a1,

∫ t+r

t
h(s)ds ≤ a2,

∫ t+r

t
y(s)ds ≤ a3,

where r,a1,a2,a3 are positive constants. Then

y(t + r)≤
(a3

r
+a2

)
exp(a1),

∀t ≥ t0.

Proof of Theorem 3.2. Multiplying (P) by u and integrating over T, we have

1
2

d
dt
∥u∥2

L2(T) =−du∥ux∥2
L2(T)+

∫
T

g(u,J ∗u)udx.

From the Cauchy-Schwarz inequality, the Young inequality for convolutions and
the Hölder inequality, we have∫
T

g(u,J ∗u)udx ≤ −g0∥u∥p+1
Lp+1(T)+g1∥J ∗u∥L3(T)∥u∥2

L3(T)+g2∥J ∗u∥L2(T)∥u∥L2(T)+g3∥u∥L1(T)

≤ −g0∥u∥p+1
Lp+1(T)+g1∥J∥L1(T)∥u∥3

L3(T)+g2∥J∥L1(T)∥u∥2
L2(T)+g3(2L)p/(p+1)∥u∥Lp+1(T)

≤ −g0∥u∥p+1
Lp+1(T)+g1∥J∥L1(T)(2L)(p−2)/(p+1)∥u∥3

Lp+1(T)

+g2∥J∥L1(T)(2L)(p−1)/(p+1)∥u∥2
Lp+1(T)+g3(2L)p/(p+1)∥u∥Lp+1(T).

Since p ≥ 3, the Young inequality implies∫
T

g(u,J ∗u)udx ≤ −g0

4
∥u∥p+1

Lp+1(T)+C6,

where C6 is a positive constant depending on g0, · · · ,g3, p, L and ∥J∥L1(T). By
this estimate, we see that

1
2

d
dt
∥u∥2

L2(T) ≤−du∥ux∥2
L2(T)−

g0

4
∥u∥p+1

Lp+1(T)+C6.
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Since ∥u(·, t)∥p+1
L2(T) ≤ (2L)(p−1)/2∥u(·, t)∥p+1

Lp+1(T) by the Hölder inequality, we ob-
tain

1
2

d
dt
∥u∥2

L2(T) ≤−du∥ux∥2
L2(T)−

g0

4
(2L)−(p−1)/2∥u∥p+1

L2(T)+C6.

Thus we get
∥u(·, t)∥L2(T) ≤C7

for any t ≥ 0, where

C7 := max

∥u(·,0)∥L2(T),

(
4C6(2L)(p−1)/2

g0

)1/(p+1)
 .

Therefore, u is bounded in L2(T) as long as the solution exists. Moreover inte-
grating over (t, t + r), we get∫ t+r

t
∥ux(·,s)∥2

L2(T)ds ≤ C6r
du

(20)

for any positive t and r.
Next, differentiating (P) with respect to x, multiplying (P) by ux and integrat-

ing over T, we get

1
2

d
dt
∥ux∥2

L2(T) = −du∥uxx∥2
L2(T)+

∫
T

gu(u,J ∗u)u2
xdx+

∫
T

gv(u,J ∗u)uxJ ∗uxdx

≤ −du∥uxx∥2
L2(T)−g0 p

∫
T
|u|p−1u2

xdx+
∫
T
(g4|J ∗u|+g5)u2

xdx

+
∫
T
(g6|u|+g7)|ux| · |J ∗ux|dx. (21)

By p ≥ 3, the Hölder inequality and the Young inequality we see that∫
T
(g6|u|+g7)|ux| · |J ∗ux|dx

≤ g6∥J∥L1(T)∥ux∥L2(T)∥ux∥(p−3)/(p−1)
L2(T)

(∫
T
|u|p−1u2

x dx
)1/(p−1)

+g7∥J∥L1(T)∥ux∥2
L2(T)

≤ g0 p
∫
T
|u|p−1u2

x dx+
∥J∥(p−1)/(p−2)

L1(T) ∥ux∥2
L2(T)

{p(p−1)g0}1/(p−2)
+g7∥J∥L1(T)∥ux∥2

L2(T)

≤ g0 p
∫
T

up−1|ux|2dx+C8∥ux∥2
L2(T) (22)
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with some positive constant C8 independent of u. When 2 ≤ p < 3, (22) holds true
by g6 = 0. The Gagliardo-Nirenberg inequality implies∫
T

g4|J ∗u||ux|2dx ≤ g4∥J∥L1(T)∥u∥L2(T)∥ux∥2
L4(T) ≤

du

2
∥uxx∥2

L2(T)+C9∥ux∥2
L2(T),

where C9 is a positive constant independent of u. Thus, applying the above in-
equality and (22) to (21), we obtain

1
2

d
dt
∥ux∥2

L2(T) ≤−du

2
∥uxx∥2

L2(T)+(C8 +C9 +g5)∥ux∥2
L2(T).

