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Abstract

To study the dynamics of an anisotropic curvature flow with an
external driving force depending only on the normal vector, we focus
on traveling waves composed of Jordan curves in R2. Here we call
them compact traveling waves. The objective of this study is to inves-
tigate thoroughly the condition of the driving force for the existence
of compact traveling waves to the anisotropic curvature flow. It is
shown that all traveling waves are strictly convex and unstable, and
that a compact traveling wave is unique, if they exist. To determine
the existence of compact traveling waves, three cases are considered:
if the driving force is positive, there exists a compact traveling wave;
if it is negative, there is no traveling wave; if it is sign-changing, a
positive answer is obtained under the assumption called “admissible
condition”. We also obtain a necessary and sufficient condition for the
existence of axisymmetric compact traveling waves. Lastly, we make
reference to the inverse problem and non-convex compact traveling
waves.

1 Introduction

Several physical/chemical phases coexist in various phenomena such as growth
of a snow crystal, propagation of action potential in a nerve axon, soap films,
and cell locomotion. Interfaces are located at the boundaries between the
multiple phases, and interfacial dynamics plays an important role in under-
standing such phenomena. Interfacial motion in such phenomena is often
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described by the parabolic free boundary problem, which is abbreviated as
FBP for simplicity. More precisely, the evolution of interfaces of the phases
can be regarded as a family of Γ(t) which represents an embedded hypersur-
face in RN(N ≥ 2) at time t and is governed by

β(n)V = γ (u,∇u,n, C(t))− α(n)κ, (1.1)

where n, V , and κ denote the outer normal vector, normal velocity, and mean
curvature of Γ(t), respectively, and α, β, γ are given functions. Furthermore,
C(t) is a non-local function, e.g., the perimeter of Γ(t) or the volume of
the phase Ω(t), and u is an unknown function defined in the domain Ω(t)
adjacent to Γ(t) or in RN . The above interface equation includes the Stefan
condition, the modified Gibbs-Thomson relation in some FBPs such as the
Stefan problem and the Mullins-Sekerka problem (or the Hele-shaw problem)
[31]. Furthermore it is seen in the free problem related to incompressible
viscous two-phase fluid flow [27]. We can confirm that (1.1) also includes
the volume-preserving mean curvature flows and the singular limit problem
derived from FitzHugh-Nagumo equation [8].

In some physical and biological problems such as oil-droplet motion, cell
locomotion and dynamics in excitable media [38, 39, 32], self-propelled local-
ized patterns similar to traveling waves are observed. Thus it is important to
study the traveling waves whose boundary are composed of Jordan curves in
R2. We call such a traveling wave “compact traveling wave” (the precise def-
inition will be given in Definition 1.1). To describe such phenomena, (1.1) is
often used. In recent years, the existence of compact traveling waves to some
FBPs were reported. Choi and Lui [10] studied a FBP, describing cell loco-
motion, such that the evolutional equation of free boundary is composed of
(1.1) with α ≡ β ≡ 1 and γ ≡ γ(n, C(t)). In their work, the non-local func-
tion M(t) is composed of the perimeter of Γ(t). They succeeded to show the
existence of convex compact traveling wave to the problem in R2. Indepen-
dently, for the same motivation, Monobe and Ninomiya [33, 34] also showed
the multiple-existence of convex compact traveling waves to another FBP
with (1.1). The driving force γ in (1.1) also has the form γ ≡ γ(n, C(t)),
but M(t) is composed of the total mass of u over the phase Ω(t). In the
proof of the above two results, it is essential to consider the existence of
compact traveling waves to (1.1) with α ≡ β ≡ 1 and γ ≡ γ(n), because
C(t) is a constant when the solution is a traveling wave. Meanwhile, Chen,
Kohsaka and Ninomiya [8] considered a singular limit of a FitzHugh-Nagumo-
type reaction-diffusion system. They obtained a FBP with (1.1) satisfying
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γ ≡ γ(u), as the limit problem, and showed that there exists a compact
traveling wave to the FBP in R2. It was reported that either the shape of
Γ(t) is convex or non-convex depending on the speed of the traveling wave.

As seen in the above examples, we can confirm that some FBPs with
(1.1) have compact traveling waves. From this, we are naturally interested
in the relation between the distribution of α, β, γ and the existence of com-
pact traveling waves to (1.1). However, in general, α, β and γ are complicated
due to the coupling of u, which is often unknown function depending on the
evolutionary equation in phase Ω(t). In this study, we start with a simple
case where the coefficients of (1.1) depend only on the normal vector n by
considering a homogeneous distribution of u and ignoring the non-local func-
tion C(t). In addition, we assume that α and β are positive given functions
to guarantee that (1.1) is well-posed. By dividing by α, the anisotropic cur-
vature flow (1.1) can be simplified as the following curvature flow with a
driving force γ(n):

β(n)V = γ(n)− κ. (1.2)

Before stating our results, we discuss the historical background of the
interface equation (1.2) from a mathematical perspective, in particular, the
relation between the driving force γ(n) and traveling waves. The simplest
form of (1.2) is the so-called mean-curvature equation given by

V = −κ. (1.3)

The equation (1.3) arises from the first variation of the surface area func-
tional. Furthermore, (1.3) was proposed by Mullins [30] as a mathematical
model for describing the motion of grain boundaries. The short-time exis-
tence and uniqueness of classical solutions to (1.3) has been demonstrated by
Gage-Hamilton [20], Evans-Spruck [15, 16] and Huskin and Polden [24]. For
more general setting, we refer the reader to Chen-Giga-Goto [9] and Brakke
[6]. Note that their results are applicable to (1.2) under some restrictions(see
[11]). The mathematical results for the dynamics of this geometric flow in R2

have been obtained, for example, by Gage-Hamilton [20] and Grayson [22].
Briefly, their assertion is that any Jordan curve in R2 shrinks to a single
point in a self-similar manner after the curve becomes convex. This claim is
valid only when N = 2. In practice, it was shown that certain initial-closed
surfaces in N ≥ 3, such as “Angenent torus” and “dumbbell-shaped surfaces”,
result in a topological change in a finite time (see [2], [4] and the references
therein). However, if we allow interface Γ(t) to be a non-compact curve in
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R2, then the scenario is entirely different; the line corresponds to stationary
solution of (1.3), and moreover, there are some special solutions which does
not shrink to a single point, such as a traveling wave called the “Grim Reaper
(or hair pin)” (cf. [3]), and a spiral curve called “Yin-Yang curve” pointed
out in Altschulter [1].

Another well-known example of an interface equation (1.2) is the eikonal-
curvature equation expressed as

V = A− κ, (1.4)

where A is a positive constant. The equation (1.4) is an approximation of
some reaction-diffusion systems describing the wave propagation in excitable
media, e.g., Belousov-Zhabotinsky (B-Z) reaction [25, 26, 37]. Similarly,
using singular perturbation arguments, we see that (1.4) is related to some
reaction-diffusion systems such as the Allen-Cahn-Nagumo equation [17], the
Lotka-Volterra equations [14] and so on. Note that (1.4) is also related to
crystal growth [7] and laminar flame propagation [28]. It is easily seen that,
if Γ(t) is a Jordan curve, (1.4) has a unique disk-shaped stationary solution
of radius 1/A, where the solution is unstable [13]. In contrast with the
mean-curvature flow, not every Jordan curve satisfying (1.4) in R2 shrinks
to a single point; for instance, it is clear that a disk-shaped solution with
radius R(t), where R(0) > 1/A, expands to infinity as t approaches infinity.
In case of a non-compact curve, the line is not a stationary solution but
a traveling wave. In addition, it was reported by Ninomiya and Taniguchi
[35, 36] that there exists a traveling wave combining two lines asymptotically
in R2, known as the “V-shaped traveling front”, and in higher dimension by
Hamel, Monneau and Roquejoffre [23].

Interface equations with anisotropic curvature are also frequently studied.
For instance, considering the interfacial energy and difference between bulk
energies, we obtain the following anisotropic interface equation in R2 [21]:

b(θ)V = A−
(
f(θ) + f

′′
(θ)

)
κ, (1.5)

where θ is the angle between the x-axis and n at Γ(t), A is a positive constant
describing the difference between the phases in terms of bulk energy, b(θ) is
a positive function, and f(θ) is the interfacial energy. We remark that (1.5)
corresponds to (1.2) if f(θ) + f

′′
(θ) is positive. For (1.5), there are various

results related to well-posedness and convex properties. In particular, if
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b, f ∈ C∞([0, 2π]) and f + f ′′ > 0, there exists a maximal time TM > 0 such
that Γ(t) is a smooth Jordan curve in (0, T ), and as t approaches TM , Γ(t)
shrinks to a single point, develops a kink or has self-intersections. Moreover,
there is a unique bounded stationary interface for any f+f ′′ > 0 (see Gurtin’s
book [21] and the references therein). We will discuss this topic later in
Section 4.4. In case of non-compact curve, we refer to [29].

1.1 Problem setting

From these typical examples, although the research of traveling waves is well
done in some cases, almost of them are discussed in non-compact region, i.e.,
RN . Thus, we can not apply the analysis method for non-compact traveling
wave to compact one directly. In this study, our objective is to answer the
following question :

Q. Under what condition of γ(n) does (1.2) have a traveling wave solution
composed of Jordan curves?

We now formulate a traveling wave for (1.2). Suppose that Γ(t) is a Jordan
curve traveling with constant shape Γ0 and velocity c ∈ R2, i.e.,

Γ(t) = Γ0 + tc

for t ≥ 0, where Γ0 is a Jordan curve that is positively oriented (coun-
terclockwise direction). Let x(s) and y(s) be functions satisfying Γ0 =
{(x(s), y(s)) | s ∈ [0, L)}, where L and s are the perimeter and arc length of
Γ0, respectively. We denote the angle between the x-axis and outer normal
vector n = n(s) at (x(s), y(s)) by θ = θ(s), as in (1.5). Then, normal unit
vector n and unit tangent vector t = (x′(s), y′(s)) at (x(s), y(s)) satisfy

n = (cos θ, sin θ), t = (− sin θ, cos θ). (1.6)

Since n is determined by θ, we can regard β and γ as functions of θ, i.e.,
there exist functions β̃ and γ̃ such that

β(n) = β̃(θ), γ(n) = γ̃(θ).