For 0 ≤ t ≤ r,

∥ux(·, t)∥2
L2(T) ≤ ∥ux(·,0)∥2

L2(T)e
2(C8+C9+g5)r.

Using (20) and applying Lemma A.1, we have shown the boundedness of ∥ux(·, t)∥2
L2(T)

for any t ≥ r.

B Convergence

B.1 Proof of Theorem 5.1
In this section, we show the convergence of a solution of (RDε ) to that of (P)
under the assumptions (A1)–(A5), where J = J(x) is a linear combination of kd j .
Let u0(x, t) be a solution of (P) with the initial datum u(·,0) = u0(·). Similarly, let
(uε ,vε

0, · · · ,vε
M) be a solution of (RDε ) with the initial datum (u,v0, · · · ,vM)(·,0) =

(u0,kd0 ∗u0, · · · ,kdM ∗u0)(·). To prove Theorem 5.1, we prepare the global bounds
of solutions of (RDε ).

Lemma B.1 Assume that u0(x) belongs to H1(T). Then there exists a positive
constant R1 depending on ∥u0(·)∥H1(T) such that

∥uε(·, t)∥2
H1(T) ≤ R1, ∥vε

j(·, t)∥2
H1(T) ≤ R1 ( j = 0, · · · ,M) (23)

for any t ≥ 0 as long as the solution exists.

Proof of Lemma B.1. We only consider the case where p ≥ 3 because we can
treat the case where 2 ≤ p < 3 similarly. First show the L2 boundedness. Mul-
tiplying the first equation of (RDε ) by uε and using the argument similar to the
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proof of Theorem 3.2, we have

1
2

d
dt
∥uε∥2

L2(T) ≤−du∥uε
x∥2

L2(T)−
g0

4(2L)(p−1)/2
∥uε∥p+1

L2(T)+C10

M

∑
j=0

α2
j ∥vε

j∥2
L2(T)+C11,

(24)

where C10 and C11 are positive constants independent of ε and (uε ,vε
0, · · · ,vε

M).
To estimate the ∥vε

j(·, t)∥2
L2(T) ( j = 0, · · · ,M), multiplying the second equation of

(RDε ) by vε
j and integrating over T, we have

1
2

d
dt
∥vε

j∥2
L2(T) ≤

1
ε

(
−d j∥vε

j,x∥2
L2(T)−

1
2
∥vε

j∥2
L2(T)+

1
2
∥uε∥2

L2(T)

)
. (25)

Multiplying the above inequalities by α j and adding them with respect to j, it
follows that

ε
d
dt

M

∑
j=0

α2
j ∥vε

j∥2
L2(T) ≤ −2

M

∑
j=0

α2
j d j∥vε

j,x∥2
L2(T)−

M

∑
j=0

α2
j ∥vε

j∥2
L2(T)+

(
M

∑
j=0

α2
j

)
∥uε∥2

L2(T).(26)

Setting

X(t) := ∥uε(·, t)∥2
L2(T), Y (t) :=

M

∑
j=0

α2
j ∥vε

j(·, t)∥2
L2(T),

we see that the region{
(X ,Y ) ∈ R2 | 0 ≤ X ≤ R, 0 ≤ Y ≤ 2R

M

∑
j=0

α2
j

}

is positively invariant, where R is a positive constant satisfying

R≥∥u0∥2
L2(T),

g0

4(2L)(p−1)/2
R(p+1)/2 >C10 max

{
2R

M

∑
j=0

α2
j ,

M

∑
j=0

α2
j ∥kd j ∗u0∥2

L2(T)

}
+C11

Then, applying the theory of the positively invariant region to (24) and (26), we
have

∥uε(·, t)∥2
L2(T) ≤ R,

M

∑
j=0

α2
j ∥vε

j(·, t)∥2
L2(T) ≤ 2R

M

∑
j=0

α2
j .