For simplicity of notation, we omit the tilde of β̃(θ) and γ̃(θ). Let e(θ) be
defined by

e(θ) := (cos θ, sin θ).
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Then, curvature κ of Γ0 and normal velocity V at Γ0 are represented by

κ = θs, V = c · n = c · e(θ), (1.7)

respectively, because n = e(θ). Note that as for vector c, there is a point
(c, η) ∈ [0,∞) × [0, 2π) satisfying c = c e(η). If c = 0, η can be chosen
arbitrarily. Thus, if Γ(t) is traveling with velocity c = c e(η), it follows from
(1.6) and (1.7) that (1.2) is reduced to the following ordinary differential
equations (ODEs) :

θs = γ(θ)− cβ(θ) cos (θ − η) in (0, ℓ),

xs = − sin θ in (0, ℓ),

ys = cos θ in (0, ℓ),

θ(0) = θ0, x(0) = x0, y(0) = y0,

(1.8)

where θ0, x0, and y0 are the initial data and ℓ is a positive constant. Recall
that Γ0 is a closed curve. Hence, as ℓ is equal to perimeter L of Γ(t), angle
θ(s) and point (x(s), y(s)) must satisfy the boundary condition

(θ(L)− 2π, x(L), y(L)) = (θ0, x0, y0). (1.9)

Consequently, we obtain the following problem of determining (c, η) such
that it satisfies 

θs = γ(θ)− cβ(θ) cos(θ − η) in (0, L),

xs = − sin θ in (0, L),

ys = cos θ in (0, L),

θ(0) = θ(L)− 2π = θ0,
x(0) = x(L) = x0,
y(0) = y(L) = y0.

(1.10)

Since our purpose is to find a classical solution to (1.10), we impose the
continuity on β and γ as follows:

(A) β is always positive. Moreover, β and γ are Lipschitz continuous with
2π-periodic.

To provide a definition of traveling waves in (1.2), we introduce two func-
tion spaces. We say that x ∈ Cm,1([0, ℓ]) if and only if, for any s ∈ [0, ℓ], x(s)
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is continuously differentiable for m-times and m-th order derivative x(m)(s) is
Lipschitz continuous. In addition, Γ0 belongs to C2,1 if there exist functions
x, y ∈ C2,1(−ℓ, ℓ) such that

{(x(s), y(s)) ∈ R2 | s ∈ (−ℓ, ℓ)} = Γ0 ∩ U, x(0) = x0, y(0) = y0}

for any (x0, y0) ∈ Γ0, where U is a suitable open set in R2.

Definition 1.1. Suppose that (θ, x, y) ∈ C1,1([0, L])×C2,1([0, L])×C2,1([0, L])
satisfies (1.10) for suitable parameters c and η. Then, we define (Γ0, c) a
compact traveling wave of (1.2) (or simply a compact traveling wave), where
Γ0 := {(x(s), y(s)) | s ∈ [0, L)} and c := c e(η). To specify the speed and an-
gle of c, we occasionally use notation (Γ0, c e(η)) instead of (Γ0, c) for c ≥ 0
and η ∈ [0, 2π).

Definition 1.2. We say that traveling wave (Γ0, c) of (1.2) is strictly convex
(concave) if curvature κ of Γ0 is positive (negative) for any point of Γ0.

Definition 1.3. We define a compact traveling wave (Γ0, c e(η)) of (1.10) an
axisymmetric compact traveling wave with respect to e(ζ) for ζ ∈ [0, π), if Γ0

is axisymmetric with respect to a line that is parallel to e(ζ). In particular,
when η = ζ or η = ζ+π, we say that traveling wave (Γ0, c) is an axisymmetric
compact traveling wave with respect to the traveling direction.

We remark that the uniqueness of a compact traveling wave is up to
the shift. Actually, Γ(t) + (x1, y1) is also a compact traveling wave for any
(x1, y1) ∈ R2, if Γ(t) is a compact traveling wave. To explain our main
results, we utilize the following definition for γ :

Definition 1.4. We state that γ is positive (non-positive) if γ(θ) > 0 (γ(θ) ≤
0) for any θ. In addition, γ is sign-changing if there exist θ1 and θ2 such that
γ(θ1) > 0 and γ(θ2) ≤ 0.

Any continuous function γ can be classified into one of the above three
cases. We also remark that the constant function γ ≡ 0 is regarded as non-
positive one.

1.2 Main results

Our main results are as follows:
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(a) Every compact traveling wave of (1.2) is strictly convex and unstable.
Refer to Theorems 2.2 and 2.5 in Section 2.

(b) If γ is positive, then there exists a unique compact traveling wave of
(1.2). In addition, velocity vector c satisfies that c · eγ < 0, where

eγ :=

(∫ 2π

0

cos θ

γ(θ)
dθ,

∫ 2π

0

sin θ

γ(θ)
dθ

)
. (1.11)

Meanwhile, there is no compact traveling wave of (1.2) if γ is non-
positive. Refer to Theorem 3.1 in Subsection 3.1 and Theorem ?? in
Subsection 3.2.

(c) If γ is sign-changing, then a compact traveling wave is unique if it ex-
ists. In contrast with the positive case in (b), a compact traveling
wave does not always exist for any sign-changing function γ. Indeed, a
sign-changing driving force such that (1.2) does not possess a compact
traveling wave is proposed in Section 3.2. Therefore, we need to impose
a additional condition on γ(θ). It will be shown that (1.2) includes a
compact traveling wave, if γ satisfies the admissible condition that is
defined in Subsection 3.2. As for the velocity c, we have that c·e(θ) < 0
for all θ ∈ {θ ∈ [0, 2π) | γ(θ) ≤ 0}. Refer to Theorems 3.5 and 3.8 in
Subsection 3.2.

(d) When γ is symmetric to an angle, a necessary and sufficient condition
for having compact traveling waves will be given by Theorem 4.4 in
Section 3.

(e) There exists a driving force γ such that for any Jordan curve Γ∗
0 and

vector c∗, (1.2) includes compact traveling wave (Γ∗
0, c

∗). Refer to Sub-
section 4.5.

In order to show the existence of compact traveling waves to (1.2) in R2,
we solve the first equation of (1.10) that is an ODE of θ. Note that x and y are
determined by the second and the third equations, if θ is obtained. First we
check a condition for c, η, and γ where θ can be solved over [0, 2π) without the
boundary condition (1.9). Then we know that if there is a compact traveling
wave, the curvature θs is positive. Thus, the main difficulty of this problem
is how to find a pair (c, η) satisfying θs > 0 and (1.9). Our strategy is that
we first find a set S of (c, η) satisfying θs > 0 and the boundary condition of
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y and θ in (1.9), and we next seek a point (c, η) with the boundary condition
of x in (1.9). In our proof, the information of the boundary of the set S is
essential. When γ is positive, we fortunately obtain a precise information
from the boundary. However, for sign-changing case, we could not obtain
a sufficient information from the boundary due to the degeneracy of the
curvature θs. More precisely, we need to find a pair (c, η) ∈ S such that
x(L) = x(0). Since x(L)− x(0) is represented by

x(L)− x(0) = −
∫ 2π

0

sin (θ − η)

θs
dθ,

we need to give careful attention to the zeros of the curvature κ = θs. In
general, it is not easy to confirm that x(L) − x(0) = 0 near zeros of θs. To
overcome the difficulty, we will impose an additional condition on γ, which
specifies the position of zero points of θs. On the other hand, considering ax-
isymmetric compact traveling waves, we can obtain a necessary and sufficient
condition of γ for having compact traveling waves.

In this study, we investigate our problem as N = 2. Our strategy is not
directly applicable to the case where N ≥ 3. One of the reasons is that,
when N ≥ 3, in general, (1.2) is not represented by a system of ODEs, but
by a second order partial differential equation. Another reason is to specify
the condition to be a closed hypersurface Γ0. As N = 2, the closed condition
of Γ0 is simple. However, the condition for N ≥ 3 is complicated. For
instance, we consider the condition to be a convex and closed hypersurface
Γ0 satisfying (1.2). By the definition of compact traveling waves, we obtain
that V = c ·n as seen in (1.7). Hence, setting ϕ(n) = γ(n)− β(n)c ·n, (1.2)
is written by

κ = ϕ(n).

Thus, our problem is deeply related to the problem looking for a condition
of ϕ(n) for which Γ0 is convex and closed. Actually, this problem is called
“Christoffel problem” in differential geometry and studied for a long time.
About sixty years ago, this problem was completed by Berg [5] and Firey
[18, 19]. As mentioned in their papers, a necessary and sufficient condition
for the existence of a convex closed hypersurface Γ0 is related to the non-
degeneracy and symmetry of a Jacobi matrix composed of ϕ(n). Our problem
is an extension of the Christoffel problem, because a velocity vector c also
needs to be determined depending on ϕ. It is still open when N ≥ 3.

This paper is organized as follows: In Section 2, we will show that if there
exist traveling waves, every traveling wave is convex and unstable. Moreover,
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to exhibit the existence and uniqueness of compact traveling waves, we pre-
pare some useful lemmas. The existence and uniqueness of compact traveling
waves are shown in Section 3. We consider three cases as in Definition 1.4
and show the uniqueness of compact traveling waves for all the cases. We
show the existence of compact traveling waves for a positive external force γ.
For the sign-changing case, we introduce the new concept of admissible con-
dition. Under this assumption, we show the existence of compact traveling
waves. We discuss other related problems in Section 4, such as the inverse
problem and existence of non-convex compact traveling waves.

2 Key properties

In this section, we first prove the positivity of the curvature. Since θs =
K(θ; c, η), the positivity of K(θ; c, η) is equivalent to the convexity of the
traveling waves. Secondly, we introduce a set of (c, η) in which the curvature
is positive, and investigate its properties. To investigate (c, η) that satisfies
(x(0), y(0)) = (x(L), y(L)), we examine the monotonicity of function y(L)
with respect to c. Finally, it will be shown that there exists at most one
compact traveling wave.

2.1 Convexity and stability

In this subsection, we will show the convexity of traveling waves. For sim-
plicity of notation, we introduce a function

K(θ; c, η) := γ(θ)− cβ(θ) cos(θ − η),

where c ≥ 0 and η ∈ R.
Before proving the convexity of traveling waves, we prepare an auxiliary

lemma.

Lemma 2.1. Suppose that (c, η) in (1.8) are given in [0,∞)× [0, 2π). Then,
for any ℓ > 0, (1.8) has a unique solution (θ, x, y) ∈ C1,1([0, ℓ])×C2,1([0, ℓ])×
C2,1([0, ℓ]). Moreover, the sign of θs(s) is definite for s ∈ [0, ℓ] if θs(0) ̸= 0.

Proof. The existence and uniqueness of solutions (θ, x, y) to (1.8) for a short
interval [0, ℓ] immediately follows from the standard argument of the the-
ory of ODE. Let s0 satisfy θs(s0) = 0. Then (θ, x, y) = (θ(s0), x(s0) −
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s sin θ(s0), y(s0)+ s cos θ(s0)) satisfies (1.8) for any s ∈ R. On account of the
uniqueness of solutions (θ, x, y), θs(s) never attains 0 at a finite s, namely,
the sign of θs(s) is definite for s ∈ [0, ℓ]. Moreover the Lipschitz continuity
of K(θ; c, η) guarantees the solvability of (1.8) for any interval [0, ℓ]. This
completes the proof.

We now discuss the convexity of traveling waves.

Theorem 2.2. Every compact traveling wave of (1.2) is strictly convex.

Proof. Let (Γ0, c) be a compact traveling wave of (1.2). Then, it follows that∫ L

0

θs ds = 2π

owing to the orientation of Γ0. Hence, θs must be positive in some region.
From Lemma 2.1, θs is positive in [0, L]. This implies that a compact traveling
wave is strictly convex, which is our assertion.

Remark 2.3. Lemma 2.1 can also ensure the unbounded convexity of trav-
eling waves defined in the entire space, e.g., Grim Repear and V-shaped trav-
eling front in R2. Incidentally, their shapes have been already studied (cf. [3]
and [36]). However, the assertion of Lemma 2.1 does not always hold for the
higher dimensional space. As a simple counter-example, we recall a catenoid
that is a non-convex minimal surface satisfying (1.2) with β ≡ 1 and γ ≡ 0
in R3. Furthermore, the existence of non-compact and non-convex traveling
waves of a mean curvature flow in RN(N ≥ 3) is shown in [12].

Remark 2.4. When we replace α, β and γ in (1.2) by some functions de-
pending on positions x and y, Theorem 2.2 does not hold true for such a more
general interface equation. We provide an example for non-convex compact
traveling waves in Subsection 4.5.

As noted in Section 1, (1.4) has a unique stationary solution, and the
solution is unstable. Note that the stationary solution is regarded as compact
traveling wave with c = 0 in our setting. Thus every compact traveling wave
to (1.10) is unstable whenever γ is a positive constant. This claim is also
true for our problem.

Theorem 2.5 (Ei-Yanagida [13]). Every compact traveling wave of (1.2) is
unstable.
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In practice, Ei and Yanagida [13] showed that any bounded stationary
solutions of V = F (κ,n) are unstable (see Corollary 2.1 in [13]). By taking

F (κ,n) =
γ(n)

β(n)
− 1

β(n)
κ− c · n,

it follows that the compact traveling wave (Γ0, c) of (1.2) is a stationary
solution of V = F (κ,n) and unstable. To stabilize the compact traveling
waves, we require more components related to the system (1.2).

2.2 An auxiliary set S and its properties

By Theorem 2.2, every traveling wave of (1.2) is convex, i.e.,K(θ; c, η) is posi-
tive in [0, 2π). Thus we focus our attention on a set of (c, η) withK(·; c, η) > 0
in [0, 2π). Define S and cM by

S :=

{
(c, η) ∈ [0,∞)× [0, 2π)

∣∣∣∣ inf
θ∈[0,2π)

K(θ; c, η) > 0

}
,

cM := sup
θ∈[0,2π)

γ(θ)

β(θ)
.

Note that infθ∈[0,2π)K(θ; c, η) = minθ∈[0,2π] K(θ; c, η) since K is 2π-periodic
and continuous. In this subsection, we investigate the properties of S.

Lemma 2.6. Assume that S ̸= ∅. If (c1, η) and (c2, η) are contained in S,
where 0 ≤ c1 < c2, then [c1, c2]× {η} ⊂ S. Moreover, S ⊂ [0, cM)× [0, 2π).

Proof. Take (c1, η) and (c2, η) in S. Let t be a positive constant in [0, 1]. By
simple calculations, we obtain

K(θ; tc2 + (1− t)c1, η) ≥ tK(θ; c2, η) + (1− t)K(θ; c1, η).

SinceK(θ; c2, η) > 0 andK(θ; c1, η) > 0, it follows that (tc2+(1−t)c1, η) ∈ S
for any t ∈ [0, 1].

Let (c, η) ∈ S. Since K(θ; c, η) > 0 for any θ ∈ [0, 2π), it follows that

K(η; c, η) = γ(η)− cβ(η) > 0.

By the positivity of β, we obtain c < cM , which completes the proof.
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Lemma 2.7. If γ is positive, then {(0, η) | η ∈ [0, 2π)} ⊂ S. If γ is non-
positive, then S = ∅. In particular, if γ is sign-changing, then {(0, η) | η ∈
[0, 2π)} ∩ S = ∅, and there exists η∗ ∈ [0, π) satisfying

{(c, η) | c ≥ 0, η ∈ [η∗, η∗ + π]} ∩ S = ∅

or
{(c, η) | c ≥ 0, η ∈ [0, η∗] ∪ [η∗ + π, 2π)} ∩ S = ∅.

Proof. Assume that γ is positive. Then it is easily seen that

inf
θ∈[0,2π)

K(θ; 0, η) = inf
θ∈[0,2π)

γ(θ) > 0

for any η. This implies that {(0, η) | η ∈ [0, 2π)} ⊂ S. As γ is non-positive,
i.e., γ(θ) ≤ 0 for any θ, it is easily seen that infθ∈[0,2π) K(θ; c, η) < 0 for any
(c, η) ∈ [0,∞)× [0, 2π). Thus S is empty.

Suppose that γ is sign-changing. There is an angle θ∗ ∈ [0, 2π) satisfying
γ(θ∗) ≤ 0. Thus we have

inf
θ∈[0,2π)

K(θ; 0, η) ≤ γ(θ∗) ≤ 0

for any η ∈ [0, 2π), which implies that {(0, η) | η ∈ [0, 2π)}∩S = ϕ. Further-
more,

inf
θ∈[0,2π)

K(θ; c, η) ≤ γ(θ∗)− cβ(η) cos (θ∗ − η) ≤ 0

for any c ≥ 0 and η ∈ (θ∗ − π/2, θ∗ + π/2). If θ∗ − π/2 ∈ [0, π), we set
η∗ = θ∗ − π/2, and then we obtain {(c, η) | c ≥ 0, η ∈ [η∗, η∗ + π]} ∩ S = ∅.
If θ∗ − π/2 ∈ [π, 2π), we reset η∗ = θ∗ − 3π/2 and obtain {(c, η) | c ≥ 0, η ∈
[0, η∗] ∪ [η∗ + π, 2π)} ∩ S = ∅. This completes the proof.

Remark 2.8. Considering Lemma 2.7, without loss of generality, we here-
after assume that, if γ is non-positive or sign-changing,

{(c, η) | c ≥ 0, η ∈ [0, η∗] ∪ [η∗ + π, 2π)} ∩ S = ∅,

if necessary, after an appropriate rotation. Here η∗ stands for the symbol
shown in Lemma 2.7. From this, if γ is non-positive or sign-changing, and
S ̸= ∅, the set S satisfies

S ⊂ (0, cM)× (η∗, η∗ + π) ⊂ [0,∞)× [0, 2π). (2.1)
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Proposition 2.9. Let S be not empty. Then it is bounded and simply con-
nected. In particular, if γ is sing-changing, then S is open.

Proof. Lemma 2.6 immediately implies that S is bounded. We show that S
is simply connected.

We first consider the case that γ is positive. Let (c1, η1) and (c2, η2) be
arbitrary points in S. If η1 = η2, then a line segment C1 := [c1, c2] × {η1}
connecting (c1, η1) with (c2, η2) is a subset of S due to Lemma 2.6. If η1 ̸= η2,
then we define the set C2 by

C2 = ([0, c1]× {η1}) ∪ ({0} × [η1, η2]) ∪ ([0, c2]× {η2}).

The set C2 is a polygonal line which connects (c1, η1) with (c2, η2). It follows
from Lemma 2.6 and Lemma 2.7 that C2 ⊂ S , that is, S is connected.
Applying Lemma 2.6 again, we know that S is simply connected.

To consider the case where γ is non-negative or sign-changing, we set

K(θ; c) := γ(θ)− β(θ)c · e(θ),

S∗ :=

{
c ∈ R2 | inf

θ∈[0,2π)
K(θ; c) > 0

}
.

By the continuity of K(θ; c) with respect to c, it is easy to check that the
set S∗ is open. Let c1, c2 be two arbitrary points of S∗, namely, K(θ; ci) > 0
(i = 1, 2). For any t ∈ [0, t], we have

K(θ; (1− t)c1 + tc2) = γ(θ)− β(θ){(1− t)c1 + tc2} · e(θ)
= (1− t)K(θ; c1) + tK(θ; c2)

for any ci ∈ S (i = 1, 2). Thus we see that (1 − t)c1 + tc2 ∈ S for any
t ∈ [0, 1], which implies that S∗ is strictly convex.

If γ is positive, then 0 ∈ S∗ because

inf
θ∈[0,2π)

K(θ;0) = inf
θ∈[0,2π)

γ(θ) > 0.

Otherwise, it follows from Lemma 2.7 that 0 ̸∈ S∗.
Finally, we show that S is simply connected as γ is sign-changing. Since

S∗ is strictly convex, it is immediately know that S∗ is simply connected.
Moreover, as γ is non-negative or sign-changing, it holds 0 ̸∈ S∗. Thus S∗
is homeomorphic to S with the help of the polar coordinate mapping, which
means that S is simply connected and open. This is our assertion.
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As seen in Lemma 2.7, if γ is positive, S is not empty; otherwise it is not
certain. We here refer to the condition of γ as S is not empty. Define c−(η)
and c+(η) by

c−(η) := max

{
0, sup

|ξ−π|<π/2

γ(ξ + η)

β(ξ + η) cos ξ

}
,

c+(η) := inf
|ξ|<π/2

γ(ξ + η)

β(ξ + η) cos ξ
.

Next lemma gives us the geometrical meaning of c±(η).

Proposition 2.10. If S is not empty, then for any (c, η) ∈ S, it follows that

c−(η) < c+(η). (2.2)

Moreover,
{c ∈ R | (c, η) ∈ S} = (c−(η), c+(η)).

Proof. Assume that S is not empty. Take an arbitrary point (c0, η0) of S.
Then K(θ; c0, η0) > 0 in [0, 2π] implies that

γ(θ + π + η0)

β(θ + π + η0) cos (π + θ)
< c0 <

γ(θ + η0)

β(θ + η0) cos θ

for any θ ∈ (−π/2, π/2). Since c0 ≥ 0, we obtain that c−(η0) ≤ c0 ≤ c+(η0).
Moreover we can exclude the possibility that c0 = c+(η0). In fact, if (c0, η0) =
(c+(η0), η0) ∈ S, then

K(θ; c0, η0) = K(θ; c+(η0), η0)

= β(θ) cos (θ − η0)

(
γ(θ)

β(θ) cos (θ − η0)
− c+(η0)

)
.

as cos (θ − η0) ̸= 0. Note that γ(η0 ± π/2) > 0 due to K(θ; c0, η0) > 0. Then
there is θ0 ∈ (−π/2, π/2) such that c+(η0) = γ(θ0)/(β(θ0) cos (θ0 − η0)),
namely, K(θ0; c0, η0) = 0 because

lim
ξ↑π

2

γ(ξ + η0)

β(ξ + η0) cos ξ
= lim

ξ↓−π
2

γ(ξ + η0)

β(ξ + η0) cos ξ
= +∞.