28



Thus we have shown that

∥uε(·, t)∥2
L2(T) ≤ R0,

M

∑
j=0

α2
j ∥vε

j(·, t)∥2
L2(T) ≤ R0

for any t ≥ 0 as long as the solution exists, by taking R0 := R ·max{1,2∑M
j=0 α2

j }.
Next we consider the estimate of uε

x and vε
j,x. Integrating (24) and (25) over

[t, t + r] yields
∫ t+r

t
∥uε

x(·,s)∥2
L2(T)ds ≤ (C10R0 +C11)

r
du

+
R0

du
,

∫ t+r

t
∥vε

j,x(·,s)∥2
L2(T)ds ≤ R0r

2d j
+

R0

d jα2
j
, ( j = 0, · · · ,M)

(27)

for any t ≥ 0, r > 0 and 0 < ε ≤ 1. Differentiating the first equation of (RDε ) with
respect to x and applying the argument similar to the proof of Theorem 3.2 yield

1
2

d
dt
∥uε

x∥2
L2(T) ≤− du

2
∥uε

xx∥2
L2(T)+C12∥uε

x∥2
L2(T)+C12

M

∑
j=0

α2
j ∥vε

j∥2
L2(T), (28)

where C12 is a positive constant independent of ε and (uε ,vε
0, · · · ,vε

M). By the
equation for v j in (RDε ), we get

ε
d
dt
∥vε

j,x∥2
L2(T) ≤−2d j∥vε

j,xx∥2
L2(T)−∥vε

j,x∥2
L2(T)+∥uε

x∥2
L2(T), (29)

It follows from (28) and (29) that ∥uε
x∥2

L2(T) and ∥vε
j,x∥2

L2(T) is bounded for 0 ≤
t ≤ r with any r > 0. Applying Lemma A.1 to (28) and (29) with (27), we can
obtain the boundedness of ∥ux(·, t)∥L2(T) and ∥v j,x(·, t)∥L2(T) for any t ≥ r. Hence
we have obtained (23).

Proof of Theorem 5.1. This proof is also based on the energy method. We firstly
estimate the convergence of uε → u0 in L2(T) as ε → 0. Denoting the difference of
the solution uε −u0 by U(x, t) and taking the difference between the first equation
of (RDε ) and (P), we have

Ut = duUxx +g(uε ,
M

∑
j=0

α jvε
j)−g(u0,J ∗u0). (30)
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Set
Vj := vε

j − kd j ∗uε , ρ j := kd j ∗uε ,

where kd is defined by (14). By the argument in Appendix A.1, ρ j satisfies

0 = d j∆ρ j −ρ j +uε ( j = 0, · · · ,M) (31)

and
M

∑
j=0

α jρ j = J ∗uε .

Multiplying (30) by U(x, t) and integrating over T, we find from the mean value
theorem that

1
2

d
dt
∥U∥2

L2(T) = −du∥Ux∥2
L2(T)+

∫
T

gu((1−θ1)u0 +θ1uε ,
M

∑
j=0

α jvε
j)U

2dx

+
∫
T

gv(u0,
M

∑
j=0

α j((1−θ2)ρ j +θ2vε
j))

M

∑
j=0

α jVj ·Udx

+
∫
T

gv(u0,(1−θ3)J ∗u0 +θ3J ∗uε)(J ∗U)Udx

for some θ1, θ2, θ3 ∈ (0,1) depending on x, u0, uε and so on. By (A3) and (A4),
we have

1
2

d
dt
∥U∥2

L2(T) ≤ −du∥Ux∥2
L2(T)+

∫
T

(
−g0 p|(1−θ1)u0 +θ1uε |p−1 +g4

∣∣∣ M

∑
j=0

α jvε
j

∣∣∣+g5

)
U2dx

+(g6∥u0∥C(T)+g7)
∫
T

∣∣∣ M

∑
j=0

α jVjU
∣∣∣dx+(g6∥u0∥C(T)+g7)∥J∥L1(T)∥U∥2

L2(T)(32)

as u0(·, t) ∈ Cper(T) from Theorem 3.2 and the Sobolev embedding theorem. It
follows from Lemma B.1 and

ρ j,t = kd j ∗uε
t = kd j ∗

(
duuε

xx +g(uε ,
M

∑
j=0

α jvε
j)
)
=

du

d j

(
kd j ∗uε −uε

)
+ kd j ∗

(
g(uε ,

M

∑
j=0

α jvε
j)
)

through the integration by parts, that there is a positive constant R2 independent
of ε and (uε ,vε