This contradicts the fact that (c0, η0) ∈ S. Hence c−(η0) ≤ c0 < c+(η0) for
any (c0, η0) ∈ S.
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We next check that (c−(η0), η0) and (c+(η0), η0) are part of the boundary
of S. By the above discussion, it follows that infθ∈[0,2π) K(θ; c+(η0), η0) = 0,
i.e., (c+(η0), η0) ̸∈ S. Furthermore Lemma 2.6 leads to (c+(η0) + ε, η0) ̸∈
S for any ε > 0. As for c−(η0), it depends on the sign of γ(θ). Let us
consider the case γ > 0. Then c−(η0) = 0 and (c−(η0), η0) ∈ S. By the
definition of S, we see that infθ∈[0,2π) K(θ; c−(η0), η0) = 0, i.e., (c−(η0), η0) ̸∈
S. Next we consider the case that γ is sign-changing. Repeating the same
argument as c+(η0), we confirm that there exists a point θ0 ∈ [0, 2π) satisfying
K(θ0; c−(η0), η0) = 0. This yields (c−(η0)− ε, η0) ̸∈ S for any ε ≥ 0.

Next we show that (c, η0) ∈ S for any c ∈ (c−(η0), c+(η0)) when c−(η0) <
c+(η0). We here remark that for any θ ∈ [0, 2π),

K(θ; c−(η0), η0) +K(θ; c+(η0), η0) > 0. (2.3)

Indeed, if there exists θ0 satisfying K(θ0; c−(η0), η0) = K(θ0; c+(η0), η0) = 0,
then we have

γ(θ0) = c−(η0)β(θ0) cos (θ0 − η0) = c+(η0)β(θ0) cos (θ0 − η0).

As γ(θ0) ̸= 0, it must be c−(η0) = c+(η0). This contradict the fact c−(η0) <
c+(η0) as shown in the above. If γ(θ0) = 0, then θ0 = η0 ± π/2 because of
c+(η0)β(θ0) > 0. However, this contradicts γ(η0 ± π/2) > 0 by the property
of (c0, η0). As a result, we obtain (2.3). From this property and

inf
θ∈[0,2π)

K(θ; c−(η0), η0) = inf
θ∈[0,2π)

K(θ; c+(η0), η0) = 0,

we see that, for t ∈ (0, 1),

K(θ; tc−(η) + (1− t)c+(η), η0)

= tK(θ; c−(η0), η0) + (1− t)K(θ; c+(η0), η0)

> 0.

Thus if c ∈ (c+(η0), c+(η0)), then (c, η0) ∈ S, which implies that (c−(η0), η0)
and (c+(η0), η0) are part of the boundary of S. This is our assertion.

2.3 The nullcline of Y and its properties

By Lemma 2.1, for an arbitrary (c, η) ∈ [0,∞)× [0, 2π), there exists a unique
constant L such that the solution θ of (1.8) satisfies θ(L) = 2π. Thus, we
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only have to check that the solutions (x, y) of (1.8) satisfy x(L) = x0 and
y(L) = y0 for a ceratin (c, η). We now prepare auxiliary two functions X(c, η)
and Y (c, η) defined by

X(c, η) :=

∫ 2π

0

− sin(ξ − η)

K(ξ; c, η)
dξ, Y (c, η) :=

∫ 2π

0

cos(ξ − η)

K(ξ; c, η)
dξ

for any (c, η) ∈ S. As seen in the following lemma, in order to show the
existence of compact traveling wave (Γ0, c e(η)) of (1.2), we have only to find
a (c, η) ∈ S such that X(c, η) = Y (c, η) = 0.

Lemma 2.11. The following two are equivalent:

(i) (1.2) has a compact traveling wave (Γ0, c e(η)).

(ii) (c, η) belongs to S and satisfies

X(c, η) = Y (c, η) = 0. (2.4)

In particular, as c = 0, (2.4) holds for any η ∈ [0, 2π).

Proof. Let (θ, x, y) be a solution of (1.8) with (c, η) ∈ S. If solution (θ, x, y)
satisfies (1.10), then it follows from the matching condition (1.9) that

0 = x(L)− x(0) =

∫ 2π

0

− sin ξ

K(ξ; c, η)
dξ, (2.5)

0 = y(L)− y(0) =

∫ 2π

0

cos ξ

K(ξ; c, η)
dξ. (2.6)

Thus, if there is a suitable (c, η) ∈ S satisfying (2.5) and (2.6), (1.2) has a
compact traveling wave (Γ0, c e(η)). By using the standard rotation matrix,
we obtain

∫ 2π

0

− sin ξ

K(ξ; c, η)
dξ∫ 2π

0

cos ξ

K(ξ; c, η)
dξ

 =

(
cos η − sin η
sin η cos η

)(
X(c, η)
Y (c, η)

)
.

This leads the statement (2.4) immediately. We note thatX(0, η) = Y (0, η) =
0 for any η ∈ [0, 2π) as c = 0, and the proof is completed.
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The advantage of finding the zero points of X and Y , instead of (2.5)
and (2.6), is that the function Y is monotone increasing with respect to c in
S as seen in the following lemma. Hereafter, Λ denotes all sets η satisfying
(c, η) ∈ S, namely,

Λ := {η ∈ [0, 2π) | (c, η) ∈ S} .

Lemma 2.12. Assume that S is not empty. Then, for any η ∈ Λ, Y (c, η) is
monotone increasing in c ∈ (c−(η), c+(η)) and

lim
c↑c+(η)

Y (c, η) = ∞, lim
c↓c−(η)

Y (c, η) =

{
Y (0, η) if γ is positive,

−∞ otherwise.
(2.7)

Proof. Recall that c−(η) < c+(η) from Proposition 2.10. An easy computa-
tion shows that

Yc(c, η) =

∫ 2π

0

β(ξ) cos2(ξ − η)

K(ξ; c, η)2
dξ > 0

for any c ∈ (c−(η), c+(η)). Thus, we obtain the monotonicity.
We next consider the limit of Y (c, η) as c tends to c+(η). let (c, η) ∈ S.

It is obvious that, for any η ∈ Λ, Y (c, η) is finite in (c−(η), c+(η))×{η} since
K(θ; c, η) > 0. Thus K(θ; c+(η), η) ≥ 0 for any θ ∈ [0, 2π), and there exists a
point θ∗ such thatK(θ∗; c+(η), η) = 0. On account of the Lipschitz continuity
of K, there exists a positive constant CK such that |K(θ; c, η)| ≤ CK |θ− θ∗|
in an appropriate neighborhood of θ∗. Thus

lim
c↑c+(η)

∫ 2π

0

1

K(ξ; c, η)
dξ = ∞.

Next we show that cos (θ∗ − η) ̸= 0. If cos (θ∗ − η) = 0, then we have
γ(θ∗) = K(θ∗; c+(η), η) = 0. However this means that (c−(η), c+(η))× {η} ∩
S = ∅ because K(θ∗; c, η) = γ(θ∗) − cβ(θ∗) cos (θ∗ − η) = 0 for any c ≥ 0.
This contradicts the fact (c, η) ∈ S. Thus cos (θ∗ − η) ̸= 0. According to the
monotonicity, Y (c, η) goes to ∞ as c tends to c+(η).

Finally we consider the limit of Y (c, η) as c tends to c−(η). Note that
c−(η) = 0 if γ is positive. Since K(θ; 0, η) = γ(θ) > 0, as c tends to c−(η),
the integrand of Y (c, η) does not have any singularity, namely, Y (c, η) goes
to Y (0, η), simply. If γ is sign-changing, then c−(η) > 0. As discussed in the
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above, K(θ; c−(η), η) ≥ 0 for any θ ∈ [0, 2π), and there exists a point θ∗ such
that K(θ∗; c−(η), η) = 0. Repeating the same argument and considering the
monotonicity, we see that Y (c, η) goes to −∞ as c tends to c−(η). The proof
is completed.

We now focus our attention on the set (c, η) satisfying Y (c, η) = 0. Define
Y and Λ− by

Y := {(c, η) ∈ S | Y (c, η) = 0},
Λ− := {η ∈ [0, 2π) | Y (c, η) < 0, (c, η) ∈ S}.

Clearly, Λ− ⊂ Λ is satisfied.

Proposition 2.13. Suppose that Λ− is non-empty and connected. Then, Y
is a C1 simple curve that is represented by the graph c = φ(η) from Λ−.
Moreover, there is at most one (c, η) ∈ S satisfying X(c, η) = Y (c, η) = 0.

Proof. Lemmas 2.6 and 2.12 imply that for any η ∈ Λ−, there exists a unique
point c = c(η) ∈ (c−(η), c+(η)) such that Y (c, η) = 0. Recall that Yc(c, η) > 0
in Y by Lemma 2.12. By the implicit function theorem for Y (c, η), there
exists a unique function φ ∈ C1(Λ−) such that Y (φ(η), η) = 0, and c =
φ(η) > 0 for any η ∈ Λ−. In contrast, there is no point c satisfying Y (c, η) = 0
as η ̸∈ Λ− because Y (c, η) ≥ 0 and Yc(c, η) > 0 in S. Consequently, Y is a
C1 simple curve.

Next, we show that (c, η) ∈ S with X(c, η) = Y (c, η) = 0 is at most one.
Since Y (φ(η), η) = 0 in Λ−, we observe that

Yc(φ(η), η)φ
′(η) + Yη(φ(η), η) = 0 in Λ−.

Let Z(η) be given by Z(η) := X(φ(η), η). Then, Z(η) satisfies

d

dη
Z = Xcφ

′(η) +Xη =
XηYc −XcYη

Yc

. (2.8)
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A simple calculation yields

Xc(c, η) = −
∫ 2π

0

β(ξ) sin(ξ − η) cos(ξ − η)

K(ξ; c, η)2
dξ,

Xη(c, η) = Y −
∫ 2π

0

cβ(ξ) sin2(ξ − η)

K(ξ; c, η)2
dξ,

Yc(c, η) =

∫ 2π

0

β(ξ) cos2(ξ − η)

K(ξ; c, η)2
dξ,

Yη(c, η) = −X +

∫ 2π

0

cβ(ξ) cos(ξ − η) sin(ξ − η)

K(ξ; c, η)2
dξ.

Using the above inequalities, we obtain

XηYc −XcYη

=

(
Y −

∫ 2π

0

cβ(ξ) sin2(ξ − η)

K(ξ; c, η)2
dξ

)∫ 2π

0

β(ξ) cos2(ξ − η)

K(ξ; c, η)2
dξ

+

∫ 2π

0

β(ξ) sin(ξ − η) cos(ξ − η)

K(ξ; c, η)2
dξ

×
(
−X +

∫ 2π

0

cβ(ξ) cos(ξ − η) sin(ξ − η)

K(ξ; c, η)2
dξ

)
= −X

∫ 2π

0

β(ξ) sin(ξ − η) cos(ξ − η)

K(ξ; c, η)2
dξ

−
∫ 2π

0

cβ(ξ) sin2(ξ − η)

K(ξ; c, η)2
dξ

∫ 2π

0

β(ξ) cos2(ξ − η)

K(ξ; c, η)2
dξ

+

∫ 2π

0

β(ξ) sin(ξ − η) cos(ξ − η)

K(ξ; c, η)2
dξ

∫ 2π

0

cβ(ξ) cos(ξ − η) sin(ξ − η)

K(ξ; c, η)2
dξ.