0, · · · ,vε
M) satisfying

∥ρ j,t∥H1(T) ≤ R2 (33)
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for any t ≥ 0 and j = 0, · · · ,M.
Since ε(Vj,t +ρ j,t) = d jVj,xx −Vj by (31), we get

ε
∫
T

Vj,tVjdx =−ε
∫
T

ρ j,tVjdx−d j∥Vj,x∥2
L2(T)−∥Vj∥2

L2(T)

≤ ε2

2
∥ρ j,t∥2

L2(T)−d j∥Vj,x∥2
L2(T)−

1
2
∥Vj∥2

L2(T),

which implies
1
2

d
dt
∥Vj∥2

L2(T) ≤
εR2

2
2

− 1
2ε

∥Vj∥2
L2(T)

by (33). Thus we obtain
∥Vj∥L2(T) ≤ εR2 (34)

because Vj(x,0) = vε
j(x,0)− (kd j ∗ u0)(x) ≡ 0. Applying (34), Lemma B.1 and

Theorem 3.2 to (32) yields

d
dt
∥U∥2

L2(T) ≤ C13∥U∥2
L2(T)+C14ε2, (35)

where C13,C14 are positive constants. Thus, from the classical Gronwall inequal-
ity, we see that

∥U∥2
L2(T) ≤

C14

C13
(eC13t −1)ε2

because U(x,0) = uε(x,0)−u0(x,0)≡ 0. This inequality implies the convergence
of uε to u0 on any finite interval [0,T ].

Next we show that
∥∥uε

x −u0
x
∥∥

L2(T) → 0 as ε → 0 in the similar manner. Multi-
plying (30) by −Uxx, integrating that over T and using the Schwarz inequality, we
see that

1
2

d
dt
∥Ux∥2

L2(T) ≤ −du

2
∥Uxx∥2

L2(T)+
1

2du

∥∥∥∥∥g(uε ,
M

∑
j=0

α jvε
j)−g(u0,J ∗u0)

∥∥∥∥∥
2

L2(T)

≤ 1
2du

∥∥∥∥∥g(uε ,
M

∑
j=0

α jvε
j)−g(u0,J ∗u0)

∥∥∥∥∥
2

L2(T)

.

Using the mean value theorem and the boundedness of u0, uε in Cper(T), we have

1
2

d
dt
∥Ux∥2

L2(T) ≤ C15

2

(
∥U∥2

L2(T)+
M

∑
j=0

∥Vj∥2
L2(T)

)
.
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Hence, by (34), we see that

∥Ux∥2
L2(T) ≤ C15

(
C14

C13
(eC13t −1)+MR2

2

)
ε2,

where C15 is a positive constant independent of ε and (uε ,vε
0, · · · ,vε

M). We have
completed the proof of Theorem 5.1.

B.2 Proof of Lemma 6.1
Proof of Lemma 6.1. From Theorem 3.2, sup0≤t≤T ∥u j∥Cper(T) ( j = 1,2) are bounded.
Setting U = u1 −u2, we have

Ut = duUxx +g(u1,J1 ∗u1)−g(u2,J2 ∗u2).

Multiplying U to the above equation and integrate over T, we get

1
2

d
dt
∥U∥2

L2(T) ≤ −du∥Ux∥2
L2(T)+C16∥U∥2

L2(T)+C16∥J1 − J2∥L1(T)∥U∥L2(T)

with some positive constant C16. Similarly, we also obtain

1
2

d
dt
∥Ux∥2

L2(T) ≤ −du

2
∥Uxx∥2

L2(T)+C17∥U∥2
L2(T)+C17∥J1 − J2∥2

L1(T).

Thus we can conclude this lemma.
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Figure 3: Numerical results of the model (7) at t = 100 with J(x;x1) and the same
parameters as Fig. 1. The vertical axis is the value of u and the horizontal axis is
the position x. The results with x1 = 3, x1 = 5, x1 = 10 and x1 = 15 correspond to
(a), (b), (c) and (d), respectively.
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(a) Maximum eigenvalue for x1 = 13 (b) Second largest eigenvalue for x1 = 13

Figure 4: Numerics of the model (7) with x1 = 13 and same parameters as Fig.
3. The different shapes of the solutions (a) and (b) caused by the different initial
data.
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Figure 5: Relationship between the eigenvalues and wave number for x1 = 13.
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