Thus, (2.8) satisfies

d

dη
Z =

XηYc −XcYη

Yc

= −|Xc|
Yc

Z − c
YcW − (Xc)

2

Yc

,

where

W :=

∫ 2π

0

β(ξ) sin2(ξ − η)

K(ξ; c, η)2
dξ.
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By the Cauchy-Schwarz inequality and sin (ξ − η) ̸= cos (ξ − η) in [0, 2π),
we have YcW − (Xc)

2 > 0. This implies that if there exists a point η0
satisfying Z(η0) = 0, Z is always strictly decreasing at η0. Consequently,
there is at most one (c, η) ∈ Y satisfying X(c, η) = 0, which completes the
proof.

3 Existence and uniqueness of compact trav-

eling waves

In this section, we show the existence and uniqueness of traveling waves
under various driving force γ. To this end, we first introduce the result for
the case γ is non-positive or positive. After that, it will be shown the result
of sign-changing case.

3.1 Definite driving force

In this subsection we consider the cases where γ is non-positive or positive.
Now we state the main result.

Theorem 3.1. If γ is non-positive, then there is no compact traveling wave
for (1.2). If γ is positive, then there exists a unique traveling wave (Γ0, c) of
(1.2).

Proof. By Lemma 2.7, S is empty if γ is non-positive. Thus we immediately
know non-existence of compact traveling waves to (1.2).

Suppose that that γ is positive. Let η, η0 be arbitrary points in [0, 2π).
Then the function Y satisfies

Y (0, η + η0) =

∫ 2π

0

cos(ξ − η0 − η)

γ(ξ)
dξ

=

∫ 2π

0

cos(ξ − η0) cos η + sin(ξ − η0) sin η

γ(ξ)
dξ

= Y (0, η0) cos η −X(0, η0) sin η.

The same argument implies(
X(0, η + η0)
Y (0, η + η0)

)
=

(
cos η sin η
− sin η cos η

)(
X(0, η0)
Y (0, η0)

)
(3.1)
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for any η ∈ [0, 2π).
Assume that (X(0, η0), Y (0, η0)) = (0, 0) with some η0 ∈ [0, 2π). Then

(X(0, ·), Y (0, ·)) ≡ (0, 0). From Lemma 2.11, there exists a compact traveling
wave solution with c = 0. Lemma 2.12 leads to Y (c, η) > 0 for any c > 0 and
(c, η) ∈ S. This implies that there are no other compact traveling waves.

Assume that (X(0, η0), Y (0, η0)) ̸= (0, 0) with some η0 ∈ [0, 2π). Since
the matrix in right hand side of (3.1) is a rotation matrix, we can assume
that

X(0, η0) = 0, Y (0, η0) > 0.

Since

Y (0, η) = Y (0, η0) cos(η − η0) = −X(0, η − π/2) (3.2)

for any η ∈ [0, 2π), we can assume that η0 ∈ (0, π/2) after the appropriate
rotation, if necessary. Substituting η = η0+π and η = η0 into (3.2), we have

X
(
0, η0 +

π

2

)
= Y (0, η0) > 0,

X

(
0, η0 +

3π

2

)
= X

(
0, η0 −

π

2

)
= −Y (0, η0) < 0.

Furthermore (3.2) leads to Λ− = (η0 + π/2, η0 +3π/2). By Proposition 2.13,
there exists a C1 function φ such that Y = {(φ(η), η) | η ∈ Λ−}. Since
Z(η0 + π/2) = X(0, η0 + π/2) > 0 and Z(η0 + 3π/2) = η0 + 3π/2 < 0, there
is at least one zero point η. By Proposition 2.13, Z has a unique zero point
η ∈ [0, 2π). Therefore we complete the proof.

Remark 3.2. As seen in the introduction, the uniqueness is up to the shift.
Non-existence of compact traveling waves in Theorem 3.1 is guaranteed will
be extended to Corollary 3.11 in Subsection 3.2.

Moreover, this theorem implies that two traveling waves do not coexist.
Even if there are two or more local maxima of γ, the speed and the direction
are uniquely determined.

Example 3.3. Let γ and β be given by{
γ(θ) := 1 + 10 cos2

(
3θ +

π

4

)
− cos θ

8
,

β(θ) := 1 + cos2 θ.
(3.3)

Note that γ is positive. Then the corresponding set S and the nullclines of
X and Y are given in Fig. 3.1.
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Figure 3.1: Numerical results for a positive driving force γ given by (3.3). (a)
the graph of γ/β. (b) the nullclines of X and Y , indicated by red and blue,
respectively, on S. (c) the corresponding compact traveling wave (Γ0, c).
Here Γ0 is a hexagonal shape indicated by red and c is represented by the
arrow.

Now we give an estimate of the velocity c of compact traveling waves.
The vector eγ defined in (1.11) is significant in our next lemma. For the
convenience of the reader we write eγ here again,

eγ =

(∫ 2π

0

cos θ

γ(θ)
dθ,

∫ 2π

0

sin θ

γ(θ)
dθ

)
.

Proposition 3.4. Suppose that there exists a compact traveling wave (Γ0, c)
of (1.2) under a positive driving force γ. Then it follows that

(i) if eγ = 0, then c = 0,

(ii) if eγ ̸= 0, then c ̸= 0 with 0 < |c| < cM and c · eγ < 0.

Proof. Let (c, η) be a polar coordinate of the velocity c, i.e., c = c e(η). If
eγ = 0, then X(0, 0) = Y (0, 0) = 0. It follows from Lemma 2.11 that (Γ0,0)
is a compact traveling wave of (1.2). The uniqueness of solutions leads to
c = 0.

Conversely, if c = 0, then eγ = 0 by the proof of Theorem 3.1. If eγ ̸= 0,
then c ̸= 0 and Lemma 2.6 guarantees 0 < |c| < cM . Moreover we see η ∈ Λ−
by Proposition 2.13. It follows from the monotonicity of Yc in Lemma 2.12
that Λ− = {η ∈ [0, 2π) | Y (0, η) < 0}. Then

c · eγ = c(cos η, sin η) · (X(0, 0), Y (0, 0)) = cY (0, η) < 0.
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From this, we obtain our assertion.

3.2 Sign-changing driving force

When γ is sign-changing, the existence of compact traveling waves is not
guaranteed in general. For example, setting

γ(θ) = cos θ − 1

2
, (3.4)

we see that γ is sign-changing and γ(θ) ≤ 0 in [π/3, 5π/3]. Due to the
length of negative region of γ, infθ∈[0,2π) K(θ; c, η) ≤ 0, which leads to S =
∅. In consequence, there is no traveling wave to (1.2) under (3.4). From
this consideration, every sign-changing γ does not always satisfy S ̸= ∅.
Furthermore it is not easy to show the existence of compact traveling waves
for sign-changing case even if S ̸= ∅, because X(c, η) and Y (c, η) does not
have a good property as (3.2) in the proof of Theorem 3.1, which is useful in
distinguishing the signs of X and Y . Thus we here change the strategy and
use the information of the signs of X and Y from the boundary of S.

In this section, as seen in Remark 2.8, without loss of generality, we
assume Λ ⋐ [0, 2π) when γ is sign-changing. The uniqueness of compact
traveling waves for sign-changing case is obtained as well as positive case.

Theorem 3.5. Assume that γ is sign-changing and S is not empty. Then
Λ− = Λ. Moreover, if (1.2) has compact traveling waves, then there exists
at most one compact traveling wave.

Proof. We first show Λ− = Λ. We see at once that Λ− ⊂ Λ by definition. For
any η ∈ Λ, it follows from (2.7) in Lemma 2.12 that there exists a constant
c ∈ (c−(η), c+(η)) satisfying Y (c, η) < 0. Thus we obtain Λ ⊂ Λ−.

Next we claim the uniqueness of solutions. By Proposition 2.9, S is
simply connected, and then Λ is connected. Since Λ = Λ−, it follows that
Λ− is not empty and connected. Applying Proposition 2.13, we complete the
proof.

Before stating an existence theorem, we investigate some properties for
the boundary of S. As seen in Lemma 2.6, S is bounded when γ is sign-
changing. In what follows, η+ and η− denote the supremum and infimum of
Λ, respectively, that is,

η+ := supΛ = sup
(c,η)∈S

η, η− := inf Λ = inf
(c,η)∈S

η,
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and ∂S+ (resp. ∂S−) also stand for the set of (c, η+) ∈ ∂S (resp. (c, η−) ∈
∂S), where ∂S stands for the boundary of S, i.e., ∂S := Cl(S) \ Int(S). As
mentioned above, in general, (1.2) might have no compact traveling wave
when γ is sign-changing. We here give an additional condition for γ and
investigate the distribution of θ satisfying K(θ; c, η) = 0 on ∂S+ and ∂S−.

Definition 3.6. We say that S is admissible, if there is a positive constant
δ such that

{c∗} × (η+ − δ, η+) ⊂ S, {c∗} × (η−, η− + δ) ⊂ S

for every (c∗, η+) ∈ ∂S+ and (c∗, η−) ∈ ∂S−.

Next lemma give a relation between admissible condition of S and the
position of θ satisfying K(θ; c, η) = 0.

Lemma 3.7. Let S be admissible. Then, for any (c∗, η+) ∈ ∂S+ (resp.
(c∗, η−) ∈ ∂S− ), K(θ; c∗, η+) > 0 in [η++π, η++2π) (resp. K(θ; c∗, η−) > 0
in (η+, η+ + π]). Moreover, ∂S± is composed of a single point or a line
segment. If ∂S+ (resp. ∂S−) is a single point (c∗, η+) (resp. (c∗, η−)), there
exist at least two points θ∗+ ∈ [η+, η+ + π/2) and θ∗− ∈ (η+ + π/2, η+ + π)
(resp. θ∗+ ∈ (η− + π, η− + 3π/2] and θ∗− ∈ [η− + 3π/2, η− + 2π]) such that
K(θ∗+; c

∗, η+) = K(θ∗−; c
∗, η+) = 0 (resp. K(θ∗+; c∗, η−) = K(θ∗−; c∗, η−) = 0).

Otherwise it holds that K(η++π/2; c∗, η+) = 0 (resp. K(η−+3π/2; c∗, η−) =
0).

Proof. Let θ∗ satisfy K(θ∗; c∗, η+) = 0. Since S is admissible, we have

K(θ∗; c∗, η+ − ε) > 0

for every ε ∈ (0, δ]. From β > 0 and c∗ > 0, we see

0 > K(θ∗; c∗, η+)−K(θ∗; c∗, η+ − ε)

= c∗β(θ∗) (cos(θ∗ − η+ + ε)− cos(θ∗ − η+)) .

This inequality says that θ∗ ∈ [η+, η+ + π). It follows from

inf
θ∈[0,2π)

K(θ; c∗, η+) = 0

and the admissible property of S that

K(θ; c∗, η+) > 0 in [η+ + π, η+ + 2π).
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Next we investigate the set of ∂S±. Assume that (c∗1, η+), (c
∗
2, η+) ∈ ∂S+.

Then (c∗1, η+ − ε), (c∗2, η+ − ε) ∈ S for any ε ∈ (0, δ), and then [c∗1, c
∗
2] ×

[η+ − ε, η+) ⊂ S. This leads to (tc∗1 + (1 − t)c∗2, η+) ∈ ∂S+ for t ∈ [0, 1],
which implies that ∂S± is composed of a single point or a line segment. This
assertion also holds for ∂S−,

Let ∂S+ be a single point. From the definition of ∂S+, it follows that

inf
θ∈[0,2π)

K(θ; c∗ ± ε, η+) < 0

for small ε > 0. This implies that there are some points θ∗+, θ
∗
− ∈ [η+, η++π)

satisfying
K(θ∗±; c

∗, η+) = 0 and K(θ∗±; c
∗ ± ε, η+) < 0.

If K(θ∗+; c
∗ + ε, η+) < 0, then

0 < K(θ∗+; c
∗, η+)−K(θ∗+; c

∗ + ε, η+) = −εβ(θ∗+) cos(θ
∗
+ − η+).

Thus θ∗+ ∈ (η+ + π/2, η+ + π]. As K(θ∗+; c
∗ − ε, η+) < 0, it follows θ∗− ∈

[η+, η+ + π/2).
If ∂S+ is a line segment,

inf
θ∈[0,2π)

K(θ; c∗ ± ε, η+) = 0

for any small ε > 0. Since ∂K/∂c = −β(θ) cos (θ − η), it is expected that
at least one of K(η+ + π/2; c∗, η+) = 0 and K(η+ + 3π/2; c∗, η+) = 0 is
guaranteed. If K(η++3π/2; c∗, η+) = 0 is correct, then γ(η++π/2; c∗, η+) =
0. From this,

K

(
η+ +

3π

2
; c∗, η+ − δ

)
= −cβ

(
η+ +

3π

2

)
cos

(
3π

2
+ δ

)
< 0.

This contradicts the fact that S is admissible. Thus it follows that K(η+ +
π/2; c∗, η+) = 0. As for ∂S−, we can also show the desired claim. Therefore
we complete the proof.

Now we state the existence theorem.

Theorem 3.8. If S is admissible, then there exists a unique compact travel-
ing wave (Γ0, c) of (1.2).
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Proof. The uniqueness of traveling wave solutions is already established by
Theorem 3.5. To show the existence of compact traveling waves, we need to
find a point (c, η) satisfying X(c, η) = 0 on Y . Recall that from the proof of
Theorem 3.5 and Proposition 2.13, Λ = Λ−(̸= ∅) holds, and then Y is a C1

curve which connected ∂S+ to ∂S−. Now we examine the sign of X on Y in
the neighbourhood of ∂S+ and ∂S−.

We now focus attention on the neighbourhood of ∂S+. By Lemma 3.7,
∂S+ is composed of a single point or an interval. Assume that ∂S+ is a single
point. According to Lemma 3.7, there are at least two points θ∗+ ∈ [η+, η+ +
π/2) and θ∗− ∈ (η+ + π/2, η+ + π) satisfying K(θ∗+; c

∗, η+) = K(θ∗−; c
∗, η+) =

0 for (c∗, η+) ∈ ∂S+. As θ∗+ = η+, it is not easy to confirm the sign of
X(c, η) because it is primitive function − sin (θ∗+ − η+)/K(θ∗+; c

∗, η+) is an
indeterminate form at θ∗+. Moreover the right-sided limit (resp. the left-sided
limit) of the primitive function is positive (resp. negative). To overcome the
difficulty, we use a modified function Xσ(c, η), instead of X(c, η), which is
given by

Xσ(c, η) =

∫ 2π

0

− sin (θ − η + σ)

K(θ; c, η)
dθ,

where σ is a small positive constant satisfying

{θ ∈ [0, 2π) | K(θ; c∗, η+) = 0} ⊂ (η+ − σ, η+ − σ + π).

Note that the existence of σ is guaranteed by Lemma 3.7. A simple compu-
tation gives Xσ(c, η) = (cos σ) · X(c, η) − (sinσ) · Y (c, η). We see at once
that the sign of X is equivalent to that of Xσ on Y as cos σ > 0.

From now, we will show that Xσ(c, η) < 0 in Y ∩ Bδ(c
∗, η+), where

Bδ(c
∗, η+) is an open ball with the center (c∗, η+) and the radius δ. To this

end, we need to show that the sign of Xσ(c, η) near Xσ(c∗, η+) is negative.
Note that Xσ is divided into two parts as follows:

Xσ(c, η) =

∫ η−σ+π

η

− sin (θ − η + σ)

K(θ; c, η)
dθ +

∫ η+2π

η−σ+π

− sin (θ − η + σ)

K(θ; c, η)
dθ.

Since K(θ; c, η) is continuous with respect to c and η, the first term satisfies

lim
(c,η)→(c∗,η+)

∫ η−σ+π

η

− sin (θ − η + σ)

K(θ; c, η)
dθ = −∞ (3.5)

for every (c, η) ∈ S. Define ε by

ε := min
θ∈[η−σ+π,η+2π]

K(θ; c∗, η+) > 0.
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By the continuity of K(θ; c∗, η+) in c and η, there is a positive constant δ1
such that

min
θ∈[η−σ+π,η+2π]

K(θ; c, η) >
ε

2
in S ∩ B δ1(c

∗, η+).

Thus the second term satisfies∫ η+2π

η−σ+π

− sin (θ − η + σ)

K(θ; c, η)
dθ ≤ 2

ε
(1 + cosσ) (3.6)

for every (c, η) ∈ S ∩ Bδ1(c
∗, η+), which means that the second term is

bounded. Combining (3.5) with (3.6) yields that there exists a constant
0 < δ2 ≤ δ1 such that Xσ(c, η) < 0 in S ∩ Bδ2(c

∗, η+). Recall that Y is a C1

curve which is connected between ∂S+ and ∂S−. Thus we obtain the desired
assertion Xσ(c, η) < 0 in Y ∩Bδ2(c

∗, η+).
Next let us check the sign of X in case ∂S+ is an interval. We write the

interval of ∂S+ as [c∗1, c
∗
2]. The admissible property for S and the continuity

of K(θ; c, η) in c and η leads to the existence of a constant 0 < δ3 ≤ δ
satisfying Xσ(c, η) < 0 in [c∗1 + δ3, c

∗
2 − δ3] × [η+ − δ3, η+]. Remark that

K(η++π/2; c∗, η+) = 0 and sin (π/2 + σ) > 0. Repeating the same argument
above, we know that X is negative in S ∩ (Bδ4(c

∗
1, η+) ∪ Bδ4(c

∗
2, η+)) for

δ4 ∈ (0, δ2]. As a result, Xσ satisfies

Xσ(c, η) < 0 in S ∩M,

where M := Bδ4(c
∗
1, η+)∪ {[c∗1 + δ3, c

∗
2 − δ3]× [η+ − δ3, η+]} ∪Bδ4(c

∗
2, η+). By

the property of Y , Y ∩ M ̸= ∅ holds, which implies the existence of (c, η)
satisfying X(c, η) < 0 on Y .

As for ∂S−, we also repeat the same argument and can show that there
is a (c, η) in the neighbourhood of ∂S− satisfying X(c, η) > 0 on Y . Finally,
there exists a point (c, η) ∈ Y satisfying Xσ(c, η) = X(c, η) = 0 because Xσ

is continuous on Y . This is our assertion.

Example 3.9. Here we give two numerical results for sign-changing driving
forces γ. First, let γ and β be defined by

γ(θ) :=


1− 3

2
exp

[
−5

(
θ − 2π

3

)2
] (

0 ≤ θ <
5π

3

)
,

1− 3

2
exp

[
−5

(
θ − 8π

3

)2
] (

5π

3
≤ θ < 2π

)
,

β(θ) := 1 + cos2 2θ.
(3.7)
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Figure 3.2: Numerical results for a sign-changing driving force γ and β given
by (3.7). (a) the graph of γ/β. (b) the nullclines of X and Y , indicated by
red and blue, respectively, on S. (c) the corresponding compact traveling
wave (Γ0, c). Here Γ0 is a convex shape indicated by red and c is represented
by the arrow.

Note that γ is sign-changing. Then the corresponding set S and the nullclines
of X and Y are given in Fig.3.2.

Next let γ and β be given by{
γ(θ) := γ1(θ)−

γ1(2π)− γ1(0)

2π
θ,

β(θ) := 1,
(3.8)

where
γ1(θ) := 1.2− 1.3e−5(θ−2π/3+0.3)2 − 0.9e−5(θ−3π/2−0.3)2 .

As well as (3.7), γ given by (3.8) is sign-changing. The S and nullclines of X
and Y are given in Fig 3.3. As far as we confirm two numerical results, (3.7)
satisfies admissible condition, but (3.8) does not satisfy admissible condition.

As mentioned in Proposition 3.4, we refer to the estimate of c under the
sing-changing γ. The following cone set is helpful for understanding it :

C− :=
{
c e(θ−) ∈ R2 | γ(θ−) ≤ 0, c ≥ 0

}
.

Lemma 3.10. Suppose that there exists a compact traveling wave (Γ0, c) to
(1.2) under a sign-changing γ. Then

0 < − inf
ξ∈[0,2π)

γ(ξ)

β(ξ)
< |c| < sup

ξ∈[0,2π)

γ(ξ)

β(ξ)
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Figure 3.3: Non-admissible example. (a) the graph of γ/β (b) the graph of
S and the nullclines of X, Y , which are indicated by red and blue (c) the
corresponding compact traveling wave with the velocity.

and c · c̃ < 0 for any c̃ ∈ C− \ {0}.

Proof. From Lemma 2.6, 0 ≤ |c| < cM . If |c| = c ≤ − infξ∈[0,2π) γ(ξ)/β(ξ),
then

inf
ξ∈[0,2π)

K(ξ; c, η) ≤ inf
ξ∈[0,2π)

β(ξ)

(
inf

ξ∈[0,2π)

γ(ξ)

β(ξ)
+ c

)
≤ 0, (3.9)

which contradicts the fact that (Γ0, c) is a compact traveling wave to (1.2).
Thus |c| > − infξ∈[0,2π) γ(ξ)/β(ξ). Let θ− be a point satisfying γ(θ−) ≤ 0. A
simple calculation shows that if η ∈ [θ− − π/2, θ− + π/2], then

K(θ−; c, η) = γ(θ−)− cβ(θ−) cos (θ− − η) ≤ 0.

Thus η ∈ (θ−+π/2, θ−+3π/2) for any (c, η) ∈ S, which implies e(η)·e(θ−) <
0.

According to Lemma 3.10, if (1.2) has a compact traveling wave (Γ0, c)
under the sign-changing γ, the velocity c belongs to the polar set Co

− of the
cone set C−, where Co

− is defined by

Co
− :=

{
c ∈ R2

∣∣∣∣ sup
c̃∈C−

c · c̃ ≤ 0

}
.

Here we give a sufficient condition of γ such that (1.2) has no compact trav-
eling wave.
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Corollary 3.11. If Co
− \ {0} is empty, then there are no traveling waves.

Proof. Let c be an arbitrary vector of R2\{0} and assume that supc̃∈C− c·c̃ >
0. Then there is a vector c̃ ∈ C− with c · c̃ > 0. By Lemma 3.10, c is
not the velocity of compact traveling wave for (1.2), which completes the
proof.

4 Special cases

In this section, we discuss the topics related to compact traveling waves of
(1.2) by using the obtained properties.

4.1 Symmetric driving force

In this subsection, we study a compact traveling wave with a symmetric
property. Throughout this subsection, we say that β is symmetric to η if
β(θ) = β(2η− θ) holds for any θ ∈ [η, η+ π]. We note that if β is symmetric
to η, then it is also symmetric to η+ π. We also define the symmetry of γ in
the same way as β. Under this setting, we can find a necessary and sufficient
condition of γ to obtain a compact traveling wave (Γ0, c), completely.

Proposition 4.1. Suppose that β is symmetric to η∗ ∈ [0, π) and (1.2)
has a compact traveling wave (Γ0, c e(η∗)). Then the traveling wave is an
axisymmetric compact traveling wave with respect to the traveling direction if
and only if γ is symmetric to η∗, that is, γ(θ) = γ(2η∗−θ) for θ ∈ [η∗, η∗+π].

Proof. We first assume that a compact traveling wave (Γ0, c e(η∗)) is axisym-
metric with respect to the traveling direction. Remember that (c, η∗) is a pair
of (1.10) which has a solution (θ(s), x(s), y(s)) in [0, L]. Without restriction
of generality, we can assume that θ0 = η∗. According to Theorem 2.2 and
assumptions, the traveling wave is strictly convex and axisymmetric, namely,
θs(s) > 0 and θ(L− s) = 2η∗ + 2π − θ(s). Hence we have θs(s) = θs(L− s)
and γ(θ(s)) = γ(θ(L − s)) due to (1.10). Thus γ(θ) = γ(2η∗ − θ) holds for
θ ∈ [θ(0), θ(L/2)].

Next we assume that γ(θ) is symmetric to η∗. Since every traveling wave
(Γ0, c) is strictly convex, Γ0 is represented by Γ0 = {(x(θ), y(θ)) | θ ∈ [0, 2π)},
where

(x(θ), y(θ)) =

(
x0 +

∫ θ

θ0

− sin ξ

K(ξ; c, η∗)
dξ, y0 +

∫ θ

θ0

cos ξ

K(ξ; c, η∗)
dξ

)
.
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Without loss of generality we can assume that (x0, y0, θ0) = (0, 0, η∗). Now
we rotate Γ0 as follows :(

x̄(θ)
ȳ(θ)

)
=

(
cos (−η∗) − sin (−η∗)
sin (−η∗) cos (−η∗)

)(
x(θ)
y(θ)

)
. (4.1)

Let us denote by Γ̄0 the set of (x̄(θ), ȳ(θ)) for θ ∈ [0, 2π). If Γ̄0 is axisymmetric
with resect to x–axis, then Γ0 is axisymmetric with respect to e(η∗). Thus our
purpose is achieved by showing that (x̄(θ), ȳ(θ)) = (x̄(2π+2η∗−θ),− ȳ(2π+
2η∗ − θ)). Since (4.1) is represented by

(x̄(θ), ȳ(θ)) =

(∫ θ

η∗

− sin (ξ − η∗)

K(ξ; c, η∗)
dξ,

∫ θ

η∗

cos (ξ − η∗)

K(ξ; c, η∗)
dξ

)
,

we see

(x̄(2π + 2η∗ − θ),− ȳ(2π + 2η∗ − θ))

=

(∫ 2π+2η∗−θ

η∗

− sin (ξ − η∗)

K(ξ; c, η∗)
dξ,

∫ 2π+2η∗−θ

η∗

− cos (ξ − η∗)

K(ξ; c, η∗)
dξ

)
=

(∫ θ

η∗

sin ((2η∗ − ξ)− η∗)

K(2η − ξ; c, η∗)
dξ,

∫ θ

η∗

cos ((2η∗ − ξ)− η∗)

K(2η − ξ; c, η∗)
dξ

)
= (x̄(θ), ȳ(θ)) .

The last equality is obtained by K(2η∗ − ξ; c, η∗) = K(ξ; c, η∗). As a result,
we complete the proof.

The assumption relating to β in Proposition 4.1 cannot be removed. We
here give a simple counterexample.

Example 4.2. Let β and γ be given by

β(θ) =
2 + sin θ

5
, γ(θ) = 1 +

2 + sin θ

5
cos θ.

Note that β is symmetric to π/2. Then θs is written by

θs = K(θ; 1, 0) = 1.

This implies that (S1, e(0)) is an axisymmetric compact traveling wave with
respect to the traveling direction, but γ is not symmetric to 0.
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From the definition of S, if (1.2) has a traveling wave, then S ̸= ∅. How-
ever the converse of the statement is not always true. Indeed, as mentioned
in the previous section, when γ is sign-changing, we imposed the admissible
condition on S. Next theorem asserts that if β and γ are symmetric to an
angle η, the converse is true without admissible condition.

Theorem 4.3. Assume that β and γ are symmetric to η∗ ∈ [0, π). Then (1.2)
has a unique compact traveling wave (Γ0, c) if and only if S ̸= ∅. Moreover
the compact traveling wave is an axisymmetric compact traveling wave with
respect to the traveling direction.

Proof. Suppose that there exists a unique compact traveling wave (Γ0, c e(η)).
By Theorem 2.2, the traveling wave is strictly convex, that is, (c, η) ∈ S.
Thus S ̸= ∅.

Conversely, we suppose that S ̸= ∅. By Lemma 2.7, we only have to
consider two cases: γ is positive or sign-changing. Let us check the existence
of compact traveling waves. When γ is positive, Theorem 3.1 implies the
existence and uniqueness of a compact traveling wave.

Next let γ be sign-changing. Without loss of generality, we here assume
that S satisfies (2.1) as mentioned in Remark 2.8. We now show that if (c, η)
is an arbitrary point of S, then (c, 2η∗ − η) ∈ S or (c, 2η∗ − η + 2π) ∈ S. By
simple calculations, we have

K(θ; c, 2η∗ − η) = γ(θ)− cβ(θ) cos (θ − 2η∗ + η)

= γ(2η∗ − θ)− cβ(2η∗ − θ) cos (2η∗ − θ − η)

= K(2η∗ − θ; c, η)

Here we used the symmetric property of β(θ), γ(θ) and cos θ. Since

inf
θ∈[0,2π)

K(2η∗ − θ; c, η) = inf
θ∈[0,2π)

K(θ; c, η) > 0,

we see that, if 0 < η ≤ 2η∗ (resp. 2η∗ < η ≤ 2π), then (c, 2η∗ − η) ∈ S (resp.
(c, 2η∗ − η + 2π)).

From now, we confirm that either

[0,∞)× {η∗} ∩ S ̸= ∅ and [0,∞)× {η∗ + π} ∩ S = ∅ (4.2)

or
[0,∞)× {η∗} ∩ S = ∅ and [0,∞)× {η∗ + π} ∩ S ̸= ∅ (4.3)
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is satisfied. Let (c, η) be a point of S. If η satisfies 0 < η ≤ 2η∗, (c, 2η∗−η) ∈
S. We then remark that either η < η∗ < 2η∗ − η or 2η∗ − η < η∗ < η
holds. Since S is simply connected, there exists a constant c0 > 0 satisfying
(c0, η∗) ∈ S. As seen in (2.1), the range of η for S is smaller than π. Thus
(c, η∗ + π) ̸∈ S for any c ≥ 0. This implies (4.2). Also, if η satisfies 2η∗ <
η < 2π, then (c, 2η∗− η+2π) ∈ S. Repeating the same argument, we obtain
(4.3).

We now show the existence of compact traveling wave. If (4.2) is true,
Proposition 2.10 guarantees c−(η∗) < c+(η∗). Since γ(ξ+η∗)−cβ(ξ+η∗) cos ξ
is even in ξ due to the symmetric property for γ and β, we have

X(c, η∗) = −
∫ π

−π

sin ξ

γ(ξ + η∗)− cβ(ξ + η∗) cos ξ
dξ = 0

for any c ∈ (c−(η∗), c+(η∗)). Meanwhile, it follows from Lemmas 2.12 that
there is a unique point c∗ ∈ (c−(η∗), c+(η∗)) with Y (c∗, η∗) = 0. Since (c∗, η∗)
satisfies X(c∗, η∗) = Y (c∗, η∗) = 0, there is a unique compact traveling wave
(Γ0, c∗e(η∗)). Similarly, if (4.3) is satisfied, we confirm the existence of com-
pact traveling wave (Γ0, c∗e(η∗ + π)).

As for the symmetry of Γ0, Proposition 4.1 guarantees that a compact
traveling wave is an axisymmetric compact traveling wave with respect to
the traveling direction, if it exists. Therefore we complete the proof.

Theorem 4.3 gives us a necessary and sufficient condition of the existence
of traveling waves to (1.2), but we do not specify whether the traveling
direction of c is e(η∗) or e(η∗ + π). Next result provides a condition such
that (1.2) has a unique axisymmetric compact traveling wave (Γ0, c e(η∗))
with respect to the traveling direction.

Theorem 4.4. Assume that β is symmetric to η∗ ∈ [0, π). Then (1.2) has a
unique axisymmetric compact traveling wave (Γ0, c e(η∗)) with respect to the
traveling direction if and only if γ is symmetric to η∗ and either the following
assertions (a) or (b) holds :

(a) For the case where γ is positive,∫ η∗+π

η∗

cos (ξ − η∗)

γ(ξ)
dξ ≤ 0 (4.4)

(the equality holds if and only if c = 0);
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(b) For the case where γ is sign-changing, c−(η∗) < c+(η∗), i.e.,

sup
|ξ−π|<π/2

γ(ξ + η)

β(ξ + η) cos ξ
< inf

|ξ|<π/2

γ(ξ + η)

β(ξ + η) cos ξ
(4.5)

Proof. Let (Γ0, c e(η∗)) be a unique axisymmetric compact traveling wave
with respect to the traveling direction of (1.2). Proposition 4.1 leads to the
symmetry of γ. We remark that (c, η∗) ∈ Y and η∗ ∈ Λ− by Proposition
2.13.

If γ is positive, it follows from Lemma 2.12 and Y (c, η∗) = 0 that Y (0, η∗) ≤
0, which means that (4.4) holds. In particular, as c = 0, we see Y (0, η∗) = 0
by Lemma 2.11. Thus (a) holds. Let us assume that γ is sign-changing.
Then S ̸= ∅ by Theorem 4.3. From Proposition 2.10, (2.2) holds for every
η ∈ S. Thus (4.5) is obtained, and (b) is true.

Conversely, we assume that γ is symmetric to η∗. By Theorem 4.3, there
exists a unique axisymmetric compact traveling wave (Γ0, c) with respect to
the traveling direction, where c is equal to c e(η∗) or c e(η∗ + π). If (a) is
satisfied, Y (0, η∗) ≤ 0. According to (3.2), Y (0, η∗+π) ≥ 0. Considering the
monotonicity of Y with respect to c, we see c = c e(η). When (b) is satisfied,
then (c, η∗) ∈ S for any c ∈ (c−(η∗), c+(η∗)). By (2.1), it is easily seen that
(c, η∗ + π) ̸∈ S for any c ≥ 0, which implies that c = c e(η). This is our
assertion.

The following corollary is a direct consequence of Theorem 4.4.

Corollary 4.5. Assume that β ≡ 1. Then for any η∗ ∈ [0, 2π), (1.2) has a
unique axisymmetric compact traveling wave (Γ0, c e(η∗)) with respect to the
traveling direction if and only if γ is symmetric to η∗ and either (a) or (b)
in Theorem 4.4 holds.

If β and γ have two symmetric axis η1 and η2, then the traveling wave
solution is stationary even if there exists.

Corollary 4.6. Suppose that γ and β are at least symmetric to η1 and η2,
where η1, η2 ∈ [0, π) and η1 ̸= η2. If γ is positive, then there exists a unique
axisymmetric compact traveling wave (Γ0,0) with respect to two vectors e(η1)
and e(η2). If γ is sign-changing, there is no traveling wave.

Proof. Let γ be positive. Theorem 4.4 ensures the existence and uniqueness
of compact traveling wave (Γ0, c) of (1.2). Since γ and β are symmetric to
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η1, Proposition 4.1 means that Γ0 is axisymmetric with respect to e(η1) and
c satisfies c = |c| e(η1) or c = |c| e(η1 + π). Similarly, Γ0 is axisymmetric
with respect to e(η2) and c satisfies c = |c| e(η2) or c = |c| e(η2+π). By the
assumption |η1 − η2| ̸= 0, π, it follows that c = 0.

Let us consider the sign-changing case. If there exists a compact traveling
wave (Γ0, c) of (1.2), then c ̸= 0 as seen in Lemma 3.10. This implies that
there is no traveling wave under the sign-changing condition. This completes
the proof.

4.2 Translation invariance

We here discuss an invariant property of compact traveling waves. In fact, we
can construct easily another compact traveling wave if (1.2) has a compact
traveling wave (Γ0, c e(η)).

Proposition 4.7. Assume that (Γ∗
0, c

∗e(η∗)) is a compact traveling wave of
(1.2) with γ. Then (1.2) with γ̃(θ) := γ(θ)+ νβ(θ) cos(θ− η∗) for ν ∈ R also
has a compact traveling wave (Γ0, c) where

(Γ0, c) =

{
(Γ∗

0, (c
∗ + ν)e(η∗)) if c∗ + ν ≥ 0,

(Γ∗
0, |c∗ + ν|e(η∗ + π)) if c∗ + ν < 0.

Proof. By assumption, there is a solution (θ, x, y) satisfies (1.10) with c = c∗

and η = η∗. Especially, θ satisfies θs = γ(θ)− c∗β(θ) cos(θ − η∗). Let ν be a
constant satisfying c∗ + ν ≥ 0. Then we have

γ̃(θ)− (c∗ + ν)β(θ) cos(θ − η∗) = γ(θ)− c∗β(θ) cos(θ − η∗) = θs.

This means that (Γ∗
0, (c

∗+ ν)e(η∗)) is a compact traveling wave of (1.2) with
γ̃ instead of γ. As for the case c∗+ν < 0, we obtain the same result; however
we need to take (c∗ + ν)e(η) = |c∗ + ν|e(η + π) in consideration since the
scalar c of c e(η) must be positive by the definition of compact traveling
wave.

On account of the above lemma, we immediately obtain the following
corollary.

Corollary 4.8. Suppose that there exists a stationary compact traveling wave
(Γ∗

0,0) of (1.2). Then (1.2) with γ(θ) replaced by γ̃(θ) := γ(θ)+νβ(θ) cos(θ−
η∗) for any η∗ ∈ [0, 2π) and ν ∈ R has a compact traveling wave (Γ∗

0, ν e(η
∗)).
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4.3 The inverse problem

Here we consider the inverse problem. We first fix any strictly convex Jordan
curve Γ∗

0 and any velocity c∗. Also let β be any positive function of θ.
Consider the following question:

Q. Is there a function γ such that (1.2) possesses the compact traveling
wave (Γ∗

0, c
∗) ?

The answer is positive as follows.

Proposition 4.9. Let Γ∗
0 and c∗ be an arbitrary strictly convex Jordan curve

and vector, respectively. Then there exists γ such that (Γ∗
0, c) is a compact

traveling wave of (1.2).

Proof. Since Γ∗
0 is strictly convex, the curvature θs of Γ

∗
0 is positive,. Recall

that θ stands for the angle on Γ∗
0. Thus θ is invertible, namely, there exists

a function θ−1 satisfying s = θ−1(θ(s)). We define γ by

γ(θ) := τ(θ−1(θ)) + c∗β(θ) cos(θ − η∗), (4.6)

where τ(s) := θs(s) and (c∗, η∗) satisfies c∗ = c∗ e(η∗). Then γ satisfies
(1.10) with given θ(s) and (c∗, η∗). Since the matching condition in (1.10)
are determined by only θ(s), (Γ∗

0, c
∗) is a compact traveling wave of (1.2)

with γ defined by (4.6).

Note that there exists a driving force γ such that (1.2) has no compact
traveling wave as discussed in the first part of Subsection 3.2.

4.4 The Wulff shape

In this subsection, we consider the application of our theorems to a typical
example (1.5). As introduced in Section 1, the anisotropic interface equa-
tion (1.5) is obtained by considering the interfacial energy and the difference
between bulk energies. In (1.2), setting

β(θ) = b(θ)
(
f(θ) + f

′′
(θ)

)−1

, γ(θ) = A
(
f(θ) + f

′′
(θ)

)−1

,

we see that (1.2) corresponds to (1.5). Recall that A is a positive constant.
Let us consider that the interfacial energy f(θ) is strictly stable (see [21]),
that is,

f(θ) + f
′′
(θ) > 0.
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Since γ is positive, we can apply Theorem 3.1 to (1.5). Thus there exists a
unique compact traveling wave (Γ0, c). Using the integration by parts, we
easily check that∫ 2π

0

γ(θ)−1eiθdθ = A−1

∫ 2π

0

(f(θ) + f ′′(θ))eiθdθ = 0,

which implies that X(0, η) = Y (0, η) = 0 for any η ∈ [0, 2π). Therefore
it follows from Lemma 2.11 that c = 0. Due to the uniqueness of compact
traveling waves, this stationary solution of (1.5) is a unique compact traveling
wave with c = 0. We can confirm the same result in [21].

As A = 1, in particular, the closed domain whose boundary is the sta-
tionary solution Γ0 is often called the Wulff shape (also called the Wulff
region or the Wulff crystal). Thus we know that the convex traveling wave of
(1.5) (namely, stationary solution) is represented by the dilation of the Wulff
shape.

4.5 Non-convex compact traveling waves

As mention in Remark 2.4, we here give an example of non-convex traveling
waves. In main results of this paper, the driving force γ is a Lipschitz function
depending only on θ. Under this assumption, every traveling wave of (1.2)
is strictly convex by Theorem 2.2. In order to make a non-convex traveling
wave of (1.2), we need to violate this restriction for γ.

Here we present a numerical result of non-convex traveling waves of (1.2)
with the driving force γ which depends not only on θ but also y. To this end,
we first make a non-convex compact traveling wave (Γ0, c) with c = 0. Let
γ be a function of y with γ(y) = γ(−y) and (θ, x, y) be a solution of

θs = γ(y) in (0, ℓ),

xs = − sin θ in (0, ℓ),

ys = cos θ in (0, ℓ),

θ(0) = 0, θ(ℓ) = π/2,
x(0) = y(0) = 0,

(4.7)

for a constant ℓ > 0. By the symmetry of γ, we can extend the solution
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(x, y, θ) to the interval [0, 4ℓ] by

xs = − sinΘ, ys = cosΘ, Θ :=


θ(s) in [0, ℓ)

π − θ(s− ℓ) in [ℓ, 2ℓ)

π + θ(s− 2ℓ) in [2ℓ, 3ℓ)

2π − θ(s− 3ℓ) in [3ℓ, 4ℓ)

,

and we obtain a Jordan curve Γ0 = {(x(s), y(s)) | s ∈ [0, L), L = 4ℓ}. In
order to get a non-convex traveling wave Γ0, γ(y(s)) must be at least negative
at some s ∈ (0, ℓ). Let y∗ be defined by

y∗ =

∫ ℓ

0

cos θ ds.

We suppose for instance that γ has two points y1, y2 such that 0 < y1 < y2 <
y∗, γ(y1) = γ(y2) = 0 and

γ =

{
> 0 in (0, y1) ∪ (y2, y∗),

< 0 in (y1, y2).
(4.8)

By (4.7), we have the following relationship:∫ y(s)

0

γ(y) dy =

∫ θ(s)

0

cos θ dθ.

This equality gives

γ(0) ≥ 0,

∫ y1

0

γ(y)dy < 1

(
=

∫ y∗

0

γ(y)dy

)
, (4.9)

which is due to the fact that cos θ is non-negative in [0, π/2]. Then we can
give an example

γ(y) := g0(y
2 − 1)(y2 − 4),

with some positive constant g0, which satisfies the above condition (4.8) with
y1 = 1 and y2 = 2. We take g0 so small that the second condition of (4.9)
holds. Since ∫ 2

0

γ(y)dy =
16g0
15

> 0,

39



-2.5 -2.0 -1.5 -1.0 -0.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

c=0.1, Θ0=1Π

Figure 4.1: The non-convex compact traveling wave given by (4.10) with
g0 = 1/3.

we have ∫ y

0

γ(y)dy > 0, for y > 0.

Moreover, it is easily seen that there is a positive constant y3 such that∫ y3

0

γ(y)dy = 1.

From this, Γ0 is a non-convex traveling wave with c = 0. Repeating the
same argument as in subsection 4.2, we also see the existence of a non-convex
compact traveling wave with the velocity c = c e(0)(̸= 0) when γ is replaced
by γ(y) + c cos θ and β ≡ 1. Let us define γ and β by

γ(θ, y) := g0(y
2 − 1)(y2 − 4) +

1

2
cos θ, β(θ) := 1. (4.10)

Then, as seen in Figure 4.1, there numerically exists a compact traveling
wave (Γ0, c) such that Γ0 is non-convex and c = e(0)/2.
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